
76 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

High-Efficiency Error
Correction for Photon
Counting
Andrew S. Fletcher

Today’s data-driven society demands high

data rates and high-rate communication

links. Addressing these needs in everything

from gigabit Ethernet network connections

and telephone or cable television signals to communica-

tion between spacecraft can require high bandwidth, high

power, large transmit or receive apertures or both, and

high receiver sensitivity.

Optical communication is attractive for these appli-

cations. High bandwidths are more readily available at

optical wavelengths than at radio frequencies, and opti-

cal transmitters and receivers can be made compactly, as

aperture size requirements scale with the signal wave-

length. Highly sensitive photon-detecting receivers can

be constructed to achieve high-rate data links capable

of transmitting multiple bits per received photon. This

exceptional receiver sensitivity requires an expanded

bandwidth and powerful codes for correcting errors in

the detected data. The bandwidth expansion is mitigated

easily, but powerful error correction can be difficult to

implement at gigabit-per-second data rates.

MIT Lincoln Laboratory is designing efficient for-

ward error correction codes that combine several essen-

tial qualities, such as near-capacity rates, very low error

floors, and efficient algorithms for coding and decoding.

Such properties are desirable in nearly every communi-

cations system, but the efficient coding and decoding is

particularly important for a high-data-rate, low-power

system used in applications such as photon counting.

The photon-counting channel shares many charac-

teristics with erasure channels. An erasure is a particular

kind of error in which the receiver is unable to detect the

transmitted symbol or somehow knows that the received

symbol is wrong. In photon counting that uses pulse-

Pulse-position modulation (PPM) using
a photon-counting receiver produces an
extremely sensitive optical communications
system, capable of transmitting multiple bits
of information for each received photon. Such
impressive sensitivity requires powerful error-
correction codes that must be computationally
efficient to enable high data throughput. Fountain
codes combine performance and efficiency for
a narrow class of channels, known as erasure
channels. A potential application for fountain
codes is the photon-counting PPM receiver,
which is an approximate erasure channel and
includes occasional channel errors. This non-
ideal behavior requires a nontraditional use of
fountain codes. With a carefully constructed
architecture, fountain codes provide the desired
efficient error correction to the photon-counting
PPM receiver.

»

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 77

ANDREW S. FLETCHER

position modulation (PPM), a type of transformation that

encodes information in the precise timing of photon arriv-

als, the channel errors are overwhelmingly the result of

dropped symbols that result in no signal detection. Only

occasionally are there dark counts, which occur when

the photon detector registers an arrival in the absence of

any light and may result from thermal noise in detector

electronics. Thus, the channel of interest is dominated

by symbol erasures, with the rare case of a symbol error.

Recent results from the field of erasure channel cod-

ing may be leveraged to achieve code efficiency [1-4].

Symbol erasures accurately describe Internet packet trans-

missions; efficient use of network resources motivated era-

sure-correcting code design. A network-efficient solution

is the fountain code, which is frequently used in Internet

protocols and whose name describes the receiver’s rate-

less nature. Fountain codes are one type of highly efficient

error-correcting code for erasure errors and have several

fantastic properties: they can be made arbitrarily close to

the channel capacity, they can be decoded with a linear

number of operations (proportional to the block length of

the code), and the decoding can be performed with binary

arithmetic rather than floating- or fixed-point operations.

The presence of occasional, but non-negligible, sym-

bol errors complicates the use of fountain codes. The

erasure-only decoder is not at all robust to the occasional

symbol error, and robust decoders no longer enjoy binary-

logic efficiency and likely require many more such opera-

tions (though still arguably a linear number) [5].

This work describes a binary-logic decoder for a rap-

tor code (short for rapid tornado), a specific fountain code

that is still robust to the occasional symbol error. In this

way, the computational advantages of the fountain code

decoder are retained and the decoder efficiency is suffi-

cient to allow very high data rates.

Photon-Counting Pulse-Position Modulation
Highly-efficient, low-receive-power optical channels can

transmit multiple bits of information for each received

photon. To those unaccustomed to photon counting, this

may appear impossible; it is readily explained via pulse-

position modulation. In simple terms, the information is

encoded in the precise timing of the photon arrival.

A PPM symbol consists of M time slots of duration

tslot , representing log2M bits of information. The trans-

mitter places signal power in exactly one slot, leaving the

other slots for that PPM symbol empty. Figure 1 illustrates

a 16-ary PPM in which each symbol represents four bits.

The four-bit message is interpreted as a number between

0 and 15 and specifies the slot to contain the transmitted

pulse. At the receiver, a photon counter determines which

slot registered a photon arrival. If each symbol contains a

single received photon (ignoring for a moment the statis-

tics of real photon counting), then we have communicated

log2M bits with each photon.

