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High-Efficiency Error 
Correction for Photon 
Counting
Andrew S. Fletcher

Today’s data-driven society demands high 

data rates and high-rate communication 

links. Addressing these needs in everything 

from gigabit Ethernet network connections 

and telephone or cable television signals to communica-

tion between spacecraft can require high bandwidth, high 

power, large transmit or receive apertures or both, and 

high receiver sensitivity. 

Optical communication is attractive for these appli-

cations. High bandwidths are more readily available at 

optical wavelengths than at radio frequencies, and opti-

cal transmitters and receivers can be made compactly, as 

aperture size requirements scale with the signal wave-

length. Highly sensitive photon-detecting receivers can 

be constructed to achieve high-rate data links capable 

of transmitting multiple bits per received photon. This 

exceptional receiver sensitivity requires an expanded 

bandwidth and powerful codes for correcting errors in 

the detected data. The bandwidth expansion is mitigated 

easily, but powerful error correction can be difficult to 

implement at gigabit-per-second data rates. 

MIT Lincoln Laboratory is designing efficient for-

ward error correction codes that combine several essen-

tial qualities, such as near-capacity rates, very low error 

floors, and efficient algorithms for coding and decoding. 

Such properties are desirable in nearly every communi-

cations system, but the efficient coding and decoding is 

particularly important for a high-data-rate, low-power 

system used in applications such as photon counting.

The photon-counting channel shares many charac-

teristics with erasure channels. An erasure is a particular 

kind of error in which the receiver is unable to detect the 

transmitted symbol or somehow knows that the received 

symbol is wrong. In photon counting that uses pulse-

Pulse-position modulation (PPM) using 
a photon-counting receiver produces an 
extremely sensitive optical communications 
system, capable of transmitting multiple bits 
of information for each received photon. Such 
impressive sensitivity requires powerful error-
correction codes that must be computationally 
efficient to enable high data throughput. Fountain 
codes combine performance and efficiency for 
a narrow class of channels, known as erasure 
channels. A potential application for fountain 
codes is the photon-counting PPM receiver, 
which is an approximate erasure channel and 
includes occasional channel errors. This non-
ideal behavior requires a nontraditional use of 
fountain codes. With a carefully constructed 
architecture, fountain codes provide the desired 
efficient error correction to the photon-counting 
PPM receiver. 
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position modulation (PPM), a type of transformation that 

encodes information in the precise timing of photon arriv-

als, the channel errors are overwhelmingly the result of 

dropped symbols that result in no signal detection. Only 

occasionally are there dark counts, which occur when 

the photon detector registers an arrival in the absence of 

any light and may result from thermal noise in detector 

electronics. Thus, the channel of interest is dominated 

by symbol erasures, with the rare case of a symbol error.

Recent results from the field of erasure channel cod-

ing may be leveraged to achieve code efficiency [1-4]. 

Symbol erasures accurately describe Internet packet trans-

missions; efficient use of network resources motivated era-

sure-correcting code design. A network-efficient solution 

is the fountain code, which is frequently used in Internet 

protocols and whose name describes the receiver’s rate-

less nature. Fountain codes are one type of highly efficient 

error-correcting code for erasure errors and have several 

fantastic properties: they can be made arbitrarily close to 

the channel capacity, they can be decoded with a linear 

number of operations (proportional to the block length of 

the code), and the decoding can be performed with binary 

arithmetic rather than floating- or fixed-point operations.

The presence of occasional, but non-negligible, sym-

bol errors complicates the use of fountain codes. The 

erasure-only decoder is not at all robust to the occasional 

symbol error, and robust decoders no longer enjoy binary-

logic efficiency and likely require many more such opera-

tions (though still arguably a linear number) [5].

This work describes a binary-logic decoder for a rap-

tor code (short for rapid tornado), a specific fountain code 

that is still robust to the occasional symbol error. In this 

way, the computational advantages of the fountain code 

decoder are retained and the decoder efficiency is suffi-

cient to allow very high data rates.

Photon-Counting Pulse-Position Modulation
Highly-efficient, low-receive-power optical channels can 

transmit multiple bits of information for each received 

photon. To those unaccustomed to photon counting, this 

may appear impossible; it is readily explained via pulse-

position modulation. In simple terms, the information is 

encoded in the precise timing of the photon arrival.

