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M 
odern spaceborne atmospheric sounders 
measure radiance with unprecedented reso-
lution and accuracy in spatial, spectral, and 

temporal dimensions. For example, the Atmospheric 
Infrared Sounder (AIRS), operational on the NASA 
Earth Observing System (EOS) Aqua satellite since 
2002, provides a spatial resolution of 15 km, a spectral 
resolution of ν ν∆ ≈ 1200 (with 2378 channels from 
650 to 2675 cm–1), and a radiometric accuracy on the 
order of ±‑0.2 K. Typical polar-orbiting atmospheric 
sounders measure approximately 90% of the earth’s at-
mosphere (in the horizontal dimension) approximately 
every twelve hours. Retrieval algorithms estimate the 
geophysical state of the atmosphere as a function of 
space and time from upwelling spectral radiances mea-
sured by the sensor. 

In this article, we present two examples of neu-
ral-network-based atmospheric retrieval algorithms 

being developed and implemented at Lincoln Labo-
ratory. In the first example, we consider the retrieval 
of atmospheric temperature and moisture profiles 
(quantity as a function of altitude) from hyperspectral 
radiance measurements in the thermal infrared. A pro-
jected principal component (PPC) transform is used 
to reduce the dimensionality of the spectral-radiance 
data and optimally extract geophysical information. 
A multilayer feed-forward neural network (NN) is 
subsequently used to estimate the desired geophysi-
cal profiles. This algorithm is known as the PPC/NN 
algorithm. The PPC/NN algorithm offers the numeri-
cal stability and efficiency of statistical methods while 
achieving accuracies comparable to those of physical, 
model-based methods. 

In the second example, we consider the retrieval 
of precipitation rates from passive microwave radi-
ance measurements at frequencies near the oxygen and 
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n Estimation techniques based on neural networks are becoming more common 
in high-resolution atmospheric remote sensing largely because of the simplicity, 
flexibility, and ability of the neural network techniques to accurately represent 
complex multidimensional statistical relationships. Spaceborne atmospheric 
sounders with increasingly finer spatial and spectral resolution are generating 
formidable amounts of radiance data. This abundance of data presents two major 
challenges in the development of algorithms that retrieve geophysical information 
from the radiance measurements. The first challenge concerns the robustness of 
the retrieval operator and involves maximal use of the geophysical content of the 
radiance data with minimal interference from instrument and atmospheric noise. 
The second challenge is the implementation of the robust algorithm within a 
given computational budget. The neural network estimation techniques described 
in this article allow both of these challenges to be overcome. Sample results are 
presented for retrievals of (1) atmospheric temperature and moisture profiles and 
(2) precipitation rates.
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water-vapor resonances at 50 to 60 GHz and 183.31 
GHz, respectively. In this case, the models relating the 
precipitation rate to the radiance intensities measured 
by the sensor are extremely complicated and difficult 
to validate. The use of neural networks to empirically 
learn the statistical relationship between rain rate and 
spectral intensity obviates the need for complex and 
often inaccurate models in the retrieval algorithm. 

In this article, we first review the physics of space-
borne atmospheric remote sensing. Then we present 
the application of principal-component transforms 
to hyperspectral sounding data and introduce a new 
approach, in which the sensor radiances are projected 
into a subspace that reduces spectral redundancy and 
maximizes the resulting correlation to a given param-
eter. This method is similar to the concept of canoni-
cal correlations introduced by Hotelling over 70 years 
ago [1], but its application in the hyperspectral sound-
ing context is new. 

Next, we review the use of multilayer feed-forward 
neural networks for geophysical parameter retrieval 
from hyperspectral measurements, first proposed in 
1993 [2], and we give an overview of the network 
parameters used in this work. We discuss the combi-
nation of the projected principal components (PPC) 
radiance compression operator with a neural network 
for estimating temperature and water-vapor profiles, 
and present performance analyses comparing the 
PPC/NN algorithm to traditional retrieval methods. 
We then explain the novel application of neural net-
work techniques to the retrieval of precipitation rates 
from spaceborne microwave data. 

Next we present the microphysical relationships be-
tween precipitation intensity and the electromagnetic 
perturbations measured by the sensor, and discuss the 
neural network precipitation-rate retrieval technique. 
Then we show examples of precipitation-rate retriev-
als, including rain rates observed in and around Hur-
ricane Isabel in September 2003. This topic leads to a 
study of global diurnal variation of precipitation. We 
close with a summary and suggestions for potential ar-
eas of future research.

Spaceborne atmospheric Remote Sensing

Figure 1 shows the typical measurement scenario for 
spaceborne atmospheric remote sensing. A sensor 

measures upwelling spectral radiance (intensity as a 
function of frequency) at various incidence angles. The 
sensor data are usually calibrated to remove measure-
ment artifacts such as gain drift, nonlinearities, and 
noise. The spectral radiances measured by the sensor 
are related to geophysical quantities, such as the verti-
cal temperature profile of the atmosphere. An appro-
priate retrieval algorithm is necessary to convert these 
radiances into a geophysical quantity of interest.

The radiative transfer equation describing the ra-
diation intensity observed at altitude L, viewing angle 
q, and frequency n can be formulated by including the 
emitted atmospheric contribution, the reflected atmo-
spheric and cosmic contributions, and the radiance 
emitted by the surface as follows [3, 4]: 
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where en is the surface emissivity, rn is the surface re-
flectivity, kn(z) is the atmospheric absorption coeffi-
cient, t* is the atmospheric zenith opacity, T(z) is the 
temperature profile, Ts is the surface temperature, Tc 
is the cosmic background temperature (2.736 ± 0.017 
K), and
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The first term in Equation 1 can be recast in terms of 
a transmittance function ν ( )z :
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The derivative of the transmittance function with re-
spect to altitude is often called the temperature weight-
ing function
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and gives the relative contribution of the radiance em-
anating from each altitude. Figure 2 shows the temper-
ature and water-vapor profile weighting functions for 
the Advanced Microwave Sounding Unit (AMSU).

Geophysical Parameter Retrieval

The objective of the geophysical parameter retrieval 
algorithm is to estimate the state of the atmosphere 
(represented by a parameter matrix X) given observa-
tions of spectral radiance (represented by a radiance 
matrix R). Note that the inverse model typically does 
not exist, as there are generally an infinite number of 
atmospheric states that could give rise to a particular 
radiance measurement.

There are generally two approaches to this retrieval 
problem, as shown in Figure 3. The first approach, 
called the variational approach, uses a forward model 
(for example, the transmittance and radiative transfer 
models previously discussed) to calculate the sensor ra-
diance that would be measured, given a specific atmo-

FIGURE 1. Typical measurement scenario for spaceborne atmospheric remote sensing. Electromagnetic radiation that reaches 
the sensor is emitted by the sun, atmosphere, surface, clouds, and cosmic background. This radiation can also be reflected 
or scattered by the surface, atmosphere, or clouds. The spectral radiances measured by the sensor are related to geophysical 
quantities such as the vertical temperature profile of the atmosphere. An appropriate retrieval algorithm is necessary to convert 
these radiances into a geophysical quantity of interest. 
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FIGURE 3. Variational and statistical approaches to geophysical parameter retrieval. In the variational 
approach, a forward model is used to predict at-sensor radiances based on atmospheric state. In the 
statistical approach, an empirical relationship between at-sensor radiances and atmospheric state is 
derived using an ensemble of radiance/state vectors. 