When we include some of the physical realities of

photon counting, we see the similarity to an erasure chan-

nel. The receive signal is a coherent (laser) state with an

intensity of NS photons per symbol, localized to a single

slot. With a 100% efficient photon counter, the actual

number of received photons is a Poisson random variable

with mean NS. Thus, the probability of receiving zero pho-

tons in the signal slot is β = −e Ns . For NS = 1, this is approxi-

mately 0.37. Thus, despite averaging a photon per symbol,

the receiver will have an empty symbol 37% of the time.

Channel capacity defines the maximum code rate

at which error-free communication is possible; it is

calculated as the mutual information between channel

input and output (maximized over input distributions).

Define X M∈{ }1,..., and Y M E∈{ }1,..., , as the random vari-

ables describing the transmitted and received symbols

(with E indicating an erasure). Then Pr X x Y y= =() = 1
and Pr PrX x Y E X x= =() = =() . The mutual informa-

tion is given by I X Y H X H X Y H X;() = () − () = −() ()1 β .

The capacity is achieved for equally likely input symbol

X and is thus given by C M= −()1 2β log —the capacity of

the channel is the fraction of symbols that are not erased.

The capacity calculated above assumes noiseless photon

detection; however, there are several potential sources of

noise, such as dark counts, background light (i.e., light not

generated by the transmitter), and small amounts of light

transmitted during supposedly empty slots. The noise is

modeled by determining an average number of photons

Data
source

PPM
symbols

1 0 1 0

0 31210 150 150 15
…

0 0 1 11 1 0 0 …

FIGURE 1. Each pulse-position modulation (PPM) symbol
in the above example consists of 16 time slots, one of which
contains a signal pulse. The four-bit message specifies
which slot contains the pulse.

78 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

HIGH-EFFICIENCY CODING FOR PHOTON COUNTING

per slot NB in which noise arrivals are independent of the

transmitted signal. Cases are addressed for which NB is

quite small and corresponds to a receiver circumstance

with negligible background light, a transmitter with a

good extinction ratio, and a photon detector with a low

dark-count rate. All of these assumptions represent real-

istic cases of interest.

Given such a model for dark counts, there are two

noisy cases of interest. In the multiple-arrival case, the

receiver observes a symbol with two photons observed in

different time slots. While one photon was from the signal

and the other from the noise, the receiver has no way of

distinguishing them. A double arrival actually tells quite

a bit about the transmitted signal, as the correct symbol

corresponds to one of the two slots with high confidence.

However, the decoder is simplified if the double-arrival

case is merely flagged as an error and thus erased. The

more problematic case is when a noise photon is observed

during a symbol for which the signal photon does not

arrive. This scenario results in a random symbol error

that is not immediately discernible from a correct symbol.

For context, consider an example system based on

technology under development at Lincoln Laboratory. A

receiver with a 10 GHz slot rate, 16-ary PPM, and a half-

rate code will operate at 1.25 gigabits per second (Gbps)

throughput. If the received signal slot averages NS = 1

photon, the receiver would obtain two bits per received

photon. Four types of symbol detection are illustrated in

Figure 2. The most common results are “correct” symbol

detection, in which the photon is detected in the slot in

which the transmitter placed the signal, and an erased

symbol. For typical noise rates, a 1 kHz background pho-

ton arrival rate, 1 kHz dark-count rate, and 50 dB trans-

mitter extinction ratio, the erasure probability (b) would

be 0.37 and the probability of a correct detection would

be 0.63; an erasure, 0.37; multiple arrivals, 9.6 × 10-5; and

incorrect symbols, 5.6 × 10-5.

Error-Correcting Codes
An error-correcting code protects information in the

channel by providing redundancy. A vector of informa-

tion x is converted to a code word y by the encoder. The

decoder takes the (channel-corrupted) code word and

determines the best estimate for the original message x.

Codes are designed and defined to facilitate both encod-

ing and decoding.

Fountain codes are linear codes, which are defined

either in terms of a generating matrix G or a parity check

matrix H. The generating matrix defines the encoding

operation, as the code word is defined as y = G × x (using

modulo-two multiplication). The decoder exploits the

structure of the code word, particularly the parity check

relation H × y = 0. Commonly, the code is defined by

either H or G, with the other a derived quantity.

Fountain codes are typically low density, which means

that a small fraction of entries in either H or G are non-

zero. In general, either H or G can be low density, but

not both.

Figure 3(a) uses a bipartite graph to illustrate a gen-

erating matrix for one code; Figure 3(b), a parity check

matrix for a different code. In both graphs, the nodes on

the left represent bits yi of a code word y. In Figure 3(a),

nodes on the right represent parity checks, in which the

modulo-two sum of the bits connected to each check is

zero. In Figure 3(b), the nodes on the right represent the

information to be encoded and left nodes are the modulo-

two sum of the associated right nodes.