A PPM symbol consists of M time slots of duration 

tslot , representing log2M  bits of information. The trans-

mitter places signal power in exactly one slot, leaving the 

other slots for that PPM symbol empty. Figure 1 illustrates 

a 16-ary PPM in which each symbol represents four bits. 

The four-bit message is interpreted as a number between 

0 and 15 and specifies the slot to contain the transmitted 

pulse. At the receiver, a photon counter determines which 

slot registered a photon arrival. If each symbol contains a 

single received photon (ignoring for a moment the statis-

tics of real photon counting), then we have communicated 

log2M  bits with each photon.

When we include some of the physical realities of 

photon counting, we see the similarity to an erasure chan-

nel. The receive signal is a coherent (laser) state with an 

intensity of NS photons per symbol, localized to a single 

slot. With a 100% efficient photon counter, the actual 

number of received photons is a Poisson random variable 

with mean NS. Thus, the probability of receiving zero pho-

tons in the signal slot is β = −e Ns . For NS = 1, this is approxi-

mately 0.37. Thus, despite averaging a photon per symbol, 

the receiver will have an empty symbol 37% of the time.

Channel capacity defines the maximum code rate 

at which error-free communication is possible; it is 

calculated as the mutual information between channel 

input and output (maximized over input distributions). 

Define X M∈{ }1,...,  and Y M E∈{ }1,..., ,  as the random vari-

ables describing the transmitted and received symbols 

(with E indicating an erasure). Then Pr X x Y y= =( ) = 1
and Pr PrX x Y E X x= =( ) = =( ) . The mutual informa-

tion is given by I X Y H X H X Y H X;( ) = ( ) − ( ) = −( ) ( )1 β . 

The capacity is achieved for equally likely input symbol 

X and is thus given by C M= −( )1 2β log —the capacity of 

the channel is the fraction of symbols that are not erased. 

The capacity calculated above assumes noiseless photon 

detection; however, there are several potential sources of 

noise, such as dark counts, background light (i.e., light not 

generated by the transmitter), and small amounts of light 

transmitted during supposedly empty slots. The noise is 

modeled by determining an average number of photons 

Data
source

PPM
symbols

1 0 1 0

0 31210 150 150 15
…

0 0 1 11 1 0 0 …

FIGURE 1. Each pulse-position modulation (PPM) symbol 
in the above example consists of 16 time slots, one of which 
contains a signal pulse. The four-bit message specifies 
which slot contains the pulse.
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per slot NB in which noise arrivals are independent of the 

transmitted signal. Cases are addressed for which NB is 

quite small and corresponds to a receiver circumstance 

with negligible background light, a transmitter with a 

good extinction ratio, and a photon detector with a low 

dark-count rate. All of these assumptions represent real-

istic cases of interest.

Given such a model for dark counts, there are two 

noisy cases of interest. In the multiple-arrival case, the 

receiver observes a symbol with two photons observed in 

different time slots. While one photon was from the signal 

and the other from the noise, the receiver has no way of 

distinguishing them. A double arrival actually tells quite 

a bit about the transmitted signal, as the correct symbol 

corresponds to one of the two slots with high confidence. 

However, the decoder is simplified if the double-arrival 

case is merely flagged as an error and thus erased. The 

more problematic case is when a noise photon is observed 

during a symbol for which the signal photon does not 

arrive. This scenario results in a random symbol error 

that is not immediately discernible from a correct symbol. 

For context, consider an example system based on 

technology under development at Lincoln Laboratory. A 

receiver with a 10 GHz slot rate, 16-ary PPM, and a half-

rate code will operate at 1.25 gigabits per second (Gbps) 

throughput. If the received signal slot averages NS = 1 

photon, the receiver would obtain two bits per received 

photon. Four types of symbol detection are illustrated in 

Figure 2. The most common results are “correct” symbol 

detection, in which the photon is detected in the slot in 

which the transmitter placed the signal, and an erased 

symbol. For typical noise rates, a 1 kHz background pho-

ton arrival rate, 1 kHz dark-count rate, and 50 dB trans-

mitter extinction ratio, the erasure probability (b ) would 

be 0.37 and the probability of a correct detection would 

be 0.63; an erasure, 0.37; multiple arrivals, 9.6 × 10-5; and 

incorrect symbols, 5.6 × 10-5.

