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For many Lincoln Laboratory mission 
areas, relationships between entities of 
interest are important. Over the years, 
much work has gone into the detection of 

entities, such as radio emissions, vehicles in images, or 
people named in documents. The examination of relation-
ships between entities (Which emitters are co-located? 
Which vehicles stopped at the same place? What people 
are mentioned in the same documents?) can provide a 
significant improvement in situational awareness and 
may allow analysts to find subtle, coordinated activity 
that would go undetected if the relational components of 
the data were not considered. In a cyber security applica-
tion, for example, the volume of network traffic may not 
be high on any particular node, but if there are notably 
higher rates of communication between a small subset of 
nodes where the traffic is usually more diffuse, some sus-
picious activity may be occurring. While the entities alone 
may not present any detectable anomalous behavior, the 
relationships and interactions may indicate the presence 
of interesting activity. 

Graphs provide a natural representation for relational 
data. A graph G = (V, E) is a pair of sets: a set of vertices, 
V, that denote the entities and a set of edges, E, that rep-
resent relationships or connections between the entities. 
Graphs have been used, implicitly or explicitly, for hun-
dreds of years to represent sets of objects that are some-
how connected, such as points on possible travel routes, 
nodes in electrical circuits, or interacting particles. More 
recently, graphs have gained popularity in the modeling 
of relational data, such as social and computer networks. 
In the last two decades, the explosion in new data-collec-

Graphs are fast emerging as a common data 
structure used in many scientific and engineering 
fields. While a wide variety of techniques 
exist to analyze graph datasets, practitioners 
currently lack a signal processing theory akin to 
that of detection and estimation in the classical 
setting of vector spaces with Gaussian noise. 
Using practical detection examples involving 
large, random “background” graphs and noisy 
real-world datasets, the authors present a 
novel graph analytics framework that allows 
for uncued analysis of very large datasets. 
This framework combines traditional computer 
science techniques with signal processing in the 
context of graph data, creating a new research 
area at the intersection of the two fields.

»
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Definitions and Notation 
Each data observation considered in this article is in the 
form of a graph G = (V, E ). Each vertex in V is an abstract 
entity, with each edge in E connecting a pair of vertices 
in V. These pairs may or may not be ordered, depend-
ing on whether the relationships the graph encodes are 
directional (e.g., a “pays” relationship is typically directed, 
whereas an “are friends” relationship is not). Edges are 
weighted if the relationship has a magnitude associated 
with it (e.g., bytes sent and received in a computer net-
work). The degree of a vertex is the number of edges the 
vertex shares with other vertices in the graph. The volume 
of a graph is defined as the sum of vertex degrees over 
all vertices in V, and its density is the number of edges 
divided by the possible number of edges. Graphs will be 
combined by taking their union, with the union of two 
graphs G1 = (V1 , E1 ) and G2 = (V2 , E2 ) defined as 

G1 ∪ G2 = (V1 ∪ V2 , E1 ∪ E2 ). 
In the subgraph detection framework, graphs are 

analyzed in their matrix form as defined in the introduc-
tion to this Lincoln Laboratory Journal issue, “Confront-
ing the Challenges of Graphs and Networks.” In this form, 
•	 the vertices are labeled with an integer i, 1 ≤ i ≤ |V |, 

and the ith vertex is denoted by vi ,
•	 the adjacency matrix A = {aij } of G is defined as a  

|V | × |V | binary matrix in which aij is nonzero only if 
there is an edge connecting vi and vj , and

•	 the vector of degrees is denoted by k, where ki , the ith 
component of k, is the degree of vi . 

In many applications, the topology of a graph varies 
over time. In these cases, the graph can be considered 
at individual, discrete time steps. The expression G (n) = 
(V, E (n)) denotes the graph at discrete time sample n. 
When the graph is dynamic, the vertex labeling, while 
arbitrary, is consistent across time samples, and A(n) 
and k (n), respectively, denote the adjacency matrix and 
degree vector at time n. 

The Subgraph Detection Problem 
The subgraph detection problem is framed in the context 
of traditional detection theory, as a problem of detecting 
a signal in noise [2]. The observations are cast as a graph 
whose edges are unweighted and undirected, though the 
analysis can be extended to weighted and directed graphs. 
In some cases, G consists of only typical background activ-
ity. This is the “noise-only” scenario, and the background 

tion capabilities brought about by the World Wide Web 
and online social networking has led to the emergence of 
network science, in which graphs of interest frequently 
represent large sets of entities, often many millions, and 
the research questions are often data driven [1]. When 
relational data are cast as a graph, finding small subsets 
of vertices whose interactions do not fit the model of typi-
cal behavior can help in detecting and countering mali-
cious activity. The detection of an anomalous event in the 
graph data can cue an analyst to pay attention to a certain 
portion of the network where the previously mentioned 
coordinated activity is occurring. Thus, detection theory 
for graph-based data is an important technical area. 

While graph theory provides a mathematical object 
that naturally encodes relationships, the relationships 
are difficult to analyze in the context of traditional signal 
detection. Graphs are discrete, combinatorial objects and 
lack the framework that exists for data in vector spaces 
with additive Gaussian noise. Translation and scaling, 
for example, are not well defined for general graphs, and 
neither is the notion of addition in a way that allows an 
additive inverse. Therefore, new frameworks are needed 
to efficiently solve detection problems pertaining to graph 
and network data. A detection framework for graph data 
will be useful across myriad applications, and under-
standing and quantifying detectability are important to 
making progress in this area. 