FIGURE 2. The Advanced Microwave Sounding Unit (AMSU) temperature profile (left) and AMSU 
water-vapor profile (right) weighting functions. The water-vapor burden at an altitude z is the in-
tegral of water-vapor profile from z to the top of the atmosphere. Note that channels 7 through 14 
show marked ground-level insensitivities when compared to channels 3 through 6. Later in the arti-
cle, the specific channel frequencies are tabulated and the reasons for their selection are detailed.
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A guess of the atmosphere
state is then adjusted iteratively
until the modeled radiance
matches the observed radiance.

Variational approach

A forward model relates the
geophysical state of the
atmosphere X to the radiances 
R measured by the sensor.

R = f
X = [T(r,t), W(r,t), O(r,t), …]

surface reflectivity, solar illumination,
observing system (bandwidth, resolution)

Observation noise

Regularization term

γ = || R − Rens || + h(X)

Statistical (regression-based) approach

An ensemble of radiance/state
vector pairs, Rens and Xens, is 
assembled, and a statistical 
relationship between the two 
is derived empirically.

X = g( Robs ), where g(.) is the function that minimizesˆ

argmin ||Xens − g( Rens ) ||.

Examples of g(.) include functions based on
neural networks and functions derived using 
linear least-squares estimation

+ ε
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spheric state. The variational approach makes a guess 
of the atmospheric state (usually obtained through a 
forecast model or historical statistics) and propagates 
through the forward models, thereby producing an 
estimate of the at-sensor radiance. The measured radi-
ance is compared with this estimated radiance, and the 
state vector is adjusted so as to reduce the difference 
between the measured and estimated radiance vectors. 
C.D. Rodgers provides a more thorough treatment of 
the methodology and implementation of variational 
retrieval methods [5]. The second approach, called the 
statistical, or regression-based, approach, does not ex-
plicitly use the forward model to derive the estimate of 
the atmospheric state vector. Instead, an ensemble of 
radiance/state vector pairs is selected, and a statistical 
characterization [p(X), p(R), and p(X, R)] is sought. 
In practice, it is difficult to obtain these probability 
density functions directly from the data, and alterna-

tive methods are often used. Two of these methods are 
linear least-squares estimation (LLSE), or linear regres-
sion, and nonlinear least-squares estimation (NLLSE). 
Neural networks are a special class of NLLSE, and are 
discussed later. 

The Motivation for Computationally  
Efficient Algorithms 

The principle advantage of regression-based methods 
is their simplicity—once the coefficients are derived 
from training data, the calculation of atmospheric state 
vectors is relatively easy. The variational approaches re-
quire multiple calls to the forward models, which can 
be computationally prohibitive. The computational 
complexity of the forward models is usually nonlin-
early related—often O(n2) or more—to the number 
of spectral channels. As shown in Figure 4, the spec-
tral and spatial resolution of infrared sounders has 

FIGURE 4. Improvements in spectral and spatial resolution of satellite-based remote sensors over 
the last thirty-five years. The recent increases in the spectral resolutions afforded by infrared sen-
sors have far surpassed those available from microwave sensors. The trends in spatial resolution are 
similar for infrared and microwave sensors.
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increased dramatically over the last thirty-five years, 
and the computation required for real-time operation 
with variational algorithms has outpaced Moore’s Law. 
There is, therefore, a motivation to reduce the compu-
tational burden of current and next-generation retriev-
al algorithms to allow real-time ingestion of satellite-
derived geophysical products into numerical weather 
forecast models. 

dimensionality Reduction with Principal  
component Transforms

Principal component transforms can be used to repre-
sent radiance measurements in a statistically compact 
form, enabling subsequent retrieval operators to be 
substantially more efficient and robust [6]. Further-
more, measurement noise can be dramatically reduced 
through the use of principal component filtering 
[7, 8] and it has also been shown [9] that principal 
component transforms can be used to represent vari-
ability in high-spectral-resolution radiances perturbed 
by clouds. In the following sections, we briefly discuss 
several variants of the principal component transform 
and focus on the ability of each to extract geophysical 
information from noisy radiance data.

The Principal Component Transform 

The principal component transform is a linear, ortho-
normal operator Q r

T that projects a noisy m-dimen-
sional radiance vector, R R= + Ψ, into an r-dimen-
sional (r ≤ m) subspace.* The additive-noise vector Y 
is assumed to be uncorrelated with the radiance vector 
R, and is characterized by the noise covariance matrix 
CYY. The principal components of R , i.e.,  P Q R= r

T , 
have two desirable properties: (1) the components are 
statistically uncorrelated, and (2) the reduced-rank re-
construction error, or cost function,

 
c E r r1( ) ( ˆ ) ( ˆ ) ,⋅ = − −





   R R R RT

 (2)

where  

R̂ G Rr r  for some linear operator Gr with 
rank r, is minimized when G Q Qr r r= T. The rows of 

Q r
T contain the r most significant eigenvectors (or-

dered by descending eigenvalue) of the noisy-data co-
variance matrix C C CRR RR 

= + ΨΨ .

The Noise-Adjusted Principal Component Transform 

Cost criteria in the form of error functions other than 
Equation 2 are often more suitable for typical hyper-
spectral compression applications. For example, it 
might be desirable to reconstruct the noise-free radi-
ances and filter the noise. The error equation thus be-
comes 

 
c E r r2( ) ( ˆ ) ( ˆ ) ,⋅ = − − R R R RT

 
(3)

where R̂ H Rr r

  for some linear operator Hr with 
rank r. The noise-adjusted principal component 
(NAPC) transform [10], where 

 H C W W Cr r r= −
ΨΨ ΨΨ
1 2 1 2/ /T  

and Wr
T contains the r most significant eigenvectors 

of the whitened noisy covariance matrix 

 C C C C CWW RR 

= + −
ΨΨ ΨΨ ΨΨ
1 2 1 2/ /( ) ,

maximizes the signal-to-noise ratio of each compo-
nent, and is superior to the PC transform for most 
noise-filtering applications in which the noise statistics 
are known a priori. 

The Projected Principal Component Transform 

It is often unnecessary to require that the principal 
components be uncorrelated, and linear operators 
can be derived that offer improved performance over 
PC transforms for minimizing cost functions such as 
Equation 3. We can show [11] that the optimal linear 
operator with rank r that minimizes Equation 3 is

 L E E C C CRR RRr r r= + −T ( ) ,ΨΨ
1

 (4)

where Er = [E1 | E2 | ··· Er] are the r most significant 
eigenvectors of

 C C C CRR RR RR( ) .+ −
ΨΨ

1

Examination of Equation 4 reveals that the Wiener-
filtered radiances are projected onto the r-dimensional 
subspace spanned by Er. It is this projection that mo-
tivates the name projected principal components. An 
orthonormal basis for this r-dimensional subspace 

*
 The following mathematical notation is used here: ( )⋅ T

denotes the 
transpose, ( )⋅  denotes an estimate of a random vector, and ( )⋅  denotes 
a noisy random vector. Matrices are indicated by bold upper case, 
vectors by upper case, and scalars by lower case.



• Blackwell and chen
Neural Network Applications in High-Resolution Atmospheric Remote Sensing

VOLUME 15, NUMBER 2, 2005 LINCOLN LABORATORY JOURNAL 305

of the original m-dimensional radiance vector space 
 is given by the matrix containing the r most sig-
nificant right eigenvectors, Vr, of the reduced-rank 
linear-regression matrix Lr, given in Equation 4. We 
then define the projected principal components of R  
as

 
 P V R= r

T .