Error-Correcting Codes
An error-correcting code protects information in the 

channel by providing redundancy. A vector of informa-

tion x is converted to a code word y by the encoder. The 

decoder takes the (channel-corrupted) code word and 

determines the best estimate for the original message x. 

Codes are designed and defined to facilitate both encod-

ing and decoding.

Fountain codes are linear codes, which are defined 

either in terms of a generating matrix G or a parity check 

matrix H. The generating matrix defines the encoding 

operation, as the code word is defined as y = G × x (using 

modulo-two multiplication). The decoder exploits the 

structure of the code word, particularly the parity check 

relation H × y = 0. Commonly, the code is defined by 

either H or G, with the other a derived quantity.

Fountain codes are typically low density, which means 

that a small fraction of entries in either H or G are non-

zero. In general, either H or G can be low density, but 

not both.

Figure 3(a) uses a bipartite graph to illustrate a gen-

erating matrix for one code; Figure 3(b), a parity check 

matrix for a different code. In both graphs, the nodes on 

the left represent bits yi of a code word y. In Figure 3(a), 

nodes on the right represent parity checks, in which the 

modulo-two sum of the bits connected to each check is 

zero. In Figure 3(b), the nodes on the right represent the 

information to be encoded and left nodes are the modulo-

two sum of the associated right nodes.

Erasure decoding is a straightforward process for 

both low-density parity check (LDPC) and low-density 

generating matrix (LDGM) codes. In both cases, the code 

FIGURE 2. The photon-counting PPM receiver most often 
either detects a photon in the slot in which the transmitter 
placed the signal (the symbol is correct) or fails to detect a 
photon (the symbol is erased). Occasionally, the receiver 
detects a photon not generated by the transmitter. If the 
receiver also detects the correct signal, a multiple arrival 
occurs; if not, an incorrect symbol is registered.

Erased-symbol
probability 0.37

Correct-symbol
probability 0.63

Multiple-arrival
probability 9.6 × 10-5

Incorrect-symbol
probability 5.6 × 10-5

Signal slot0 15

Signal slot0 15

Signal slot0 15

Signal slot0 15
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enforces a binary structure on the received bits. Consider 

the ith row of H, with nonzero entries {i1 , i2 , ... ik }. The 

parity equation requires that

0 = yi1
 ⊕ yi2

 ⊕ yi3
 ⊕ ... ⊕ yik

 , 

 in which ⊕ indicates modulo-two addition. If exactly one 

of the {yi1 
, yi2 

, ..., yik 
} is erased, the parity relation unam-

biguously would supply the unknown value. Similarly for 

the LDGM, a row of G leads to a requirement that 

yi1
 = xi1

 ⊕ xi2
 ⊕ xi3

 ⊕ ... ⊕ xik
 . 

If yi and k – 1 of the xi are known, then the unknown 

kth bit can be determined unambiguously. The parity or 

generating equations suggest a simple iterative decod-

ing algorithm using either H or G, respectively. At each 

iteration, locate a row of H or G that contains only one 

unknown variable. The code structure provides the 

unknown variable’s value, which is then used to update 

the values of connected nodes. The connections are sev-

ered, and the next iteration identifies another row with 

only one unknown variable. The decoding continues until 

FIGURE 3. Bipartite graphs representing (a) a parity check matrix H and (b) a generating matrix G are shown for two differ-
ent codes. For both graphs, the nodes on the left represent the bits yi in a code word. For (a), nodes on the right (labeled cj) 
represent parity checks; the modulo-two sum of the bits connected to each check is 0. For (b), nodes on the right (labeled xj) 
represent the information to be encoded. Left nodes are the modulo-two sum of the associated right nodes.

all variables are known (a successful decoding) or there 

are no rows with only one unknown (a decoding failure).