Over the last five years, researchers at Lincoln 
Laboratory have been building a signal processing 
framework for graph-based data, developing a suite of 
algorithms and metrics in the context of this framework, 
and applying those algorithms to a wide range of appli-
cation datasets. This framework is based on the analysis 
of a graph when compared to its expected topology and 
projected into a low-dimensional Euclidean space in 
which known techniques can be applied. The signal pro-
cessing chain described in this article uses this frame-
work to enable the uncued detection and identification 
of anomalous subgraphs. The processing chain involves 
fitting observed data to a model and efficiently comput-
ing their residuals (deviations from expected values); 
performing temporal integration for graphs that vary 
over time; computing a low-dimensional subspace in 
which to analyze the data; calculating a detection sta-
tistic; and, if an anomalous subgraph is detected, deter-
mining the vertices involved. 
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graph is denoted as GB = (V, EB). In other cases, most of 
G exhibits typical behavior, but a small subgraph has an 
anomalous topology. This is the “signal-plus-noise” sce-
nario. The signal subgraph is denoted GS = (VS , ES ), with 
VS ⊂ V. The objective, given the observation, is to dis-
criminate between the two scenarios. Formally, we want 
to resolve the following binary hypothesis test:

 

H0 : G = GB

H1 : G = GB ∪ GS
{

 
Under the noise-only hypothesis H0, the background 
graph GB is generated by a random noise process. Under 
the alternative hypothesis H1, the background is gen-
erated by the same process and combined with GS, the 
anomalous subgraph. 

As previously noted in the problem model, because 
VS ⊂ V, the vertex set is the same under both hypotheses; 
therefore, the presence of the signal subgraph is indicated 
by a significant difference in the edge set, i.e., strange con-
nectivity. When the graph is dynamic, the background 
graph and anomalous foreground are denoted similarly, as 
GB (n) = (V, EB (n)) and GS (n) = (VS , ES (n)), respectively.

Even in the seemingly simple scenario presented 
here, the problem is quite difficult. For a fixed (nonran-
dom) graph, detection of a small subgraph within a larger 
graph is the subgraph isomorphism problem, which, in 

general, is NP-hard (i.e., it is in a class of problems for 
which there is no known solution in polynomial time [3]). 
The technique described in the experiments throughout 
this article allows reliable detection of small subgraphs in 
the presence of large, realistic backgrounds. As notion-
ally depicted in Figure 1, a test statistic is computed from 
an observed graph and compared to a threshold. If the 
distributions of test statistics are sufficiently different 
under H0 and H1, then the comparison of the test statis-
tic to a threshold will accurately detect the presence of 
a signal subgraph. The objective of the Signal Process-
ing for Graphs (SPG) effort is to develop computation-
ally efficient test statistics that enable the detection of 
small anomalies within large networks. That is, the test 
statistics must be computable from an observed graph in 
a short amount of time, and be sensitive to changes in the 
graph’s topology that occur when an anomalous subgraph 
is embedded into the background. 

An adjacency matrix of an example graph is shown 
in Figure 2a. The adjacency matrix has some structure 
to it, as is discussed in the next section. This structure 
adds a dimension of complexity to the noisy background 
behavior. The entries highlighted by red circles are the 
subgraph edges. In a 1024-vertex background where the 
average vertex has degree 11.5, a 12-vertex complete sub-
graph (one with all possible edges) is embedded. While 
only slightly more than 1% of the vertices belong to the 
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FIGURE 1. A notional diagram of the subgraph detection problem. Given a graph, a test statistic is computed, and the objec-
tive is to determine the distribution from which it was drawn. If there is substantial separation between the distributions under 
the null hypothesis (no signal present) and the alternative hypothesis (signal present), then the comparison of this statistic to 
a threshold will be powerful for the detection of anomalous subgraphs. This is a common approach in many signal processing 
application domains, and the novel framework presented in this article allows the analysis of large graphs in this context.
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subgraph and the number of edges attached to each sub-
graph vertex is not high, we can compute a test statistic 
that drastically changes when the subgraph is embed-
ded, as demonstrated by the empirical distributions in 
Figure 2b. This change in the distribution allows the 
reliable detection of relatively small anomalies. Several 
test statistics will be discussed later in this article.

Signal and Noise Models 
The first step toward the realization of this framework 
requires the modeling of the signal and noise, both of which 
are drawn from random graph distributions. Random 
graph theory began in earnest with the work of Erdös and 
Rényi [4]. In their random graph model, each possible edge 
within a fixed set of vertices occurs with the same probabil-
ity. While these models enable tractable theoretical analy-
sis [5], they do not generate graphs representative of those 
seen in practice. In recent years, random graph models have 
been developed that capture properties seen in real-world 
networks, such as power-law degree distributions [1], small 
diameters [6], and community structure [7].

One class of random graph model that has gained 

significant attention is the stochastic Kronecker graph, 
in which the edge probabilities are defined by the 
n-fold Kronecker product of a base probability matrix 
[8], thereby building graphs with a fractal-like struc-
ture. For the experiments run in this paper, we used the 
R-MAT (recursive matrix) generator, which iteratively 
chooses edges based on a stochastic Kronecker graph 
model [8]. An adjacency matrix of an example R-MAT 
graph is shown in Figure 3a. The R-MAT generator was 
designed to fit several of the aforementioned proper-
ties seen in real networks. The degree distribution is, 
as expected, an inverse power-law distribution; i.e., the 
number of vertices with degree d is proportional to d 

−β 
for a positive constant β. Figure 3b provides the degree 
distribution of an example R-MAT graph. Chakrabarti, 
Zhan, and Faloutsos [8] showed that when this gen-
erator’s parameters are fit to several real-world graphs, 
the eigenvalues of the adjacency matrix and the graph 
diameter (longest distance between vertices) are well 
matched. Also, as is evident in the structure of the adja-
cency matrix in Figure 3a, there are communities in the 
graph. In each quadrant of the adjacency matrix, “com-

FIGURE 2. An empirical subgraph detection example. The graph in (a) is shown in the form of its adjacency matrix. 
The graph is sparse, so relatively few entries of the matrix are nonzero. The blue dots indicate edges arising from back-
ground (noise) activity. In this simple example, a 12-vertex subgraph with all possible edges, indicated by the red circles, 
is embedded into the 1024-vertex background. From the observed graph, a test statistic is computed, an example of 
which is in (b). Statistics that are sensitive to the embedding of an anomalous subgraph, thus yielding significantly dif-
ferent distributions as in the histogram, will be powerful detectors for the hypothesis test.
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munities of communities” were created by the recursive 
algorithm. Because this generator creates graphs that 
exhibit several interesting phenomena seen in real net-
works, it served well as the noise model in the formula-
tion of the SPG framework. 