Note that the elements of P are correlated, since 

 V C C VRRr r
T( )+ ΨΨ

is not a diagonal matrix. 
Another useful application of the PPC transform is 

the compression of spectral radiance information that 
is correlated with a geophysical parameter, such as the 
temperature profile. The r-rank linear operator that 
captures the most radiance information correlated to 
the temperature profile is similar to Equation 4 and is 
given as

 L E E C C CTR RRr r r= + −T ( ) ,ΨΨ
1

where Er = [E1 | E2 | ··· Er] are the r most significant 
eigenvectors of 

 C C C CTR RR TR( ) ,+ −
ΨΨ

1 T

and CTR is the cross-covariance of the temperature 
profile and the spectral radiance. 

Evaluation of Compression Performance  
Using Two Different Metrics 

The compression performance of each of the PC trans-
forms discussed previously was evaluated by using two 
performance metrics. First, we seek the transform that 
yields the best (in the sum-squared sense) reconstruc-
tion of the noise-free radiance spectrum, given a noisy 
spectrum. Thus we seek the optimal reduced-rank 
linear filter. The second performance metric is quite 
different and is based on the temperature retrieval per-
formance. We first compress a radiance spectrum by 
using each of the PC transforms for a given number 
of coefficients. Then we use the resulting coefficients 
in a linear regression to estimate the temperature pro-
file. The results were obtained with simulated clear-air 
radiance intensity spectra from an AIRS-like sounder. 
We generated approximately 7500 1750-channel ra-
diance vectors with spectral coverage from approxi-

mately 4 μm to 15 μm by using a National Oceanic 
and Atmospheric Administration radiosonde set. The 
simulated intensities were expressed in spectral radi-
ance units (mW m–2 sr–1(cm–1)–1).

PC Filtering. Figure 5(a) shows the sum-squared 
radiance distortion (from Equation 2) as a function 
of the number of components used in the various PC 
decomposition techniques. The a priori level indicates 
the sum-squared error due to sensor noise. Results 
from two variants of the PC transform are plotted, in 
which the first variant (the PC curve) uses eigenvectors 
of CRR   as the transform basis vectors, and the second 
variant (the noise-free PC curve) uses eigenvectors of 
CRR as the transform basis vectors. We show in Figure 
5(a) that the PPC reconstruction of noise-free radi-
ances [PPC(R)] yields lower distortion than both the 
PC and NAPC transforms for any number of com-
ponents r. Note that the PC and noise-free PC curves 
never reach the theoretically optimal level, defined by 
the full-rank Wiener filter. Furthermore, the PPC dis-
tortion curves decrease monotonically with coefficient 
number, while all the PC distortion curves exhibit a 
local minimum, after which the distortion increases 
with coefficient number as noisy high-order terms are 
included. The noise in the high-order PPC terms is ef-
fectively zeroed out, because it is uncorrelated with the 
spectral radiances. 

PC Regression. The PC coefficients derived in the 
previous example are now used in a linear regression 
to estimate the temperature profile. The temperature 
profile error (integrated over all altitude levels) for 
each of the PC transforms is shown in Figure 5(b) as 
a function of the number of coefficients used in the 
linear regression. To reach the theoretically optimal 
value achieved by linear regression with all channels 
requires approximately twenty PPC coefficients, 200 
NAPC coefficients, and 1000 PC coefficients. Thus 
the PPC transform results in a factor of 10 improve-
ment over the NAPC transform when we compress 
temperature-correlated radiances (20 versus 200 coef-
ficients required), and approximately a factor of 100 
improvement over the original spectral radiance vec-
tor (20 versus 1750). Note that the first guess in the 
AIRS Science Team Level-2 retrieval uses a linear re-
gression derived from approximately sixty of the most 
significant NAPC coefficients of the 2378-channel 
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AIRS spectrum (in units of brightness temperature) 
[6]. Results for the moisture profile are similar, al-
though more coefficients (typically 35 versus 25 for 
temperature) are needed because of the higher degree 
of nonlinearity in the underlying physical relationship 
between atmospheric moisture and the observed spec-
tral radiance. This substantial compression enables the 
use of relatively small (and thus very stable and fast) 
neural network estimators to retrieve the desired geo-
physical parameters. 

It is interesting to consider the two variants of the 
PPC transform shown in Figure 5, namely, PPC(R), 
when the basis for the noise-free radiance subspace 

is desired, and PPC(T), when the basis for only the 
temperature profile information is desired. As shown 
in Figure 5(a), the PPC(T) transform poorly rep-
resents the noise-free radiance space because there 
is substantial information that is uncorrelated with 
temperature—and thus ignored by the PPC(T) trans-
form—but correlated with the noise-free radiance. 
Conversely, the PPC(R) transform, shown in Figure 
5(b), offers a significantly less compact representation 
of temperature-profile information because the trans-
form is representing information that is not correlated 
with temperature and thus superfluous when retriev-
ing the temperature profile.

FIGURE 5. Performance comparisons of the principal components, in which the components are 
derived from both noisy and noise-free radiances, noise-adjusted principal components (NAPC), 
and projected principal components (PPC) transforms for a hypothetical 1750-channel infrared 
(4 μm to 15 μm) sounder. Two projected principal components transforms were considered, PPC(R) 
and PPC(T), which are, respectively (1) maximum representation of noise-free radiance energy, and 
(2) maximum representation of temperature profile energy. The upper plot shows the sum-squared 
error of the reduced-rank reconstruction of the noise-free spectral radiances. The lower plot shows 
the temperature-profile retrieval error (trace of the error covariance matrix) obtained by using lin-
ear regression with r components. The appropriate PPC transforms are more efficient, using fewer 
components to reach the theoretical limits.
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where 

 a w x bj ji i ji

d
= +

=∑ 1
.

The output layer is typically linear. The weights (wij) 
and biases (bj) for the jth neuron are chosen to mini-
mize a cost function over a set of P training patterns. 
A common choice for the cost function is the sum-
squared error, defined as

 

E t yk
p

k
p

kp

( ) ( ) ,( ) ( )w = −∑∑12
2

where yk
p( ) and tk

p( ) denote the network outputs and 
target responses, respectively, of each output node k 
given a pattern p, and w is a vector containing all the 
weights and biases of the network. The training pro-
cess involves iteratively finding the weights and biases 
that minimize the cost function through some numer-
ical optimization procedure. Second-order methods 
are commonly used, in which the local approximation 
of the cost function by a quadratic form is given by

 E d E E d

d E d

( ) ( ) ( )

( ) ,

w w w w w

w w w

+ ≈ + ∇

+ ∇

T

T1
2

2

 
(5)

where ∇E ( )w  and ∇2E ( )w  are the gradient vector 

neural network Retrieval of Temperature and 
Moisture Profiles From high-Resolution Infrared 
and Microwave Sounding data

A neural network is an interconnection of simple 
computational elements, or nodes, with activation 
functions that are usually nonlinear, monotonically in-
creasing, and differentiable. Neural networks are able 
to deduce input-output relationships directly from 
the training ensemble without requiring underlying 
assumptions about the distribution of the data. Fur-
thermore, a neural network with only a single hidden 
layer of a sufficient number of nodes with nonlinear 
activation functions is capable of approximating any 
real-valued continuous scalar function to a given pre-
cision over a finite domain [12, 13].

