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Hyperspectral imaging sensors have been 
used for more than a decade to aid in the de-
tection and identification of diverse surface 

targets, topographical details, and geological features. 
Techniques for scene characterization can utilize in-
dividual or combined spectral bands to identify spe-
cific features in an image. This article describes three 
examples of surface characterization, using data from 
the hyperspectral Hyperion sensor and the multispec-
tral Advanced Land Imager (ALI) sensor on the Earth 
Observing 1 (EO-1) satellite.

The first example deals primarily with the problem 
of discrimination of clouds from surface features. A 
simplified cloud detection algorithm was developed 
that utilizes only reflected solar measurements from 
the EO-1 Hyperion sensor to discriminate clouds 
from all other features in the image [1]. This cloud 
detection effort was part of the EO-1 Extended Mis-
sion Phase of the EO-1 Science Program. The overall 
effort was designed to demonstrate the potential for 
performing cloud-cover detection onboard the satel-
lite to regulate which scenes would be transmitted 
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detection algorithm, developed for processing the Hyperion hyperspectral data, 
uses six bands in the reflected solar spectral regions to discriminate clouds from 
other bright surface features such as snow, ice, and desert sand. The detection 
technique was developed by using twenty Hyperion test scenes with varying cloud 
amounts, cloud types, underlying surface characteristics, and seasonal conditions. 
When compared to subjective estimates, the algorithm was typically within a 
few percent of the estimated total cloud cover. The unique feature-extraction 
capability of hyperspectral sensing is also well suited to coastal characterization, 
which is a more complex task than deep ocean characterization. To demonstrate 
the potential value of Hyperion data (and hyperspectral imaging in general) to 
coastal characterization, EO-1 data from Chesapeake Bay are analyzed. The results 
compare favorably with data from other satellite and aircraft data sources. Finally, 
to demonstrate additional utility of EO-1 data, we describe how a combined 
analysis of panchromatic, multispectral, and hyperspectral data can be applied to 
terrain characterization and anomaly detection.
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for ground processing. The effort involved retrieving 
a collected Hyperion image into onboard memory, 
calibrating the image data to radiance, converting the 
radiances to at-sensor or top-of-the-atmosphere re-
flectances, and performing the cloud-cover detection. 
The last two steps of this process—conversions of ra-
diance to reflectance and cloud-cover detection—are 
described in this article. This work represents the first 
time that an application such as cloud detection was 
performed onboard a spaceborne sensor.

The second example demonstrates the potential 
value of Hyperion data (and hyperspectral imaging in 
general) to perform coastal characterization. Oceans 
comprise two-thirds of the earth surface. Remote sens-
ing provides the only reasonable way of monitoring 
and understanding this enormous part of our planet. 
Optical properties of natural bodies of ocean water are 
influenced by many factors. Some of the key substanc-
es affecting ocean characteristics are phytoplankton, 
suspended material, and organic substances. Spectral 
remote sensing provides a means of routinely obtain-
ing information on ocean properties [2–4]. EO-1 
data collected over Chesapeake Bay from 19 February 
2002 are analyzed. Hyperion data are first compared 
with multispectral ALI data to gain insights into what 
additional information content hyperspectral data can 
provide. A simple algorithm for chlorophyll retrieval is 
also applied. The results compare favorably with data 
from other sources. 

In the third example, a combined analysis of pan-
chromatic, multispectral, and hyperspectral data is 
shown to demonstrate additional utility of EO-1 data 
for terrain characterization, anomaly detection, feature 
extraction, and spectral unmixing. Data sets from the 
Coleambally Irrigation Area, Australia, on 7 March 
2000 and the San Francisco Bay area on 17 January 
2000 are employed for the analysis. Various tools for 
terrain analysis to delineate and characterize vegetation 
and soil are applied. These soil and vegetation fields 
are further clustered according to variations in their 
spectral characteristics.

EO-1 Sensors

The NASA New Millennium Program’s EO-1 satel-
lite was successfully launched on 21 November 2000. 
There are three primary instruments on the EO-1 
spacecraft: the multispectral Advanced Land Imager 
(ALI), the hyperspectral Hyperion sensor, and the 
Linear Etalon Imaging Spectrometer Array (LEISA) 
Atmospheric Corrector (LAC). The EO-1 platform 
was positioned on orbit to be approximately one min-
ute behind the Landsat 7 Enhanced Thematic Map-
per Plus (ETM+) sensor at an altitude of 705 km 
[5]. With the demise of the Lewis and Orbiview-4 
spacecrafts, EO-1 uniquely offers a spaceborne spec-
tral imaging capability that is not currently available 
from any other source [6]. Table 1 summarizes the es-
sential spatial and spectral characteristics of Landsat 7 

Table 1. Landsat and EO-1 Instrument Overview

	 	 Landsat 7	 EO-1	 EO-1	 EO-1	
	 Parameters	 ETM+	 ALI	 Hyperion	 LAC

	 Spectral range	 0.4–2.4 μm*	 0.4–2.4 μm	 0.4–2.5 μm	 0.9–1.6 μm

	 Spatial resolution	 30 m	 30 m	 30 m	 250 m

	 Swath width	 185 km	 37 km	 7.5 km	 185 km

	 Spectral resolution	 variable	 variable	 10 nm	 3–9 nm**

	 Spectral coverage	 discrete	 discrete	 continuous	 continuous

	Panchromatic-band resolution	 15 m	 10 m	 N/A	 N/A

	 Number of bands	 7	 10	 220	 256

	 * Excludes thermal channel	 	 	 	 ** 35/55 cm–1 constant resolution
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and the EO-1 instrument suite. Figure 1 illustrates the 
overlap in surface area coverage of the ALI, Hyperion, 
and LAC sensors, compared to the Landsat 7 ETM+ 
ground track [7].

ALI employs a 15° wide-field telescope and a par-
tially populated focal plane occupying one fifth of the 
field of view, giving a ground swath width of 37 km. 
The ALI was designed to be a follow-on type of sensor 
with bands and spatial resolution similar to the Land-
sat 7 sensor. Hyperion is a grating imaging spectrom-
eter providing 10 nm (sampling interval) contiguous 
bands in the solar reflected spectrum from 0.4 to 2.5 
mm with a spatial resolution of 30 m (the same as the 
ALI and Landsat sensors) over a 7.5 km swath. Each 
swath, or line of data, contains 256 pixels. LAC is an 
imaging spectrometer covering the spectral range from 
0.9 to 1.6 mm, but with a spatial coverage in the hun-
dreds of meters to monitor the atmospheric water ab-
sorption lines for correction of atmospheric effects in 
multispectral imagers. 

Hyperion Cloud-Cover Analysis

This section deals primarily with the problem of dis-
crimination of clouds from surface features. Most 
cloud detection or cloud-mask schemes utilize both 
solar reflected (visible, near infrared, and shortwave 

infrared) and thermal emitted (midwave and long-
wave infrared) measurements [8]. Longwave infrared 
(LWIR) data provide information on the physical tem-
perature of the cloud and the surface, which can be 
a useful discrimination tool. Reflected solar measure-
ments, common to many hyperspectral imaging sen-
sors, rely primarily on spectral reflectance differences 
to discriminate scene features. A simplified cloud de-
tection algorithm has been developed that utilizes only 
reflected solar measurements from the EO-1 Hyperion 
sensor to discriminate clouds from all other features in 
the image [1].