Erasure decoding is a straightforward process for

both low-density parity check (LDPC) and low-density

generating matrix (LDGM) codes. In both cases, the code

FIGURE 2. The photon-counting PPM receiver most often
either detects a photon in the slot in which the transmitter
placed the signal (the symbol is correct) or fails to detect a
photon (the symbol is erased). Occasionally, the receiver
detects a photon not generated by the transmitter. If the
receiver also detects the correct signal, a multiple arrival
occurs; if not, an incorrect symbol is registered.

Erased-symbol
probability 0.37

Correct-symbol
probability 0.63

Multiple-arrival
probability 9.6 × 10-5

Incorrect-symbol
probability 5.6 × 10-5

Signal slot0 15

Signal slot0 15

Signal slot0 15

Signal slot0 15

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 79

ANDREW S. FLETCHER

enforces a binary structure on the received bits. Consider

the ith row of H, with nonzero entries {i1 , i2 , ... ik }. The

parity equation requires that

0 = yi1
 ⊕ yi2

 ⊕ yi3
 ⊕ ... ⊕ yik

 ,

 in which ⊕ indicates modulo-two addition. If exactly one

of the {yi1
, yi2

, ..., yik
} is erased, the parity relation unam-

biguously would supply the unknown value. Similarly for

the LDGM, a row of G leads to a requirement that

yi1
 = xi1

 ⊕ xi2
 ⊕ xi3

 ⊕ ... ⊕ xik
 .

If yi and k – 1 of the xi are known, then the unknown

kth bit can be determined unambiguously. The parity or

generating equations suggest a simple iterative decod-

ing algorithm using either H or G, respectively. At each

iteration, locate a row of H or G that contains only one

unknown variable. The code structure provides the

unknown variable’s value, which is then used to update

the values of connected nodes. The connections are sev-

ered, and the next iteration identifies another row with

only one unknown variable. The decoding continues until

FIGURE 3. Bipartite graphs representing (a) a parity check matrix H and (b) a generating matrix G are shown for two differ-
ent codes. For both graphs, the nodes on the left represent the bits yi in a code word. For (a), nodes on the right (labeled cj)
represent parity checks; the modulo-two sum of the bits connected to each check is 0. For (b), nodes on the right (labeled xj)
represent the information to be encoded. Left nodes are the modulo-two sum of the associated right nodes.

all variables are known (a successful decoding) or there

are no rows with only one unknown (a decoding failure).

The iterative erasure decoding is sometimes

described as a chain reaction decoder, and it is straight-

forward to understand graphically. Figure 4 illustrates

two iterative decodings for the generating and parity-

check matrices shown in Figure 3.* The decoding in Fig-

ure 4 represents the parity-check graph of Figure 3(a) in

which the y2, y3, y4, and y5 bits have been erased. The

erased bits are assigned to the right nodes r and the

parity check nodes, ci , are assigned to the left nodes,

l. The initial values in l have been chosen to yield the

appropriate parity-check values for combinations of the

unerased bits y1 , y6 , and y7 . To determine the values of

the unknown bits, the decoder identifies code dependen-

cies with only one unknown, which correspond to left

nodes with only one edge (a degree-one node). In the

0

(a) Parity check matrix (b) Generating matrix

0

1

1

1

0

0

0

y1

y2

y3

y4

y5

y6

y7

c5

c4

c3

c2

c1

y1

y2

y3

y4

y5

y6

y7

x3

x2

0

1

1

0

0

1

0

1

0

0

1

x4

x1

* The two graphs in Figure 3 lead to the same decoding procedure
by design and for ease of explanation. Recall that Figures 3(a)
and 3(b) describe different codes and that different bits have been
erased in each message.

80 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

HIGH-EFFICIENCY CODING FOR PHOTON COUNTING

added to connected nodes, and the graph is updated to

produce Figure 4(c). For the next iteration, l1 is identi-

fied as a degree-one node, r2 is determined and added to

connected nodes, leading to Figure 4(d). The value of r3

is trivial here, supplied by either l4 or l5. The values of r1

through r4 match the source bits in Figure 3(a), confirm-

ing that this decoding has produced the correct values for

the deleted bits.

initial graph, l2 is a degree-one node; thus, r1 can be

assigned the value of l2 (1) and the edge linking r1 and

l2 can be removed. Next, r1 is added (modulo two) to the

value of any other left node to which it is connected and

those edges are removed. Thus, l1, l3, and l5 are each

updated with the modulo-two addition of r1, resulting

in Figure 4(b). For the next iteration, l3 is identified as a

degree-one node. The value of r4 is determined (1) and

FIGURE 4. A graphical example is presented of binary-message erasure decoding. The initial graph (a) is shown with the
right-hand nodes (ri) indicating the bits to be filled and the left-hand side (li) denoting the values supplied by non-erased
symbols. Values of l drawn in blue are used to determine values of r that are also drawn in blue. Edges shown in blue are then
used to propagate the newly determined values of r. In iteration 1 (b), node r1 is filled in as having value 1, which then is added
(modulo two) to the values in l1, l3, and l5, and the linking edges are removed. In a similar fashion, r2 is determined in itera-
tion 2 (c), r3 in iteration 3 (d).