Introduction to Multilayer Neural Networks 

Consider a multilayer feed-forward neural network, as 
illustrated in Figure 6, that consists of an input layer, 
an arbitrary number of hidden layers (usually one or 
two), and an output layer. The hidden layers typically 
contain sigmoidal activation functions of the form 

 z aj j= tanh( ),

FIGURE 6. Neural network structure. (a) Interconnection of the multilayer feed-forward neural network, specifically, the 
multilayer perceptron, (b) the perceptron or node.
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and the Hessian matrix of the cost function, respec-
tively. Setting the derivative of Equation 5 to zero and 
solving for the weight update vector dw yields 

 
d E Ew w w= − ∇  ∇

−2 1
( ) ( ).

 
(6)

Direct application of Equation 6 is difficult in prac-
tice, because computation of the Hessian matrix (and 
its inverse) is nontrivial and usually needs to be repeat-
ed at each iteration. For sum-squared-error cost func-
tions, we can show that 

 
∇ =E T( )w J e

and

 ∇ = +2E T( ) ,w J J S

where J is the Jacobian matrix that contains first deriv-
atives of the network errors with respect to the weights 
and biases, e is a vector of network errors, and

  
S e e

P

= ∇
=

∑ p p
p

2

1

.

We can compute the Jacobian matrix by using a stan-
dard back-propagation technique [14] that is sig-
nificantly more computationally efficient than direct 
calculation of the Hessian matrix [15]. However, an 
inversion of a square matrix with dimensions equal to 
the total number of weights and biases in the network 
is required. For the Gauss-Newton method, we as-
sume that S is zero (a reasonable assumption only near 
the solution), and Equation 6 becomes

 
d Tw J J Je= −  

−1
.

The Levenberg-Marquardt modification [16] to the 
Gauss-Newton method is 

 
d Tw J J I Je= − + 

−
µ

1
.

As μ varies between zero and infinity, dw varies con-
tinuously between the Gauss-Newton step and steep-
est descent. The Levenberg-Marquardt method is thus 
an example of a model-trust-region approach in which 
the model (in this case the linearized approximation of 
the error function) is trusted only within some region 

around the current search point [17]. The size of this 
region is governed by the value μ.

The use of multilayer feed-forward neural net-
works, such as the multilayer perceptron, to retrieve 
temperature profiles from hyperspectral radiance mea-
surements has been addressed by several investigators 
[18, 19]. Neural network retrieval of moisture profiles 
from hyperspectral data is relatively new [20], but fol-
lows the same methodology used to retrieve tempera-
ture.

The PPC/NN Algorithm 

A first attempt to combine the properties of both 
neural network estimators and PC transforms for the 
inversion of microwave radiometric data to retrieve 
atmospheric temperature and moisture profiles is re-
ported in Reference 21, and a more recent study with 
hyperspectral data is presented in Reference 20. We 
take a conceptually similar approach in this work by 
combining the compression technique described in 
the section on the projected PC transform with the 
neural network estimator discussed in the previous 
section. PPC compression offers substantial perfor-
mance advantages over traditional PC algorithms and 
is the cornerstone of the present work. 

Network Topology. All multilayer perceptrons used 
in the PPC/NN algorithm are composed of one or 
two hidden layers of nonlinear (hyperbolic tangent) 
nodes and an output layer of linear nodes. For the 
temperature retrieval, twenty-five PPC coefficients are 
input to six neural networks, each with a single hidden 
layer of fifteen nodes. We use separate neural networks 
for different vertical regions of the atmosphere; a total 
of six networks are used to estimate the temperature 
profile at sixty-five points from the surface to 50 mbar. 
For the water-vapor retrieval, we input thirty-five PPC 
coefficients to nine neural networks, each with a single 
hidden layer of twenty-five nodes. The water-vapor 
profile (mass-mixing ratio) is estimated at fifty-eight 
points from the surface to 75 mbar. We determined 
these network parameters largely through empirical 
analyses. Work is underway to dynamically optimize 
these parameters as the neural network is trained. We 
use separate training and testing datasets and discuss 
them in more detail later in this article.

Network Training. We initiated the weights and bi-
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ases by using the Nguyen-Widrow method [22]. This 
method reduces the training time by initializing the 
weights so that each node is active (in the linear re-
gion of the activation function) over the input range 
of interest. We trained the neural network by using 
the Levenberg-Marquardt back-propagation algo-
rithm discussed in the introductory section on mul-
tilayer neural networks. For each epoch, the μ param-
eter was initialized to 0.001. If a step succeeded, i.e., 
E(w + dw) < E(w), then we decreased μ by a factor of 
ten. If the current step was unsuccessful, the value of μ 
was increased by a factor of ten until a successful step 
could be found (or until μ reached 1010). We stopped 
the network training when the error on a separate data 
set did not decrease for ten consecutive epochs. The 
sensor noise was changed on each training epoch to 
desensitize the network to radiance measurement er-
rors. 

Validation of the PPC/NN Algorithm 

In this section, we evaluate the performance of the 
PPC/NN algorithm by using cloud-cleared AIRS 
data where the cloud clearing is performed with both 
AIRS/AMSU data and collocated European Centre 
for Medium-Range Weather Forecasts (ECMWF) 
forecast fields. We compare the PPC/NN retrieval 
performance with that obtained by using the AIRS 
Level-2 algorithm. We consider both ocean and land 
cases, including elevated surface terrain, and retriev-
als at all sensor scan angles (out to ±48°) are derived. 
Finally, we present a sensitivity analysis of PPC/NN 
retrieval performance with respect to cloud amount.

Cloud Clearing of AIRS Radiances. We applied the 
cloud-clearing approach discussed in Reference 23 
to the AIRS data by the AIRS Science Team. Several 
3.x versions of the algorithm were used in this work. 
The algorithm seeks to estimate a clear-column radi-
ance (the radiance that would have been measured if 
the scene were cloud free) from a number of adjacent 
cloud-impacted fields of view. 

The AIRS/AMSU/ECMWF Data Set. We evaluated 
the performance of the PPC/NN algorithm by using 
352,903 AIRS/AMSU observations and collocated 
ECMWF atmospheric fields collected on seven days 
from September 2002 to December 2003. We made 
various software version changes over the course of 

this work, but these changes were primarily with re-
gard to quality control and do not significantly affect 
the results presented here. However, the version 4.x re-
lease of the AIRS software, which was not available in 
time to be included in this work, should offer many 
enhancements over version 3.x, including improved 
cloud clearing, retrieval accuracies, quality control, 
and retrieval yield [24]. Reanalyses of the results pre-
sented in this section are therefore planned with the 
new AIRS software release. 

We randomly divided the 352,903 observations 
into a training set of 302,903 observations (206,061 
of which were over ocean), and a separate validation 
set of 50,000 observations (40,000 of which were over 
ocean). The a priori root mean square (RMS) variation 
of the temperature and water-vapor (mass-mixing ra-
tio) profiles contained in the validation set are shown 
in Figure 7. We matched the observations in the vali-
dation set with AIRS Level-2 retrievals obtained from 
the EOS Data Gateway (EDG). As advised in the 
AIRS Version 3.0 L2 Data Release Documentation, 
only retrievals that met certain quality standards (spe-
cifically, a Retrieval Quality Assurance Flag, RetQA-
Flag, of zero for ocean and 256 for land) were includ-
ed in the analyses. There were 17,856 AIRS Level-2 
retrievals (all within ±40° latitude) that met these cri-

FIGURE 7. A priori temperature and water-vapor profile sta-
tistics for the validation dataset used in the analysis. 
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teria. Reanalysis with AIRS Level-2 version 4.x soft-
ware is planned, since the version 4.x products have 
been validated over both ocean and land at near-polar 
latitudes. 