Algorithm Description

The Hyperion cloud-cover algorithm utilizes only six 
Hyperion bands to discriminate all types of clouds 
from other surface features in a scene. The selection 
of the six bands provided spectral information at criti-
cal wavelengths while keeping computer processing 
costs to a minimum. This trade-off was a key aspect 
of the entire cloud-cover detection process, since both 
onboard computer memory and processing time were 
limited. Table 2 lists the six bands chosen for the ini-
tial form of the cloud-cover algorithm. They include 
two visible channels, a near-infrared channel and three 
shortwave infrared (SWIR) channels. 

FIGURE 1. Instrument ground tracks for the Landsat 7 En-
hanced Thematic Mapper Plus (ETM+) sensor and the three 
EO-1 sensors: the Advanced Land Imager (ALI), Hyperion, 
and the Linear Etalon Imaging Spectrometer Array (LEISA) 
Atmospheric Corrector (LAC). Hyperion is a push-broom 
imaging sensor with a swath width of 7.5 km. The EO-1 plat-
form was positioned on orbit to be approximately one minute 
behind the Landsat 7 ETM+ sensor at an altitude of 705 km.

Table 2. Hyperion Bands Used in the  
Cloud-Cover Algorithm

	 Band (μm)	 	 Usage

	 0.55	 Snow/ice/cloud test	

	 0.66	 Red reflectance test	
	 	 Vegetation ratio test

	 0.86	 Vegetation ratio test	

	 1.25	 Snow/ice/cloud test	
	 	 Desert and sand test

	 1.38	 High cloud test	
	 	 Ice and low cloud test

	 1.65	 Snow/ice/cloud test	
	 	 Desert and sand test

N
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Hyperion has two detectors, the first covering the 
visible and near infrared while the second covers the 
SWIR bands. The current algorithm requires channels 
from both detectors. An algorithm using only visible 
and near-infrared bands was considered in order to re-
duce processing time, but cloud-cover detection results 
were not good for scenes with bright surfaces such as 
desert, snow, or ice. In utilizing these six channels, for-
mulas relating the spectral measurements were adapted 
or developed to discriminate and identify cloud fea-
tures in a scene. Figure 2 provides a flowchart of the 
Hyperion cloud-cover algorithm. A brief description 
of the phenomenology behind the algorithm follows. 
Each test detailed below is designed to eliminate spe-
cific non-cloud features while allowing potential cloud 
pixels to pass on to the next test.

Conversion of Radiance to Reflectance

Channels with center wavelengths up to 3 µm derive 
their signal from reflected solar energy off land, water, 

and cloud features. The amount of solar energy that 
is reflected provides information about surface and 
atmospheric feature characteristics such as absorption 
and scattering properties. The reflectivity of an object 
in a scene is generally not a function of the incident 
solar insolation (although it is a function of the view-
ing geometry). Therefore, deriving the apparent or at-
sensor reflectivity for a scene can remove the variation 
in the solar illumination with wavelength.

For the Hyperion sensor, where reflected solar flux 
is the primary illumination source, it is useful to con-
vert the channel radiance Li to an at-sensor reflectance 
ρi, where the subscript i denotes a Hyperion band. 
This conversion can be accomplished by dividing the 
channel radiance by the incident solar flux F0,i correct-
ed for sun angle µ0 and earth-sun distance dearth-sun in 
astronomical units (AU):
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FIGURE 2. Flowchart of the detection process in the Hyperion cloud-cover algorithm. The normalized difference 
snow index (NDSI) and the desert sand index (DSI) are two of the tests used by the algorithm to classify image pix-
els. The various r values represent the computed reflectance for the different spectral bands.The subscripted val-
ues of T represent thresholds of the DSI and the NDSI in the detection process. 
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The sun angle is defined by µ0 = cos(θ0), where θ0 is 
the solar zenith angle. The solar zenith angle may be 
obtained through the EO-1 telemetry or it can be cal-
culated from the measurement date, time of day, and 
geographical location. The earth-sun distance measure 
dearth-sun adjusts the mean solar flux F0,i for orbital radi-
us changes. The earth-sun distance is a function of the 
Julian day and is computed by using a parameterized 
function of tabulated earth-sun distance variations.

The incident solar flux as a function of wavelength 
F0(λ) can be obtained from a number of sources; the 
MODTRAN radiative transfer model [9] contains a 
solar illumination database that can be easily adapted 
to the computation in the above equation. The solar 
flux must be convolved with the Hyperion-band spec-
tral response functions to obtain the channel solar flux 
F0,i. Equation 1 is then applied to each band radiance 
image to obtain an equivalent set of reflectance im-
ages.

Hyperion measurements are distributed as scaled 
radiance. True radiance is obtained by dividing the 
scaled radiance by a factor (either 40 or 80) based 
upon the channel number. Hyperion radiances are ar-
chived in units of W/m2-sr-µm. The popular unit of 
radiance for hyperspectral and other applications is 
the µflick (µW/cm2-sr-µm), which can be obtained by 
multiplying the Hyperion radiance values by 100.

High Clouds

High clouds typically have spectral reflectance char-
acteristics that are similar to other cloud types. How-
ever, high thin clouds that are predominantly ice are 
generally not opaque to underlying surface reflectance, 
such that surface features can be observed through 
the clouds. This adds a level of difficulty in detect-
ing high clouds, especially if LWIR information is not 
available. Techniques using observations in the strong 
water vapor absorption bands have provided a new 
method to discriminate high clouds from low clouds 
and surface features [10, 11]. At these wavelengths the 
water vapor absorption is typically strong enough to 
completely suppress the contribution from both the 
reflectance from the surface and low-altitude clouds 
while adequately transmitting radiation scattered from 
high-altitude clouds. This allows the possibility for 
discriminating high clouds from lower-altitude clouds 

and surface features by using only a simple reflectance 
threshold test.

However, in polar latitudes or at high surface el-
evations, the amount of moisture in the atmosphere 
is greatly reduced, resulting in reduced water vapor 
absorption in the 1.38 µm band. This increases the 
penetration of observations at these wavelengths and 
increases the possibility of a significant surface reflec-
tance contribution to the signal. For these cases, bright 
surface features (snow or ice) may be mistaken for high 
clouds and further testing is required to discriminate 
these features. A band ratio test is applied to eliminate 
ice surfaces, and the normalized difference snow in-
dex (NDSI) is used to eliminate snow features. Both 
tests are also used later on in the processing and are 
described in more detail below. All pixels that are not 
flagged as high cloud are passed on for further testing.

Reflectance at 0.66 µm

Clouds are typically one of the brightest features in a 
Hyperion image. The reflectance from clouds is nearly 
invariant in the visible and near-infrared window re-
gions, since the size of the scatterers in the cloud are 
much larger (i.e., size parameter is much greater than 
1) than the sensor wavelengths. This information 
can be used to discriminate clouds from darker back-
ground objects and from bright but spectrally variable 
surface features.

