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Since 1996, Lincoln Laboratory has had 

an active program in developing state-of-

the-art bio-agent sensors [1]. One of the 

early Lincoln Laboratory successes in bio-

logical defense was the development of the Biological 

Agent Warning Sensor (BAWS) trigger system, which was 

based on the detection of laser-induced fluorescence from 

individual aerosol particles. BAWS was conceived and 

developed from 1996 to 2000. After further development 

and ruggedization, BAWS was transitioned to the Joint 

Biological Point Detection System (JBPDS) program. The 

JBPDS was the first fully automated military bio-agent 

detection system. In the JBPDS, BAWS performs the trig-

ger function of cueing the air-to-liquid particle collector 

to begin particle collection for the identifier. Lincoln Lab-

oratory continues to support JBPDS BAWS by develop-

ing hardware and software upgrades and testbeds, and 

by transitioning them to industry. Some examples of this 

effort are the redesign of the BAWS optical assembly and 

air flow, the study of additional fluorescence measurement 

channels, and the modification of the detection algorithm. 

In addition to the continued BAWS efforts, Lincoln Lab-

oratory is developing more advanced trigger sensors to 

meet the needs of a wide range of defense applications.

A point-trigger sensor interrogates the ambient atmo-

sphere at a specific geographic point and helps activate 

other low-disruption actions such as the operation of an 

identification sensor or the closing or opening of building 

vents. An example application of a trigger sensor is shown 

in Figure 1. The role of the trigger is to continuously 

monitor ambient air for the presence of potential threat 

aerosols, and if such an aerosol is present to activate the 

collector and identifier subsystems that then determine 

whether the aerosol actually contains bio-agents. Present 
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tion response (e.g., closing or opening building ventilation 

ducts). The required detection probability is generally 

greater than 90% but less than 99%. The required sen-

sor response time in which an attack must be detected 

strongly depends upon the anticipated response to this 

detection. For a trigger sensor, the required response time 

must allow for the anticipated response to agent detection 

(e.g., collection of aerosol particles for identification, or 

closing of building vents) and is generally less than 60 

seconds. Other attributes (cost, maintenance, reliability, 

size, weight, and power consumption) of sensors also have 

a wide range of requirements.

The range of possible sensors is bracketed by a high-

performance sensor and a low-cost sensor. For the high-

performance sensor, the key metric requirements are of 

primary importance and the other attribute requirements 

are of secondary importance. For the low-cost sensor the 

other attribute requirements (particularly cost) are of pri-

mary importance and the key metric requirements are 

of secondary importance. These two sensor types pro-

vide protection for two very different types of bio-agent 

attacks; a wide-area attack and a point attack. In a wide-

area attack the agent is distributed over a wide geographic 

area (e.g., an entire city) at relatively low concentration. 

In detecting this type of attack with high probability, the 

most stressing requirement is the sensitivity of the detec-

tor. In this case, a high-performance detector is needed, 

but because the agent is widely dispersed, not many 

detectors are needed. In a point attack the agent is distrib-

uted over a localized geographic 

area (e.g., a small fraction of 

a city or inside a building) at a 

relatively high concentration. In 

this case, a low-cost detector is 

needed because the attack site is 

not known in advance and thus 

many detectors must be spread 

over a wide area in order to 

obtain a high overall probability 

of detecting the attack. Since the 

attack has a locally high agent 

concentration, the detector need 

not have high sensitivity. Figure 

2 illustrates the application of a 

high-performance sensor with 

an array of low-cost sensors.

FigURe 1. The trigger is the first sensor to respond to an aerosol attack. The trigger is 
continuously analyzing the atmosphere. When it detects a threatening aerosol, it acti-
vates the sample collector, which concentrates the aerosol particles (typically into a liq-
uid) for presentation to the identifier. In the event of a positive identification, a further 
confirmation identification procedure is performed. In each case (trigger, identifier, con-
firmation), notification and potential actions are initiated.
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collector and identifier systems are too costly to operate 

continuously; thus the main purpose of the trigger sys-

tem in this architecture is to lower the overall operating 

costs of the biological detection system. In other sensor 

architectures, the trigger plays a more active role in the 

response to a bio-agent attack. As an example, the trigger 

sensor may be used directly to activate building ventila-

tion controls to protect building occupants. In all applica-

tions, the trigger system must detect agent aerosols with 

high probability at the same time it has a sufficiently low 

false-trigger rate in operating environments of interest. 

There are four related key metrics for evaluating 

bio-agent detection systems [2]. These are the sensitivity 

(minimum detectable agent concentration), the probabil-

ity of detection (at the minimum detectable agent concen-

tration), the false-positive rate, and the response time (the 

time between the agent concentration reaching the mini-

mum detectable concentration and the sensor detecting 

the agent). The requirement for each metric depends on 

the application using the sensor. For example, the detec-

tion of a widely dispersed, open-air bio-agent release may 

require a sensitivity of ten agent-containing particles per 

liter of air (ACPLA), while the detection of a release inside 

a building may require only a sensitivity of one thousand 

ACPLA. Similarly, the acceptable false-positive rate may 

be once per year for a sensor that will be used to initiate 

a high disruption response (e.g., building evacuation), 

while the acceptable false-positive rate may be once per 

day for a sensor that will be used to initiate a low disrup-
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population of normal ambient particles makes discrimi-

nation of a small quantity of bio-agent particles difficult. 

For this reason, we have focused on sensor techniques 

in which signals from individual particles are measured. 

More specifically, and because of the desire to detect a 

bio-agent as rapidly as possible, we utilize optically based 

particle detection and discrimination techniques. These 

techniques, which include elastic scattering, auto-fluores-

cence, and laser-induced breakdown spectroscopy, enable 

particle discrimination based on a combination of particle 

features such as size, reflectivity, absorption, fluorescence 

spectra, and elemental composition.

The design of a real-time, single-particle optically 

based bio-agent trigger involves two basic consider-

ations. First, individual aerosol particles must be charac-

terized well enough to discriminate between threat and 

nonthreat particles. Second, the threat-particle concen-

tration must be characterized well enough to support a 

reliable trigger threshold that maximizes the probability 

of detection while minimizing false positives. The abil-

ity to discriminate different types of particles depends 

on both the native difference between particle types for 

the measured properties and the signal-to-noise ratio 

(SNR) of these measurements. The ability to charac-

terize the threat-particle concentration depends on the 

detector air sample rate and the time available to make a  

concentration measurement.

The ability to optically detect and discriminate par-

ticles is partially determined by the amount of light that 

the particle emits. The number of detected photons Np 

emitted by a particle, with an optical cross section of σ, 

which is illuminated by a light beam of wavelength l with 

an intensity I = P/A (the light power P in the sample vol-

ume divided by the cross-sectional area A of the sample 

volume) for a time τ is

 
N

P
AP c d hc

,= η η τλ σ

The photon collection and 

detection efficiencies are 

ηc and ηd, respectively, h 

is Plank’s constant, and c 

is the speed of light. The 

number of detected par-

ticles n is 

An important consideration for bio-agent sensors is 

the environment in which they will operate. Typically, the 

ambient particle concentration greatly exceeds the desired 

bio-agent sensitivity. This disparity requires that the sen-

sor be very good at discriminating background particles 

(clay particles, diesel particles, pollens, molds) from bio-

agent particles to achieve a low false-positive rate. For 

example, in an urban environment the concentration of 

particles greater than 1 µm diameter may range from 1000 

to 100,000 per liter, depending on many parameters (e.g., 

time of year, traffic conditions). Detecting 100 particles 

per liter of a similar-sized bio-agent in this environment 

is like searching for a needle in a haystack.

This article discusses the design and implementation 

of both high-performance and low-cost real-time single-

particle, optically based bio-agent triggers. We introduce 

the basic concepts of bio-agent detection and describe 

the optical techniques for the detection and discrimina-

tion of bio-agent particles. The component technologies 

are discussed with several example implementations of 

bio-agent triggers. We introduce the algorithm process by 

which the raw data from a sensor are reduced to a binary 

decision about whether there is or isn’t an agent present 

and conclude with a discussion of the methods by which 

the key metric requirements of sensors are tested.

basic operation of a bio-Agent Trigger
The detection of bio-agent particles must be done in an 

ambient background of particles that are in many cases at 

a much higher concentration than the bio-agent particles. 

Because of this mismatch in aerosol concentrations, trig-

ger techniques that rely on measurements of the average 

properties of an ensemble of atmospheric particles are 

prone to poor discrimination. In this case, a much larger 
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FigURe 2. Two different types of biological attacks require a combination of high- and low-
performance detectors. A wide-area release from a moving source, shown on the left, is best 
protected by a high-performance sensor, while the localized release shown on the right is best 
protected by a large array of low-cost sensors.
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where C is the aerosol particle concentration, T is the time 

available for counting particles, φ is the effective air sam-

ple rate (also referred to as responsivity), A is the cross-

sectional area of the sample volume, L is the length of the 

sample volume (A * L), and τ is the time required for a 

particle to transit the sample volume. The SNR is
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N
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p
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where Np is the number of detected photons from the par-

ticle, Nca corresponds to the number of detected photons 

in the absence of a particle (i.e., clean air), and Ndet is the 

equivalent number of detector noise photons.

Clearly, the number of detected photons is propor-

tional to the power P and thus increasing the power is 

beneficial. However, the particle cross section and the 

photon collection and detection efficiencies may be 

strongly dependent on the source wavelength l. Each 

factor must be evaluated together with the others.

The design of a bio-agent detector involves a com-

promise between maximizing the signal from each par-

ticle that enters the sample volume and minimizing the 

detectable-agent concentration. For a given light power, 

the maximum particle signal is obtained by focusing that 

light into the smallest possible cross-sectional area A so 

as to increase the particle illumination intensity. As the 

sample volume decreases, however, the minimum detect-

able concentration increases.

The desired number of detected photons per particle 

is determined by the desired SNR. Ideally, the SNR should 

be large enough that photon shot noise does not limit the 

ability to discriminate threat and nonthreat particles.

Figure 3 illustrates the effects of noise on particle 

discrimination. If the measurement noise levels are too 

large it becomes difficult to determine whether a particu-

lar particle measurement is indicative of a threat particle. 

The noise associated with the measurement of particle-

emitted photons consists of the shot noise from the par-

ticle, the noise coming from gas (e.g., Rayleigh scattering 

and/or high concentration of very small particles), the 

noise from structure (e.g., scattering or fluorescence from 

optical components), and the detector noise.

The magnitude of the particle signal depends on its 

size. A large particle will generally produce more signal 

FigURe 3. Measurement noise affects the ability to dis-
criminate nonthreat-like particles and threat-like particles. 
The two axes correspond to the magnitude of two different 
measurements on a single particle. For example, the x-axis 
might correspond to the detected number of elastic-scatter-
ing photons and the y-axis might correspond to the detected 
number of fluorescence photons. On the top, a low-noise 
measurement allows the clear determination that the par-
ticle is threat-like, whereas on the bottom, a high-noise 
measurement confounds the determination of whether this 
particle is threat-like or a nonthreat-like.
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than a small particle. For optical interactions that are 

confined to the particle surface (e.g., opaque particles) 

the optical signal depends on the particle surface area 

and varies as the square of the particle radius. For opti-

cal interactions that are uniform throughout the particle 

(e.g., transparent particles) the optical signal depends on 

the particle volume and varies as the cube of the particle 

radius. In general, particles will exhibit both surface and 

volume interactions, and the relative contribution of these 

interactions itself depends on particle size. Particles com-

posed of material that is neither opaque nor transparent 

will behave as a volume for small particles and as a surface 

for large particles. The particle size below which there 

is not enough signal to achieve a predetermined SNR is 

referred to as the particle cut-off size. Because different 

materials exhibit different levels of optical interactions, 

the particle cut-off size depends on the particle material. 