Under the alternative hypothesis (H1 ), a back-
ground was generated by the noise model and then 
combined with a subgraph GS that is unlikely to occur 
in the noise-only case. For the anomalous subgraph, a 
variant of the Erdös-Rényi model was used. The density 
of the subgraph was fixed, and the edges were chosen 
uniformly at random from all possible edge sets with 
the given density. The embedded subgraph has higher 
connectivity than a typical subgraph of the same size 
in the background, and thus this simple random graph 
served as the signal model in the initial experiments. 
When the signal is embedded into the background, |VS| 
randomly selected vertices from V comprise the vertex 
set of the anomaly.

Signal Processing for Graphs 
The detection framework developed at the Laboratory 
over the last five years is based on the analysis of graph 
residuals [9]. Given a graph, we fit the observation 
to a model for background behavior and consider the 

deviations from the model that exist in the observation. 
This process is akin to the analysis of variance in linear 
regression, as illustrated in Figure 4. Normal deviation 
from the expected value can be attributed to the pres-
ence of noise. When much more unlikely deviations 
occur, however, it is an indication that there is also a 
signal present. This principle is applied to graph analysis 
for anomalous subgraph detection. After the data are 
projected into a low-dimensional space, as shown in Fig-
ure 4b, significant deviations of the observed graph from 
its expected value indicate that an anomalous subgraph 
exists within the graph.

Figure 5 illustrates the signal processing chain for 
graphs. While there are several different algorithmic 
approaches that could be used to implement individual 
components, the chain is general enough to be applicable 
to a wide range of problems of interest, as will be demon-
strated in the later section entitled “Results on Applica-
tion Data.” The chain begins with the input of a graph 
in the form of its adjacency matrix. The input, shown in 
Figure 5a, may be either static or dynamic. No cue to the 
vertices that may be of interest is given. The processing 
sequence is as follows: residuals computation, temporal 
integration, dimensionality reduction, anomaly detection, 
and vertex identification.
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FIGURE 3. Properties of the recursive-matrix (R-MAT) generator. The adjacency matrix created by the R-MAT 
generator (a) exhibits a fractal-like structure, with each quadrant of the matrix having a similar structure to the full 
matrix. This is due to the process that generates the graph, recursively choosing a quadrant into which an edge is 
placed, as exemplified by the axes overlaid in the figure. In addition to the “communities of communities” visible 
within the adjacency matrix structure, this generator creates graphs with power-law degree distributions (b), which 
are seen in many graphs based on real network data.
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1. Residuals Computation 
The first step is fitting the observed data to a model and 
computing the graph residuals with respect to this model. 
In the experiments highlighted in this article, the modu-
larity matrix [10] is used as a graph-residuals matrix. 
The modularity matrix B of an unweighted, undirected 
graph is given by

 B = A –  kkT

2|E|
. 

This expression represents the adjacency matrix of 
the observed graph, A, minus the expected value of a ran-
dom graph where the probability of an edge from vi to 
vj is proportional to ki kj , the product of the degrees vi 
and vj . While this expression does not quite match the 
structure of our noise model—e.g. , it does not capture 
the “communities of communities” visible in Figure 3a—it 
still enables good detection performance. Also, because 
this quantity can be calculated easily from observed data, 
the residuals can be computed from real data without 
first training the model. The modularity matrix is used in 
community detection in a method to partition the graph 
into two parts such that there is maximal connectivity on 
either side of the partition and relatively little across it. 
As the first step in the development of the SPG frame-
work, we reinterpret the modularity matrix as a residuals 

matrix and seek to detect a subgraph with large residuals. 
In ongoing work [11, 12, 13], we have considered a num-
ber of other residual models, including ones that account 
for directionality, dynamics, and attributes. 

2. Temporal Integration 
If the graph changes its topology over time, we apply a 
principle from traditional signal processing: matched 
filtering [12]. In this case, we have to hypothesize the 
subgraph’s evolution over time, possibly with several com-
peting alternatives (i.e., use a bank of filters, each repre-
senting a different candidate evolution pattern). Using the 
residuals matrices 

 

B(n) = A(n) –  k(n)kT(n)
2|E(n)|

over a finite window of L discrete time steps, the inte-
grated residuals B (n)~

 are computed as

 
B (n) = 
~

B (n – l )hl ,∑
l = 0

L – 1

 
where hl are real-valued coefficients for 0 ≤ l < L. When 
well matched to subgraph behavior, this technique enables 
the uncued detection of anomalies that would be unde-
tectable by using the same techniques at any instant in 
time. Thus, as with other data types, temporal integration 
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FIGURE 4. Comparison of linear regression and graph “regression.” In (a), the residuals (circled in red) appearing outside 
the gray noise range in a linear regression problem indicate the presence of a signal in addition to noise. A similar principle can 
be applied for subgraph detection. In (b), a graph has been projected into two dimensions, with most points falling near the 
origin. One cluster of points stands significantly outside the bulk of the data, and these points correspond to an anomalous 
subgraph in the original graph, highlighted in red in (c).
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gain can be used to increase signal power and improve the 
detection performance of the processing chain. 

3. Dimensionality Reduction 
The dimensionality reduction portion of the processing 
chain has two components: matrix decomposition and sub-
space selection. First, the residuals matrix must be broken 
down in a way that allows the reduction of the dimensional-
ity. For the cases considered in this article, this is done by 
using an eigendecomposition to permit the projection of B 
(or B (n)~  for dynamic graphs) into the low-dimensional sub-
space in which the residuals are the largest. This step is the 
computational bottleneck in the processing chain, and thus 
it dominates the asymptotic running time of the algorithms. 