To facilitate a comparison with results published 
in the AIRS v3.0 Validation Report, we calculated 
twenty-five layer error statistics as follows. First, layer 
averages are calculated in layers of approximately, but 
not exactly, 1 km width—the exact layer widths can 
be found in Appendix III in the AIRS v3.0 Validation 
Report. Second, we calculated weighted water-vapor 
errors in each layer by dividing the RMS mass mixing 
ratio error by the RMS variation of the true mass-mix-
ing ratio (as opposed to dividing the mass-mixing ratio 
error of each profile by the true mass-mixing ratio for 
that profile and computing the RMS of the resulting 
ensemble).

AIRS/AMSU Channel Selection. We discarded 37% 
(888 of the 2378) of the AIRS channels for the analy-
sis; the radiance values for these channels frequently 
were flagged as invalid by the AIRS calibration soft-
ware. Figure 8 illustrates a simulated AIRS bright-
ness-temperature spectrum, showing the original 2378 
AIRS channels and the 1490 channels that were se-
lected for use with the PPC/NN algorithm. All fifteen 
AMSU channels were used. The algorithm automati-
cally discounts channels that are excessively corrupted 
by sensor noise (for example, AMSU channel 7 on 
EOS Aqua) or other interfering signals (for example, 
the effects of non-local thermodynamic equilibrium) 
because the corruptive signals are largely uncorrelated 
with the geophysical parameters to be estimated.

PPC/NN Retrieval Enhancements for Variable Sen-
sor Scan Angle and Surface Pressure. When dealing with 
global AIRS/AMSU data, we must accommodate a 
variety of scan angles and surface pressures. Therefore, 
we added two additional inputs to the neural networks 
discussed previously: (1) the secant of the scan angle, 
and (2) the forecast surface pressure (in mbar) divided 
by 1013.25. The resulting temperature and water-va-
por profile estimates were reported on a variable pres-
sure grid anchored by the forecast surface pressure. 
Because the number of inputs to the neural networks 
increased, we increased the number of hidden nodes 
in the neural networks used for temperature retrievals 
from fifteen to twenty. For water-vapor retrievals, we 

maintained the number of hidden nodes in the first 
hidden layer at twenty-five, but we added a second 
layer of fifteen hidden nodes.

Retrieval Performance. We now compare the retriev-
al performance of the PPC/NN, linear regression, and 
AIRS Level-2 methods. For both the ocean and land 
cases, we derived the PPC/NN and linear-regression 
retrievals by using the same training set and the same 
validation set for all methods. 

Figure 9 shows the temperature-profile retrieval per-
formance over ocean for the linear regression retrieval, 
the PPC/NN retrieval, and the AIRS Level-2 retrieval. 
Figure 10 shows the corresponding water-vapor re-
trieval performance. We calculated the error statistics 
by using the 13,156 (out of 40,000) AIRS Level-2 re-
trievals that converged successfully. We found a bias of 
approximately 1K near 100 mbar between the AIRS 
Level-2 temperature retrievals and the ECMWF data 
(ECMWF was colder). We removed this bias prior to 
the computation of the AIRS Level-2 retrieval error 
statistics. 

Figure 11 shows the temperature-profile retrieval 
performance over land for the linear regression re-
trieval, the PPC/NN retrieval, and the AIRS Level-2 
retrieval. Figure 12 shows the corresponding water-va-
por retrieval performance. We calculated the error sta-
tistics by using the 4700 (out of 10,000) AIRS Level-2 
retrievals that converged successfully. 

Several features in Figures 9 through 12 are note-
worthy. First, for all retrieval methods, the performance 
over land is worse than that over ocean, as expected. 
The cloud-clearing problem is significantly more dif-
ficult over land, since variations in surface emissivity 

FIGURE 8. A typical AIRS spectrum (simulated) is shown. 
1490 out of 2378 AIRS channels were selected. 
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FIGURE 10. Water-vapor (mass-mixing ratio) retrieval perfor-
mance of the PPC/NN, linear regression, and AIRS Level-2 
methods over ocean. Statistics were calculated over 13,156 
fields of regard. The anomalously high value for the AIRS 
Level-2 data below 200 mbar is an artifact of the errors in the 
atmospheric fields. 
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FIGURE 9. Temperature retrieval performance of the PPC/
NN, linear regression, and AIRS Level-2 methods over ocean. 
Statistics were calculated over 13,156 fields of regard.

FIGURE 12. Water-vapor (mass mixing ratio) retrieval per-
formance of the PPC/NN, linear regression, and AIRS Lev-
el-2 methods over land. Statistics were calculated over 4700 
fields of regard. The anomalously high value for the AIRS 
Level-2 data below 200 mbar is an artifact of the errors in the 
atmospheric fields. 
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FIGURE 11. Temperature retrieval performance of the PPC/
NN, linear regression, and AIRS Level-2 methods over land. 
Statistics were calculated over 4700 fields of regard.
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can be mistaken for cloud perturbations, thus resulting 
in improper radiance corrections. Second, the magni-
tude of the temperature profile-error degradation for 
land versus ocean is larger for the PPC/NN algorithm 
than for the AIRS Level-2 algorithm. In fact, the tem-
perature profile-retrieval performance of the AIRS 
Level-2 algorithm is superior to that of the PPC/NN 
algorithm throughout most of the lower troposphere 
over land. Further analyses of this discrepancy suggest 
that the performance of the PPC/NN method over el-
evated terrain is suboptimal. We are currently working 
on improving this performance.

Retrieval Sensitivity to Cloud Amount. Figure 13 
shows the temperature retrieval error over ocean in the 
layer closest to the surface as a function of the cloud 
fraction retrieved by the AIRS Level-2 and PPC/NN 
algorithms. Similar curves for the water-vapor retrieval 
performance over ocean are shown in Figure 14. The 
large errors evident in regions with small retrieved 
cloud fractions are due to the AIRS Level-2 algorithm 
misclassifying some completely cloudy scenes as com-
pletely clear. Both methods produce temperature and 
moisture retrievals with RMS errors near 1 K and 
15%, respectively, even in cases with large cloud frac-
tions. The figures show that the PPC/NN temperature 
and moisture retrievals are less sensitive than the AIRS 
Level-2 retrievals to cloud amount. Furthermore, it 
has been shown that the PPC/NN retrieval technique 

is relatively insensitive to sensor scan angle, orbit type, 
and training set comprehensiveness [26].

Discussion and Future Work

While the PPC/NN performance results presented in 
the previous section are encouraging, we must mention 
several caveats. The ECMWF fields used for ground 
truth contain errors, and the neural network will tune 
to these errors as part of its training process. There-
fore, the PPC/NN RMS errors shown in the previous 
section may be underestimated, and the AIRS Level-2 
RMS errors may be overestimated, as the ECMWF 
data are not an accurate representation of the true state 
of the atmosphere. This is especially true over ocean 
and at high altitudes where radiosonde data are largely 
absent or of poor quality. Figures 10 and 12 show ex-
amples of these inaccuracies in the AIRS Level-2 re-
trieval of upper tropospheric water vapor. The marked 
increase in AIRS Level-2 retrieval error near 200 mbar 
is probably due to errors in the ECMWF atmospher-
ic fields, not the retrieval. Therefore, the true spread 
between the performance of the PPC/NN and AIRS 
Level-2 algorithms is almost certainly smaller than that 
shown in Figures 13 and 14. Work is currently under 
way to test the performance of both the PPC/NN and 
AIRS Level-2 algorithms with additional ground-truth 
data, including radiosonde data, and ground- and air-
craft-based measurements.