It is desirable to design a bio-agent trigger such that its 

particle cut-off size is less than the smallest threat particle 

of interest.
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C
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Under stationary clutter conditions it is possible to 

increase the air sample rate so as to achieve a given SCR 

for measurement of the threat concentration.

While this clutter analysis is useful for helping to 

design a trigger sensor in anticipation of a certain clut-

ter concentration, the actual clutter concentration is 

usually difficult to predict and is often nonstationary. In 

nonstationary high-clutter conditions, where the desired 

detectable threat concentration is fixed, there is no substi-

tution for improving or expanding the particle measure-

ments so as to better discriminate particles and thereby  

reduce the clutter.

Simplified Trigger Detector
Many current bio-agent trigger detectors are based on 

the detection of induced fluorescence from individual 

airborne bio-agent particles. Figure 5 shows a simplified 

optical schematic for such a trigger detector. Light from 

an ultraviolet (UV)–emitting source of cross-sectional 

area d2 is imaged into a sample volume d3 through which 

ambient air passes. Particles that pass through the sample 

volume are illuminated by the UV radiation and re-emit 

fluorescence radiation. Some of the fluorescence radiation 

is directed to a photodetector with an area d2.

We can solve the earlier equations for the detect-

able bio-agent concentration as a function of the inci-

dent optical power. The light-beam cross-sectional area 

(A or d2), the particle transit time τ through the sample 

volume, and the air sample rate have dropped out of the  

equations, leaving

 
C

n
LT

N

P
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σ η η λ
p

c d
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.

Figure 6 shows the detectable concentration as a function 

of optical power for an SNR of 10 and for illumination 

wavelengths of 280 nm and 340 nm.

optical Detection of bio-Agent particles
A wide variety of optical phenomena have been investi-

gated for the detection of bio-agents. However, for single-

particle detection, only elastic scattering, fluorescence, 

and, recently, laser-induced breakdown spectroscopy 

(LIBS) have been developed to the point of field demon-

strations of bioparticle detection. (While vibrational spec-

Clutter

It is rarely possible to perfectly discriminate threat par-

ticles from nonthreat particles. Typically, there is some 

small fraction of the background aerosol that resembles 

the threat particles. These particles are referred to as 

clutter, and Figure 4 illustrates this concept. In a low-

clutter environment the number of threat particles in 

the measurement threat region dominates the number 

of clutter particles in the threat region. In a high-clutter 

environment, the number of clutter particles in the mea-

surement threat region dominates the number of actual  

threat particles. 

For conditions in which the clutter is stationary (the 

distribution of clutter within the measurement space is 

fixed), the signal-to-clutter ratio (SCR) for the measured 

threat particle concentration is

 
SCR

n

n nthreat
threat

threat clutter
,=

+

where ntotal is the total number of particles detected within 

the measurement threat region in a time period T and is 

equal to the sum of the number of threat (nthreat) and clut-

ter (nclutter) particles. The threat concentration is then
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FigURe 4. Clutter affects the ability of a trigger sensor to 
discriminate threat particles. Each dot represents a particle 
and its associated measurements. In this case each has very 
low noise. The blue dots are nonthreat particles and the red 
dots are threat particles. The measurement region in which 
threat particles are expected is shown by the red circle. 
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strength. Depending on the 

ratio of particle size to wave-

length of incident radiation, 

the elastic-scattering process 

can be divided into three 

regimes; Rayleigh scattering, 

Mie scattering, and geomet-

ric scattering. Rayleigh scat-

tering [3] occurs whenever 

the particle size is much less 

than the radiation wavelength 

(e.g., visible-wavelength scat-

tering from air molecules). 

Geometric scattering occurs 

whenever the particle size is 

much greater than the radia-

tion wavelength (e.g., visible-

wavelength scattering from rain drops). For geometric 

scattering the scattering cross section is comparable to 

the cross-sectional area of the particle. While the Mie 

scattering theory [4] is valid for all particle sizes and 

wavelengths, it is typically used only whenever Rayleigh 

scattering or geometric scattering theory is not appro-

priate (e.g., when the wavelength and particle size are 

d

d d
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FigURe 5. A generic individual airborne bioparticle detector consists of a source, imaging 
optics, a detector, and the sample region.

troscopy can provide good discrimination capability, its 

accompanying very small optical cross section has, to date, 

prevented rapid detection and discrimination of aerosol-

ized single-particle [1 to 10 µm diameter] bio-agents or 

simulants.) These phenomena greatly differ in terms of 

signal strength and particle discrimination. Elastic scat-

tering generates large signal strengths but has few features 

for discriminating particles made of 

different materials. Fluorescence 

generates much smaller signals but 

has several features for discriminat-

ing different types of particles. LIBS 

generates large signals and has 

many features for discriminating 

particles. The combination of these 

phenomena increases the ability to  

discriminate particles.

Elastic Scattering

The elastic scattering of electromag-

netic radiation is a process in which 

the scattered (or reflected) radia-

tion has the same wavelength as the 

incident radiation (see Figures 7 and 

8). Elastic scattering from an aero-

sol particle has a large cross section 

compared with other possible opti-

cal interactions. A large cross section 

results in large-measurement signal 
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FigURe 6. The calculated detectable-particle concentration for light-induced fluo-
rescence is a function of the optical power and the illumination wavelength. The pri-
mary factor separating the two lines is the particle fluorescence cross section (σ). 
This value is 50 × 10–12 cm2 for 280 nm fluorescence and only 5 × 10–12 cm2 for 340 
nm fluorescence. Other parameters used for this calculation were the number of 
detected particles (n = 100), the number of detected photons (Np = 100), the pho-
ton collection and detection efficiencies (ηc = 30%, ηd = 15%), the threat detection 
time (T = 60 sec), and a sample transit time (τ = 1 msec). For this figure, we did not 
include clean air, detector noise, or clutter.
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is given by the ratio of the radiation propagation speeds 

in a vacuum and in the medium of interest. The imagi-

nary part of the index (ni) is related to the absorption of 

incident radiation. A particle with an index equal to that 

of the medium in which it resides (e.g., n = 1 for air) will 

not scatter any of the incident radiation. A particle with a 

diameter comparable to, or larger than, the wavelength 

of the incident radiation and with a large real index 

will scatter a large fraction of the incident radia-

tion, while a similarly sized particle with a 

large imaginary index will absorb a large frac-

tion of the incident radiation in addition to 

scattering part of the radiation.

For a particle with an index of refraction 

different from the medium in which it resides, 

the amount of radiation scattered, the angular 

distribution of the scattering, and the polar-

ization characteristics of the scattering depend 

not only on the magnitudes of the real and imagi-

nary parts of the index of refraction but also on the 

particle size, shape, orientation, and wavelength of the 

incident radiation. Elastic scattering is commonly used to 

measure particle size [5] and has also been used to mea-

sure particle shape [6–8]. While particle size and shape 

can be used to augment bio-aerosol detection schemes, 

they do not provide much information about the chemi-

cal or biological nature of aerosol particles and are there-

fore limited in their discrimination capability. These  
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radiation

Incident
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Elastic scattering Fluorescence

FigURe 7. In elastic scattering, some of the incident radia-
tion promptly scatters (or reflects) from a particle such that 
the scattered wavelength is identical to the incident wave-
length. In particle fluorescence, some of the incident radia-
tion is absorbed by the particle and is later re-emitted by 
spontaneous emission. In complex molecular systems the 
spontaneous emission usually occurs at longer wavelengths.

FigURe 8. Illustration of elastic scattering and fluores-
cence between two molecular energy bands. The elastic 
scattering results from excitation and emission of radiation 
from the same molecular energy levels. Fluorescence results 
from excitation of an upper energy level and relaxation of 
the molecule to the lower edge of the upper energy band fol-
lowed by spontaneous emission of radiation as the molecule 
transitions from the lower level of the upper energy band to a 
range of energy levels in the lower energy band. The result is 
a spectrum of wavelengths.
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FigURe 9. Mie scattering exhibits a highly structured 
angular scattering profile, as shown in this example for 300 
nm radiation from a 2 µm diameter spherical and homoge-
neous particle with a refractive index of n = 1.5. The incident 
radiation travels from left to right in the diagram. The loga-
rithm of the magnitude of the scattered radiation is given by 
the radial distance on the polar plot. The outer circle corre-
sponds to a relative scattering magnitude of 106, while the 
inner circle corresponds to a relative magnitude of 102.

within a factor of about 10 of each other). Mie scattering 

accounts for the interference of radiation from different 

portions of the particle and results in highly structured 

angular scattering patterns (see Figure 9). The Mie-scat-

tering angular pattern is very dependent on the particle 

size and shape. 

The elastic scattering of radiation from an aerosol 

particle is caused by a difference in the index of refrac-

tion of the particle and the medium in which it resides 

(air). The index of refraction can be expressed as a com-

plex number (n = nr – i ni). The real part of the index (nr) 
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S-polarized scattering for 2 µm polystyrene spheres, diesel 

exhaust particles, Bacillus globigii (Bg) spores, and oval-

bumin (Ov) that ranged in size from 1 to 5 µm. The diesel 

particles exhibit significant extinction of the P-polarized 

light relative to S-polarized light.

Fluorescence

Fluorescence is a process in which some of the incident 

radiation is absorbed by the particle and is then later 

re-emitted as spontaneous emission [11]. In complex 

molecular systems the spontaneous emission usually 

occurs at longer wavelengths than the incident radiation. 

The absorption spectrum, emission spectrum, and mag-

nitude of particle fluorescence are strongly dependent on 

the composition of the particle. All biological organisms 

emit fluorescence when illuminated by ultraviolet light. 

For clean organisms, this fluorescence can be primar-

ily attributed to the biochemicals, tryptophan and tyro-

sine (amino acids), nicotinamide adenine dinucleotide 

(NADH), and riboflavin. However, often organisms are 

coated with other materials, such as growth material, that 

can significantly change the particle fluorescence strength 

and spectrum.

Measurement of the fluorescence properties of indi-

vidual aerosol particles can provide broad discrimina-

tion between bio-agents and atmospheric background 

aerosols. Fluorescence cross sections for bio-aerosols 

are roughly 103 to 105 less than the corresponding elas-

tic-scattering cross sections. The greatly reduced cross-

methods to access the information contained in the 

refractive index, particularly the imaginary part of the 

index, are of significant interest for high-discrimination 

sensing. Disentangling all the properties responsible for 

the elastic scattering signal for a given particle in order 

to ascertain its refractive index is difficult. However, sev-

eral scattering-based techniques have been developed to 

access this information [9, 10]. Of these, Brewster-angle 

scattering, described below, has been shown to be useful 

in discriminating highly absorbing particles such 

as soot from bio-agent stimulant particles.

Brewster-angle elastic scattering can deter-

mine the relative amount of particle absorption 

through the measurement of the ratio of scattered 

S-polarized light (polarized perpendicular to the 

plane of scattering) and scattered P-polarized 

light (polarized in the plane of scattering). The 

S-polarized scattering is relatively insensitive to 

the particle absorption because it consists mostly 

of light that is scattered from the particle’s sur-

face, while the P-polarized scattering is strongly 

dependent on particle absorption because the 

light has propagated through the particle. This 

effect is illustrated in Figure 10.

Figure 11 shows experimentally measured 

histograms of the ratio of the P-polarized to  

FigURe 10. Ray tracing of the optical paths shows 
the distinction between S-polarized and P-polarized 
scattering from a dielectric sphere. For light incident at 
Brewster’s angle, qB, S-polarized light experiences both 
reflection and refraction from the particle surface. P-
polarized light, however, experiences refraction only at 
the particle surface. After refraction at the surface, the 
P-polarized light propagates through the particle and 
refracts at the interface on the opposite side of the par-
ticle before scattering into the far field.
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FigURe 11. Histograms of P-to-S polarization signal ratios show sig-
nificant differences between diesel, polystyrene, ovalbumin (Ov), and 
Bacillus globigii (Bg) aerosol particles.
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section requires fluorescence-based sensors to utilize 

higher-power optical sources, more sensitive photo-

detectors, and optical systems that are more efficient 

at collection of the particle signal, relative to elastic- 

scattering-based sensors.