A few strategies are used to select the subspace in 
which to analyze the residuals. The first and simplest 
strategy is to simply choose the m-dimensional subspace 

where the residuals are largest and analyze the graph 
there. One detection algorithm uses this approach with 
m = 2. An alternative is to use a larger value for m and 
choose a small subspace in which the residuals are con-
centrated on just a few vertices. A second algorithm takes 
this approach, which, in a sense, blurs the line between 
subspace selection and detection. A third technique solves 
an optimization problem to find a one-dimensional space 
in which the residuals reside mostly on a few vertices. This 
technique is the most computationally costly, but it pro-
vides the best detection performance. As discussed in the 
next section, approaches requiring more computational 
power enable the detection of smaller, subtler anomalies.

4. Detection 
Three algorithms for detection all go hand-in-hand with 
the component-selection strategies summarized above. 
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FIGURE 5. The Laboratory’s Signal Processing for Graphs (SPG) framework is illustrated in the processing chain for 
uncued anomalous subgraph detection. A graph (a) in the form of an adjacency matrix is input into the chain. In steps 1 and 
2, data are fit to the model, residuals are computed, and data are temporally integrated if necessary. In step 3, the dimen-
sionality is reduced via a matrix decomposition. In steps 4 and 5, anomalous vertices are detected and identified. The final 
output is the subgraph (or subgraphs), as seen in (b). 
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tic. Histograms of the chi-squared statistic under H0 and 
H1 are shown in Figure 6c. The distributions are radically 
different, and thus this method will allow the detection of 
the embedded subgraph in this background. 

The second algorithm finds a subspace in which the 
residuals are highly concentrated on a small subset of 
vertices [14]. Using this algorithm allows the detection 
of anomalies that are not strong enough to stand out in 
the principal 2D subspace. In this case, we look for an 
eigenvector in which the components stand out along just 
a few axes. The vector’s L1 norm (the sum of the abso-
lute values of its components) can be used, when it has 
been unit-normalized in an L2 sense, to detect such cases 
because a vector’s L1 norm tends to be smaller when con-
centrated on a few vertices. This technique is illustrated 
in Figure 7. When only noise is present, the L1 norms of 
the subspace vectors tend to stay within a few standard 
deviations of the mean. When a subgraph is embedded, 
however, one of the vectors has an L1 norm more than 10 

Each of the detection algorithms computes a statistic 
from the projection of the residuals into a low-dimen-
sional space. The computing requirements increase as 
the detection statistics become more powerful.

The first algorithm considers B in the two-dimen-
sional (2D) space where the residuals are the largest [9]. 
In this 2D space, a chi-squared test for independence is 
performed based on the number of vertices projected into 
each quadrant. The resulting test statistic is maximized 
over rotation in the plane, and thus takes on smaller values 
when the projection is more radially symmetric. Figure 6 
demonstrates the effect of embedding a small, tightly con-
nected subgraph on this statistic. In Figure 6a, 50 graphs 
generated under the null hypothesis are displayed, all 
overlaid in the two-dimensional plane. The projections are 
rather symmetric about the origin. Under the alternative 
hypothesis, a significant change is seen in the symmetry, 
as shown in Figure 6b. The embedded subgraph alters the 
projection, thereby increasing the value of the test statis-
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FIGURE 6. A depiction of subgraph detection using the chi-squared test statistic in the principal two dimen-
sions. When the modularity matrix of a graph created by the R-MAT generator is viewed in the space of its two 
principal eigenvectors, as in (a), the projection is quite symmetric about the origin. When a small, tightly con-
nected subgraph is embedded into the background, the symmetry of the projection is altered, as shown in (b), 
with red points denoting the vertices of the anomalous subgraph. The chi-squared statistic is much smaller for 
more radially symmetric projections, yielding a distribution of test statistics much closer to zero when no sub-
graph is embedded, as demonstrated by the empirical distributions in (c).
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standard deviations from the mean. This result occurred 
in a less prominent vector (specifically, in the eigenvec-
tor associated with the 18th largest eigenvalue), so this 
subgraph would not have been detected in the principal 
2D subspace. By using this technique, we can detect these 
subtler anomalous subgraphs in an uncued fashion. 

The third and most complicated algorithm explicitly 
attempts to find a small subset of vertices that have large 
residuals [15]. Rather than computing eigenvectors of B 
and then finding a vector that is concentrated on a small 
number of components, this algorithm incorporates the 
fact that the subgraph is relatively small into the subspace 
computation process. This technique uses sparse princi-
pal component analysis (sparse PCA) to find a small sub-
set where the residuals are large. This task involves using 
a convex approximation to the NP-hard problem

 

max xTBx 
x = 1

subject to x  
0
= |VS| , where • 

0
 denotes the L0 quasi-

norm—the number of nonzero entries in a vector. A one-
dimensional subspace that maximizes the residuals (while 
penalizing the number of entries that have large values) 
is found by using the convex relaxation. As a detection 

statistic, we used the L1 norm of this vector.
The first two algorithms use eigs in MATLAB 

to compute the residuals subspace. To compute an 
m-dimensional subspace using eigs requires a runtime of  
O ((|E|m + |V|m2 + m3)h) [16], where h is the number of 
iterations before the algorithm converges. The first algo-
rithm requires computation of a subspace of fixed dimen-
sion (m = 2), so, assuming a number of iterations bounded 
by a constant, O (| E| + |V |) time is required for computation. 
The second algorithm is flexible in the number of dimen-
sions used, and thus requires O (| E|m + |V |m2) time under 
the same assumption. This running time will be linear in 
| E|m if m does not grow faster than the average degree (vol-
ume divided by number of vertices, proportional to | E|/|V |) 
as the problem size scales. Sparse PCA is implemented 
using the DSPCA toolbox [17], and the running time has 
been shown to be O (|V |4 log|V | / ε ) ,√  where ε controls 
the error tolerance [18]. While too complex to run in real 
time on large graphs, this method demonstrates that still 
smaller subgraphs are detectable using similar principles.