The iterative erasure decoding is sometimes 

described as a chain reaction decoder, and it is straight-

forward to understand graphically. Figure 4 illustrates 

two iterative decodings for the generating and parity-

check matrices shown in Figure 3.* The decoding in Fig-

ure 4 represents the parity-check graph of Figure 3(a) in 

which the y2, y3, y4, and y5 bits have been erased. The 

erased bits are assigned to the right nodes r and the 

parity check nodes, ci , are assigned to the left nodes, 

l. The initial values in l have been chosen to yield the 

appropriate parity-check values for combinations of the 

unerased bits y1 , y6 , and y7 . To determine the values of 

the unknown bits, the decoder identifies code dependen-

cies with only one unknown, which correspond to left 

nodes with only one edge (a degree-one node). In the 

0
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* The two graphs in Figure 3 lead to the same decoding procedure 
by design and for ease of explanation. Recall that Figures 3(a) 
and 3(b) describe different codes and that different bits have been 
erased in each message.
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added to connected nodes, and the graph is updated to 

produce Figure 4(c). For the next iteration, l1 is identi-

fied as a degree-one node, r2 is determined and added to 

connected nodes, leading to Figure 4(d). The value of r3 

is trivial here, supplied by either l4 or l5. The values of r1 

through r4 match the source bits in Figure 3(a), confirm-

ing that this decoding has produced the correct values for 

the deleted bits.

initial graph, l2 is a degree-one node; thus, r1 can be 

assigned the value of l2 (1) and the edge linking r1 and 

l2 can be removed. Next, r1 is added (modulo two) to the 

value of any other left node to which it is connected and 

those edges are removed. Thus, l1, l3, and l5 are each 

updated with the modulo-two addition of r1, resulting 

in Figure 4(b). For the next iteration, l3 is identified as a 

degree-one node. The value of r4 is determined (1) and 

FIGURE 4. A graphical example is presented of binary-message erasure decoding. The initial graph (a) is shown with the 
right-hand nodes (ri) indicating the bits to be filled and the left-hand side (li) denoting the values supplied by non-erased 
symbols. Values of l drawn in blue are used to determine values of r that are also drawn in blue. Edges shown in blue are then 
used to propagate the newly determined values of r. In iteration 1 (b), node r1 is filled in as having value 1, which then is added 
(modulo two) to the values in l1, l3, and l5, and the linking edges are removed. In a similar fashion, r2 is determined in itera-
tion 2 (c), r3 in iteration 3 (d).
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The graphical representation of decoding is equally 

effective with the generating matrix of Figure 3(b). This 

matrix also has a seven-bit code word, and if y1 and y7 

are erased by the channel, the four message bits must be 

determined from the five unerased bits. The initial graph 

in Figure 4(a) is simply the graph in Figure 3(b) with the 

y1, y7, and the attached edges removed. The left and right 

nodes are also relabeled as l and r, respectively. The same 

iterative procedure described above may be used to deter-

mine the erased bits: identify a degree-one node, deter-

mine the value of ri from its one-degree connection to 

lj, add the determined value of ri to all other connected 

left nodes and remove the edges, find the next degree-one 

node, and repeat.

Graph design requires careful consideration of 

degree-one nodes. As illustrated above, decoding requires 

at least one degree-one node to continue, but if there are 

too many such nodes at any iteration, the code is ineffi-

cient. Finding the appropriate balance has been the sub-

ject of extensive research [3, 4, 6–9].

FIGURE 5. A graphical example of binary-message erasure decoding in the presence of a bit error. The same decoding pro-
cess is used as in Figure 4, but the bit error leads to incorrect results. Node l2 is assigned the wrong bit value. As the decoding 
progresses, red values indicate a departure from the correct decoding. The decoded sequence is wrong in bits r1 through r4. 
Note also the contradictory choice for the value of r3.
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with probability g, in which g << b. Because the capac-

ity (the upper bound for the code rate) of this channel is 

approximately 1 – b, a code rate of k/n < 1 – b is required. 

Two situations cause the chain-reaction decoder to 

fail: if (at least) one of the n bits is an error or if there 

are too many erasures. For small g, the probability that 

the code word sees an error is approximately ng. An 

obvious way to keep this probability small is to limit the 

block length n.