The success of fluorescence-based bio-aerosol sen-

sors [12–19] is due in part to the relatively low concentra-

tion of fluorescent particles in the air. On the basis of our 

measurements, we found that less than 20% of particles 

in the 1 to 10 µm size range are significantly fluorescent. 

However, the fraction of fluorescent particles fluctuates 

significantly, depending upon geographic location, sea-

son, and time of day. In desert environments the fraction 

will be low (e.g., 1%), while in urban environments the 

fraction will be comparatively high (e.g., 10%). In addi-

tion to discrimination based simply upon whether or not 

a particle fluoresces, other properties such as the emission 

spectrum, fluorescence lifetime, and response to different 

excitation wavelengths can be used to enhance the dis-

crimination of threat and nonthreat particles.

The fluorescence excitation emission spectrum of 

various bio-agent simulants and common atmospheric 

particles has been measured by multiple organizations 

[20–24]. Figure 12 shows the relative fluorescence cross 

section for tryptophan, NADH, and riboflavin, when 

irradiated by 280 nm, 340 nm, and 450 nm sources, 

respectively. Each of these materials was irradiated with 

a source that was close to the peak absorption of the mate-

rial. Figure 13 shows the normalized emission spectra of 

several bio-agent simulants. One issue that significantly 

affects the highly specific fluorescence signatures (e.g., 

temporal, spectral) for biodetection is the variability of 

the bio-agents. The detailed fluorescence properties of a 

particular bio-agent can change dra-

matically, depending on the method 

in which it was grown, stored, or dis-

seminated, as shown in Figure 13. 

Figure 14 shows false-color images of 

the excitation and emission spectra 

of several materials. Except for the 

pure chemicals (tryptophan, NADH, 

riboflavin, Ov) these spectra are very 

dependent on other materials that 

accompany the material of interest. 

The Bg spectra show a wide variation 

due to the preparation method.

Laser-Induced Breakdown Spectroscopy

Biological organisms contain a wide variety of inorganic 

elements such as calcium, magnesium, manganese, 

iron, phosphorus, sodium, potassium, and silicon. In 

some cases, the relative amounts of these elements vary 

between different classes of organisms. For example, it 

is well known that during sporulation, bacterial spores 

concentrate calcium dipicolinate [25], which suggests 

that elemental analysis may offer the potential for broad 

classification of bio-aerosols. Table 1 shows the elemental 

composition of four different biological samples and the 

ability to distinguish Bg from the fungal spores on the 

basis of elemental composition (especially calcium).

Several techniques exist in atomic spectroscopy for 

the elemental analysis of laboratory samples. However, 

many of these techniques are not easily translatable into 

field instruments. Laser-Induced Breakdown Spectros-

copy (LIBS) [26–33] is one of the most practical means 

for bringing elemental analysis to the field. As illustrated 

in Figure 15, LIBS involves tightly focusing a pulse of laser 

light in order to generate electric field strengths sufficient 

for plasma creation. Material inside the plasma volume 

is ionized and decomposed into atomic constituents. The 

hot plasma (10,000 to 15,000 K) provides a thermal exci-

tation source for the atomized species within the plasma 

volume. Emission from these electronically excited atoms 

and ions is spectrally resolved and used to determine the 

elemental composition of the sample. 

Figure 16 displays LIBS spectra for various bio-agent 

simulants and other atmospheric background materials. 

Visual inspection of the individual LIBS spectra reveals 

that each class of biological sample has a distinctive 

feature: calcium-to-potassium ratio much greater than 

FigURe 12. The fluorescence cross sections for tryptophan, nicotinamide ade-
nine dinucleotide (NADH), and riboflavin are broad functions of emission wave-
length for excitation at 280 nm, 340 nm, and 450 nm, respectively.
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tion and handling methods. Therefore, it is important to 

generate broad, encompassing signatures and to combine 

LIBS analysis with techniques such as fluorescence that 

provide orthogonal information.

Trigger implementation
An optically based bio-agent trigger system requires an 

air delivery subsystem, a particle illumination subsystem, 

and a particle signal-detection subsystem. These subsys-

tems are conceptually illustrated in Figure 5. The air deliv-

ery subsystem is responsible for taking outside ambient 

air into the trigger housing and passing this air through 

the sample volume. In addition to this primary task the 

air delivery subsystem may also concentrate the particle 

one in Bg, calcium-to-potas-

sium ratio much less than one 

for fungal spores (e.g., penicil-

lium), an overwhelming sodium 

signal in the Ov spectrum, and 

a minimal sodium signal (com-

bined with a calcium-to-potas-

sium ratio greater than one) in 

pollen. In most of the biologi-

cal samples a relatively broad 

peak is seen around 387 nm, 

attributed to recombination of 

cyanide in the cooling plasma. 

Potentially, this molecular peak 

could be used to separate pre-

dominantly carbon-based particles (mostly biological)  

from inorganic particles.

Single-particle LIBS analysis of biological aerosols 

requires operating near the technique’s detection limit. 

This task is difficult because variations in plasma proper-

ties limit the reproducibility of measured elemental ratios 

to approximately 10% to 25%. However, single-particle 

analysis is necessitated because of the ubiquity of such 

elements as calcium, sodium, potassium, and magnesium 

in the environment. Single-particle analysis provides the 

ability to segregate particles into distinct populations by 

exploiting the full correlation of the fluorescence and ele-

mental signatures of each particle. As with fluorescence, 

LIBS signatures can change dramatically with prepara-

FigURe 13. As in Figure 12, in which the incident radiation wavelength is changed, here the emission wavelengths vary on the 
basis of the material. On the left are the normalized spectral intensities as a function of emission wavelength for various bio-
logical materials excited by 266 nm radiation. On the right are the normalized spectral intensities for the same material (Bacil-
lus subtilis [Bs]) in several configurations, also excited by 266 nm radiation.
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Table 1: elemental Analysis of biological Samples
  Bacillus  FuNgAl SPORES
 ElEMENT gloBigii OAT WHEAT CORN
  SPORES SMuT SMuT SMuT

	 Ca	 1.16	 0.16	 0.0147	 0.12

	 Mg	 0.30	 0.20	 0.0937	 0.19

	 Na	 0.45	 0.0132	 0.0110	 0.0171

	 K	 0.49	 1.60	 2.24	 1.63

	 Fe	 0.67	 0.0253	 0.0032	 0.0081

	 P	 2.30	 0.44	 0.41	 0.58

	 Mn	 0.0081	 0.006	 0.0024	 0.0037

Elemental	concentrations	are	given	as	percent	by	weight



T.H. JeyS, W.D. HeRzog, J.D. Hybl, R.N. CzeRWiNSki, AND A. SANCHez

	 VOLUME	17,	NUMBER	1,	2007	n	LINCOLN	LABORATORY	JOURNAL	 39

one or more light sources (e.g., laser, LED) and optical 

components for efficiently transporting the light to the 

sample volume with the correct cross-sectional shape and, 

if it matters, the correct polarization. The particle signal-

detection subsystem is composed of optics for efficiently 

collecting the radiation emitted by a particle in the sample 

FigURe 14. Distinctive signatures are observed when the fluorescence excitation-emission spectra are plotted. For each 
plot of the various biochemicals, bioparticles, and other particles, the relative magnitude of the fluorescence is given in false 
color: deep red for strong fluorescence and deep blue for no fluorescence.

300 400 600 700500

300

350

400

450

250

300 400 600 700500

300

350

400

450 Ragwood pollen

Diesel exhaust
particles

250

300 400 600 700500

Ex
ci

ta
tio

n 
w

av
el

en
gt

h
(n

m
)

300

350

400

450

250

300 400 600 700500

300

350

400

450 Bacillus globigii 2 Bacillus globigii 3Bacillus globigii

Erwinia herb

bigii bigii 2 bigii 3

250

300 400 600 700500

300

350

400

450 Tryptophan

250

300 400 600 700500
Emission wavelength (nm)

300

350

400

450 White paper
particles

250

300 400 600 700500

300

350

400

450 Johnson grass
smut sporeses

ss

250

300 400 600 700500

300

350

400

450 MS2 virus

250

300 400 600 700500

300

350

400

450

250

300 400 600 700500

300

350

400

450 NADH

250

300 400 600 700500

300

350

400

450 Skin flake
particles

250

300 400 600 700500

300

350

400

450 Red maple pollen

250

300 400 600 700500

300

350

400

450 Ovalbumin

250

300 400 600 700500

300

350

400

450

250

300 400 600 700500

300

350

400

450 Riboflavin

250

bicola

number density (e.g., virtual impaction) or it may keep 

the trigger optics clean from contamination by outside air 

(e.g., sheath air flow). In some trigger systems the transit 

time of the particle across the sample flow needs to be well 

controlled; thus laminar airflow may be required.

The particle illumination subsystem is composed of 
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ing particle provides timing information with which to 

cue the other sources. These other sources need not be 

as efficient, because they are used only when a particle is  

known to be present. 

Photodetectors

The utility of a photodetector is determined by many 

features, including the sensitivity at the wavelengths of 

interest, dark and read noise, size of sensitive area, size 

of photodetector housing, required electrical input, and 

cost. The photomultiplier tube (PMT) [34] is a near-ideal 

photon detector with a small dark-count rate (<10 kHz/

cm2 at room temperature), and a good photon detection 

efficiency (0.12 to 0.30). In addition, the PMT can have 

a conveniently large (~1 cm2) photon collection area. 

However, the PMT is relatively fragile and requires high 

voltage (~1 kV). In contrast, semiconductor-based pho-

todetectors are more robust, smaller, and generally less 

expensive than PMTs.

Among semiconductor-based photodetectors, silicon 

is the most attractive material because it is sensitive in 

all wavelength bands of interest (UV through visible), it 

is robust, it does not require high voltages, and it is the 

basis for low-cost detectors and imagers in the consumer 

electronics market. Unfortunately, silicon detectors have 

a high detector-noise-per-unit active area compared to 

PMTs. Silicon detectors therefore require the use of small 

active areas and optical systems that efficiently gather 

the particle signals and focus this signal onto the small 

active area. Arrays of detectors that each sample different 

small portions of the sample volume can be used to avoid 

expensive optical systems that must efficiently gather sig-

nal photons from a large sample volume and focus these 

photons onto a small detector area. Candidate detector 

arrays are found among imaging arrays, 

currently used for 3-D imaging lidars 

(Geiger-mode APDs), and low-cost con-

sumer electronics imagers (e.g., charge-

coupled devices [CCD]).

Figure 17 shows the bio-agent, 

fluorescence-detection performance 

volume and delivering this radiation to one or more pho-

todetectors. Both the illumination optics and the par-

ticle detection optics should be designed to maximize the 

amount of particle radiation incident on the photode-

tector at the same time minimizing the amount of non-

particle radiation that is incident on the photodetectors. 

Depending on the details of the trigger operation and 

the desired particle measurements (e.g., elastic scattering 

or fluorescence), the light sources may be continuous or 

pulsed and may be composed of a single or multiple radi-

ation wavelengths. In general, higher optical power and 

higher optical intensity in the sample volume make par-

ticle detection easier. However, often space and electrical 

power constraints limit the available optical power and 

intensity. The photodetector shown in Figure 5 may be 

composed of multiple detectors for measuring the wave-

length resolution, temporal resolution, or polarization 

of the particle signal. The photodetector(s) must detect 

the particle radiation with a sufficient SNR for discrimi-

nation between particle types. Often the particle signal 

is low, and thus sensitive and low-noise photodetectors 

must be used. In addition, the cross-sectional area of the 

sample volume, from which particle light may originate, 

along with low-magnification optics in a compact hous-

ing often dictates that the photodetector has a relatively 

large sensitive area.