0

(d) Iteration 3(c) Iteration 2

(b) Iteration 1

0

0

(a) Initial graph

0

0

1

0

0

0

0

0

1

0

0

1

1

0

1

1

1

0

1

1

1

1

1

1

0

1

0

ρ 1

ρ 2

ρ 3

ρ 4

ρ 1

ρ 2

ρ 3

ρ 4

ρ 1

ρ 2

ρ 3

ρ 4

ρ 1

ρ 2

ρ 3

ρ 4

λ 1

λ 2

λ 3

λ 4

λ 5

λ 1

λ 2

λ 3

λ 4

λ 5

λ 1

λ 2

λ 3

λ 4

λ 5

λ 1

λ 2

λ 3

λ 4

λ 5

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 81

ANDREW S. FLETCHER

The graphical representation of decoding is equally

effective with the generating matrix of Figure 3(b). This

matrix also has a seven-bit code word, and if y1 and y7

are erased by the channel, the four message bits must be

determined from the five unerased bits. The initial graph

in Figure 4(a) is simply the graph in Figure 3(b) with the

y1, y7, and the attached edges removed. The left and right

nodes are also relabeled as l and r, respectively. The same

iterative procedure described above may be used to deter-

mine the erased bits: identify a degree-one node, deter-

mine the value of ri from its one-degree connection to

lj, add the determined value of ri to all other connected

left nodes and remove the edges, find the next degree-one

node, and repeat.

Graph design requires careful consideration of

degree-one nodes. As illustrated above, decoding requires

at least one degree-one node to continue, but if there are

too many such nodes at any iteration, the code is ineffi-

cient. Finding the appropriate balance has been the sub-

ject of extensive research [3, 4, 6–9].

FIGURE 5. A graphical example of binary-message erasure decoding in the presence of a bit error. The same decoding pro-
cess is used as in Figure 4, but the bit error leads to incorrect results. Node l2 is assigned the wrong bit value. As the decoding
progresses, red values indicate a departure from the correct decoding. The decoded sequence is wrong in bits r1 through r4.
Note also the contradictory choice for the value of r3.

0

Iteration 3Iteration 2

Iteration 1

0

Initial graph

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

?

0

1

0

1

0

ρ 1

ρ 2

ρ 3

ρ 4

λ 1

λ 2

λ 3

λ 4

λ 5

ρ 1

ρ 2

ρ 3

ρ 4

λ 1

λ 2

λ 3

λ 4

λ 5

ρ 1

ρ 2

ρ 3

ρ 4

λ 1

λ 2

λ 3

λ 4

λ 5

ρ 1

ρ 2

ρ 3

ρ 4

λ 1

λ 2

λ 3

λ 4

λ 5

82 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

HIGH-EFFICIENCY CODING FOR PHOTON COUNTING

with probability g, in which g << b. Because the capac-

ity (the upper bound for the code rate) of this channel is

approximately 1 – b, a code rate of k/n < 1 – b is required.

Two situations cause the chain-reaction decoder to

fail: if (at least) one of the n bits is an error or if there

are too many erasures. For small g, the probability that

the code word sees an error is approximately ng. An

obvious way to keep this probability small is to limit the

block length n.

What is the probability that there are too many era-

sures? For a perfect code, we are able to determine the

message if any k (or more) of the bits arrives unerased. A

realistic code, such as a raptor code, is decoded success-

fully when more than k + ne bits arrive unerased, in which

e represents a code overhead and implies a distance from

capacity.* Raptor codes are capacity-achieving for code

families in which e approaches zero as n approaches one.

As n gets small, the required overhead e grows.

Finite-length codes are always subject to decoding

failures. For an erasure channel, each bit is independently

erased with probability b. The number of erasures NE that

occur in an n-bit code word is a binomial random variable

with mean nb and variance nb(1 – b). A decoding failure

occurs if NE/n > 1 – k/n – e. For large n, the law of large

numbers suggests that decoding failures are quite rare.

For smaller n, however, decoding failures become more

likely.