In the visible spectral band, dark surface objects 
can be distinguished from bright clouds by a simple 
reflectance threshold test. At 0.66 µm, many surface 
features such as water, vegetation, shadowed areas, and 
soil exhibit low reflectance values (less than 0.15) and 
can be easily flagged. Pixels that fail this threshold test 
are flagged clear; all other pixels are passed on for fur-
ther testing. Errors with this test can occur for low sun 
conditions, which can reduce the cloud reflectance, 
or for some types of clouds (i.e., cumulus), which can 
self-shadow.

Vegetation Index Ratio

Vegetated surfaces exhibit a strong reflectance gradi-
ent near 0.7 µm, known as the red edge [12]. The re-
flectance for vegetation changes from approximately 
0.1 in the visible to 0.4 or greater in the near infra-
red, depending on specific aspects of the vegetation 
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cover (such as health and greenness). Clouds, however, 
display a nearly constant reflectance signal over this 
range. Therefore, a ratio of a visible to a near-infra-
red channel should be close to 1.0 for clouds and less 
than 0.5 for vegetated surfaces. In general, clouds have 
slightly less reflectance in the visible than in the near 
infrared. Snow and ice surfaces have a similar behav-
ior to clouds in this spectral region. Figure 3 shows an 
example of Hyperion-observed spectral reflectance val-
ues for clouds, surface ice, and vegetation.

Desert Sand Index

Bright surface features such as snow, ice, and sand 
can easily be mistaken for cloud features in the visible 
portion of the spectrum. It is important to be able to 
distinguish these bright surface features from similarly 
bright clouds. Desert sand is composed of numerous 
minerals, including quartz, that strongly reflect sun-
light. In contrast to other bright surface features such 
as snow and ice, desert sand tends to display the largest 
reflectance near 1.6 µm, whereas snow and ice show 
peaks in the visible and near infrared. Clouds also tend 
to display higher reflectance values in the infrared with 
a noticeable drop in reflectance in the SWIR. 

These observations provide an empirical means to 
formulate a discrimination index, or desert sand index 

(DSI), similar to vegetation indices. The DSI was de-
rived to highlight the change from low to high reflec-
tance in the visible and near-infrared spectral region 
for desert and sand surface types. It uses the change in 
reflectance from the edge of the near infrared to the 
SWIR, as shown in the formula below:

	
DSI =

−
+

ρ ρ

ρ ρ
1 25 1 65

1 25 1 65

. .

. .
.
	

Figure 4 shows plots of the Hyperion-observed spec-
tral reflectance values for snow, ice, desert, and cloud 
features. Comparing values near the red (1.25 µm) 
and orange (1.65 µm) vertical bands shows that the 
sand feature is the only one that displays a negative 
DSI value. This test provides a process for eliminating 
bright sand and desert surfaces from consideration as 
cloud.

Normalized Difference Snow Index

The NDSI is used to identify snow-covered and ice-
covered surfaces and to separate snow and ice from cu-
mulus clouds. The NDSI measures the relative differ-
ence between the spectral reflectance in the visible and 
SWIR. The technique is analogous to the normalized 
difference vegetation index (NDVI), which provides a 
measure of the health and greenness of vegetated sur-
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FIGURE 3. Spectral signatures of three features in the visible and near infrared: 
clouds, surface ice, and vegetation. The red and orange vertical lines represent lo-
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in the vegetation index ratio test.



• griffin, hsu, burke, orloff, and upham
Examples of EO-1 Hyperion Data Analysis

VOLUME 15, NUMBER 2, 2005	 LINCOLN LABORATORY JOURNAL	 277

faces [12]. The formula commonly used for the NDSI 
is given by

	 NDSI =
−
+

ρ ρ

ρ ρ
0 55 1 65

0 55 1 65

. .

. .
. 	

NDSI values greater than approximately 0.4 are rep-
resentative of various snow-covered conditions with 
pure new snow having the highest NDSI values. The 
NDSI tends to decrease as other features (such as soil 
and vegetation) are mixed in with the snow.

Reflectance at 1.25 µm

Some moderately bright surface features (such as aged 
or shadowed snow) may fail the NDSI test. Many of 
these features can be eliminated from consideration as 
clouds by comparing their reflectance at 1.25 µm to 
an empirically defined threshold. Most surface features 
have reflectance values less than 0.4 at this wavelength, 
while clouds still display reflectances greater than 0.4 
(as seen in Figure 4). The 1.25 µm reflectance test is 
applied only to potential cloudy pixels that have sur-
vived previous tests.

Ice Discrimination

To further discriminate ice surfaces from water cloud 
pixels, pixels that have passed previous tests and have 

reflectance values greater than 0.1 at 1.38 µm are as-
sumed to be ice surfaces and eliminated from consid-
eration as cloudy. Again, Figure 4 shows that for water 
clouds and bright snow-covered surfaces, reflectance 
values at 1.38 µm are quite low, much less than 0.1. 
Ice surfaces, however, display a significant reflectance 
signal at this wavelength. Since ice cover tends to oc-
cur during winter months when the air is normally 
quite dry, this surface feature can often be seen in the 
1.38 µm water vapor band and can be mistaken for 
mid-to-high level clouds.

Algorithm Applications

The cloud-cover detection process defined in Figure 2 
was applied to a set of twenty Hyperion scenes with 
varying cloud cover, cloud type, surface characteristics, 
and seasonal collection times. Each scene was convert-
ed from radiance to reflectance by using the technique 
described earlier. The cloud-cover detection algorithm 
was applied independently to each pixel in a scene; ef-
fects from adjacent pixels did not influence the com-
putation. While the tests we have just described can 
discriminate specific surface features from clouds, no 
attempt was made at this time to classify the surface 
features on the basis of the results from the tests. A 
simple cloud/no-cloud mask was provided as the pri-

FIGURE 4. Spectral signatures for four features in the visible, near infrared, and 
shortwave infrared (SWIR): clouds, surface ice, snow, and desert sand. The red and 
orange vertical bands represent locations of the near-infrared and SWIR channels, 
respectively, used in the desert sand index test. The green and blue bands represent 
channels used in the snow and ice discrimination tests.
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mary output product, along with line-by-line statis-
tics of the presence of cloud-free pixels, low-to-mid-
level cloud (presumably water), and mid-to-high-level 
cloud (presumably ice). Figures 5 through 10 show ex-
amples of the Hyperion scenes used in the evaluation 
of the algorithm. A red-green-blue (RGB) rendition of 
the test scene is shown along with the computed cloud 
mask for each scene. While full Hyperion scenes nor-
mally comprise over 3000 lines, only 1000-line sub-
sets of each scene are shown for display purposes. The 
figure caption gives the computed cloud amount for 

the 1000-line scene subset. For each of the test scenes, 
the associated figure depicting the cloud cover uses the 
following color scheme: blue represents cloud-free, 
gray or maroon represents low-to-mid cloud, and or-
ange represents mid-to-high cloud.