Trigger implementations may involve the use of one 

or more optical sources. If only one source is used, that 

source must be either continuous wave (CW) or pulsed 

at a high enough repetition rate so that the air sample 

rate is sufficient for the detection of threat concentra-

tions of interest. If more that one source is used, one 

source is usually CW (such as a near-infrared diode 

laser), and the elastic-scattering signal from a transit-

Plasma

Laser

Plasma
radiationSpectrometer

Aerosol

FigURe 15. A focused laser pulse hits an aerosol and creates 
a plasma in laser-induced breakdown spectroscopy (lIBS). 
Typically, 100-mJ-class pulsed Nd:YAg lasers (1064 nm) are 
used for aerosol lIBS to generate the 10 to 100 gW/cm2 inten-
sities that are needed to initiate an air plasma.
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for several silicon-based photodetectors as well as the 

PMT. The minimum detectable concentration is given as 

a function of the particle size. These performance curves 

were generated by assuming a fixed excitation wavelength 

(340 nm), a fixed particle illumination 

intensity (0.33 W/cm2), a fixed par-

ticle transit time (1 ms) of the sample 

volume, a fixed overall detector size  

(5 mm × 5 mm), the detection of 100 

particles per minute, and a specific rela-

tion between the particle diameter and 

the particle fluorescence cross section (σ 

= 5 × 10–12 r2.5 cm2 [35], where r is the 

particle diameter in µm). Each detector 

is assumed to be composed of an array of 

sub-elements that are imaged with unity 

magnification into the sample volume. 

The depth of field of each sub-element 

is assumed to be equal to the dimension 

of the sub-element. Thus, for example, a 

0.5 mm × 0.5 mm detector sub-element 

is assumed to be sensitive to particle sig-

nals from a sample volume of 0.5 mm 

× 0.5 mm × 0.5 mm, and the total detector is assumed 

to be sensitive to particle signals from a sample volume 

of 5 mm × 5 mm × 0.5 mm. Clearly, the largest sample 

volume, and hence the lowest detectable concentration, 

is obtained by utilizing the largest possible sub-element 

size. However, in most cases the detector noise increases 

linearly with the sub-element area. The sub-element 

sizes were appropriately adjusted to achieve the desired 

particle detection SNR of 10. The detection of small 

particles, which generate small signal levels, requires 

smaller detector sub-elements. The total sample volume 

for these particles is smaller, and hence the minimum 

detectable concentration is higher. As a result of these  

considerations the curves in Figure 17 slope downward 

from high concentration and small particles to low con-

centration and large particles. In the case of the PMT, the 

detector noise is so low that the particle SNR is domi-

nated by signal shot noise. As a result, the full 5 mm × 

5 mm active area can be used as a single sub-element. 

For the PMT, the minimum particle size that generates 

a shot-noise-limited SNR of 10 is about 1.4 µm. The LL 

CCD curve is based on a high-performance cooled Lin-

coln Laboratory CCD. This CCD achieves smaller particle 

detection than the PMT for particles less than 1.4 µm 

because it has a photon-detection quantum efficiency of 

50%, compared to a 20% PMT photon-detection quan-

tum efficiency. The silicon-photodiode curve rises rapidly 

FigURe 16. Representative lIBS spectra of bio-agent  
simulants and background materials show the effective dis-
crimination of the lIBS technique. Each spectrum is an 
average of 50 to 100 laser pulses. The prominent atomic 
lines are magnesium (Mg ~285 nm), calcium (Ca 393, 396, 
and 422.7 nm), sodium (Na ~589 nm), and potassium  
(K ~766 nm). Approximate wavelengths are given, since 
some are unresolved or partially resolved multiplets. Molec-
ular cyanide appears as a broad peak around 387 nm in 
some of the spectra. Atmospheric nitrogen (N) is visible at 
roughly 741, 743, and 746 nm, and a prominent oxygen (O) 
line is apparent at 777 nm.
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FigURe 17. Various photodetector types exhibit different performance levels 
for the detection of individual biological aerosol particles. Si lM APD is a silicon 
linear-mode avalanche photodiode, and Si gM APD is a geiger mode avalanche 
photomultiplier. ll CCD is a laboratory-developed charge-coupled device. The 
baseline detector PMT is a photomultiplier tube. For this experiment, Bg par-
ticles were excited with a 340 nm source, the selected SNR was 10, and the total 
detector area was 5 mm × 5 mm.
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lengths for excitation of bio-agents, they are electrically 

efficient, compact, rugged, and relatively inexpensive. 

Because gallium nitride has a short spontaneous-emis-

sion lifetime, energy cannot be efficiently stored and then 

emitted in short optical pulses.

It is possible to reach shorter wavelengths with semi-

conductor lasers via nonlinear harmonic conversion. For 

example, it should be possible to access the wavelength 

range of 200 nm to 400 nm by third- or fourth-harmonic 

conversion of a mode-locked semiconductor laser operat-

ing between 800 nm and 1000 nm [39, 40].

In spite of the many advantages of lasers for bio-

agent detection, for some applications in which the sys-

tem cost is a primary consideration, non-laser-based 

trigger sensors are being developed that utilize LEDs as 

the primary light source. Compared to GaN-based lasers, 

GaN-based LEDs can operate at shorter wavelengths. 

With appropriate optical designs, an LED-based biosen-

sor can illuminate potential threat particle with sufficient 

intensity to generate detectable fluorescence. Significant 

improvements have been made in power and efficiency at 

wavelengths as short as 280 nm. Table 2 summarizes the 

performance of some commercially available LEDs.

Because there are large commercial markets for semi-

conductor UV optical sources (e.g., data storage, steriliza-

tion, epoxy curing), these sources are expected to become 

more powerful, operate at shorter wavelengths, and have 

longer operational lifetimes in the near future.

UV lamps (e.g., mercury lamp) are a well-developed 

technology and have been used in bio-agent detection sys-

tems [41]. UV lamps can achieve powers and intensities 

that exceed LEDs (especially 280 nm LEDs). However, 

these lamps are bulky compared to semiconductor sources 

and in the case of mercury lamps are themselves hazard-

ous. Lamps also emit multiple wavelengths, some of them 

overlapping with the anticipated fluorescence bands.

Trigger Systems
Building on the knowledge base acquired through the 

development of BAWS, Lincoln Laboratory is developing 

advanced trigger systems. This effort includes the devel-

opment of the Inexpensive Particulate Aerosol Sensor 

(IPAS) and the Bio-Agent Sensor and Trigger (BAST) for 

substantial reduction in trigger cost, and the development 

of the Rapid Agent Aerosol Detector (RAAD) for substan-

tial improvements in trigger performance. 

for particles less than about 6 µm because at that point 

the noise is dominated by a fixed level of read-out ampli-

fier noise. Therefore, making the silicon detector sub-ele-

ments smaller does not improve its ability to see particles 

smaller than 6 µm.

Light Sources

Potential sources for illumination of a particle in the 

sample volume include lamps, LEDs, and lasers. Lasers 

have the advantages of being the brightest sources, and 

a laser beam can easily and efficiently be transported to 

the sample volume. The parasitic scattering of the laser 

beam from optical and nearby surfaces can be well con-

trolled and minimized. The sample volume can also be  

designed to take advantage of the ability to collimate the 

laser beam with relatively high intensity over an extended 

length (many times longer than the cross-sectional dimen-

sion of the laser beam). This ability allows the sample 

volume to be increased without decreasing the particle 

illumination intensity. The relatively easy manipulation 

of the laser beam also allows multiple passing of the  

beam through the sample volume so as to increase the 

intensity with which particles are illuminated. In addi-

tion, for pulsed applications some laser systems can 

store energy and release this energy in very short pulse  

durations. For these laser systems, pulsed illumination of 

particles can greatly increase the illumination intensity 

and signal strengths.

The Nd:YAG laser system, operating at a wavelength 

1064 nm, can generate 355 nm and 266 nm radiation 

through nonlinear-crystal frequency tripling and qua-

drupling. These wavelengths are close to the optimum 

wavelengths for the excitation of tryptophan and NADH, 

respectively (see Figure 12). Pulsed (e.g., Q-switched or 

mode-locked) operation of the Nd:YAG laser allows for 

more efficient generation of the UV wavelengths. It was 

the development of the small and robust passively Q-

switched and frequency-converted Nd:YAG microchip 

lasers [36–38] at Lincoln Laboratory that allowed the 

initial development of BAWS.

Recently, GaN-based semiconductor lasers that oper-

ate at deep blue to ultraviolet wavelengths have become 

commercially available. Nichia Corporation offers sources 

at 408 nm, with 60 mW power and 14% efficiency, and at 

375 nm, with 20 mW power and 4.7% efficiency. While 

these lasers are not yet available at the shorter wave-
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forward elastic scattering, 365 nm side elastic scattering, 

400 to 450 nm fluorescence, and 450 to 600 nm fluo-

rescence). An example of the photodetector signals from 

a single particle is shown in Figure 19. The 820 nm for-

ward-scattering measurement detects the presence of a 

particle and gives a measure of the particle size. The 820 

nm beam also has a diagonal obscuration going through 

its center. This obscuration provides a dip in the 820 nm 

scattering signal as the particle transits the 820 nm beam 

that encodes the transverse position at which the particle 

transits the 820 nm beam. The dip shown in Figure 19 

indicates that the particle went through the center of the 

beam. Knowledge of where the particle went through the 

sample volume allows correction of the particle signal for 

both illumination and collection efficiency variations over 

the sample volume. The 365 nm induced elastic scatter 

and fluorescence gives additional information with which 

to discriminate threat and nonthreat particles. Because 

the 365 nm elastic-scattering cross section is much larger 

than the fluorescence cross section, the elastic-scatter-

ing signal has a much better SNR than the fluorescence 

signals.

A comparison of the relative amounts of fluorescence 

in the two detection bands for different particle types is 

shown in Figure 20. Each point in these plots represents 

the signal levels from a single particle. On the left, Figure 

20 shows the laboratory signals for Bg, Yersinia rhodei 

(Yr), and Ov particles. The wide variation in signal levels 

for a given type of particle is due to illumination inten-

sity variation and signal collection variation, depending 

on where the particle traverses the sample volume. On 

the right, Figure 20 shows field data for Bg, Ov, and dirt 

particle releases in an outside background aerosol. As 

The IPAS is designed to be an ultralow-cost particle 

detector for detection of threat aerosols in indoor environ-

ments. It is based on detecting particles and measuring 

particle size by using forward elastic-scattering signals 

from particles illuminated by a continuously operating 

near-infrared diode laser. The IPAS detection algorithm 

is especially tailored to look for changes in the aerosol 

particle size distribution that coincide with substantial 

increases in particle concentration. 

BAST and RAAD are good examples of the fluores-

cence-based technologies being developed for advanced 

trigger systems. In comparison to BAWS, BAST and 

RAAD systems—still in their early development stages—

are undergoing active design changes, and each system 

has participated in only one scored field trial.

Bio-Agent Sensor and Trigger

The BAST development effort is aimed at substantially 

reducing the cost of UV fluorescence-based bio-agent 

triggers by over a factor of ten (e.g., from its current 

$50,000 to well under $5000). This cost reduction is 

enabled by the recent development of UV LEDs (see 

Table 2). Replacing UV lasers ($10,000 each) with UV 

LEDs ($100 each) can realize substantial cost savings. 