FIGURE 14. Cumulative RMS water-vapor error over ocean in 
the layer closest to the surface. Pixels were ranked in order of 
increasing cloudiness, according to the retrieved cloud frac-
tion from the AIRS Level-2 algorithm. No retrievals were at-
tempted by the AIRS Level-2 algorithm if the retrieved cloud 
fraction exceeded 80%.

FIGURE 13. Cumulative RMS temperature error over ocean in 
the layer closest to the surface. Pixels were ranked in order of 
increasing cloudiness according to the retrieved cloud frac-
tion from the AIRS Level-2 algorithm. No retrievals were at-
tempted by the AIRS Level-2 algorithm if the retrieved cloud 
fraction exceeded 80%.
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Note that the PPC/NN algorithm as implemented 
in this work is currently not a stand-alone system, 
since both AIRS cloud-cleared radiances and quality 
flags produced by the AIRS Level-2 algorithm are re-
quired. Future work is planned to adapt the PPC/NN 
algorithm for use directly on cloudy AIRS/AMSU ra-
diances and to produce quality assessments of the re-
trieved products. Finally, assimilation of PPC/NN-de-
rived atmospheric parameters into numerical weather 
prediction models is planned, and the resulting impact 
on forecast accuracy will be an excellent indicator of 
retrieval quality. 

In light of the previous comments, we must con-
sider the steps required to implement the PPC/NN 
retrieval technique in an operational system. The re-
quired training methodology is most important. For 
reasons previously discussed, it is probably not feasible 
to derive the PPC/NN coefficients by using a fore-
cast model. Two products from the EOS Aqua system 
should be invaluable sources of training data for future 
missions. The first is the generated database of radi-
ances (both raw and cloud-cleared) and atmospheric 
parameter retrievals. Second, and more importantly, is 
the improved validation of surface, cloud, and trans-
mittance models as a direct result of product valida-
tion efforts. The forecasting models, together with 
the database of atmospheric retrievals, will provide a 
ground-truth laboratory from which training datasets 
for future sensors can be derived.

neural network Retrieval of Precipitation  
from Microwave Sounding data

In addition to estimating temperature and water-vapor 
profiles, neural networks have been shown to be useful 
for estimating precipitation. Because of the complex-
ity of precipitation, existing physical models are not 
able to capture all of the physical variability of precipi-
tation. An attractive alternative, therefore, is to derive 
a relationship between precipitation rate and observed 
brightness temperature by using neural networks that 
learn the dependencies through a training set of sam-
ple observations. This approach has been demonstrat-
ed to yield promising results. This section describes 
recent work in which we have used neural networks 
to estimate precipitation rates with data from opaque 
microwave frequency bands. 

Precipitation Retrieval with AMSU 

F.W. Chen and D.H. Staelin developed a neural-
network-based precipitation-rate estimator for the 
Advanced Microwave Sounding Unit instruments 
AMSU-A and AMSU-B on the National Oceanic 
and Atmospheric Administration NOAA-15, NOAA-
16, and NOAA-17 satellites, and the nearly identi-
cal AMSU/Humidity Sounder for Brazil (HSB) suite 
aboard the NASA EOS Aqua satellite [27–29]. A no-
table feature of these instruments is the presence of 
opaque microwave channels in the 54 GHz oxygen 
resonance band and in the 183 GHz water-vapor reso-
nance band. Previous satellite-based passive microwave 
instruments operated only near frequencies where 
atmospheric absorption is relatively small (window 
channels). Some examples of these include the Tropi-
cal Rainfall Measurement Mission (TRMM) Micro-
wave Imager and the Advanced Microwave Sounding 
Radiometer for the Earth Observing System on the 
NASA EOS Aqua satellite.

The Chen-Staelin algorithm is novel in that it relies 
primarily on opaque microwave channels; previous 
efforts relied exclusively on window channels such as 
those with frequency bands near 10, 19, 24, 31, 37, 
and 89 GHz. Window channels are useful for precipi-
tation sensing over ocean because they are sensitive to 
the scattering signatures of ice particles and the emis-
sion signatures for water vapor. Over land, however, 
the emission signatures can be confused with surface 
variations. 

Physical Basis for Precipitation Retrievals near 54 and 
183 GHz. The opacity of the 54 GHz and 183 GHz 
channels on AMSU makes it possible to supplement 
the geophysical information found in window chan-
nels. A useful feature of the opaque channels is their 
sensitivity to specific layers of the atmosphere. Tables 1 
and 2 show the channel frequencies used in this study. 
Figure 2 shows that AMSU-A channels above 53.6 
GHz are largely surface blind and that they sample 
tropospheric temperatures and hydrometeors in broad 
layers at altitudes that increase with radio frequency up 
to around 57 GHz. This surface blindness is primarily 
due to oxygen attenuation. 

All solid, liquid, or mixed-phase hydrometeors ab-
sorb and scatter electromagnetic radiation, typically 
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Table 2. AMSU-B Channels

Channel Channel Frequencies Bandwidth 
 (MHz) (MHz)

 1 89 ± 1 2 × 1

 2 150 ± 0.9 2 × 1

 3 183.31 ± 1 2 × 0.5

 4 183. 1 ± 3 2 × 1

 5 183.31 ± 7 2 × 12

nels at the lower, more transparent radio frequencies 
that see down to those atmospheric depths. Because of 
this frequency-dependent penetration depth, 54 GHz 
spectra reveal the altitudes of precipitating cell tops 
even when they are hidden under thin cirrus or other 
light clouds [31]. In addition, the more transparent 
54 GHz channels provide a measure of cloud albedo, 
which also depends on the hydrometeor particle-size 
spectrum [32] and type; ice clouds exhibit substantial-
ly higher albedos than the water clouds. 

The observed cloud-top altitudes of convective 
cells generally correspond to the top of the graupel 
cloud thrust aloft. In this region, the average graupel 
sensed near 183 GHz is typically much smaller than 
that sensed near 54 GHz, and both populations are 
much larger and fall out much more rapidly than typi-
cal cloud particles sensed at infrared wavelengths. For 
such convective cells, the rain rate is closely related to 
the vertical velocity and the absolute humidity of the 
saturated air. This velocity is also directly related to 
the cell-top altitude, and we can estimate the humid-
ity from nearby non-precipitating spots. Since higher 
vertical wind velocities are better able to support larger 
hydrometeors for long periods, they permit growth of 
water droplets and ice particles to sizes sufficient to 
perturb 54 GHz and lower frequencies. 