What is the probability that there are too many era-

sures? For a perfect code, we are able to determine the 

message if any k (or more) of the bits arrives unerased. A 

realistic code, such as a raptor code, is decoded success-

fully when more than k + ne bits arrive unerased, in which 

e represents a code overhead and implies a distance from 

capacity.* Raptor codes are capacity-achieving for code 

families in which e approaches zero as n approaches one. 

As n gets small, the required overhead e grows.

Finite-length codes are always subject to decoding 

failures. For an erasure channel, each bit is independently 

erased with probability b. The number of erasures NE that 

occur in an n-bit code word is a binomial random variable 

with mean nb and variance nb(1 – b). A decoding failure 

occurs if NE/n > 1 – k/n – e. For large n, the law of large 

numbers suggests that decoding failures are quite rare. 

For smaller n, however, decoding failures become more 

likely.

The two conditions described that can result in a 

failure of the chain-reaction decoder present competing 

requirements for limiting the probability of such a failure. 

On the one hand, as the block length grows, the code word 

is more likely to be corrupted by an error. On the other 

hand, raptor code performance improves as n increases. 

Fortunately, a useful operating point is contained within 

this trade space. Figure 6 illustrates this trade-off for a 

raptor code with overhead e = 0.1, b = 0.37, and a symbol-

error probability of g = 5.6 × 10-5. For block sizes between 

600 and 1400, the probability of a decoding failure is 

below 0.08.

The output of the chain-reaction decoder is a k-bit 

block erasure channel. If the decoder is successful, the 

k-bit message is successfully determined; if the decoder 

fails because of an error or too many erasures, the failure 

is detected and no message is returned. As long as decoder 

failures are always detected, the raptor code and chain-

reaction decoder combination results in a purely erasure 

The most successful fountain codes fall under the 

classification of raptor codes [3, 4]. These are, in fact, 

two-stage codes. The inner code is an LDGM code, while 

the outer code is a very-high-rate LDPC code. The rap-

tor code approaches capacity and has excellent error 

floors while maintaining a linear number of graph edges. 

Because the number of decoding computations is propor-

tional to the number of graph edges, the raptor code is a 

particularly efficient choice for the erasure channel. 

Effect of Errors on Chain-Reaction Decoding
Although the chain-reaction decoder is computationally 

simple, it is only robust to channel erasures. A single-bit 

error in the receive data can lead to a catastrophic decod-

ing failure. For example, in the LDGM decoding example 

in Figure 4, y1 and y7 were erased. If instead, a bit error 

is included on y3, corresponding to a bit error on l2, the 

decoding procedure will result in errors. As shown in 

Figure 5, the decoded message becomes 0000 instead of 

the correct 1001. In general, a bit error on a node can 

propagate through the decoder to cause errors on many 

decoded bits.

The potentially catastrophic impact of a few errors is 

clearly a black mark against chain-reaction decoding for 

the noisy photon-counting PPM channel and could limit 

its promise for high-data-rate, highly efficient optical sig-

naling. Typically, the channel of interest is dominated by 

erasure errors with only the occasional dark count causing 

a symbol error. In these situations, the use of the chain-

reaction decoder should not be abandoned; although the 

chain reaction decoder does not correct transmitted errors, 

it does detect errors with high probability. At the last step 

in the example of Figure 5, the bit error led to a contradic-

tion; such inconsistencies only arise because of errors. The 

error-detection capability is an important element of the 

proposed photon-counting PPM code architecture.

Code Architecture for Photon-Counting PPM
An alternative approach combines raptor codes and 

chain-reaction decoding and constrains the size of code 

words to improve robustness to errors. For an [n; k] rap-

tor code that encodes a k-bit message into an n-bit code 

word, after passing through a photon-counting PPM 

channel, bits are erased with probability b and are in error 

* Strictly speaking, when k + ne bits arrive unerased, decoding is suc-
cessful with high probability.
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channel, in which the erasure probability is the probabil-

ity of a decoding failure.

The improved code architecture combines an inner 

raptor code having a rate 1 – b − e and a block length n 

chosen to minimize the probability of decoder failure, and 

an outer code that can be any erasure correcting code in 

which k bits are encoded for every node. The outer code 

is a relatively high-rate code, as it need only correct the 

small fraction of blocks on which the inner code fails. A 

block diagram for this system is shown in Figure 7. This 

code structure achieves a highly sensitive receiver with a 

very high data throughput.