Kauai, Hawaii

The scene in Figure 5 was collected on 22 May 2002 
at 2056 UTC over the island of Kauai, Hawaii. This 
scene is characterized by partly cloudy conditions with 
cumulus clouds present over land and water. Clear re-

FIGURE 5. Hyperion image collected over Kauai, Hawaii, dis-
playing partly cloudy conditions with cumulus clouds over 
land and water. The algorithm computed the cloud amount 
for the scene to be 41.3%.

FIGURE 6. Hyperion image collected near Cheyenne, Wyo-
ming, displaying partly cloudy conditions with high thin 
clouds over snow-covered hilly terrain. The algorithm com-
puted the cloud amount for the scene to be 58.9%.
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Low-to-mid cloud

Cloud-free

Mid-to-high cloud

Low-to-mid cloud



• griffin, hsu, burke, orloff, and upham
Examples of EO-1 Hyperion Data Analysis

VOLUME 15, NUMBER 2, 2005	 LINCOLN LABORATORY JOURNAL	 279

gions are also visible. The algorithm does well detect-
ing clouds over land; over the water the main cloud re-
gion is masked but some areas of thin cloud cover may 
not be identified. The 0.66 µm threshold reflectance 
test is the predominant test used over the water for 
non-ice clouds. Adjusting the threshold value would 
allow the capture of more clouds over the water. Over 
the land area, both the reflectance and ratio tests are 
primarily used to discriminate the clouds from under-
lying vegetation. The routine seems to miss a small 
amount of cloud cover over land, mostly cloud edges, 
which would support a slight reduction in the thresh-
old value for the reflectance test. The total computed 
cloud amount for this scene segment is 41.3%, which 
appears to underestimate the actual cloud cover by at 
most a few percent.

Cheyenne, Wyoming

The scene in Figure 6 was collected on 5 March 2002 
at 1720 UTC near Cheyenne, Wyoming. This scene 
is characterized by partly cloudy conditions with high 
thin clouds overlying snow-covered hilly terrain. The 
visible clouds are identified as mid-to-high level clouds 
by the 1.38 µm threshold reflectance test. The clouds 
are thin enough that some of the underlying terrain 
is visible, especially near the bottom of the scene. The 
NDSI test accurately identifies the bright snow-cov-
ered terrain as a surface feature, with the possible ex-
ception of some areas near the edge of the high clouds. 
Here the snow-covered surface is masked as a low-to-
mid cloud. These areas seem to be either shadowed by 
the high clouds or self-shadowed due to terrain varia-
tions and the moderate sun elevation (36° above the 
horizon). The regions of possible misidentification 
comprise only a small percentage of the image (< 4%). 
The overall computed cloud amount for the scene is 
58.9%, which appears to be an overestimate in this 
case.

Kansas City, Kansas

The scene in Figure 7 was collected near Kansas City, 
Kansas, on 4 March 2002 at 1638 UTC. This image 
is characterized by thin mid-level clouds overlying 
snow-covered terrain. Some river and road features 
are observable. The algorithm correctly identifies all of 
the thin cloud cover, but also misidentifies apparently 

clear areas as cloud. These areas are located in the up-
per right quadrant of the image. As with the Chey-
enne, Wyoming scene, these seem to be areas of darker 
snow-covered terrain. The algorithm fails to identify 
these regions as snow since the NDSI values fall below 
the nominal threshold for snow. Further tests do not 
eliminate these features and they are identified as low-
to-mid cloud. For this case the amount of clear land 
misidentified as cloud is approximately 3 to 7%. The 
overall computed cloud cover for this scene is 72.6% 
and appears to be an overestimate by about 5%.

FIGURE 7. Hyperion image collected near Kansas City, Kan-
sas, displaying partly cloudy conditions with thin mid-level 
clouds over snow-covered terrain. The algorithm computed 
the cloud amount for the scene to be 72.6%.
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Chiefs Island, South Africa

The scene in Figure 8 was collected on 16 April 2002 
at 0821 UTC near Chiefs Island, South Africa. Vari-
ous types of cumulus clouds are present. The algo-
rithm does an adequate job of identifying the majority 
of the cloud fields, although some of the cloud street 
patterns near the center of the image are missing from 
the cloud mask. The 0.66 µm reflectance test is pre-
dominantly used to identify these types of clouds, and 
a lowering of the threshold might improve the cloud-

cover detection. The overall computed cloud amount 
for this image is 68.9%, which seems to be an under-
estimate by about 5 to 10%.

Bering Sea

The scene in Figure 9 was collected in the Bering Sea 
on 20 April 2002 at 2318 UTC. This scene is one of 
a number of clear scenes over bright surfaces that were 
chosen to test the ability of the algorithm to discrimi-
nate bright surface features from clouds. In this case, 
the scene is predominantly snow-covered ice and land 

FIGURE 8. Hyperion image collected near Chiefs Island, 
South Africa, displaying mostly cloudy conditions with a va-
riety of cumulus cloud fields present. The algorithm comput-
ed the cloud amount for the scene to be 68.9%.

FIGURE 9. Hyperion image collected in the Bering Sea, dis-
playing clear conditions over both snow-covered ice and 
land. The algorithm computed the cloud amount for the 
scene to be 0.7%.
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with a coastline feature running horizontally across 
the center of the image and with ice towards the bot-
tom of the image. Some road and man-made structure 
features are apparent near the center of the image. The 
algorithm does an excellent job identifying the snow 
and ice features as cloud free. A small amount of the 
dark features in the upper part of the image were mis-
classified as cloud; the computed cloud amount for 
this image was 0.7%.

Suez Canal

The scene in Figure 10 was collected over the Suez 
Canal on 23 April 2002 at 0813 UTC. This region 
is characterized by bright sand and desert conditions. 
The Suez Canal is clearly observed, as is a ship in the 
canal near the center of the image. The DSI correctly 
identifies the bright regions of the image as surface 
features. A small amount of the bright region in the 
lower part of the scene was identified as cloud. The 
computed cloud amount for this image was 0.3%.

Summary of Cloud-Cover Analysis

The cloud analysis algorithm was designed to perform 
cloud-cover detection onboard the EO-1 satellite. The 
algorithm requires calibrated radiances, which are con-
verted to reflectance values and processed through the 
cloud-cover routine to produce a cloud mask for the 
observed image. The routine was tested on numerous 
Hyperion images collected over a wide range of sur-
face and atmospheric conditions.

The algorithm does remarkably well, considering 
that no thermal infrared data are available to assist in 
the cloud-cover determination. A set of seven tests is 
used to discriminate surface features from clouds. Two 
types of clouds are identified by this routine: low-to-
mid (water) and mid-to-high (ice) clouds. Tests of the 
routine produced cloud-cover estimates that were gen-
erally within 5% of the visually estimated cloud-cover 
amount. The algorithm has the most difficulty with 
shadowed or darkened snow-covered surfaces that are 
not identified properly in the NDSI test.