This predicted relation between cell-top altitude 
and precipitation rate has been observed by others. 
For example, G.A. Vincente et al. compared 4 km 
resolution pairs of GOES-8 infrared images and in-
stantaneous radar rainfall estimates obtained from 
operational 5 and 10 cm radars in the central Great 

introducing cold spots in the AMSU-A surface-blind 
radiance images. Both ice and liquid hydrometeors 
above 4 km are generally visible against the warmer 
opaque atmospheric background below. This visibil-
ity contrasts with the tendency of window channels 
over land to respond to both liquid hydrometeors 
and random surface variations [30]. Hydrometeors at 
very high altitudes produce a cold spot across all tro-
pospheric AMSU-A channels, whereas low-altitude 
hydrometeors impact primarily those AMSU-A chan-

Table 1. AMSU-A Channels

Channel Channel Frequencies* Bandwidth 
 (MHz) (MHz)

 1 23,800 ± 72.5 2 × 125

 2 31,400 ± 50 2 × 80

 3 50,300 ± 50 2 × 80

 4 52,800 ± 105 2 × 190

 5 53,596 ± 115 2 × 168

 6 54,400 ± 105 2 × 190

 7 54,940 ± 105 2 × 190

 8 55,500 ± 87.5 2 × 155

 9 57,290.344 ± 87.5 2 × 155

 10 57,290.344 ± 217 2 × 77

 11 57,290.344 ± 322.2 ± 48 4 × 35

 12 57,290.344 ± 322.2 ± 22 4 × 15

 13 57,290.344 ± 322.2 ± 10 4 × 8

 14 57,290.344 ± 322.2 ± 4.5 4 × 3

 15 89,000 ± 900 2 × 1000

* The specific channel frequencies are determined from the 
table by adding and subtracting the values from the center 
frequency. For example, AMSU-A channel 1 frequencies are 
23,727.5 and 23,872.5. There are four distinct frequencies for 
AMSU-A channels 11 through 14. They are calculated by add-
ing and subtracting the primary frequency shift to the center 
and then adding and subtracting the secondary frequency 
shift to these two points. For example, the four AMSU-A 
channel 12 frequencies are 57634.544 (57290.344 + 322.2 + 22), 
57590.544, 56990.144, and 56946.144.
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Plains and areas adjacent to the Gulf of Mexico [33]. 
In this work, only those rain systems showing clearly 
delineated convective cores in both the infrared and 
radar images were analyzed. A simple power law rela-
tionship between GOES-8 cloud-top temperature T 
(degrees K) and radar rainfall rate R was obtained for 
these special cases,

 R e T≈ × −1 12 1011 0 0364 1 2

. . .

mm/h ,  
yielding an RMS discrepancy between GOES-8 and 
radar rainfall rate estimates of 7.2 mm/h over a dy-
namic range of 0 to 150 mm/h. 

The advantages of AMSU data relative to such 
GOES observations include an improved ability to 
retrieve temperature and humidity profiles near pre-
cipitation and an ability to see through overlying cir-
rus down to the more substantive graupel. Moreover, 
the differences in microwave responses near 183 and 
54 GHz reveal information about the graupel size dis-
tribution. Larger hydrometeors strongly affect both 54 
GHz and 183 GHz spectra, whereas smaller ones af-
fect primarily 183 GHz spectra alone. Particle size is 
a particularly good indicator of vertical updraft veloci-
ties because only larger velocities can sustain large par-
ticles aloft, and these large velocities are also directly 
conveying saturated air into low-temperature zones 
where the humidity must condense and precipitate. 
Thus a simple relationship linking convective velocity 
and cell-top altitudes to precipitation rates might be 
expected. Although GOES can resolve smaller precipi-
tation cells, those with diameters over 15 km produce 
the most rain. In addition to properties of precipita-
tion particles, the 54 GHz and 183 GHz channels also 
provide information about the temperature and water-
vapor profiles, which determine the amount of water 
that can be precipitated. 

Overview of the Neural-Network-Based Precipita-
tion-Rate Retrieval Algorithm. The key to the method 
of Chen and Staelin was to process the sensor data 
in a way that extracted the most useful information 
related to precipitation. On the basis of the preced-
ing discussion and experimental analysis, the follow-
ing were selected as inputs to the neural network: (1) 
cloud-induced brightness-temperature perturbations 
from five AMSU-A channels in the 54 GHz band; 
(2) three temperature-profile PPC computed by using 

cloud-cleared brightness temperatures in five AMSU-
A channels in the 54 GHz band; (3) two water-vapor 
profile principal components; (4) brightness tempera-
tures from three AMSU-B channels in the 183 GHz 
band; and (5) the secant of the satellite zenith angle.

Precipitation rates should vary monotonically with 
these inputs. Therefore, a simple neural network with 
a structure similar to that shown in Figure 6(a) would 
be appropriate. We trained our Chen and Staelin 
method by using data from the NEXRAD ground-
based radar network, which has good coverage over 
the eastern U.S. This method also has shown plausible 
results for precipitation globally. 

Brightness-Temperature Perturbation Analysis. Figure 
15 shows images of intermediate variables based on 
data over a storm front on 13 September 2000, around 
0130 UTC. Figure 15(a) shows brightness tempera-
tures from the 183 ± 7 GHz channel. In this image, 
the storm front is evident as a series of cold pertur-
bations that span an area from southern Louisiana to 
northern Alabama. In the algorithm, the 183 ± 7 GHz 
channel is the primary channel for detecting precipita-
tion, since it is sensitive to most precipitation with-
out being sensitive to the surface. In some cold and 
dry regions, the 183 ± 7 GHz channel can be sensi-
tive to the surface. In such cases, the more opaque 
183 ± 3 GHz channel, shown in Figure 15(b), is used. 
Of the 183 GHz channels available on AMSU-B, the 
183 ± 1 GHz channels is the most opaque. However, 
in extremely rare cases, even this channel can be sensi-
tive to surface variations. 

Figure 15(c) shows cloud-induced brightness-tem-
perature perturbations near 52.8 GHz. This image 
lacks the fine structure evident in Figure 15(a) because 
AMSU-A has coarser resolution than AMSU-B. In or-
der to retrieve precipitation rate at 15 km resolution, 
we had to sharpen this image from 50 km to 15 km 
resolution by using 183 ± 7 GHz data; Figure 15(d)  
shows the result. 

Sample Retrieval Results. Figure 16 shows a com-
parison of 15 km AMSU rain rates that is based on 
the Chen and Staelin method with results from the 
NEXRAD ground-based radar network. The AMSU 
image agrees with the NEXRAD image in morpholo-
gy. The AMSU method also tends to place heavy pre-
cipitation where NEXRAD places heavy precipitation. 
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FIGURE 16. Precipitation rates (millimeters per hour) above 0.5 mm/h observed 13 September 2000, 0130 UTC. (a) Fif-
teen-kilometer-resolution NEXRAD retrieval and (b) 15 km resolution AMSU retrieval. 
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Figure 17 shows AMSU retrievals over Hurricane 
Isabel (2003) while it was a Category 5 hurricane. The 
eye is clearly visible in the precipitation image, and the 
precipitation rates appear plausible on the basis of the 
183 ± 7 GHz brightness temperatures. 