Serial Versus Parallel 
Chain-Reaction Decoders
The algorithm description introduced for the chain-reac-

tion decoder above implies a serial decoder implementa-

tion. Functionally, the serial decoder maintains a list of all 

degree-one left nodes. At the beginning of each iteration, 

a node from this list is used to fill in the attached message 

node; next, the left node is removed from the list. All of 

the remaining left nodes attached to the now-filled mes-

sage bit are appropriately updated. If the update results 

in a new degree-one node, it is added to the list. If the 

update results in a degree-one node becoming degree zero 

(because it was also attached to the now-filled message 

node), it is removed from the list. The serial decoder pro-

ceeds until the degree-one list is empty.

The chain reaction succeeds by performing an 

iteration for every unknown message bit. Thus, the 

serial implementation is often appropriate for cases in 

which the frequency of erasures is low. When the era-

sure frequency is high, a parallel implementation of the 

chain-reaction decoder may be desirable. At any point 

in the chain reaction, there may be several degree-one 

left nodes. Recognizing this, during each iteration, the 

parallel decoder may process values from all the degree-

one nodes. Thus, each message node determines if it is 

degree one; if so, it sends its value to the attached mes-

sage nodes. These messages between the left and right 

nodes constitute a single iteration. In the parallel imple-

mentation, the entire code word could be determined in 

a relatively small number of iterations. For the codes of 

interest, it often requires 50 to 100 iterations regardless 

of the number of bits in the code word. In contrast, the 

serial decoder requires an iteration for every erased bit, 

which can number in the thousands.

The parallel decoder differs markedly from the serial 

decoder. If the algorithm were laid out as a circuit (e.g., 

in an application-specific integrated circuit or a field-pro-

grammable gate array [FPGA]), every node would occupy 

a particular location and would have a physical connec-

tion to other attached nodes. Despite the sparse nature of 

FIGURE 6. A trade-off exists between raptor-code block 
length and the probability of a decoding failure. For a half-
rate raptor code with an overhead e = 0.1, erasure probability 
b = 0.37 and a symbol error probability of r = 5.63 × 10-5, the 
chain-reaction decoder fails in the presence of an error or 
too many erasures.
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FIGURE 7. A code architecture block diagram illustrates a 
message traversing an outer encoder, a block erasure chan-
nel, and, finally, an outer decoder. The inner raptor code, 
which has a short block length, surrounds the noisy photon-
counting channel. When a symbol error occurs or when the 
inner decoder fails, the inner code word is dropped. The 
overall effect is a block erasure channel, in which the erasure 
probability is kept low. The outer code is employed to correct 
the block erasures.
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the graph, these connections can become dense. Also, the 

graph should be random or pseudorandom for good per-

formance—highly structured graphs often perform poorly 

with the chain-reaction decoder. Furthermore, every left 

node must compute whether it is weight one. For high-

degree nodes, this computation can limit the clock speed 

of the algorithm. These challenges for the parallel decoder 

make its implementation difficult unless the block size 

is small. One should also note that if a graph node rep-

resents k bits, then the physical connection between the 

nodes must be a bus with width k.

The strengths and limitations of serial and parallel 

decoding align themselves well with the photon-count-

ing PPM architecture. The inner raptor code sees a high 

rate of erasures, but is restricted to small block sizes. As 

such, the inner code is ideally suited for a parallel decoder. 

The parallel decoder greatly enhances the overall system 

throughput, as multiple bits are decoded for every com-

putational clock cycle. The outer code has a high rate and 

sees infrequent erasures. Furthermore, each node repre-

sents the k message bits from the inner code. The outer 

code is ideally suited for a serial decoder.

Interestingly, the hardware requirements are highly 

complementary. The parallel decoder requires significant 

real estate on an FPGA, but requires essentially no mem-

ory. The serial decoder requires almost no real estate, but 

all of the graph connections and the list of degree-one 

nodes is maintained in memory.