Remote Sensing of Coastal Waters

Oceans comprise two-thirds of the earth surface. Re-
mote sensing provides the only reasonable way of 
monitoring and understanding this majority part of 

our planet. Optical properties of natural bodies of 
ocean water are influenced by many factors. Some of 
the key substances affecting ocean characteristics are 
phytoplankton, suspended material, and organic sub-
stances. 

In general, ocean waters are partitioned into case 1 
(open ocean) and case 2 (coastal) waters; case 1 waters 
are those in which phytoplankton are the principal 
agents responsible for variations in optical properties 
of the water. On the other hand, case 2 waters are in-
fluenced not just by phytoplankton and related par-

FIGURE 10. Hyperion image collected over the Suez Canal, 
displaying the clear conditions and bright sand characteristic 
of a desert scene. The algorithm computed the cloud amount 
for the scene to be 0.3%.
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ticles, but also by other substances, notably inorganic 
particles in suspension and yellow substances. Figure 
11 is a representation of case 1 and case 2 waters ac-
cording to their optical properties, which are primarily 
due to phytoplankton (P), yellow substances (Y) and 
suspended material (S). Coastal waters are more com-
plex in their composition and optical properties than 
open ocean waters. Sensing requirements are more 
stringent and interpretation of data is also a challenge 
due to the following four important reasons [13].

First, ocean color in coastal waters is influenced in 
a nonlinear fashion by a number of constituents in the 
water. In shallow waters, it is further influenced by the 
depth of the water column, and by the nature of the 
bottom. Second, some of the inherent optical proper-
ties of the constituents that influence ocean color can 
be similar to each other. The similarity may persist 
over the entire spectral range of interest, as in the case 
of the absorption spectra of colored dissolved organic 
matter and detrital particles. Similarities impede dif-
ferentiation of the substances by remote sensing.

Third, the concentrations of in-water constituents 
have wide dynamic ranges. For example, chlorophyll-a 
concentration varies over several orders of magnitude, 

from about 0.01 to 100 mg m–3. Fourth, each of the 
three major components of the water that influence 
ocean color in case 2 waters (phytoplankton, other 
suspended particulates and yellow substances) repre-
sents a group of substances rather than a single sub-
stance. A consequence is the variability in their optical 
signatures. These points all have to be kept in mind 
when developing algorithms for interpretation of 
ocean color in case 2 waters.

Looking back on the variety of ocean color sensors 
flown in the last twenty-five years, as illustrated in Fig-
ure 12, we notice that the bands chosen generally vary 
between 0.4 and 1.0 mm. These multispectral sensors 
vary not only in the number of bands and exact band 
locations, but also the bandwidths of respective bands. 

FIGURE 11. Phytoplankton (P), yellow substances (Y), and 
suspended material (S) are the three key contributors to the 
ocean color. The chart depicts the relative contributions to 
case 1 deep ocean and case 2 coastal waters. (Image cour-
tesy IOCCG Report #3, 2000.)

FIGURE 12. Channel distributions for a variety of ocean color 
sensors flown in the last twenty-five years.
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The bands are chosen to utilize the reflection, back-
scatter, absorption, and fluorescence effects of the vari-
ous species. 

While ocean-product algorithms vary according to 
parameter and scenario, most of them are semi-em-
pirical retrievals based on established climatological 
information. As previously mentioned, a challenge to 
coastal remote sensing is that coastal features are more 
complex than those of the open ocean. The small 
number of bands ultimately limits the extent of re-
trievable products. It would be of great advantage if 
physics-based approaches could be established as sen-
sors with increasing number in spectral bands provide 
a chance to solve the complex coupled phenomena in 
coastal remote sensing.

To illustrate the point, we can express the top of the 
atmosphere reflectance of ocean as

	

R T T T R R

R R
g r a w s

r a

λ λ λ λ λ λ

λ λ

( ) = ( ) ( ) ( ) ( ) + ( )[ ]
+ ( ) + (( ) ,

where Tr and Ta are atmospheric transmission factors 
due to Rayleigh scattering and aerosol scattering, re-
spectively; Tg is the atmospheric gas transmittance; Rw 
is the water reflectance; Rs is the reflectance of the sky-
light and direct sunlight from the water surface; and 
Rr and Ra are the atmospheric path reflectance due to 
Rayleigh scattering and aerosol scattering, respectively 
[14].

Coupled effects can potentially be best resolved 
with hyperspectral imagery. To begin with, a hyper-
spectral sensor covering the spectral range between 0.4 
and 1 mm has all the bands necessary to provide legacy 
with previous sensors and explore new information. 
Furthermore, most ocean characterization algorithms 
utilize water-leaving radiance. The atmospheric aero-
sol effect is most pronounced in the shortwave visible 
where ocean color measurements are made. With con-
tiguous spectral coverage, atmospheric compensation 
can be done with more accuracy and precision.

EO-1 Data from Chesapeake Bay

To demonstrate the potential value of Hyperion data 
(and hyperspectral imaging in general) to coastal char-
acterization, we analyzed EO-1 data from Chesapeake 
Bay from 19 February 2002. Both ALI and Hyperion 

data were available. A common area was selected for 
analysis. This area, approximately 6 km wide by 15 km 
long, consists of land, a marsh, a sand bar, and shal-
low water. Figure 13 shows the coastal images of ALI 
and Hyperion from the data set. The three-channel 
RGB composite images from ALI and Hyperion look 
practically identical. For further analysis, spectral data 
between 0.43 and 0.93 mm were utilized; this spectral 
range covers six bands from ALI and fifty bands from 
Hyperion. Figure 14 is the nautical chart from Chesa-
peake Bay with an enlarged view of the data area. 

To compare the ALI and Hyperion data and to il-
lustrate the dimensionality of data with complex fea-
tures, we applied the minimum noise fraction (MNF) 
algorithm to both ALI and Hyperion data sets. Image 
reconstruction was then accomplished by inverting 
the transformation matrix. The reconstructed image 
was compared to the original image to gain insight 

FIGURE 13. Chesapeake Bay EO-1 data from the Advanced 
Land Imager (ALI) and Hyperion. The selected area for anal-
ysis was approximately 6 × 15 km2 in size. These two red-
green-blue composite images look nearly identical. Spec-
tral bands between 0.43 and 0.93 mm were also used for this 
study, six from ALI and fifty from Hyperion.

ALI
• 200 samples/line
• 512 lines
• 6 multispectral bands
  (1p, 1, 2, 3, 4, 4p)

Hyperion
• 194 samples/line
• 496 lines
• 50 bands
  (0.43–0.93    m)µ
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into the feature space and the extent of the 
noise in the data. Results are shown in the 
next section.

Feature Extraction and Information  
Content

Multispectral and hyperspectral images are 
amenable to spectral transformations that 
generate new sets of image components. 
The transformed image could make evi-
dent features not discernible in the origi-
nal data or, alternatively, it might be pos-
sible to preserve the essential information 
content of the image with a reduced num-
ber of the transformed dimensions.