The two conditions described that can result in a

failure of the chain-reaction decoder present competing

requirements for limiting the probability of such a failure.

On the one hand, as the block length grows, the code word

is more likely to be corrupted by an error. On the other

hand, raptor code performance improves as n increases.

Fortunately, a useful operating point is contained within

this trade space. Figure 6 illustrates this trade-off for a

raptor code with overhead e = 0.1, b = 0.37, and a symbol-

error probability of g = 5.6 × 10-5. For block sizes between

600 and 1400, the probability of a decoding failure is

below 0.08.

The output of the chain-reaction decoder is a k-bit

block erasure channel. If the decoder is successful, the

k-bit message is successfully determined; if the decoder

fails because of an error or too many erasures, the failure

is detected and no message is returned. As long as decoder

failures are always detected, the raptor code and chain-

reaction decoder combination results in a purely erasure

The most successful fountain codes fall under the

classification of raptor codes [3, 4]. These are, in fact,

two-stage codes. The inner code is an LDGM code, while

the outer code is a very-high-rate LDPC code. The rap-

tor code approaches capacity and has excellent error

floors while maintaining a linear number of graph edges.

Because the number of decoding computations is propor-

tional to the number of graph edges, the raptor code is a

particularly efficient choice for the erasure channel.

Effect of Errors on Chain-Reaction Decoding
Although the chain-reaction decoder is computationally

simple, it is only robust to channel erasures. A single-bit

error in the receive data can lead to a catastrophic decod-

ing failure. For example, in the LDGM decoding example

in Figure 4, y1 and y7 were erased. If instead, a bit error

is included on y3, corresponding to a bit error on l2, the

decoding procedure will result in errors. As shown in

Figure 5, the decoded message becomes 0000 instead of

the correct 1001. In general, a bit error on a node can

propagate through the decoder to cause errors on many

decoded bits.

The potentially catastrophic impact of a few errors is

clearly a black mark against chain-reaction decoding for

the noisy photon-counting PPM channel and could limit

its promise for high-data-rate, highly efficient optical sig-

naling. Typically, the channel of interest is dominated by

erasure errors with only the occasional dark count causing

a symbol error. In these situations, the use of the chain-

reaction decoder should not be abandoned; although the

chain reaction decoder does not correct transmitted errors,

it does detect errors with high probability. At the last step

in the example of Figure 5, the bit error led to a contradic-

tion; such inconsistencies only arise because of errors. The

error-detection capability is an important element of the

proposed photon-counting PPM code architecture.

Code Architecture for Photon-Counting PPM
An alternative approach combines raptor codes and

chain-reaction decoding and constrains the size of code

words to improve robustness to errors. For an [n; k] rap-

tor code that encodes a k-bit message into an n-bit code

word, after passing through a photon-counting PPM

channel, bits are erased with probability b and are in error

* Strictly speaking, when k + ne bits arrive unerased, decoding is suc-
cessful with high probability.

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 83

ANDREW S. FLETCHER

channel, in which the erasure probability is the probabil-

ity of a decoding failure.

The improved code architecture combines an inner

raptor code having a rate 1 – b − e and a block length n

chosen to minimize the probability of decoder failure, and

an outer code that can be any erasure correcting code in

which k bits are encoded for every node. The outer code

is a relatively high-rate code, as it need only correct the

small fraction of blocks on which the inner code fails. A

block diagram for this system is shown in Figure 7. This

code structure achieves a highly sensitive receiver with a

very high data throughput.

Serial Versus Parallel
Chain-Reaction Decoders
The algorithm description introduced for the chain-reac-

tion decoder above implies a serial decoder implementa-

tion. Functionally, the serial decoder maintains a list of all

degree-one left nodes. At the beginning of each iteration,

a node from this list is used to fill in the attached message

node; next, the left node is removed from the list. All of

the remaining left nodes attached to the now-filled mes-

sage bit are appropriately updated. If the update results

in a new degree-one node, it is added to the list. If the

update results in a degree-one node becoming degree zero

(because it was also attached to the now-filled message

node), it is removed from the list. The serial decoder pro-

ceeds until the degree-one list is empty.

The chain reaction succeeds by performing an

iteration for every unknown message bit. Thus, the

serial implementation is often appropriate for cases in

which the frequency of erasures is low. When the era-

sure frequency is high, a parallel implementation of the

chain-reaction decoder may be desirable. At any point

in the chain reaction, there may be several degree-one

left nodes. Recognizing this, during each iteration, the

parallel decoder may process values from all the degree-

one nodes. Thus, each message node determines if it is

degree one; if so, it sends its value to the attached mes-

sage nodes. These messages between the left and right

nodes constitute a single iteration. In the parallel imple-

mentation, the entire code word could be determined in

a relatively small number of iterations. For the codes of

interest, it often requires 50 to 100 iterations regardless

of the number of bits in the code word. In contrast, the

serial decoder requires an iteration for every erased bit,

which can number in the thousands.