However, the use of UV LEDs is not quite as simple 

as direct replacement of a UV laser. Because LEDs are 

orders of magnitude less bright than lasers, the sensor 

must be redesigned to efficiently utilize the LED radia-

tion. Figure 18 shows a photograph and optical schematic 

of BAST. Particles entering the BAST sample volume are 

illuminated by both an inexpensive 820 nm diode laser 

and a 365 nm LED (Table 2). There are four different 

measurements of the particle light emission (820 nm 

Table 2: power and efficiency of gaN-based leDs
 WAVElENgTH POWER ACTIVE AREA INTENSITY EFFICIENCY VENDOR MODEl NuMBER
 (nm) (mW) (mm2) (W/cm2) (%)

	 400	 10	 0.3	×	0.3	 11	 9	 Cree	 C400MB290S0100

	 375	 2	 0.18	×	0.18	 6.2	 2.8	 Nichia	 NSHU550A

	 365	 200	 1	×	1	 20	 10	 Nichia	 NCCU033(T)

	 340	 2	 0.9	×	0.9	 0.25	 0.5	 Cree	 Experimental	2004

	 280	 0.5	 0.1	×	0.2	 2.5	 1.1	 Sensor	Electronic	 UVTOP280		
	 	 	 	 	 	 Technology	
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triggers and from the costs associated with maintaining 

the sensor. The RAAD aims to dramatically reduce both 

of these costs.

The RAAD utilizes multiple optical sources for illu-

mination of aerosol particles and multiple detectors for 

sensing the radiation emitted by the particle. The RAAD 

optical schematic is shown in Figure 21. The sample vol-

ume through which particles pass is illuminated by four 

laser beams (808 nm, 266 nm, 355 nm, and 1064 nm). 

The particle emission is detected by a 808-nm-sensitive 

can be seen, Bg and Ov are easily discriminated from the 

background aerosol, but dirt has a similar signature to 

Ov. Another LED-based sensor is being developed that 

will illuminate particles with both 365 nm and 280 nm 

radiation to provide better particle discrimination.

Rapid Agent Aerosol Detector

The RAAD effort, a collaboration among Lincoln Lab-

oratory, the Naval Research Laboratory, and the Army 

Edgewood Chemical Biological Center, is aimed at dra-

matically improving the performance and reliability of 

fluorescence-based bio-agent triggers. The performance 

is increased by incorporating up to fourteen measure-

ments that are made on each particle that flows through 

the system. These additional measurements dramatically 

increase the ability to discriminate threat and nonthreat 

particles and therefore reduce the false-positive rate. The 

reliability is improved by keeping the optics clean with 

sheath air flow and by increasing laser lifetime by operat-

ing lasers only when particles are present in the sample 

volume. The RAAD is not specifically intended to be a 

low-manufacturing-cost instrument. Because of a lower 

false-positive rate and improved reliability, however, it 

should be a low-operating-cost instrument. This factor 

is important, since much of the cost associated with bio-

aerosol triggers comes from the cost of reacting to false 
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photomultiplier tube, a series of photomultiplier tubes for 

detection of UV elastic scattering and UV-induced fluo-

rescence, and another series of photomultiplier tubes for 

detection of LIBS-induced plasma atomic line emission. 

These lasers are operated at different times as part of a 

staged detection system.

The RAAD is composed of three stages of detec-

tion and discrimination, as shown in Table 3. In stage 1, 

an aerosol particle flows into the sensor and is detected 

through elastic scattering from a CW 808 nm diode 

laser. The magnitude of the elastic-scattering signal 

is used to characterize the particle size, and the tem-

poral profile of the elastic-scattering signal is used 

to measure the particle position [42]. As discussed 

later, the particle position helps normalize the other 

measurements for variation in illumination intensity 

or variation in signal collection efficiency. The stage 

2 measurements are initiated for a particle with a 

measured diameter between 1 and 10 µm, and that 

is within the correct range of sample volume posi-

tion. Stage 2 consists of sequentially illuminating 

the particle first with 266 nm laser radiation and 

then 355 nm laser radiation. For both of these illu-

mination wavelengths the resulting elastic scatter-

ing and multiband fluorescence are measured. In 

addition, a separate detector measures the degree 

of polarization of the 355 nm Brewster-angle elas-

tic scattering. As discussed earlier, Brewster-angle 

polarized scattering is a means to measure the par-

ticle absorption coefficient. Finally, for particles that have 

an elastic-scattering, fluorescence, and absorption signa-

ture similar to a bio-agent, stage 3 is initiated. Stage 3 con-

sists of illuminating the particle with a high-energy 1064 

nm laser pulse, which is sufficiently energetic and intense 

to induce plasma formation. Several atomic line-emis-

sion measurements are made to determine the relative 

elemental composition of the particle. Figure 22 shows 

an example of some RAAD field data that combines the 
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with the particle being properly located for the measure-

ments. The spatial information also allows for the cor-

rection of instrument systematic errors that broaden  

the particle signature.

An illustration of the STB implemented in the RAAD 

is depicted in Figure 23, which also shows theoretical 

scattering signal waveforms corresponding to the three 

example particle trajectories. For the purposes of this 

work, we assume that the particles are entrained in a 

laminar air flow such that their trajectories are parallel to 

the y-direction. The trajectories of the particles intersect 

four features, or beams, of the illumination pattern. These 

beams encode the particle’s velocity along the y-axis,  

position along the y-axis at a given time, and position in 

the x-z plane.

The significance of the STB to sensor performance 

results in large part from the ability to use the spatial 

information provided by the STB to first measure the spa-

tial dependence of the detected signal within the sensor’s 

sample volume and then correct for any non-uniformi-

ties on a particle-by-particle basis. Figure 24 illustrates 

the process by which the STB is used to improve particle 

Table 3: Staged Detection Architecture of the RAAD breadboard
	
	 STAGE	1	 STAGE	2	 STAGE	3	
	 Detection:	 Discrimination:	 Discrimination:	
	 	 	 	 multiband	elastic	scattering	 laser-induced	
	 	 	 	 and	fluorescence	 breakdown	spectroscopy	

	 Illumination	source:	 Illumination	sources:	 Illumination	source:
	 	 808	nm	laser	 	 266	nm	pulsed	laser	 	 1064	nm	pulsed	laser
	 	 continuous	operation	 	 355	nm	pulsed	laser	 	 	 pulsed	operation	when	particle
	 	 	 	 	 	 pulsed	operation	when	particle	 	 	 is	present	that	is	part	of	a
	 	 	 	 	 	 with	appropriate	size	is	present.	 	 	 threat-like	aerosol	as	indicated
	 	 	 	 	 	 	 	 	 by	fluorescence	measurements
	
	 Detection	channel:	 Detection	channels:	 Detection	channels:	
	 	 808	nm	elastic	scattering	 	 266	nm	elastic	scattering	 	 285	nm	magnesium	emission	
	 	 	 	 	 355	nm	elastic	scattering	 	 422	nm	calcium	emission	
	 	 	 	 	 290	to	330	nm	fluorescence	 	 589	nm	sodium	emission	
	 	 	 	 	 340	to	370	nm	fluorescence	 	 766	nm	potassium	emission	
	 	 	 	 	 380	to	410	nm	fluorescence	
	 	 	 	 	 420	to	600	nm	fluorescence		
	 	 	 	 	 355	nm	polarized	elastic	scattering	
	
	 Measurements:	 Measurements:	 Measurements:
	 	 particle	size	 	 particle	relative	reflectivity	 	 particle	atomic	composition
	 	 particle	position	 	 particle	relative	fluorescence	spectra
	 	 	 	 	 particle	absorption	

808 nm, 266 nm, 355 nm, and 1064 nm illumination of 

particles and a subset of the resulting measurements. The 

addition of fluorescence and LIBS data greatly improves 

the discrimination of agent simulants. The vertical yel-

low bars indicate times in which intentional interferent 

or agent simulants were released. At 9:45 a.m. and 4:00 

p.m., unintentional dirt aerosols, distinguished by the 

relatively high total to fluorescent count-rate ratio, were 

generated. The Yr aerosol was distinguished by the pres-

ence of sodium (Na), as determined by LIBS.

Structured Trigger Beam

The structured trigger beam (STB) [43] is a recent devel-

opment that has important implications for the design 

and performance of single-particle aerosol sensors. This 

concept was initiated in the BAST system in which it 

is used to find the lateral position of the particle in the 

sample volume. The technique has been advanced as 

part of the RAAD program to provide two-dimensional 

position and velocity information on each aerosol par-

ticle. The velocity information allows for the stage 2 and 

stage 3 measurements to be optimally timed to coincide 
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whenever the sensor detects 

that the aerosol concentra-

tion exceeds a threshold. In 

contrast, dynamic algorithms 

compare data measured 

by the sensor at different 

times and initiate a trigger 

event whenever the change 

in these measurements is 

determined to be significant. 

An example of a dynamic 

algorithm is the initiation 

of a trigger event whenever 

the change in aerosol con-

centration over some time 

interval exceeds a threshold. 

Because a dynamic algorithm 

introduces a dependence 

on time, it generally offers 

increased discrimination ability, which is important 

when the other measurements do not provide enough  

discrimination on their own.

Dynamic trigger algorithms operate on the assump-

tion that data sensed at a past time are free of the effect of 

any agent that may be affecting the current sample. The 

detection of an anomalous event often sets into action an 

identification process that determines if an attack is truly 

present. Because triggers are often subject to this second-

ary adjudication, trigger algorithms can be set to operate 

at higher false-positive rates than would be acceptable 

at the system level. For this reason the term triggers is 

used rather than alarms, even though the latter term is 

more accepted in the detection-theory literature and the 

mathematical analysis of trigger algorithms is conducted 

by using standard techniques from that field, such as the 

receiver operating characteristic (ROC) curve. The ROC 

curve is a representation of the overall system detec-

tion performance and shows the relationship between 

high-level performance characteristics, like probability 

of detection, probability of false alarm (or false-positive 

rate), and system sensitivity (expressed as minimum 

detectable attack size).

The sidebar on detection threshold shows how the 

setting of the threshold will affect the analysis. The prob-

ability of detection varies as the threshold is adjusted to 

achieve a varying probability of false alarm. At the low-

FigURe 22. Example RAAD data show the total particle count rate and the fluorescent-
particle count rate (upper graph), and the fluorescent-particle count rate combined with 
either calcium (middle graph) containing particles or sodium (lower graph) containing 
particles. The yellow vertical bars represent time intervals containing intentional aerosol 
releases (diesel, Bg, Ov, and Yr). The middle graph distinguishes dirt easily by combining 
fluorescent data and lIBS calcium measurement. Similarly, the lower graph distinguishes 
Yr well by combining the fluorescent data with lIBS analysis for sodium.
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signatures. The figure on the left shows the number of 

particles that traversed the sensor volume as a function 

of x- and z-position. For these measurements, identical 

particles—polystyrene spheres—were used. The middle 

and right images of Figure 24 show the amount of signal 

collected in two of the detection bands of the RAAD as a 

function of this position. From these figures it is evident 

that there is significant variation of the signal collected 

over the sample volume. Even more significant is the fact 

that the spatial dependence of the elastic-scattering signal 

is not the same as that of the UV fluorescence.

The benefit of correcting for the spatial dependence 

of the instrument response function is shown in Figure 25. 

As can be seen in the corrected signals (the right image 

in Figure 25), the data are more tightly clustered, which 

enables better discrimination from other background  

particle signatures.