Principal-component analysis uses a 
linear transformation to translate and ro-
tate multiband data into a new coordinate 
system that maximizes the variance. This 
technique is used to decorrelate data and 
maximize the information content in a 
reduced number of features [15]. The covariance ma-
trix is first computed over the pixel spectra contained 
in the hyperspectral data cube of interest. Eigenvalues 
and eigenvectors are then obtained for the covariance 
matrix Σ, as given below:

	
Σ ΦΛΦ= − −{ } =E m m

T T( )( ) ,X X X X
	

where X represents the spectral vector data, Xm is the 
mean spectral vector over the data cube, and E is the 
average operator over the entire data cube. Φ is a ma-
trix consisting of columns of eigenvectors, and Λ is a 
diagonal matrix of eigenvalues.

With the eigenvectors as a new coordinate system, 
the hyperspectral data cube is then transformed into 
principal components, also called eigenimages. These 
components are ranked in descending order of the ei-
genvalues (image variances). The eigenimages associ-
ated with large eigenvalues contain most of the infor-
mation, while the eigenimages associated with small 
eigenvalues are dominated by noise. Thus a principal-
component transformation allows for the determina-
tion of the inherent dimensionality and segregation of 
noise components of the hyperspectral image data.

The MNF transform is essentially two cascaded 

principal-component transformations [16, 17]. The 
first transformation, based on an estimated noise co-
variance matrix, decorrelates and rescales the noise in 
the data. This first step results in transformed data in 
which the noise has unit variance and no band-to-
band correlations. The second step is a standard prin-
cipal-component transformation of the noise-whit-
ened data. The transformed data can be divided into 
two parts; one part is associated with large eigenvalues 
and coherent eigenimages, and a complementary part 
is associated with near unity eigenvalues and noise-
dominated images. The associated eigenvalue of each 
eigenimage represents the signal-to-noise ratio (SNR). 
The inherent dimensionality of the data can be de-
termined from the number of coherent eigenimages, 
based on the quantitative SNR. By using the coher-
ent eigenimages, we can implement an inverse MNF 
transformation to remove noise from data.

MNF transforms were applied to both ALI and 
Hyperion data. Figure 15 shows the results. Since 
only six ALI bands are used, six MNF components 
are obtained; for Hyperion there are more MNF com-
ponents. We observe that the first few components 
compare closely with one other. For the fifth and sixth 
components, ALI component images are progressively 

FIGURE 14. Location of EO-1 data on nautical charts of Chesapeake Bay.
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more dominated by noise, while Hy-
perion component images suggest more 
features are present. Beyond the sixth 
component of the Hyperion data, the 
eighth and ninth component images, for 
example, still show discernible features.

We recognize that the SNR for the 
Hyperion data is inferior to that for 
ALI data. However, this exercise dem-
onstrates that the increased spectral cov-
erage more than makes up for the low 
SNR, and that Hyperion data could be 
potentially useful for coastal character-
ization.

Owing to the information compres-
sion properties of the principal-compo-
nent transformation, it lends itself to 
reduced representation of image data 
with reduced noise. Figure 16 shows the 
results of Hyperion image reconstruc-
tion. Both the fifth and the ninth com-
ponents are used for reconstruction and 
compared to the original image. The 
six-component reconstruction clearly 
shows a sharper image compared to the 
original, indicating the reduced noise 
level. However, by comparing the six-
component reconstruction to the nine-
component reconstruction, we find ad-
ditional features in the nine-component 
image that were clearly not present in 
the six-component image.

This quick comparative analysis il-
lustrates the potential utility of high-di-
mensional hyperspectral data compared 
to multispectral data, even when SNR 
is less favorable. Also, transformation of 
the image data allows us to enhance the image quality 
by removing noise components and making features 
more distinguishable. 

Retrieval of Chlorophyll

We describe the retrieval of chlorophyll-a as an ex-
ample of Hyperion data applications for coastal ocean 
waters. Chlorophyll-a absorbs relatively more blue and 
red light than green, and the spectrum of backscat-

tered sunlight or color of ocean water progressively 
shifts from deep blue to green as the concentration 
of phytoplankton increases. A large data set contain-
ing coincident in situ chlorophyll and remote-sensing 
reflectance measurements was used to evaluate a wide 
variety of ocean color chlorophyll algorithms for use 
by the Sea-Viewing Wide Field-of-View Sensor (Sea-
WiFS) [18]. Two types of algorithms—empirical and 
semi-analytical—were extensively reviewed. It was 

FIGURE 15. Comparison of six minimum noise fraction (MNF) components 
from ALI and Hyperion.

ALI (1) Hyperion (1) ALI (2) Hyperion (2)

ALI (3) Hyperion (3) ALI (5) Hyperion (5)

ALI (6) Hyperion (6) Hyperion (8) Hyperion (9)
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concluded that ocean chlorophyll (OC)-2 and OC-
4 are the two best estimators. Improved performance 
was obtained with the OC-4 algorithm, a four-band 
(443, 490, 520, and 555 nm), maximum-band-ratio 
formulation.

Before applying the OC-4 algorithm to the Chesa-
peake Bay data, we first used a standard atmospheric 
correction algorithm to obtain the surface reflectance. 
The land mass was also masked out. Figure 17 shows 
the resultant chlorophyll concentration map, with 
white representing the lowest value. Quantitative val-
ues are plotted for selected horizontal lines as well.

Fortuitously, supporting data can be used as “sur-
rogate” ground truth. The first data set, shown in Fig-
ure 18, came from routine low-altitude aircraft data 
collected on 19 February 2002 from the Chesapeake 
Bay Remote Sensing Program [24]. The second data 
set, shown in Figure 19, was taken from the pub-

lished weekly SeaWiFS products for the week of 18 
to 25 February 2002 [25]. All derived values from the 
various measurements are consistent, and in the range 
from 2 to 4 mg/m3. Certainly much more work re-
mains to be done to validate the application of Hy-
perion data to coastal ocean waters. This initial result, 
however, is very encouraging.

Summary of Coastal Water Analysis

EO-1 data gathered from Chesapeake Bay on 19 Feb-
ruary 2002 are analyzed to demonstrate the potential 
value of Hyperion data (and hyperspectral imaging in 
general) to coastal characterization. We first illustrate 
that hyperspectral data inherently provide more infor-
mation for feature extraction than multispectral data, 
despite the fact that Hyperion has higher SNR than 
ALI. Chlorophyll retrievals from Hyperion data com-
pare favorably with data from other sources.

FIGURE 16. Original Hyperion image (left); reconstructed images from the inverse MNF algorithm us-
ing five components (center) and nine components (right). The false-color selection (red is from the 
440 to 550 nm band, green is from the 490 to 550 nm band, and blue is from the 530 to 550 nm band) is 
based on spectral bands commonly used for ocean color characterization.

Original Five components Nine components
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Terrestrial Analysis Applications

To demonstrate the utility of EO-1 data, we con-
ducted an analysis of combined panchromatic, multi-
spectral (ALI), and hyperspectral (Hyperion) data. In 
particular, we describe the value added to hyperspec-
tral imaging data with additional spectral information 
[19].