This method is also useful for detecting snow. Fig-
ure 18 shows the retrieval results for a snowstorm on 
17 February 2003. The image of 183 ± 3 GHz bright-
ness temperatures shows a dark-blue cold band moving 
northward through New England. The peak precipita-
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FIGURE 17. Brightness temperatures near 183 ± 7 GHz (left) and retrieved 15 km precipitation (right) over Hurricane Isabel (cat-
egory 5) observed 12 September 2003, 0610 UTC.
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FIGURE 18. Brightness temperatures near 183 ± 3 GHz (left) and retrieved 15 km precipitation (right) over a snowstorm observed 
on 17 February 2003, 1742 to 1747 UTC.

tion index over New England is about 1 mm/h, which 
was not able to produce the 27.5 inches reported for 
Boston on that day [34]. Although the algorithm has 
yet to be tuned to accurately estimate snowfall rate, it 
still has demonstrated the ability to detect snowfall, 
which is not surprising; the algorithm is sensitive to 
ice particles that proceed upward from the tops of 
convective precipitation. Whether the particles end up 
as rain or snow at the surface depends largely on the 
surface temperature. 

Precipitation Climatology 

The presence of AMSU-A/B on the NOAA-15, -16, 
and -17 satellites, whose orbital paths are shown in 
Figure 19, have local equatorial crossing times at near-

ly regular intervals throughout the day, which facili-
tated a study of the diurnal variations of precipitation. 
The diurnal variation of precipitation is a critical issue 
that researchers have hoped the Tropical Rainfall Mea-
surement Mission (TRMM) would help to address. 
Knowledge of the diurnal variation of precipitation 
will contribute to a better understanding of the daily 
variation of atmospheric heat transport. 

The studies in References 35 and 36 present results 
based on data from the NOAA-15, -16, and -17 sat-
ellites extending toward 65° N and 65° S. We used 
the retrievals based on the method of Chen and Stae-
lin to compute parameters of diurnal variations. Fig-
ure 20 shows the diurnal variations of precipitation 
frequency for retrievals from July 2002 to June 2003 
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[35, 36]. For this image, precipitation frequency for a 
location is defined as the number of events in which 
the retrieved precipitation rate is greater than 1 mm/h 
divided by the number of observations. The precipi-
tation frequency image shows large areas where the 
precipitation frequency is less than 1%; in the Pacific 
Ocean west of South America and west of the United 
States, in the northern Atlantic Ocean west of north-
western Africa, and in the southern Atlantic Ocean 
west of southern Africa. Most of the area where the 
precipitation frequency is higher than 10% is in the 
tropical latitudes. This morphology is consistent with 
other global precipitation averages such as those pro-
duced by the Global Precipitation Climatology Project 
and the Climate Prediction Center Merged Analysis of 
Precipitation, both of which combine satellite-based 
retrievals and rain gauge measurements [37]. In Fig-
ure 20, the arrows representing preferred local solar 
time of precipitation and the circles representing the 
percentage diurnal variation (relative to the mean pre-
cipitation frequency) show large areas of smooth varia-
tions. For example, over most of Brazil the preferred 

local time of precipitation is about 2200, and east of 
the United States, it is about 1300. The largest per-
centage of diurnal fluctuations are found in Australia, 
in southern Africa, and along the Rocky Mountains. 
Note that the largest percentage diurnal fluctuations 
are found in areas where the mean precipitation fre-
quency is low.

Discussion and Future Work 

The algorithm of Chen and Staelin has demonstrated 
the utility of opaque microwave channels for estimat-
ing precipitation. The results obtained with this neu-
ral-network-based method show that neural networks 
can be used in place of or in addition to physics-based 
methods. We hope that this neural-network-based 
method can be improved by using more sophisticated 
methods to process the observations before they are 
presented to the neural network. Some possibilities 
include the use of other signal processing techniques 
such as independent component analysis and the use 
of scattering and emission signatures seen in window-
channel measurements. 
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FIGURE 19. Orbital patterns for the National Oceanographic and Atmospheric Admin-
istration NOAA-15, NOAA-16, and NOAA-17 satellites (red) and the NASA EOS Aqua 
satellite (green).
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The work of Chen and Staelin can easily be adapt-
ed and improved for future instruments like the Ad-
vanced Technology Microwave Sounder (ATMS) on 
the National Polar-Orbiting Operational Environ-
mental Satellite System (NPOESS) and the NPOESS 
Preparatory Project. ATMS has most of the channels 
found on AMSU-A/B and a few additional channels. 
ATMS has several advantages over AMSU-A/B and 
AMSU/HSB: (1) ATMS samples brightness tempera-
tures from all channels at a fixed sampling rate that is 
finer than that of AMSU-A and AMSU; (2) the 54 
GHz channels have finer resolution on ATMS than 
on AMSU-A and AMSU; and (3) ATMS observes 

at a wider range of scan angles than AMSU-A/B and 
AMSU/HSB

The 23.8 GHz and 31.4 GHz channels on ATMS 
have significantly coarser resolution on ATMS than 
on AMSU-A and AMSU. However, the advantages of 
ATMS are likely to lead to retrievals with better accu-
racy and resolution. 

Summary

We presented two neural-network-based parameter 
retrieval methods: a temperature- and moisture-pro-
file retrieval method using infrared and microwave 
data and a precipitation-rate retrieval method us-
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ing primarily opaque microwave data. The PPC/NN 
temperature- and moisture-profile retrieval technique 
combines a linear-radiance-compression operator 
with a neural network estimator. We showed that the 
projected principal component (PPC) transform is 
well-suited for this application because information 
correlated to the geophysical quantity of interest is 
optimally represented with only a few dozen compo-
nents. This substantial amount of radiance compres-
sion (approximately a factor of 100) allows relatively 
small neural networks to be used, thereby improving 
both the stability and computational efficiency of the 
algorithm. Test cases with observed partially cloudy 
AIRS/AMSU data demonstrate that the PPC/NN 
temperature and moisture retrievals yield accuracies 
commensurate with those of physical methods at a 
substantially reduced computational burden. We ob-
tained retrieval accuracies (defined as agreement with 
ECMWF fields) near 1 K for temperature and 25% 
for water-vapor mass-mixing ratio in layers of approxi-
mately 1 km thickness by using the PPC/NN retrieval 
method with AIRS/AMSU data in partially cloudy 
areas. We also performed PPC/NN retrievals with 
partially cloudy AIRS/AMSU data over land. The 
PPC/NN retrieval technique is relatively insensitive 
to cloud amount, sensor scan angle, orbit type, and 
training set comprehensiveness. These results further 
suggest the AIRS Level-2 algorithm that produced the 
cloud-cleared radiances and quality flags used by the 
PPC/NN retrieval is performing well. 

The high level of performance achieved by the 
PPC/NN algorithm suggests it would be a suit-
able candidate for the retrieval of geophysical pa-
rameters other than temperature and moisture from 
high-resolution spectral data. Potential applications 
include the retrieval of ozone profiles and trace gas 
amounts. Our future work will involve further evalu-
ation of the algorithm with simulated and observed 
partially cloudy data, including global radiosonde data 
and ground- and aircraft-based observations. 

We also presented the precipitation-rate retrieval 
method of Chen and Staelin. Examples illustrate that 
AMSU and similar operational instruments flying on 
NOAA-15, -16, -17, NASA EOS Aqua, and other 
meteorological satellites will provide an important 
new resource for routine precipitation monitoring on 

a global scale. Evaluations of rain rate with 15 km and 
50 km nominal resolution suggest that AIRS/AMSU 
rain rate retrievals will usefully supplement other 
global precipitation data sets over both land and sea at 
rates approaching 100 mm/h. The examples presented 
show that 50 km resolution instantaneous precipita-
tion rate retrievals agree quite well with NEXRAD re-
sults when both 54 GHz and 183 GHz spectral data 
are employed, and most 15 km spots precipitating 
more than 1 mm/h should be readily identifiable.
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