Short-Block Raptor Design
The proposed code architecture requires a raptor code 

with both a low code overhead (i.e., a small e) and a 

short block length (e.g., n ≈ 1000). Since their introduc-

tion, most research in designing fountain codes (includ-

ing raptor codes) has focused on large block sizes [1–4]. 

Although considerably less attention has been devoted 

to designing high-performance raptor codes with short 

block lengths, some short-block ideas have been leveraged 

to design the implemented raptor codes [10–12].

Raptor codes, as with most fountain codes, are ran-

dom. Instead of designing a specific graph, a raptor code 

design specifies the statistical properties of a graph. The 

random structure allows a statistical analysis of the code 

performance; one can derive a mathematical expression 

for the probability of successful decoding.

Statistical code analysis is most easily performed 

and understood on random LDGM codes called Luby 

Transform (LT) codes after their inventor Michael Luby 

[4]. Raptor codes are LT codes with a small (but signifi-

cant) modification, so raptor code design begins with LT 

code design.

A good code design is one with a high probability of 

a successful chain-reaction decoding. Consider a k-bit 

message encoded in an LT code word, of which m bits 

arrive unerased at the receiver. The resulting graph has 

the structure of the LDGM graph in Figure 4 and has a 

simple statistical description. There are m left nodes and k 

right nodes. Each left node has D edges attached, in which 

D is a random variable with probability mass function 

Ωd. (That is to say, the probability that a left node has d 

attached edges is Ωd.) The D edges are randomly attached 

to the right nodes in a uniform way, independent of all of 

the other left nodes. With this description, an LT code is 

completely defined by selecting a degree distribution Ωd.

Selecting Ωd is done by calculating the probability of 

successfully decoding such a random graph. For very large 

code words (e.g., k > 50,000), this has been typically done 

by computing the probability of decoding in the limit as 

k goes to infinity (and m = k(1+e)). For short-block code 

design, in which k is on the order of 1000, the decoding 

probability can be calculated using a dynamic program.

A dynamic program is a method to solve a com-

plex problem by dividing it into simpler steps. At each 

step, a set of values is computed; these values are used 

and updated in subsequent steps. For the LT code, the 

program is divided into the k iterations necessary to suc-

cessfully complete a serial chain-reaction decoder. The 

precise mathematical derivation is beyond this article’s 

scope, but the basic concept is relatively straightforward. 

The chain-reaction decoder requires at least one left node 

of degree one to continue the decoding process. A serial 

decoder selects one such degree-one node and determines 

the value of the attached right node. It takes exactly k 

steps to successfully complete the decoder, and k steps 

will occur if (and only if ), after each iteration, at least one 

degree-one node remains.

As shown in Figure 8, before the first decoding 

iteration, the left nodes can be divided into two sets: the 

degree-one nodes and the nodes having degree greater 

than or equal to two (“two-plus nodes”). At each iteration, 

a single node from the degree-one set becomes degree 

zero after it is used to determine the value for a right node. 



 VOLUME 18, NUMBER 2, 2010  n  LINCOLN LABORATORY JOURNAL 85

ANDREW S. FLETCHER

This degree-zero set has a size equal to w. During the 

same iteration, it is possible for other degree-one nodes 

to become degree zero (e.g., step 3 of the example scenario 

in Figure 4, in which two degree-one nodes are attached 

to the same right node). It is mathematically useful to 

distinguish between these two sets of degree-zero nodes: 

the first set is used in the decoding, while the second set 

is redundant. The size of this redundant degree-zero set 

of nodes is denoted by Cw.

The most important set is the set of degree-one nodes; 

the number of degree-one nodes after w iterations is a ran-

dom variable Aw. There are exactly w decoding degree-zero 

nodes, one for each iteration of the decoder. The remain-

ing two sets contain the redundant degree-zero nodes and 

the two-plus nodes. Together, these sets contain M – Aw 

– w nodes. At each iteration (assuming there is at least 

one degree-one node), exactly one node transitions from 

degree one to degree zero, while Bw nodes transition from 

the two-plus set to the degree-one set, and Cw nodes transi-

tion from the degree-one set to the redundant degree-zero 

set. Thus, the number of degree-one nodes after the w + 1 

iteration is computed as Aw+1 = Bw – Cw – 1.