The parallel decoder differs markedly from the serial

decoder. If the algorithm were laid out as a circuit (e.g.,

in an application-specific integrated circuit or a field-pro-

grammable gate array [FPGA]), every node would occupy

a particular location and would have a physical connec-

tion to other attached nodes. Despite the sparse nature of

FIGURE 6. A trade-off exists between raptor-code block
length and the probability of a decoding failure. For a half-
rate raptor code with an overhead e = 0.1, erasure probability
b = 0.37 and a symbol error probability of r = 5.63 × 10-5, the
chain-reaction decoder fails in the presence of an error or
too many erasures.

2 4 6 8 10 12 14 16 18 20
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

Pr
ob

ab
ilit

y
of

 d
ec

od
in

g
fa

ilu
re

Block length (×102)

Erasure-based decoding failure
Error-based decoding failure
Decoding failure

FIGURE 7. A code architecture block diagram illustrates a
message traversing an outer encoder, a block erasure chan-
nel, and, finally, an outer decoder. The inner raptor code,
which has a short block length, surrounds the noisy photon-
counting channel. When a symbol error occurs or when the
inner decoder fails, the inner code word is dropped. The
overall effect is a block erasure channel, in which the erasure
probability is kept low. The outer code is employed to correct
the block erasures.

Message

Outer
decoder

Block erasure channel

Outer
encoder

Decoded
message PPM

demodulator

PPM
modulator

Channel

Inner raptor
decoder and

error detection

Inner raptor
encoder

84 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

HIGH-EFFICIENCY CODING FOR PHOTON COUNTING

the graph, these connections can become dense. Also, the

graph should be random or pseudorandom for good per-

formance—highly structured graphs often perform poorly

with the chain-reaction decoder. Furthermore, every left

node must compute whether it is weight one. For high-

degree nodes, this computation can limit the clock speed

of the algorithm. These challenges for the parallel decoder

make its implementation difficult unless the block size

is small. One should also note that if a graph node rep-

resents k bits, then the physical connection between the

nodes must be a bus with width k.

The strengths and limitations of serial and parallel

decoding align themselves well with the photon-count-

ing PPM architecture. The inner raptor code sees a high

rate of erasures, but is restricted to small block sizes. As

such, the inner code is ideally suited for a parallel decoder.

The parallel decoder greatly enhances the overall system

throughput, as multiple bits are decoded for every com-

putational clock cycle. The outer code has a high rate and

sees infrequent erasures. Furthermore, each node repre-

sents the k message bits from the inner code. The outer

code is ideally suited for a serial decoder.

Interestingly, the hardware requirements are highly

complementary. The parallel decoder requires significant

real estate on an FPGA, but requires essentially no mem-

ory. The serial decoder requires almost no real estate, but

all of the graph connections and the list of degree-one

nodes is maintained in memory.

Short-Block Raptor Design
The proposed code architecture requires a raptor code

with both a low code overhead (i.e., a small e) and a

short block length (e.g., n ≈ 1000). Since their introduc-

tion, most research in designing fountain codes (includ-

ing raptor codes) has focused on large block sizes [1–4].

Although considerably less attention has been devoted

to designing high-performance raptor codes with short

block lengths, some short-block ideas have been leveraged

to design the implemented raptor codes [10–12].

Raptor codes, as with most fountain codes, are ran-

dom. Instead of designing a specific graph, a raptor code

design specifies the statistical properties of a graph. The

random structure allows a statistical analysis of the code

performance; one can derive a mathematical expression

for the probability of successful decoding.

Statistical code analysis is most easily performed

and understood on random LDGM codes called Luby

Transform (LT) codes after their inventor Michael Luby

[4]. Raptor codes are LT codes with a small (but signifi-

cant) modification, so raptor code design begins with LT

code design.

A good code design is one with a high probability of

a successful chain-reaction decoding. Consider a k-bit

message encoded in an LT code word, of which m bits

arrive unerased at the receiver. The resulting graph has

the structure of the LDGM graph in Figure 4 and has a

simple statistical description. There are m left nodes and k

right nodes. Each left node has D edges attached, in which

D is a random variable with probability mass function

Ωd. (That is to say, the probability that a left node has d

attached edges is Ωd.) The D edges are randomly attached

to the right nodes in a uniform way, independent of all of

the other left nodes. With this description, an LT code is

completely defined by selecting a degree distribution Ωd.