5. Identification 
After the presence of an anomaly is detected, the ver-
tices engaged in behavior that triggers the detector are 
identified. The method used to identify the vertices is 
paired with the detection algorithm. In the 2D space, 
a k-means-based clustering algorithm is used to find 
a large and a small cluster, and the smaller cluster is 
declared the subgraph of interest, with the larger cluster 
assumed to be background noise. This decision allows 
us to find a small, concentrated set of vertices in the 2D 
plane. The two more complex algorithms, which rely on 
the vector being concentrated on a few entries (vertices), 
enable us to simply apply a threshold to the vector found 
in the detection process. In all cases, this step concludes 
the processing chain. The identified vertices are given as 
output (Figure 5b), which then suggests that an analyst 
focus on a particular part of the network.

Simulation Results 
The graph processing chain was demonstrated on simu-
lated data generated according to the models described 
earlier. These demonstrations were performed using ran-
dom backgrounds with embedded anomalies of varying 
degrees of subtlety, and both static graphs and graphs that 
vary over time were considered. 
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FIGURE 7. L1 norms of residuals subspace vectors. Under 
the null hypothesis, the L1 norms of the modularity matrix’s 
eigenvectors have low variance and typically fall between 
the red and green curves denoting three standard deviations 
from the mean. When an anomalous subgraph is embed-
ded, as shown in the plot, the L1 norm of one of the vectors 
will often become significantly smaller than usual. In this 
case, the 18th eigenvector’s L1 norm is 10 standard deviations 
below the mean, indicating the presence of an anomaly.
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Detection and Identification in Static Graphs 
In the static simulations, we used an R-MAT background 
with 1024 vertices. The average degree was approximately 
11.5 and the power-law exponent was roughly –2.5. In each 
of the following scenarios, the distribution of test statis-
tics under the null model was generated by a 10,000-trial 
Monte Carlo simulation of the background graph alone. 

In the first scenario, the signal subgraph consisted 
of 12 vertices. The density of the subgraph increased 
from 70% to 100% in increments of 5%. Figure 8a shows 
the receiver operating characteristic (ROC) curves that 
demonstrate the trade-off between detections and false 
alarms when using the symmetry-based statistic in a 2D 
space. When the subgraph’s density is below 80%, this 
statistic had zero power to detect the embedded sub-
graph. At 80% density, detection performance increased 
to slightly better than chance. Detection performance 
continued to increase with subgraph density, until 
it reached an equal error rate (EER) of 2.1% at 100% 
density. Even when the graph was fully connected, the 
degree of the subgraph vertices was lower than the aver-
age degree of the background, and thus a degree-dis-
tribution-based detector would not perform well in the 
detection of these embedded subgraphs.

Upon detection, the aforementioned k-means-based 
clustering algorithm was used to identify the subgraph 
vertices. The size of the cluster to be identified was var-
ied to trade off between the number of vertices correctly 
identified and the number of non-subgraph vertices incor-
rectly identified. In each of these cases, we used a graph 
generated under the alternative hypothesis H1 for each 
subgraph density. Identification results are summarized 
in Figure 8b; each discrete point is associated with a dif-
ferent cluster size. When the subgraph was 100% dense, 
near-perfect identification could be achieved with no false 
positives. Even when the subgraph was much less dense, 
the clustering method had reasonable power to discrimi-
nate between subgraph vertices and the rest of the graph, 
although these results assumed the presence of a sub-
graph as prior knowledge of the identification algorithm. 

The next scenario focused on subtler anoma-
lies. In this experiment, the embedded subgraph 
had 8 vertices. The density was increased from 70% 
to 100% in increments of 10%, and was embed-
ded on vertices with at most three connections to the 
background. For this embedding, the chi-squared  
statistic in the principal 2D subspace yielded no detec-
tion power; therefore, a more complex algorithm was 
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and, as with detection performance, more vertices are correctly identified as the subgraph density increases.
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used to enable the detection of weaker signals. We  
computed the 100-dimensional subspace in which the 
residuals are largest. Under the null model, distributions 
of L1 norms of the subspace vectors were built. The detec-
tion statistic was then the largest deviation below the 
mean among the subspace vectors. As shown in Figure 9, 
this method had reasonable power to detect the presence 
of these subgraphs.

When the subgraphs became too small to be detected 
by using this technique, the most complex algorithm for 
subgraph detection was employed. In this case, a 7-vertex 
subgraph was embedded into the R-MAT background on 
vertices that were selected without regard to degree (as 
in the experiments with the 12-vertex anomaly). The sub-
graph density was increased from 85% to 100% in incre-
ments of 5%. Analyzing eigenvector L1 norms yielded very 
low detection power, with an EER of nearly 50%. By using 
sparse PCA, however, the denser subgraphs were detected 
with high accuracy, as shown in the ROC curves in Fig-
ure 10. When the graph is 100% dense, this algorithm 
achieved perfect detection within the 10,000-trial simula-
tion. While much more computationally expensive than 
the other two algorithms, this algorithm used the same 
principle of low-dimensional graph residuals analysis 
to detect the presence of subgraphs and further demon-
strated the power of this approach.

To demonstrate the performance differences between 
these techniques, an additional experiment was run in 
which each detection algorithm performed on the same 
data. In each of these simulations, an R-MAT back-
ground was used with similar properties as in the previ-
ous experiments (e.g., similar community structure and 
average degree), but only 512 vertices. An 11-vertex sub-
graph was embedded into the background, and detection 
performance is shown in Figure 11. When the embedded 
subgraph’s density is 90%, as illustrated in Figure 11a, all 
detection statistics perform rather well. The symmetry-
based chi-squared statistic is the lowest-performing, and 
its EER is about 5%. When the subgraph’s density is only 
70%, however, the discrepancy in algorithm performance 
is much more drastic. This difference is shown in Figure 
11b; the chi-squared statistic yields performance no better 
than chance, and the L1 norm analysis technique does not 
provide a great deal of improvement. Sparse PCA, on the 
other hand, enables reasonable detection performance 
in this situation, with an EER of about 12%. Here, by 
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FIGURE 10. Detection performance using sparse principal 
component analysis (PCA). Using the same 1024-vertex 
random background as in Figures 8 and 9, we embedded a 
7-vertex subgraph, which is not detectable in the principal 
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that are at least 95% dense, sparse PCA yields near- 
perfect detection performance. The performance reduction 
for lower subgraph densities may be mitigated by tuning a 
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performing on the same dataset, we see the significant 
improvement in detection performance that occurs when 
additional computational effort is spent.