Trigger Algorithms
The algorithm, which is an integral part of any bio-sen-

sor, maximizes the utility of the sensor measurements by 

processing raw data to determine whether an attack has 

occurred. There are two broad types of algorithms: static 

and dynamic. Static algorithms hunt for very specific 

properties of the sensor measurements and initiate a trig-

ger event when certain conditions are fulfilled. An exam-

ple of a static algorithm is the initiation of a trigger event 
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FigURe 23. Particles moving in the y-direction intersect 
four beams of light of the structured trigger beam (STB) 
that is propagating in the z-direction. The second and fourth 
beams of the STB (here shown in red) are projected to have 
a fixed spacing for all of the particle trajectories and are 
used to measure particle velocity. The first and third beams 
(green and blue) have a variable spacing relative to the sec-
ond and fourth beams and are used to encode the z-axis 
and x-axis position of the particle, respectively. Indicated on 
the illustration are three example trajectories with labels i, 
ii, and iii. Illustrations of the elastic-scattering waveforms 
generated by particles traveling these three trajectories 
with equal velocities are shown in the lower diagram. The 
position of the first elastic-scattering peak shifts in time to 
encode the particle’s z-axis position, the third elastic-scat-
tering peak shifts in time to encode the particle’s x-axis posi-
tion, and the second and fourth peaks encode velocity and 
serve as reference peaks for the particle position along the y-
axis in time. The beams of light are all the same wavelength: 
the beams in this figure are colored for clarity.
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FigURe 24. On the left is an image of the density of the 
particle flow, in a plane through the sample volume and at 
right angles to the sample flow in the RAAD instrument. The 
intensity of the 266 nm elastic-scattering signal (El 266) is 
shown in the middle, as a function of position when measur-
ing identical particles. The intensity of the 266 nm excited 
fluorescence signal (uV1 266) is shown on the right, as a 
function of position for the same particles. The vertical and 
horizontal axes have the units of millimeters. The scale is 
in arbitrary units with blue for zero counts and dark reds for 
maximum counts.
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est setting of the threshold, the probability of detection is 

identically 100%; however, the false-alarm probability is 

also 100%, indicating that the alarm is triggered all the 

time. At the opposite extreme, the threshold is set high 

enough to never generate a false alarm (probability of 

false alarm = 0); however, this threshold is also so high 

that true detections are never achieved, either (prob-

ability of detection = 0). It is important to note that a 

ROC curve has one implicit parameter, in this case the 

detection threshold. Other key parameters, such as the 

response time, the size of the attack for which the values 

in the plot are valid, and the level of background clutter, 

are held constant or shown as overlaid curves on the same 

axes. Other forms of the ROC curve can be computed by 

holding other parameters constant, such as the probabil-

ity of false alarm, and plotting, for example, probability of 

detection versus attack size.

Note that the concept “probability of false alarm” 

for a continuously operating sensor is not well defined 

except with respect to a time interval. Thus ROC curves 

showing probability of detection versus probability of 

false alarm are not particularly suitable for evaluat-

ing continuously operating sensors. A better and more 
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than is the acceptable false-positive rate. Under these con-

ditions, it makes more sense to operate the sensor in a 

constant-false-positive rate mode. The use of a constant-

false-positive rate algorithm will result in variable sensor 

sensitivity at a given probability of detection, a parameter 

that can be estimated and reported to users. This mode 

of operation may be desirable as a means to maintain 

trust in the sensors as well as manage resources such 

as consumable confirmatory assays, power con-

sumed by an adjudicating sensor, or time spent by  

response personnel.

Trigger-Algorithm Architecture

Biosensors like the ones described in this article 

measure data consisting of time-varying measure-

ments of the optical response of air samples. The raw data 

are in the form of positive-valued measurements, with 

even nearly clean air generating a nonzero response that 

must be appropriately rejected to manage false-trigger 

rates. A simple detector may register a single value at each 

point in time, while more advanced sensors may collect 

data in multiple disjoint spectral bands to assist in back-

ground characterization so that spurious events can be 

more easily recognized and rejected. In either case, the 

trigger algorithm computes a detection statistic—a single 

numerical value at each point in time, and compares that 

value to a threshold, declaring a trigger only when the 

value exceeds the threshold. 

understandable parameter is the false-alarm rate, 

expressed in terms of the number of false positives per  

appropriate time interval.

The ROC curve for a sensor can be used to estab-

lish an operating strategy. For example, it may be desired 

to maintain a constant probability of detection against 

a specified threat concentration. The ROC curve can be 

consulted to determine that this is possible only if the 

false-trigger rate is allowed to vary as dictated by back-

ground clutter or some other parameter uncontrollable 

by the system designer. In other words, operating a sen-

sor with a constant probability of detection implies the 

acceptance of a false-trigger rate without constraints. If 

the detection probability is set unrealistically high, then 

the presence of high-clutter conditions will result in 

high false-positive rates. In practice, this is not accept-

able, because high false-positive rates naturally lead to  

mistrust of the sensor.

Given the very wide range of possible attacks and 

possible sensor exposure levels, the sensitivity required to 

detect a possible attack is actually much less well known 

An	algorithm	cannot	work	miracles.	
The	algorithm’s	ability	to	discriminate	
events	is	only	as	good	as	the	raw		
sensor	measurements.

FigURe 25. Collecting data on two fluorescent channels provides a degree of discrimination between two types of particles. 
The two-dimensional scatter plot on the right shows the fluorescence signatures of individual Ov particles (in red) and Bg par-
ticles (in blue) as collected by the RAAD instrument. The benefit of applying the correction maps derived from the data shown 
in Figure 24 is evident on the right. The horizontal axis represents the intensity in the 290 to 330 nm measurement channel 
with an excitation wavelength of 266 nm. The vertical axis represents the intensity in the 400 to 600 nm measurement chan-
nel with an excitation wavelength of 355 nm. The scale of each axis is in picoCoulombs.
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do not generate sufficient signals. These low-signal parti-

cles will contribute to the definition of “clean air” with the 

effect of increasing the required signal for particle detec-

tion. Thus a particle distribution composed of many small 

particles—and there are always many small particles in 

the sample volume—will result in reduced sensitivity to 

very small threat particles.

Once the data have been filtered so that they are 

known to contain “large” particles, a second level of fil-

tering takes place that excludes non-fluorescent particle 

populations from downstream processing. The reason for 

this step is that non-fluorescent dirt particles make up 

the majority of the particle loading experienced by a bio-

sensor, and if included in the background could influence 

the statistics used for detection. Non-fluorescent particles 

can be excluded through a simple threshold that passes 

along only data points characterized by a minimum level 

Figure 26 shows a block diagram for a generic trig-

ger algorithm, which includes the pre-processing steps 

required to ensure that quality data are passed to the 

detection algorithm. It does not specifically represent an 

approach in use on any sensor, but instead is meant to 

illustrate the high-level processes needed to implement a 

working algorithm. 

The first algorithm step is to determine whether the 

present sample is indicative of the presence of a particle 

in the sample volume. This process can be accomplished 

by comparing the present signals with past signals (rep-

resentative of clean air) and determining whether the dif-

ference between the present signals and past signals is 

significant enough to indicate that a particle is present. 

Any signals assessed to be related to particles are not used 

to update the clean air characterization. Note that this 

approach will not detect small particles or particles that 

Trigger threshold

Number of particles in threat region

Pr
ob

ab
ilit

y 
de

ns
ity

nclutter nthreat+clutter

Pd

Pfa

FigURe A. Setting trigger thresholds depends on relative detec-
tion probabilities and the probability of false alarms. This plot shows 
the probability density for measuring a given number of particles in 
the threat region in a time interval T when clutter is present. The red 
curve corresponds to the probability density in the absence of any 
threat particles. The black curve corresponds to the probability den-
sity in the presence of threat particles. The dashed vertical line is the 
trigger threshold. The area under the red curve and above the trig-
ger threshold gives the probability of a false alarm in a time period T. 
The area under the black curve and above the trigger threshold corre-
sponds to the probability of detection of a threat concentration.

Figure A illustrates some of 
the	considerations	involved	in	set-
ting	the	trigger	threshold.	First	
the	trigger	threshold	must	be	set	
high	enough	so	that	fluctuations	
in	the	clutter	concentration	do	not	
generate	a	high	false-alarm	rate.	
Next,	the	trigger	threshold	must	
be	set	low	enough	to	detect	threat	
aerosol	concentrations	of	interest.	
Often	it	is	not	possible	to	accom-
plish	both	a	low	false-positive	rate	
and	a	high	detection	probability	for	
a	given	threat	concentration.	In	this	
case,	we	have	to	choose	whether	
to	accept	an	increased	false-posi-
tive	rate	in	order	to	achieve	confi-
dent	detection	of	the	desired	threat	
concentration,	or	to	adjust	the	trig-
ger	threshold	upward	so	as	to	keep	

Setting Detection Thresholds
The	trigger	threshold	depends	on	the	probability	of	detection	desired,	but	we	have	to	watch	out	
for	the	false-alarm	rate.	
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of fluorescence response to the excitation. 

When the data have been filtered to include only fluo-

rescent particles, potential threat particles are detected 

through the use of an anomaly detector or by checking 

for a specific similarity between sensed particles and 

elements of a threat library. When a potential threat is 

detected, a final decision must be made as to whether 

to expend a constrained confirmatory resource like a 

consumable immunoassay. This decision can be accom-

plished through the use of a persistence criterion; in other 

words, the confirmatory process is initiated only when the 

anomaly has lasted long enough that its duration serves 

as evidence that the anomalous population is significant 

enough to be sampled and properly adjudicated by the  

confirmatory process.

Note that the steps as described here are described as 

fixed algorithms; however, they may be data adaptive, for 

example, through the use of thresholds that are allowed 

to vary in response to the decisions made. For example, 

a threshold that is based on the distribution of recently 

observed clear air samples can be used to distinguish par-

ticles from clear air. This distinction is shown in the fig-

ure by the block labeled “Update clean-air characteristics 

filter.” A similar process can be used in the fluorescent 

particle filter, for example, by updating the filter, as shown 

in the “Update non-fluorescent particle rejection filter” 

block. It is particularly important to impose a time-vary-

ing algorithm for threat detection, because the algorithms 

used for this purpose often need a good statistical char-

acterization of the acquired background before the time 

when the potential threat has appeared. In the (usual) 

case when no threat is believed to be present, the back-

ground is constantly updated so that it does not become 

too old to be representative of the present time. In the 

FigURe b. A specific concentration trigger threshold is set on the basis 
of the detection probability z and the minimum sample rate φ. Here, the 
threat concentration is 25 particles per liter with a probability of detec-
tion of 98% and a measurement time of one minute. If, for example, the 
sensor air sample rate is 0.1 liters/sec, then the concentration trigger 
threshold must be set to 21 particles per liter in order to obtain a 98% 
probability of detecting an actual threat concentration of 25 particles per 
liter in a one-minute interval. In this example there is no clutter.

a	low	false-positive	rate	and	accept	
a	reduced	sensitivity	at	a	given	
detection	confidence.

In	the	case	of	detecting	a	
threat	concentration	Cz	(z	is	the	
percent	of	probability	detec-
tion)	with	a	signal-to-noise	ratio	
of	 1 / C Tzφ 	(i.e.,	no	clutter)	the	
concentration	trigger	threshold	CT	
is	solely	determined	by	the	desired	
probability	of	detection:
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Figure	B	shows	an	example	
plot	of	the	concentration	trigger	
threshold	CT	as	a	function	of	the	air	
sample	rate	φ	for	the	detection	of	a	
threat	concentration	C98	of	25	par-

ticles	per	liter	with	a	98%	probabil-
ity	of	detection	in	a	one-minute	time	
interval	and	in	the	absence	of	clutter.	
Higher	air	sample	rates	allow	the	trig-
ger	threshold	to	be	set	closer	to	the	

desired	detection	concentration	
because	more	particles	are	sam-
pled	in	the	available	time	and	the	
statistical	uncertainty	in	the	mea-
sured	concentration	is	reduced.
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times when the algorithm reports that a threat may be 

possible, however, the background updates are stopped to 

prevent the inclusion of threat particles from corrupting  

the background estimate.

Temporal processing
From now on, we use the term “trigger algorithm” exclu-

sively to describe the portion of the processing chain 

described in the fourth block of Figure 26, where par-

ticles are indicated as anomalous or possibly threat-like. 

A typical trigger algorithm divides temporal data stream 

into intervals, as shown in Figure 27. The sample under 

analysis is shown in red and denoted Present window, and 

the background interval is shown in green and denoted 

Background window. The present and background are 

separated by an interval shown in gray and denoted 

Guard window. The present instant is indicated by the 

red arrow; note that the present and background samples 

are in general time intervals, not single samples. The pro-

cessing interval slides along in time so that the present, 

guard, and background windows are always at fixed times 

relative to the present instant. 