Selecting Ωd is done by calculating the probability of

successfully decoding such a random graph. For very large

code words (e.g., k > 50,000), this has been typically done

by computing the probability of decoding in the limit as

k goes to infinity (and m = k(1+e)). For short-block code

design, in which k is on the order of 1000, the decoding

probability can be calculated using a dynamic program.

A dynamic program is a method to solve a com-

plex problem by dividing it into simpler steps. At each

step, a set of values is computed; these values are used

and updated in subsequent steps. For the LT code, the

program is divided into the k iterations necessary to suc-

cessfully complete a serial chain-reaction decoder. The

precise mathematical derivation is beyond this article’s

scope, but the basic concept is relatively straightforward.

The chain-reaction decoder requires at least one left node

of degree one to continue the decoding process. A serial

decoder selects one such degree-one node and determines

the value of the attached right node. It takes exactly k

steps to successfully complete the decoder, and k steps

will occur if (and only if), after each iteration, at least one

degree-one node remains.

As shown in Figure 8, before the first decoding

iteration, the left nodes can be divided into two sets: the

degree-one nodes and the nodes having degree greater

than or equal to two (“two-plus nodes”). At each iteration,

a single node from the degree-one set becomes degree

zero after it is used to determine the value for a right node.

 VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY JOURNAL 85

ANDREW S. FLETCHER

This degree-zero set has a size equal to w. During the

same iteration, it is possible for other degree-one nodes

to become degree zero (e.g., step 3 of the example scenario

in Figure 4, in which two degree-one nodes are attached

to the same right node). It is mathematically useful to

distinguish between these two sets of degree-zero nodes:

the first set is used in the decoding, while the second set

is redundant. The size of this redundant degree-zero set

of nodes is denoted by Cw.

The most important set is the set of degree-one nodes;

the number of degree-one nodes after w iterations is a ran-

dom variable Aw. There are exactly w decoding degree-zero

nodes, one for each iteration of the decoder. The remain-

ing two sets contain the redundant degree-zero nodes and

the two-plus nodes. Together, these sets contain M – Aw

– w nodes. At each iteration (assuming there is at least

one degree-one node), exactly one node transitions from

degree one to degree zero, while Bw nodes transition from

the two-plus set to the degree-one set, and Cw nodes transi-

tion from the degree-one set to the redundant degree-zero

set. Thus, the number of degree-one nodes after the w + 1

iteration is computed as Aw+1 = Bw – Cw – 1.

These observations provide a straightforward recipe

for computing the probability of successful decoding.

The decoding succeeds if Aw > 0 for all w = 0 … k – 1.

The initial distribution of A0 is a simple function of Ω0;

the dynamic program updates the distribution of Aw and

updates it after each iteration. The algorithm updates the

distribution by evaluating the random variables Bw and

Cw, which illuminate how Aw evolves. The key feature of

the algorithm is the independence of each random vari-

able. Conditioned on Aw, Bw and Cw are independent from

one another and from all previous decoding steps. The

dynamic program must also maintain and update the dis-

tribution of node degrees in the evolving sets of two-plus

nodes and redundant zero-degree nodes (both of which

are highlighted in Figure 8).

The dynamic program provides a probabilistic score

for a distribution Ωd. It computes the probability that the

decoder fails at each iteration; the total probability of fail-

ure is the sum of these probabilities. This dynamic pro-

gram is an ideal tool for designing LT codes of relatively

short length, but lacks the final modification necessary to

design raptor codes.

Raptor codes were invented by Shokrollahi to over-

come a known deficiency in LT codes [10–11]. LT codes

require k iterations to successfully decode. It is easy to

design an LT code with low average degree (and hence an

efficient decoder) that will successfully complete most of

the k iterations (approximately greater than 95%). Decod-

ing the final few iterations, however, requires a significant

expansion of the number of graph edges. The raptor code

starts with an efficient LT code and adds a pre-code to

handle the last few iterations. With this computation, the

total number of edges in the graph remains small (pro-

portional to the message size k).

To design a good LT code for use in a raptor code, the

dynamic program requires a small adjustment to account

for the pre-code. If the LT code fails after w < k itera-

tions, the pre-code may successfully complete the decod-

ing. Fortunately, the dynamic program can be modified to

include such calculations in a straightforward way.

Ongoing Work
The fountain code architecture for photon-counting PPM

is, at its roots, a practical compromise based on current

hardware realities. Raptor codes have a straightforward

decoder implementation that enables high-throughput

FIGURE 8. After w right nodes have been decoded, the left
nodes are divided into sets according to their degree: zero,
one, or greater than or equal to two (“two-plus”). Degree-
zero nodes are further divided into nodes used in the decod-
ing and nodes that are redundant. Assuming at least one
degree-one node remains, it is used by the decoder, Bw
degree-two-plus nodes become degree-one, and Cw degree-
one nodes become redundant degree-zero nodes.