As described earlier, Hyperion is a push-broom 
imaging spectrometer. Each square pixel subtends 
a ground sampling distance of 30 m, is sampled ev-
ery 30 m, and measures a complete spectrum from 
0.4 to 2.5 mm in 220 spectral channels. Each image 
covers a ground area of 7.65 km by 185 km, as illus-

trated previously in Figure 1. The ALI is a co-incident 
multispectral imaging sensor also onboard EO-1. 
ALI, whose spectral bands are listed in Table 3, cov-
ers a larger area (37 km swath width) with the same 
spatial resolution but in nine broad bands. The area 
covered by ALI overlaps approximately 80% with that 
of Hyperion. In addition, ALI has a high-resolution 
panchromatic band of 10 m pixel resolution, which is 
three times better than that of the ALI multispectral 
imaging sensor and the Hyperion hyperspectral imag-
ing sensor. The purpose of this section is to demon-

FIGURE 17. Chlorophyll-a retrieval results from the Sea-
Viewing Wide Field-of-View Sensor (SeaWiFS) ocean chlo-
rophyll (OC)-4 algorithm. In the chlorophyll concentrations 
map on the left, white represents the lowest value and black 
represents the highest value. The four plots on the right 
show quantitative concentration values of selected horizon-
tal lines in the concentration map.

FIGURE 18. Supporting data from the Chesapeake Bay Re-
mote Sensing Program (CBRSP). Chlorophyll-a data is esti-
mated from a SeaWiFS Aircraft Simulator instrument over a 
well-maintained ground site, and published in a Chesapeake 
Bay web site. The Chlorophyll-a immediately inside the bay 
is between 2 to 4 mg/m3. The red box delineates the area of 
the EO-1 data. The flight schedule is about twice a month, at 
a measurement altitude of 500 ft. In this case the measure-
ments were taken the same day as the Hyperion data, on 19 
February 2002. The picture in the figure is reproduced from 
the CBRSP web site. 
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strate the utility of a combined analysis of EO-1 pan-
chromatic, multispectral, and hyperspectral data. 

Data sets from Coleambally Irrigation Area, Austra-
lia, on 7 March 2000, and San Francisco Bay area on 
17 January 2000 are analyzed. Atmospheric correction 
is first applied to the radiance data [20]. Hyperion and 
ALI data over the Coleambally Irrigation Area, Aus-
tralia, are used for terrain characterization in terms 

of soil moisture content and vegetation 
status. Hyperion data are also subject to 
spectral unmixing to illustrate sub-pixel 
analysis. Abundance levels of lush veg-
etation and bare soil are estimated for 
image pixels in different fields of crops. 
Anomaly detection algorithms are ap-
plied to Hyperion image data of the San 
Francisco Bay area. Detections from Hy-
perion data are compared with previous 
Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) data and known li-
brary spectra for material identification. 
Panchromatic-sharpened ALI imagery is 
also shown for enhanced visualization of 
spatial features.

Terrain Characterization

Vegetation status and soil moisture content are two 
major factors contributing to terrain characterization. 
As an example, EO-1 data from the Coleambally Ir-
rigation Area, consisting both of bare soil and various 
types of vegetation, are used to illustrate applications 
of terrain characterization. Simultaneous multispectral 
and hyperspectral data are also compared.

In the vegetation spectra shown in Figure 20, we 

Table 3. ALI Spectral Bands

	 Spectral	 Wavelength	 Ground Sampling	
	 Band	 (μm)	 Distance (m)

	 Panchromatic	 0.48–0.69	 10

	 1p	 0.43–0.45	 30

	 1	 0.45–0.52	 30

	 2	 0.53–0.61	 30

	 3	 0.63–0.69	 30

	 4	 0.78–0.81	 30

	 4p	 0.85–0.89	 30

	 5p	 1.20–1.30	 30

	 5	 1.55–1.75	 30

	 7	 2.08–2.35	 30

FIGURE 20. Sample vegetation and soil spectra. The normal-
ized difference vegetation index (NDVI) measuring spectral 
differences around the red edge is commonly used to repre-
sent the health and amount of vegetation. The liquid water 
index (LWI) estimates water content on the basis of reflec-
tance differences between 1.1 μm and 2.2 μm.

FIGURE 19. SeaWiFS data averaged for the week 18 February to 25 February 
2002. SeaWiFS products are published regularly on a NASA web site. The cal-
culated values of chlorophyll-a are from 2.0 to 4.0 mg/m3.
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observe a decrease in the radiance at 0.68 µm and a 
large increase at near infrared, since chlorophyll in 
the vegetation absorbs visible light from the sun, and 
reflects the infrared radiation. The normalized differ-
ence vegetation index (NDVI) measuring spectral dif-
ferences around the red edge is commonly used to rep-
resent the health and amount of vegetation.

	
NDVI
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m m
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where ρ(0.66 µm) and ρ(0.86 µm) are reflectances at 
0.66 µm and 0.86 µm, representing red and near-in-
frared band reflectance, respectively.

Under smoky or cloudy conditions, both obscu-
rants tend to mask the underlying signal at visible and 
near-infrared wavelengths [21]. However, information 
identifying vegetation can be retrieved from spectral 
channels at longer wavelengths, which are transmitted 
through some smoke. The liquid water index (LWI) 
estimates water content based on reflectance differ-
ences between 1.1 µm and 2.2 µm: 
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A comparison of the spectral characteristics of the 
channels used in the LWI (1.1 µm and 2.2 µm) and 
those used for the NDVI (0.66 µm and 0.86 µm) 
shows similar but reversed trend between dense and 
sparse or no vegetation conditions (see Figure 20). 
While NDVI captures the state of vegetation via chlo-
rophyll content, LWI is indicative of the liquid water 
content in the vegetation. Therefore, it is not surpris-
ing that LWI, like NDVI, has the capability to dis-
criminate between vegetation conditions, but with the 
added benefit of operating under obscured conditions.

Another index based on Landsat 7 ETM+ bands 5 
and 7 is the soil moisture index (SMI) [22]:
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These indices are calculated for the Coleambally image 
with both Hyperion and ALI data. ALI bands closest 
to the wavelengths indicated in the index formulas are 
used. Multispectral bands 3 and 4p are employed for 
NDVI, and bands 5p and 7 are employed for LWI. 
For comparison, Hyperion spectral data are averaged 
over the bandwidth of corresponding ALI bands be-
fore index calculation. Figure 21 shows line profiles of 
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FIGURE 21. Line profiles of NDVI, LWI, and the soil moisture index (SMI) over areas of soil, corn, rice, soy-
bean, and a second plot of soil. The LWI profile appears to closely follow the NDVI profile, except for some 
small deviations. The SMI profile also resembles the NDVI profile in overall shape but has a different scale. 
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NDVI, LWI, and SMI over areas of soil, corn, rice, 
and soybean in the image. The LWI profile appears to 
closely follow the NDVI profile, except for some small 

FIGURE 22. Scatter plot of LWI and NDVI derived from Hy-
perion data over Coleambally. Separate clusters can be de-
lineated from this index plot. The cluster at the lower left con-
sists of data from soil. Some spread in the LWI dimension is 
seen, which indicates different levels of moisture content in 
the soil. The cluster at the top represents data from vegeta-
tion and has a larger response in NDVI than in LWI.

deviations. The SMI profile also resembles the NDVI 
profile in overall shape but has a different scale, since 
it is calculated as a band ratio rather than a normalized 
band difference like the NDVI and LWI. The indices 
are high at the soybean area, which indicates the most 
lush condition, and low at the two soil areas where 
there is little or no vegetation. By comparing the pro-
files derived from Hyperion and ALI data, we can see 
that the two sets are nearly identical, although some 
noise is apparent from pixel to pixel in the profiles de-
rived from Hyperion data.