Detection and Identification in Dynamic Graphs 
In the following experiments, we used simple models for 
graph dynamics to demonstrate the value of integration 
gain in this framework. As in the static simulations, the 
background consisted of a 1024-vertex R-MAT graph, 
but, in this case, independent realizations of the R-MAT 
were used with the same parameters over several time 
samples. Thus, the background noise GB(n) was inde-
pendent and identically distributed, and drawn from the 
same random graph distribution at each time step. 

In the first simulation, an independent 12-vertex 
subgraph with density 70% was embedded onto the 
same subset of the vertices at each time step. That is, the 
signal GS(n) was a temporally independent, identically 
distributed graph as well. The number of samples L was 
increased by powers of 2 from 1 to 32, and a uniform filter 
was used, i.e., hl = 1 for all 0 ≤ l < L. Then, the integrated 
residuals matrix, 

 
B (n) =
~

B (n - l ) ,∑
l = 0

L – 1

was projected into its principal 2D subspace, and the same 
statistic used for the static graphs in Figure 8 was com-

puted. This experiment thus demonstrated the impact of 
simple averaging when there are multiple observations 
from the same distribution. 

Detection and identification results are shown in  
Figure 12. In the detection plot (Figure 12a), when one 
sample was used, detection was no better than chance; 
this was the same result as for the static case with a sub-
graph of 70% density. Increasing to just two samples, 
however, increased detection performance slightly. Detec-
tion performance continued to increase as more samples 
were added, until an EER of 3.1% at 32 samples was 
reached. The multiple realizations created greater focus 
on the concentrated subgraph rather than on the more 
diffuse background residuals, and separated the subgraph 
vertices in the low-dimensional space. It is apparent from 
the identification plot (Figure 12b) that the integration 
technique created better separation between the back-
ground and the foreground. Identification performance 
increased as the number of samples increased, until near-
perfect identification performance was achieved with 8 
samples. The identification EER was 1% when the num-
ber of samples reached 32. 

In the second simulation, the anomalous subgraph 
still consisted of 12 vertices selected uniformly at ran-
dom from the background, but were no longer identi-
cally distributed across time samples. In each trial, 32 
time samples were used, and the subgraph increased its 

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Probability of false alarm

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n
1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Probability of false alarm

2D symmetry

Sparse PCA
L1 norm

2D symmetry

Sparse PCA
L1 norm

(a) (b)

FIGURE 11. A comparison of the detection techniques on a static graph. In a 512-vertex R-MAT background, an 11-vertex 
subgraph was embedded. When the subgraph is 90% dense (a), the three detection algorithms all yield fairly good perfor-
mance, while sparse PCA significantly outperforms the other two techniques when the subgraph is only 70% dense (b).
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density from 0 to a fixed density over the course of the 
time window, i.e., the number of edges |ES (n)| = cn for 
some positive constant c in the time window 0 ≤ n < L. 
In this case, by simply averaging over the samples as in 
the previous experiment, we achieved no detection power 
using the same statistic. Therefore, we created and used 
a filter that is matched to the subgraph’s behavior, lin-
early increasing its coefficient value over the course of 
the time window. Because the background was generated 
independently at each time step, we subtracted the mean 
to further reduce the noise power. The filter used in the 
simulation, therefore, had the form hl = 15.5 – l, i.e., a 
ramp centered at zero. 

Figure 13 shows the detection and identification 
performance for the densifying subgraph when the ramp 
filter was used. When the subgraph reached only 25% 
density, detection performance was barely better than 
chance. As the density of the subgraph at the end of the 
window increased in 5% increments, detection perfor-
mance quickly increased. When the subgraph reached 
45% density, perfect detection was achieved within the 
10,000 trials for the null and alternative models in this 
case. Compared to the previous experiment in which a 
denser subgraph is observed over the same number of 
samples, detection performance was significantly better. 
Thus, this experiment demonstrated the impact of inte-
gration gain when the subgraph has a growth pattern 

distinct from that of the background, separating the sub-
graph vertices in the principal 2D space, as demonstrated 
in Figure 13b. Identification performance is shown in 
Figure 13c. Again, as we increased the density reached 
by the subgraph at the end of the window, the ability to 
discriminate between background and foreground verti-
ces using the clustering technique improved, eventually 
reaching an EER of about 4%. (This rate was lower than 
in the previous simulation, likely because the subgraph 
is more spread out in the projected space, as shown in 
the scatterplot.) These experiments demonstrated the 
utility of temporal integration gain in the context of our 
graph processing chain, showing that this classical signal 
processing technique is quite powerful when working 
with graph data.

Results on Application Data 
Social Network Analysis 
Technology for counterterrorism and counterinsurgency 
is an important research area for Lincoln Laboratory. 
In applications aimed at countering terrorist activities, 
the objective is to find individuals intent on carrying out 
some sort of threat. Detecting potential threat activity is 
extremely difficult in an uncued setting; when no spe-
cific individual’s actions indicate the intention to use 
violence, it is easy to conceal preparations for a violent 
event. Thus, to detect threatening activity without a cue, 
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the activities of several individuals and the relationships 
between them must be considered. 

A recent Lincoln Laboratory effort called Counter-
Terror Social Network Analysis and Intent Recognition 
(CT-SNAIR) focused on the detection of threat activity 
within social networks [19]. In this context, the social 
network can be expressed as a graph G, with V denoting 
people and E denoting some relationship, such as com-
munication or transfer of money. 