Degree-one
nodes

Size AW

1

Degree-two-plus
nodes

BW

Redundant
degree-zero

nodes

Used
degree-zero

nodes

Size w

Size M – AW – w

CW

86 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010

HIGH-EFFICIENCY CODING FOR PHOTON COUNTING

communications without overwhelming computational

resources. Because the code architecture is designed for

practical implementation, it is well suited to a technol-

ogy demonstration, which is currently ongoing at Lincoln

Laboratory.

As mentioned above, the code structure has places

for both a parallel (for the inner code) and serial (for the

outer code) chain-reaction decoder. In the ongoing dem-

onstrations, both decoders have been programmed in

hardware description language for implementation on an

FPGA device. An FPGA combines some of the parallel-

ism and computational throughput of a custom-designed

chip with the flexibility of a programmable device. In the

current experiments, the inner and outer decoders are

each implemented on separate Virtex-5 SX240 FPGAs;

in future implementations, these may be combined into a

single FPGA. Both the inner and outer encoders are imple-

mented on a smaller Virtex-5 (LX110) FPGA. Preliminary

results show that the decoder can operate in this mode at

upwards of 1 Gbps data rates with a rate ½ code. Such a

code should achieve nearly two bits per received photon.

The eventual demonstration will incorporate the

encoder and decoder into an experimental photon-count-

ing receiver. Researchers at Lincoln Laboratory have built

a photon-counting receiver test bed that uses innovative

superconducting nanowire single-photon detectors. The

test bed has been used to demonstrate 2.5 Gbps opera-

tion, but the demonstration required offline processing

for error correction. Real-time decoding demonstrations

have, until now, been limited to 100 Mbps throughput.

The photon-counting receiver test bed is an ideal platform

for demonstrating throughput capabilities of the chain-

reaction decoder.

Acknowledgments
Many thanks to Don Boroson and Bryan Robinson for

their help in the original coding concept. Thanks also to

Matthew Willis and Rohit Kochhar for work in hardware

implementation. n

REFERENCES

1. M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A.
Spielman, “Efficient erasure correcting codes,” IEEE Trans.
Inform. Thy., vol. 47 , no. 2, 2001, pp. 569–584.

2. M. Luby, “LT codes,” Proc. 43rd Annual IEEE Symp. Foun-
dations of Comp. Sci., 2002, pp. 271–280.

3. M.A. Shokrollahi, “Raptor codes,” Proc. Intl. Symp. Inform.
Thy., 2004, p. 36.

4. M.A. Shokrollahi, “Raptor codes,” IEEE/ACM Trans. Netw.,
Special Issue on Networking and Information Theory, vol. 14,
2006, pp. 2551–2567.

5. O. Etesami and A. Shokrollahi, “Raptor codes on binary
memoryless symmetric channels,” IEEE Trans. Inform. Thy.,
vol. 52, no. 5, 2006, pp. 2033–2051.

6. M.A. Shokrollahi, “Applied algebra, algebraic algorithms and
error correcting codes,” Lecture Notes in Computer Science,
New Sequences of Linear Time Erasure Codes Approaching
the Channel Capacity, vol. 1719/1999, Berlin/Heidelberg:
Springer, 1999, pp. 65–76.

7. M.A. Shokrollahi and R. Storn, “Design of efficient erasure
codes with differential evolution,” Proc. IEEE Intl. Symp.
Inform. Thy., 2000, p. 5.

8. T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke,
“Design of capacity-approaching irregular low-density par-
ity-check codes,” IEEE Trans. Inform. Thy., vol. 47, no. 2,
2001, pp. 619–637.

9. C. Di, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L.
Urbanke, “Finite-length analysis of low-density parity-check
codes on the binary erasure channel,” IEEE Trans. Inform.
Thy., vol. 48, no. 6, 2002, pp. 1570–1579.

10. R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis
of LT codes,” Proc. Intl. Symp. Inform. Thy., 2004, p. 37.

11. E. Maneva and A. Shokrollahi, “New model for rigorous
analysis of LT-codes,” IEEE Intl. Symp. Inform. Thy., 2006,
pp. 2677–2679.

12. A. Venkiah, Analysis and Design of Raptor Codes for Mul-
ticase Wireless Channels, Ph.D. thesis, University of Cergy-
Pontoise, 2008.

ABOUT THE AUTHOR

Andrew S. Fletcher is a technical staff
member in the Optical Communications
Technology Group. His work focuses on
error correction and information theory for
optical communication systems. He earned
both a bachelor’s and master’s degree from
Brigham Young University in 2001, as well
as a doctorate degree from Massachusetts

Institute of Technology in 2007, all in electrical engineering.