The processing algorithm considers the data in the 

present and background windows and produces a single 

value at each point in time—the detection statistic—which 

is compared with a threshold to determine if it is possible 

that the Present window contains a threat. This informa-

tion can be gotten in two ways: by detecting a signature 

that specifically resembles that of a threat, or by detecting 

an anomaly, that is, a statistically significant difference 

between present and past data, regardless of the resem-

blance of the anomaly to any known threat. The first 

approach can be implemented through a classification 

algorithm that assigns each measurement to the nearest 

recognized class in the feature space in which the sensor 

operates. Because of the need for detailed knowledge of 

the signal to be detected, this approach is similar to the 

matched filter used in communication theory to indicate 

the arrival of a known signaling waveform.

In biodetection, it is not clear that the signatures of 

threat agents will be well enough known to make their 

detection contingent on a high-quality match with a 

library template. This unfamiliarity leads to a loss of sen-

sitivity of unknown magnitude, because of the unknown 

degree of mismatch between the template and the actual 

threat. The second strategy, that of the anomaly detector, 

is the subject of the discussion here. It offers the benefit 

of sensitivity to threats whose signatures are not known, 

and it can easily be configured so that false triggers occur 

at a relatively constant rate. As noted above, the assurance 

of a constant false-trigger rate is desirable from the per-

spective of managing disruption to operations as well as 

using consumable confirmation resources. Note, however, 

that the use of the anomaly detector as a trigger algorithm 

Collect
data

IssuetriggerParticles
present?

Update
clean air

characteristics
filter

Update
non-fluorescent-

particle
rejection

filter

Update
fluorescent-

particle
background

filter

Particles
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No No No No
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in time?

Particles
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FigURe 26. The possible implementation of a trigger algorithm follows through several decision steps, including the selec-
tion of particle-containing data, the identification of particle data with significant fluorescence, the detection of particles that 
are anomalous, and therefore possibly threat-like, and a persistence criterion to prevent triggering on short-term background 
events unlikely to be related to a bio-attack. The data collection process is typically continuous, so the algorithm may not need 
the feedback from each point returning to the collect data step.
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standard deviation statistics [44] from the background 

can be calculated as follows:

 

µB B
BW

=
∈
∑1

xi
i

and

 

σ µB BB
BW

= −( )
∈
∑1 2xi

i
,

where the sums are computed over all samples in the 

background window, and normalized by B, the length of 

that interval. A trigger occurs when a sample xi in the 

present window satisfies

 xi > +µ γ σB B ,

where the value γ is here is set to achieve a false-trigger 

rate that accomplishes system-level goals with respect to 

overall false-alarm rate and the appropriate use of con-

requires a high-accuracy confirmatory process 

to adjudicate triggers generated by background 

events.

In the timeline shown in Figure 27, the 

lengths of the Present, Background, and Guard 

windows are chosen to optimize aspects of 

detection performance. For example, the Pres-

ent window length is chosen long enough to 

include a detectable number of target parti-

cles even at low levels of target concentration, 

yet short enough that the sensor can respond 

quickly and reliably to transient anomalies. 

The Background window must be chosen long 

enough to provide sufficient statistical charac-

terization of the recent past, but short enough 

that it does not become stale, that is, representa-

tive of an unrepresentative background too far 

in the past. Finally, the Guard window should 

be selected narrow enough that the Background 

window can include enough recent past data to 

be relevant, but long enough to prevent a slowly 

rising attack from passing into and contami-

nating the statistics of the Background window 

before the attack can be detected. 

Because these parameters affect the sen-

sor’s performance in ways that are interrelated, 

they must be set with attention paid to the 

sensor’s intended environment, including the 

anticipated attack size, rise time, and duration, as well as 

the time over which the background can be considered 

statistically unchanging. Note that the window lengths 

need not be permanently fixed; they can in principle be 

set by an operator in anticipation of the operational envi-

ronment. Moreover, it is an area of current research to 

develop adaptive algorithms to improve sensitivity and 

false-trigger rates and to enable sensors to reliably detect 

that an anomaly is over so that confirmatory activity can 

be ceased.

Scalar Trigger Algorithm 

For the case of a single sensor that provides data in a 

sequence of numerical values varying over time, a simple 

trigger algorithm can be defined by setting a threshold 

based on the mean and standard deviation of samples in 

the background window, and detecting when the pres-

ent value exceeds that threshold. The required mean and 

FigURe 27. Processing of time-series data is performed with a seg-
mentation of the data stream into present and background intervals pos-
sibly separated by a guard window. Mean and standard deviation are 
estimated from the background window, and a threshold is defined in 
terms of the background statistics. For a trigger to activate and declare 
an event, the threshold must be passed and the high signal rate must be 
persistent for a specified time.
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tor and covariance matrix instead of scalar mean and 

standard deviation values. In this case, a trigger would  

be generated if

 
xx xxi −( ) ( )− −( ) >µ µ γN NB i

T ,Σ 1

where xi and µN are the corresponding vector quantities 

for data and averages over the background region, and SB 

is the covariance matrix.

For multivariate Gaussian background data analo-

gous to that assumed in the first example, the left-hand 

side of this equation follows a χ2 distribution with N 

degrees of freedom, where N is the dimensionality of 

the sample vector [45]. In principle, statistical theory 

can be used to set a desired false-trigger rate at a cor-

responding value of γ . However, as in the scalar case, 

anomalies are observed much more frequently than 

anticipated by the statistical model, and again the thresh-

old must be set through empirical analysis of data from  

the intended environment.

Note that the dimensionality of the vector mea-

surement is not necessarily the same as the true dimen-

sionality of the signal space. For example, a sensor may 

record data channels whose values are all strongly cor-

related to particle size. If size is measured by the sensor, 

it can be considered jointly with the other measure-

ments in the detection algorithm. However, if the sen-

sor lacks a particle sizing capability, it records data that 

may be dominated by the effects of large particles, even 

if they represent a small fraction of the total popula-

tion. To address this problem, some sensors, including 

BAWS, have implemented approaches that reduce the  

dimensionality of the signal space through combining 

channels to eliminate anticipated correlations, for exam-

ple, among fluorescence bands because of their common 

relationship to unknown particle size [46]. Furthermore, 

it has been suggested that logarithmic transformation 

of the signals can lead to improved signal conditioning,  

that is, signals whose statistical distributions are more 

nearly normal [47].

issues in Threshold Selection
An important design decision associated with sensor 

development is the selection of a threshold value for use 

in backgrounds that may be significantly different from 

the environment where the sensor is designed and tested. 

sumable or other constrained confirmatory resources. 

Note that the present window can also be represented by 

the average value in the appropriate interval by using a 

similar set of equations; a single data sample is used here 

to simplify the discussion. The operation of this algorithm 

in simulated data is shown in Figure 27.

For the special case in which the background is sta-

tionary, is statistically uncorrelated, and follows a Gauss-

ian distribution, the threshold can be set to achieve a 

global constant-false-alarm rate. For example, a value of 

γ = 5 would yield a false trigger once every 3.5 million 

samples, a frequency predicted from the mathematical 

error function. Note, however, that real background data 

often deviate from this ideal behavior in two ways: they 

generate excursions from the background distribution 

much more frequently than the theory would suggest, and 

they are correlated from sample to sample, so that one 

large value is frequently followed by another. 

The correlation structure of the detector output 

is the result of the fact that both false- and true-trig-

ger events are usually the response of the detector to a 

true particle cloud, which is sensed by the detector for a 

number of consecutive samples while the cloud is present  

at the detector. 

The lack of Gaussianity of the data is driven by the 

nonstationary and inhomogeneous nature of the back-

ground aerosol. At any given time the background aerosol 

can be composed of multiple distinct aerosol types that 

change with time. 

Because of these deviations from ideal statistics, we 

have found in practice that the threshold must be set 

through analysis of actual background data. Moreover, 

trigger events correlated in time must be anticipated by 

requiring consecutive samples above the threshold before 

declaring a trigger, for example, by assigning all consecu-

tive triggers to a single trigger event to be adjudicated by 

the same confirmatory process.

Spectral Processing

When a sensor collects vector rather than scalar data 

(i.e., each data sample has multiple values from different 

spectral channels or particle size bins, for example), the 

scalar algorithm must be generalized through the use of 

linear algebraic techniques. As before, the background 

is characterized by its first- and second-order statistics. 

For the vector generalization, this implies a mean vec-
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For example, a sensor designed to operate in a relatively 

benign background may be deployed in an urban setting 

where the algorithm generates many more false triggers 

than the designers anticipated. Alternatively, a sensor 

designed for outdoor use may instead be used indoors to 

protect an airspace where the air is conditioned, filtered, 

and recirculated from other parts of the protected space, 

but nevertheless contains a high concentration of fluores-

cent particles arising from the human activity contained 

within the building. In either case, operators of the sen-

sor may learn to ignore its alerts because they occur too 

frequently, thus diminishing its value.

The use of a fixed threshold may be dictated by the 

desire of those involved in sensor acquisition, deploy-

ment, and design to maintain a constant probability of 

detection against a specific threat (list of agents and speci-

fied smallest detectable attack size). In reality, sensors are 

deployed into environments where, even under the most 

severe threat conditions, an attack has been historically 

very unlikely. In contrast, the training and readiness of 

the defended personnel dictate that any sensor alarm be 

met with appropriate measures. Therefore, an approach 

to declaring alarms on the basis of a constant false-posi-

tive rate may be preferable, because it limits the frequency 

of alarms to a level that could be set to minimize or at least 

manage disruption to operational readiness. 

Algorithms that operate in this mode are referred 

to as CFAR (constant false-alarm rate). It is important 

to recognize that a CFAR algorithm is implemented by 

using a threshold selected adaptively or in anticipation 

of a particular environment, and will generally not result 

in a constant probability of detection. In other words, 

a CFAR algorithm’s detection capability is degraded in 

a challenging environment because in that setting, the 

detection threshold is raised to avoid excess false trig-

gers, making it less likely that a real attack will exceed 

the higher threshold. 

We can illustrate this property by inspection of ROC 

curves for the two situations discussed. It is important 

to recognize that a ROC curve is not an invariant char-

acteristic of a sensor; rather, it is highly dependent on 

the particular environment the sensor operates in. It is 

common in analysis of communication or radar systems 

to overlay multiple ROC curves on a single set of axes to 

represent system performance at varying levels of SNR. In 

Figure 28, two ROC curves are shown, calculated from a 

simple Gaussian background simulation at two different 

levels of interference. The axes of this plot are those of a 

normal probability plot [48], and are designed to show 

the cumulative distribution of a Gaussian distributed 

random variable as a straight line. In this case, the data 

are exactly Gaussian because of the nature of the simula-

tion that generated the data. However, even if they were 

not Gaussian, the normal probability plot would be useful 

in showing the values of probability close to 1 and close 

to 0 on the same plot.

In this example, the red curve corresponds to a more 

benign (higher SNR) environment and the blue curve cor-

responds to a more challenging (lower SNR) setting. The 

red curve lies above the blue curve, indicating that for 

all values of the probability of false alarm, the sensor is 

capable of higher probability of correct detection in the 

benign environment.

Figure 29 shows the thresholds required to achieve 

the probabilities of detection and false alarm shown in 

Figure 28. Note that thresholds that lead to equivalent 

detection performance in these situations do not lead to 

equivalent false-alarm rates (and vice versa).

Low false-alarm rate and high detection capability 

meet different user needs and, conversely, false alarms 

and missed detections impose different penalties. It is up 

to individual users to balance the costs and benefits of 

different threshold selection strategies.

Testing and validation
The testing of aerosol triggers is a very challenging and 

expensive endeavor, both for the instrument developers 

as they build an instrument and for the U.S. government 

when procurement programs and the testing community 

need to validate a sensor’s performance before a sensor 

transitions to full-rate production for the U.S. military. 