These observations provide a straightforward recipe 

for computing the probability of successful decoding. 

The decoding succeeds if Aw > 0 for all w = 0 … k – 1. 

The initial distribution of A0 is a simple function of Ω0; 

the dynamic program updates the distribution of Aw and 

updates it after each iteration. The algorithm updates the 

distribution by evaluating the random variables Bw and 

Cw, which illuminate how Aw evolves. The key feature of 

the algorithm is the independence of each random vari-

able. Conditioned on Aw, Bw and Cw are independent from 

one another and from all previous decoding steps. The 

dynamic program must also maintain and update the dis-

tribution of node degrees in the evolving sets of two-plus 

nodes and redundant zero-degree nodes (both of which 

are highlighted in Figure 8). 

The dynamic program provides a probabilistic score 

for a distribution Ωd. It computes the probability that the 

decoder fails at each iteration; the total probability of fail-

ure is the sum of these probabilities. This dynamic pro-

gram is an ideal tool for designing LT codes of relatively 

short length, but lacks the final modification necessary to 

design raptor codes.

Raptor codes were invented by Shokrollahi to over-

come a known deficiency in LT codes [10–11]. LT codes 

require k iterations to successfully decode. It is easy to 

design an LT code with low average degree (and hence an 

efficient decoder) that will successfully complete most of 

the k iterations (approximately greater than 95%). Decod-

ing the final few iterations, however, requires a significant 

expansion of the number of graph edges. The raptor code 

starts with an efficient LT code and adds a pre-code to 

handle the last few iterations. With this computation, the 

total number of edges in the graph remains small (pro-

portional to the message size k).

To design a good LT code for use in a raptor code, the 

dynamic program requires a small adjustment to account 

for the pre-code. If the LT code fails after w < k itera-

tions, the pre-code may successfully complete the decod-

ing. Fortunately, the dynamic program can be modified to 

include such calculations in a straightforward way.

Ongoing Work
The fountain code architecture for photon-counting PPM 

is, at its roots, a practical compromise based on current 

hardware realities. Raptor codes have a straightforward 

decoder implementation that enables high-throughput 

FIGURE 8. After w right nodes have been decoded, the left 
nodes are divided into sets according to their degree: zero, 
one, or greater than or equal to two (“two-plus”). Degree-
zero nodes are further divided into nodes used in the decod-
ing and nodes that are redundant. Assuming at least one 
degree-one node remains, it is used by the decoder, Bw 
degree-two-plus nodes become degree-one, and Cw degree-
one nodes become redundant degree-zero nodes.
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communications without overwhelming computational 

resources. Because the code architecture is designed for 

practical implementation, it is well suited to a technol-

ogy demonstration, which is currently ongoing at Lincoln 

Laboratory.

As mentioned above, the code structure has places 

for both a parallel (for the inner code) and serial (for the 

outer code) chain-reaction decoder. In the ongoing dem-

onstrations, both decoders have been programmed in 

hardware description language for implementation on an 

FPGA device. An FPGA combines some of the parallel-

ism and computational throughput of a custom-designed 

chip with the flexibility of a programmable device. In the 

current experiments, the inner and outer decoders are 

each implemented on separate Virtex-5 SX240 FPGAs; 

in future implementations, these may be combined into a 

single FPGA. Both the inner and outer encoders are imple-

mented on a smaller Virtex-5 (LX110) FPGA. Preliminary 

results show that the decoder can operate in this mode at 

upwards of 1 Gbps data rates with a rate ½ code. Such a 

code should achieve nearly two bits per received photon.

The eventual demonstration will incorporate the 

encoder and decoder into an experimental photon-count-

ing receiver. Researchers at Lincoln Laboratory have built 

a photon-counting receiver test bed that uses innovative 

superconducting nanowire single-photon detectors. The 

test bed has been used to demonstrate 2.5 Gbps opera-

tion, but the demonstration required offline processing 

for error correction. Real-time decoding demonstrations 

have, until now, been limited to 100 Mbps throughput. 

The photon-counting receiver test bed is an ideal platform 

for demonstrating throughput capabilities of the chain-

reaction decoder.
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