Using a similar background to that used in work 
done by Weinstein et al. [19] and a foreground designed 
by the CT-SNAIR simulator to represent a threat net-
work, we analyzed detection performance using our 
processing chain to detect the presence of the threat 

network [20]. While previous work investigated cued 
techniques to identify the threat network, our interest 
was in determining the detectability of a small, realistic 
subgraph within a large background without a cue to the 
subgraph vertices. The foreground used is shown in Fig-
ure 14. It is not particularly tightly connected: its aver-
age degree is 2.5, and half of the 20 vertices have degree 
1. Such a foreground presented a substantial challenge 
for the processing chain. 

The objective was to detect the presence of this sub-
graph in an R-MAT background with 1024 vertices. The 
average degree of the background was 4, much larger than 
the average degree of the foreground. The background 
clustering was the dominant factor in the principal resid-

FIGURE 13. Detection and identification performance of a 
densifying subgraph over 32 samples. Using a linear ramp 
filter substantially increased signal detection power. When 
the subgraph reaches 45% density (a), which would make 
it undetectable in a static graph, the 12-vertex subgraph is 
detectable perfectly in the 10,000-trial Monte Carlo experi-
ment. By integrating the modularity matrices over time using 
a filter that emphasizes the subgraph’s evolution, the sub-
graph vertices stand out in the principal 2D space (b). This 
technique enhances vertex identification performance (c), 
which is also substantially higher than performance achieved 
by using the same procedure to identify a static graph (see 
Figure 8b for a comparison).
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uals subspace, as the foreground is not connected particu-
larly tightly (very few vertices connect to the same vertices 
as their neighbors). As shown in Figure 15, when the sub-
graph was embedded into one of these backgrounds, its 
vertices were buried within the background noise when 
B was projected into its principal 2D subspace. Thus, in 
the static scenario, we focused on the technique using L1 
norms of the subspace vectors.

Detection performance was again tested via a 
10,000-trial Monte Carlo simulation, this time varying 
the parameters of the background rather than the fore-
ground. Three different variants of the background, each 
one having a different power-law exponent β, were con-
sidered. The β ≈ 8 case created a very steep drop-off in the 
degree distribution, causing a relatively low maximum 
degree, typically 12–16. In the other cases, β was about 4 
and 2.5, yielding maximum degrees around 22 and 44, 
respectively. The CT-SNAIR subgraph was embedded 
on a set of vertices that was not well correlated with the 
largest subspace vectors of the background graph. The 
correlation was determined by a threshold t when the 
embedding was performed, and this threshold was varied 
to determine its impact on detection. 

Detection performance is shown in Figure 16. In Fig-
ure 16a, the background with the steepest drop-off in its 
degree distribution is used, and performance in this case 
was the best. Each plot shows the results when the thresh-
old t was varied. As the threshold decreased, forcing the 
embedding to occur on a subspace more orthogonal to 
the subspace where the residuals of the background were 
large, a significant increase in detection performance 
was observed. As the power-law exponent was lowered, 
the detection performance got worse, as seen in the ROC 
curves, moving from (a) to (c) in Figure 16. Thus, even 
when we chose a subspace that is relatively uncorrelated 
with the background, detection performance suffered as 
the residuals in the background alone got stronger as β 
decreased. Note that, with a larger absolute value for β, 
the steep degree distribution implies fewer high-degree 
vertices, and thus the background clutter is likely to be 
weaker. These examples demonstrate that, as in other 
signal processing applications, the strength of the noise, 
as well as the correlation between signal and noise, has a 
significant impact on detection performance. 

In practice, we may have an idea of how the subgraph 
of interest will evolve as a violent activity is planned. 

FIGURE 14. A Counter-Terror Social Network Analysis and 
Intent Recognition (CT-SNAIR) threat network. This fore-
ground network was generated to simulate threat activity 
among individuals. It contains 20 vertices, and the aver-
age degree is 2.5. Very few vertices have connected vertices 
within their immediate neighborhoods, and this lack of con-
nectivity makes detection via modularity analysis a signifi-
cant challenge.
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In the next experiment, the CT-SNAIR subgraph was 
embedded with several patterns of evolution over time. 
In the first case, the subgraph simply increased its den-
sity over time, as in the second simulation described in 
the section “Detection and Identification in Dynamic 
Graphs.” The number of edges |ES(n)| increased linearly 
from 0 to 25 over the L = 32 samples of the time window. 
In the second scenario, |ES(n)| was increased linearly 
from 0 to 25 over the first three-quarters of the win-
dow, then reduced its edges linearly over the last quarter. 
This “grow-and-disperse” behavior could simulate group 
members increasing their communication to plan an 
event, then ceasing communication to avoid detection. 
The final evolution pattern followed a sinusoidal growth 
and decay, with the number of edges in the subgraph at 
each point in time being

  , (1)
 

|ES(n)| = 1 - cos25
2

2πn
L

 
where ⎣ x ⎦ is the greatest integer less than or equal to x.

For each foreground, independent R-MAT graphs 
were used as a background at each discrete time step. The 
R-MAT with the power-law exponent β = 2.5 was used for 
this experiment. In this case, VS was chosen uniformly at 
random from all possible subsets of 20 vertices. The filter 
coefficients in each case were based on an averaging of 
the maximum eigenvalues of the foreground graph over 
several samples (the order that the edges were added was 
chosen at random), and the detection statistic used was 
the chi-squared statistic in the principal 2D subspace. 
This technique would not detect the subgraph in the static 
case, as is evident from Figure 15.

Detection results are shown in Figure 17. For the 
densifying subgraph, detection performance was quite 
good, with an EER of 7.25%. This result (shown in 
blue) again clearly demonstrated the impact of inte-
gration gain on subgraph detection. The chi-squared 
statistic performed nearly as well when detecting the 
grow-and-disperse network, which had an EER of 9.1% 
(green). Detection performance was nearly perfect for 
the foreground whose density follows the sinusoidal 
pattern [Equation (1)], as shown in the red curve. A 
closer inspection indicated that this subgraph’s power 
was boosted the most by its corresponding matched fil-
ter, while suppressing the background about equally to 
the others. The experiments provided an example of a 

FIGURE 16. The plots showing detection performance for 
the CT-SNAIR subgraph embedded into power-law back-
grounds illustrate that as the power-law exponent β was 
decreased [moving from (a) to (c)], the detection perfor-
mance became worse, due to the increased clustering and 
higher-degree vertices. Performance also worsened as 
the correlation between the background and foreground 
increased (increasing t in the legends).
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unique pattern of growth allowing the same techniques 
to be used for detection of a weak, realistic foreground.