The types of tests conducted during the development 

life of an optical aerosol trigger are summarized in Table 

4. Highlighted in this discussion are some of the chal-

lenges to testing and the infrastructure required to sup-

port the tests. In conjunction with the validation process, 

there are several challenges that must be addressed while  

performing the tests.

Safe Aerosol Protection

To test an aerosol sensor, we must first be capable of 

safely producing aerosols with well-known properties.  
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Figure 30 shows a chamber for laboratory testing of aero-

sol sensors. Aerosols enter at the top of the chamber and 

are exhausted out the bottom of the chamber through a 

HEPA filter. To avoid possible contamination of labora-

tory air, users should operate the chamber at negative 

pressure relative to the laboratory. Because the aerosol 

being disseminated into the chamber is known, a simple 

particle counter or particle sizer instrument (e.g., the 

TSI Aerodynamic Particle Sizer Spectrometer) is used to 

measure the concentration of aerosol particles and the 

aerosol size distribution. In designing a safe aerosol test 

system it is important to filter all of the aerosols from the 

air before venting air from the reservoir or test equipment  

into the room.

The three disseminators that we find most use-

ful are the Collison nebulizer (e.g., BGI Inc.), the Pitt  

FigURe 28. Example ROC curves for a sensor operated 
in two environments, one with higher and one with lower 
SNR, show correlated changes in probability of detection 
and false-positive rates. The detection algorithm threshold 
may be set to achieve constant probability of detection or 
false-positive rate. In the first case, the sensor degrades in 
the more challenging environment by producing more false 
positives and in the second case by reducing the probability 
of detection. 
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FigURe 29. The probabilities of detection and false-alarm 
rate are expressed as a function of threshold for a detection 
algorithm operating in two different backgrounds charac-
terized by gaussian interference of differing signal-to-clut-
ter ratios (SCR). Note that for achieving a desired detection 
rate, a threshold must be selected for each background that 
does not lead to constant false-alarm rate (and vice versa). 
PD is the probability of detection and PFA is the probability of 
false alarm.

Table 4: Stages in the Testing and validation of optical Trigger Sensors

 STAgE  PROCEDuRES	
	 Initial	development	 Characterize	the	system’s	response	to	the	presence	of	single	particles	
	 	 in	the	measurement	volume	and	at	standard	aerosol-sampling	rates.	
	 	 Establish	the	minimum	detectable	size	of	a	particle.	
	 	 Catalog	the	signatures	of	simulants	and	interferents	as	recorded	
	 	 with	the	instrument.	
	 	 Produce	confusion	matrices.	
	 Field	testing	 Test	the	sensor	to	clouds	of	agent	simulant	aerosols	
	 	 while	operating	in	real	environments.	
	 	 Generate	ROC	curves.	
	 Operational	testing	 Subject	the	sensor	to	harsh	physical	conditions	and	
	 	 test	operational	procedures	with	military	personnel.	
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generator [49], and low-pressure ultrasonic spray 

nozzles. The Collison nebulizer is usually used for 

disseminating suspensions of non-soluble par-

ticles. The limitation of the Collison nebulizer is 

that there is little or no control over the size of 

particles produced. The nebulizer produces very 

small water droplets, ~10 microns in diameter, 

and therefore produces aerosols that are typically 

composed of single unit cells. For a sample of Bg, 

for example, the Collison nebulizer produces an 

aerosol with a particle size distribution consisting 

primarily of single spores. Figure 31 illustrates 

the Collison nebulizer.

The Pitt generator is used for aerosoliz-

ing powder samples such as dirt, kaolin, fungal 

spores, or dry Bg spores. The Pitt generator simply uses a 

diaphragm, or speaker, to vibrate a sample, thereby sus-

pending some portion of the powder into the air. An air-

flow through the device carries the aerosol sample to the 

test setup. The Pitt generator has the benefit of producing 

dry aerosols that don’t need to be diluted with dry air. It 

also preserves the original particle size distribution of the 

sample during dissemination, which can be a positive or 

FigURe 30. This laboratory aerosol chamber is 
designed to test aerosol sensors. It allows either the 
insertion of the sensor into the chamber or the ducting 
of aerosols from the chamber to the sensor. The aero-
sols enter the chamber at the top and are exhausted 
out the bottom through a HEPA filter.

negative attribute. Figure 32 illustrates the operation of 

the Pitt generator.

One of the most useful dissemination tools is the 

ultrasonic spray nozzle. This tool is based on hardware 

from Sono-Tek Corp. for the generation of liquid drop-

lets of dissolved or suspended material. Figure 33 shows 

the Sono-Tek–based Ultrasonic Disseminator System and 

some example particle size distributions.

Surrogate Samples

Most aerosol sensor testing is carried out by using sur-

rogate or simulant particles in place of the actual agents. 

Table 5 lists some biowarfare agents and the common 

simulant samples that replace them for testing purposes. 

In addition to agent simulant samples, Table 5 also lists 

other materials that are aerosolized for testing, including 

dirt (or more specifically, Arizona road dust), kaolin, fun-

gal spores and smuts, pollens, and calibration standards 

such as polystyrene spheres, either dye doped or undoped, 

and silica spheres. 

Field Testing

Field tests are critical to the evaluation of an aerosol sen-

sor. While signature collections during laboratory testing 

will usually expose the sensor to a variety of samples, the 

interferents used during the laboratory tests are usually 

FigURe 31. The Collison nebulizer is shown on the left. A 
typical particle size distribution and example of temporal 
control of output-concentration time history for this nebu-
lizer are shown in the graphs.
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limited in number and selected on the basis of precon-

ceived notions as to what materials will be problematic. 

Field tests can be carried out either in open-air releases 

or using a breeze tunnel. Open-air releases can be car-

ried out only at a limited number of national locations, 

given that they involve releasing live bacteria and other  

materials into the air.

While testing sensors in the outdoor environment is 

critical to understanding their performance, there are two 

drawbacks to doing open-air tests. The primary problem 

with open air is that it is in fact difficult to hit the test 

grid of sensors with a controlled concentration of agent 

simulant. Long periods of time are spent in waiting for 

ideal weather conditions to release the agent simulant 

upwind of the sensors. When releases are made, the lack 

FigURe 32. Examples of the results of the Pitt genera-
tor shown in the top photograph and diagram are the par-
ticle size distribution and output-concentration time history 
shown below.

Air
inlet

Aerosol
outlet

Aerosol
particle

Powder
Thin membrane
Low frequency

Particle size (µm)

Re
la

tiv
e 

nu
m

be
r

of
 p

ar
tic

le
s

1
0.0

0.2
0.4

0.6
0.8

1.0

10

Time (sec)

Particle size distribution

Concentration time history

Ae
ro

so
l c

on
ce

nt
ra

tio
n

(p
pl

)

0
0

2000

4000
5000
6000
7200

to 17,000 ppl

400 800 1200

1000

3000

of control over the ambient conditions leads to nonuni-

form exposure to the agent simulants in time and over the 

spatial extent of the test grid. While this situation is rep-

resentative of real-world releases, it is not necessarily effi-

cient for testing. A second drawback of open-air releases 

is that, because of the hazards of releasing aerosols into 

the environment, these tests are done far from cities and 

population centers—areas that are heavily inhabited. As 

a result, anthropogenic sources of interferents are limited 

or nonexistent.

The solution to the challenge of outdoor testing is a 

breeze tunnel, which is a facility that combines the ben-

FigURe 33. The ultrasonic aerosol dissemination system 
can interface directly with a trigger system under test. The 
piezoelectric driver nebulizes the liquid feed, and the after-
filter pumps draw the nebulized sample away or through the 
test equipment. The graph depicts the sample size distribu-
tion for five different disseminations of Bg spore aerosols 
through the use of ultrasonic dissemination.
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efits of outdoor and indoor testing. Air from the outdoors 

is drawn into a tunnel, where the sensors are located. 

Next, disseminations of particles are superimposed on the 

ambient aerosol by placing a disseminator at the entrance 

of the tunnel. All of the air is then filtered before being 

exhausting into the environment. In this way the sensors 

are exposed to the natural aerosol background but can 

also be tested with agent simulants at the same time. 

Environmental Testing

Ultimately, sensors need to be tested in operational envi-

ronments to establish that the sensor meets the perfor-

mance requirements such as sensitivity, speed of response, 

and false-positive rate, while operating in the harsh envi-

ronments of modern battlefields. The battlefield envi-

ronment introduces new stresses on the sensor that are 

often unforeseen during the early stages of instrument 

development. Most challenging to optical aerosol sensors 

are especially dirty environments that introduce contami-

nants affecting the optics or having inordinate amounts of 

particulates, such as smoke or dust, in the air.

Sensor developers are usually aware that battlefield 

conditions include dirt and smoke and are important 

interferents. As such, sensors are usually extensively 

tested during development with these materials and the 

sensors are designed to discriminate these from agents. 

In addition to being interferents for agents, however, 

smokes and high levels of dirt can also obscure the pres-

ence of agents from optical detection. Single-particle opti-

cal aerosol sensors inherently rely on the signal from a 

single agent particle located within the sample volume to 

be detectable above the background or noise signal that 

is measured in the absence of an agent particle. In the 

presence of very high concentrations of background aero-

sols, the sample volume can contain many dirt or smoke 

particles in addition to the agent particle. In such a situa-

tion, the signal from the agent particle may not be detect-

able above the signal from all of the other particles in the 

sample volume. Even if the signal from agents particle is 

detected, the measured signature may not be that of the 

agents. Instead, the measured signature will represent the 

mixture of the agent signature and that of the interferent. 

This representation can lead to misclassification of the 

agent particle and inhibit reliable detection.

The Future
In spite of years of sensor development, we remain vul-

nerable to a bio-agent attack that is not detected until 

people become sick and enter hospitals. This vulnerabil-

ity persists because the sensors are too expensive, so that 

they are not widely enough spread to detect most pos-

sible attacks, and because the sensors have false-positive 

rates that are too high at the sensitivity settings that are 

required to detect widely dispersed agents or agents with 

low infectivity levels. Clearly, the development of low-cost 

and high-performance sensors as outlined in this article 

is needed. The development of low-cost sensors requires 

the simultaneous development of low-cost photodetec-

tors, low-cost optical sources, and low-power particle 

concentrators. The development of high-performance 

sensors requires the development of new techniques for 

measuring additional particle properties that are beyond 

particle size, reflectivity, and fluorescence spectra and that 

are orthogonal to these properties.

To date, the development of trigger technologies has 

been separate from the development of identifier tech-

nologies. The integration of these technologies into a bio-

agent sensor architecture is typically accomplished with a 

simple communications wire. Tighter integration should 

improve the performance of the overall biodetection sys-

Table 5: Common bio-Agents and Test materials
 AgENT  SIMulANT INTERFERENTS STANDARDS

	 Bacillus anthracis	 Bacillus		
	 (Anthrax)	 globigii

	 Yersinia pestis Yersinia	
	 (Plague)	 rhodei

	 Toxin	(Botulinum)	 Ovalbumin

	 Virus	(Variola)	 MS2	phage	

Arizona	road	dust,	
kaolin,	fungal		
spores,	mold,		
smut,	spores,		
pollens

Polystyrene	spheres	
(dye	doped	or	
undoped),	silica	
spheres
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tem. Such integration might take multiple forms. For 

example, the trigger could preselect threat-like particles 

for transmission to the identifier [50, 51]. This intelligent 

concentration should reduce the clutter presented to the 

identifier and improve its performance. In addition, the 

identifier could train the trigger to recognize and ignore 

aerosols that the trigger has previously deemed threat-like 

but that the identifier has determined are not threats.

The long-term utility of bio-agent sensors is greater 

if these sensors can provide multiple-use capability. For 

example, these sensors could provide much better envi-

ronmental monitoring for allergens or unhealthy air than 

is currently available. In addition, sensors that can per-

form other useful functions, as well as detect bio-agents, 

will enjoy a better acceptance in the face of a possible 

decrease in the probability of an attack. 
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