Vehicle-Track Analysis 
In the intelligence, surveillance, and reconnaissance 
(ISR) domain, a common data source is electro-optical 
imagery. From such data, locations of interest on the 
ground can be identified and placed into a site data-
base. When a vehicle is detected in a scene, it is typically 
desirable to know which sites the vehicle has visited. 
Understanding where vehicles stop and which vehicles 
visited common sites may significantly increase situ-
ational awareness. 

Vehicle tracks have a natural representation as a 
dynamic graph: geospatial locations with connections 
denoting traffic. To apply graph analysis to vehicle tracks, 
V is designated as a set of sites, and an edge connects two 
vertices if a vehicle track was observed between the cor-
responding sites. The graph for this type of application 
can be dynamic; an edge E(n) exists only if the track 
exists at time n. 

Lincoln Laboratory obtained a set of vehicle-track 
data that had been captured by an electro-optical sen-
sor and that had true tracks confirmed by an analyst. The 
graph of these data consisted of 275 vertices and 806 
unique edges over the course of the period in which the 
tracks occurred. Among these tracks was a scenario acted 
out by drivers to simulate threat activity. 

When the vehicle-track graph was viewed as a static 
dataset showing the sites that shared tracks over the 
course of the observation period, we noticed that the 
nodes composing the scripted scenario did not stand out 
in the 2D space corresponding to the largest residuals. 
Therefore, we needed to consider a technique that would 
enable detection of subgraphs with weaker signatures. 
Also, because only a single observation—the 275 vertices/ 
806 edge dataset—was used, Monte Carlo simulations 
could not be performed to determine detectability of the 
scenario subgraph. 

In lieu of having multiple observations, we gener-
ated a power-law graph with similar properties to the 
background vehicle-track network. The connections 
between the scenario vertices were then embedded 
into the simulated background graph, using statistics 
from the background alone to detect the presence of 
the embedding. As shown in Figure 18, this technique 
enabled the detection of the very small, weak-signature 
target by choosing the right subspace of the residuals 
for analysis. In Figure 18a, two subspace vectors have 
significantly smaller L1 norms than usual for a randomly 
generated graph. When the graph was considered in this 
subspace, a substantial fraction of the scenario vertices 
was separated from the background (Figure 18b). The 
remainder of the scenario vertices may be found by using 
the vertices that stand out in the space determined by L1 
norm analysis as cues.

In addition to the Monte Carlo simulation for static 
graph analysis, temporal integration was applied to the 
measured dynamic sequence of vehicle-track graphs. By 
applying a filter that is well matched with the tempo-
ral behavior of the subgraph, we were able to detect the 
subgraph in the principal residuals subspace. As shown 
in Figure 19, this technique enabled the detection of the 
scripted scenario. As is apparent in Figure 19a, most of the 
scenario vertices did not stand out in this 2D space of the 
static graph. (The ones that did stand out were vertices of 
very high degree, which did not actually play the role of 
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in R-MAT backgrounds. In all cases, the background was a 
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threat sites.) When a filter was applied to the sequence of 
residuals, however, the scenario vertices were pulled out of 
the background and could easily be detected by threshold-
ing along the first dimension, as shown in Figure 19b. The 
primary threat sites in the scenario are the four leftmost 

points in the plot. Here, as in the social network case in the 
previous section, additional knowledge regarding the tem-
poral evolution of the subgraph enabled discrimination of 
the subgraph from the background by using techniques 
that would fail without considering dynamics.
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FIGURE 19. The detection of a scripted scenario in vehicle-track data using temporal integration. While the scenario ver-
tices, with the exception of outliers that have very high degree, were buried in the background when the data were viewed in 
the 2D space in the static graph (a), these vertices are separated from the noise when the data were integrated over time (b) 
using a filter corresponding to its temporal activity pattern.
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Future Directions
The framework and experiments detailed in this article 
have demonstrated the advantages of casting network 
problems relevant to Lincoln Laboratory mission areas 
in a signal processing context. In a recent Laboratory 
technical effort, a processing chain was developed for 
the detection of anomalies in large, noisy graphs. Given a 
graph as input, this processing chain performs a spectral 
analysis of the graph’s residuals and computes a detec-
tion statistic. On the basis of this statistic, it is determined 
whether a subset of nodes in the graph acts contrary to 
its expected behavior, and these vertices are identified for 
further investigation. 

Under the Signal Processing for Graphs project at Lin-
coln Laboratory, significant progress has been made toward 
creating a computationally tractable detection theory frame-
work for graph-based data. In addition to the development 
of the processing chain outlined in this article, work has 
been done on the optimization of matched filters [21] and 
on parameter estimation and fitting statistics in a class of 
random graph models [22, 23]. Ongoing work at Lincoln 
Laboratory is extending this research in several dimensions. 
In a recent study performed for the Intelligence Advanced 
Research Projects Activity, the SPG framework was inte-
grated with the Laboratory’s Dynamic Distributed Dimen-
sional Data Model (D4M) architecture [24] into a system 
that combines data storage, graph construction, and graph 
analysis [11]. This study also includes investigating the use 
of graph analysis techniques in cyber security [25], using 
graph models that include attributes of the vertices and edges 
[13], and demonstrating our methods on gigascale graphs 
[26]. Other recent efforts have used this processing chain for 
social network analysis and document graph analysis. Future 
work includes expanding to still more application areas and 
determining detectability bounds for the methods outlined 
here and in subgraph detection in general [27]. As graphs 
continue to grow in their utility in Laboratory mission areas, 
the detection-theoretic aspects of graph analysis will become 
increasingly important, and this research area will continue 
to be extremely active. 
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