To further examine the correlations between LWI 
and NDVI, we plot the indices derived from Cole-
ambally Hyperion data in a scatter plot, as shown in 
Figure 22. Separate clusters can be delineated from 
the index plot because of various LWI-NDVI correla-
tions of different material. The cluster located at lower 
left—low LWI and NDVI less than 0.2—consists of 
data from soil. In this region, there is little change in 
NDVI. Some spread in the LWI dimension is seen, 
which indicates different levels of moisture content in 
the soil. The cluster in the middle extends LWI values 
from approximately 0.15 to 0.45 and NDVI from 0.2 
to 0.5. This cluster represents pixel data with mixtures 
of soil and vegetation. The cluster at the top represents 
data from vegetation and has a larger extent in NDVI 
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FIGURE 23. Soil and vegetation clusters in the scatter plot are divided into eight regions. Regions colored in orange, light si-
enna, and dark sienna represent soil classes, while regions colored in five shades from yellow to dark green represent veg-
etation classes. Image pixels contributing to the various regions defined in the scatter plot are mapped with the correspond-
ing colors into the field classification image on the right. The areas not mapped are mostly mixtures of soil and vegetation.
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NDVI values defined for the regions. Dividing the en-
tire LWI-NDVI space given in the scatter plot allows 
for effective characterization of the fields. 

Spectral Unmixing 

The pixel resolution of both the Hyperion hyperspec-
tral sensor and the ALI multispectral sensor is 30 m 
on the ground. If there are different types of material 
in the pixel, each contributes to the combined spectral 
measurement. By assuming linear combinations of M 
types of material, and each material occupies a frac-
tion am of the pixel, the pixel spectrum ρT can be writ-
ten as 

	

ρ ρT m m
m

M

a=
=

∑
1

,
	

where m represents the material type, 0 ≤ am ≤ 1, 
Σ am = 1, and am is the different fraction of each mate-
rial m within the pixel.

Given the contributing materials, the material 
abundance in a pixel can be recovered from hyper-
spectral data with various least-squared-error unmix-
ing algorithms [23]. An unmixing algorithm is un-
constrained when the fractions are not limited to the 
conditions of 0 ≤ am ≤1 and Σ am = 1.

Figure 25 shows sample areas of soybean and soil in 
the Coleambally image. Regions of interest are select-
ed as shown on the Hyperion image to include a lush 
vegetative area in the soybean field and a bare region 
in the soil area. The right side of Figure 25 shows the 
mean spectra of the regions, which are used to demon-
strate a two-class unmixing analysis of lush vegetation 
and bare soil. The unconstrained least-squares unmix-
ing algorithm is applied to the image. The left side of 
Figure 26 shows the retrieved soybean and soil abun-
dances. The right side of Figure 26 shows the abun-
dance values of pixels at the horizontal line indicated 
in the abundance images. Results show 100% soybean 
for samples 15 to 20, mixtures of soybean and soil for 
samples 21 to 34, 100% soil for samples 35 to 42. The 
abundance of soybean decreases progressively from 
left to right while soil increases in the mixture at the 
transitional region. Sample number 28 appears near 
the middle of the transition. The abundance retrieval 
quantifies the amount of soybean and bare soil in the 
transitional region. This process illustrates how an un-

than in LWI. This extent indicates that LWI, while 
strongly correlated with NDVI, is less sensitive to veg-
etative state than the vegetation index. Reexamination 
of Figure 21 in this light reinforces this conclusion, as 
deviations from 0.5 in the index are more exaggerated 
by NDVI than by the LWI.

The soil and vegetation clusters are further divided 
into smaller regions to observe the progressive change 
in spectral characteristics, as shown in Figure 23. The 
regions colored in orange, light sienna, and dark sien-
na represent soil, while five shades from yellow to dark 
green represent vegetation conditions. Image pixels 
contributing to the various regions defined in the Fig-
ure 23 scatter plot are mapped with corresponding col-
ors in the field classification image on the right. Most 
mapped fields are monochromatic or dichromatic, 
representing certain soil or vegetation status, and not 
a random mixture of several colors. This result indi-
cates these fields are relatively uniform. The areas not 
mapped are mostly mixtures of soil and vegetation. 

Different fields in the Coleambally Irrigation Area 
are characterized by moisture content and vegetation 
status. The mean spectra of the eight different regions 
are plotted in Figure 24. The soil with less moisture 
has a higher reflectance in SWIR (1 to 2.5 µm). In the 
vegetation spectra, the different changes of reflectance 
between 0.66 µm and 0.86 µm agree well with the 
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FIGURE 24. Mean reflectance spectra of the eight soil and 
vegetation regions shown in Figure 23. The soils with less 
moisture content have higher reflectance in SWIR (1 to 2.5 
μm). In the vegetation spectra, the different changes of re-
flectance between 0.66 μm and 0.86 μm agree well with the 
NDVI values defined for the regions.
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mixing algorithm can be applied to hyperspectral data 
to obtain quantitative information of different materi-
als in a given pixel.

Spectral Feature Analysis

Hyperion data were collected over San Francisco Bay 
on 17 January 2000. An AVIRIS collection over the 
same area, taken on 20 June 1997, is used here for 
comparison with Hyperion. Some common features, 

FIGURE 25. Sample areas of soybean and soil in the Coleambally image. Regions of interest are se-
lected on the Hyperion RGB image shown on the left to include a lush vegetative area in the soybean 
field and a bare region in the soil area. On the right are the mean reflectance spectra of the regions, 
which are used to demonstrate a two-class unmixing analysis of lush vegetation and bare soil.

FIGURE 26. Retrieved soybean and soil abundance profiles from the Hyperion data. The plot 
shows abundances for pixels at the indicated horizontal line of the two images. The abun-
dance of soybean decreases progressively from left to right, while soil increases in the mix-
ture at the transitional region. Sample number 28 appears near the middle of the transition. 
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such as water, runway, and grass, are selected for com-
parison. The Atmosphere Removal (ATREM) algo-
rithm [20] was first applied to both data sets for at-
mospheric compensation to reduce the data to spectral 
reflectance values. As shown in Figure 27, spectral fea-
tures from both data sets appear very similar, except 
that the retrieved surface reflectance values from the 
Hyperion data appear lower at all wavelengths.

The MNF transformation [17] algorithm is then 
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applied for further feature extraction. Clusters of 
anomalous pixels are detected in the tenth Hyperion 
component. Analysis of the AVIRIS data also found 
anomalies detected at the same location as in the Hy-
perion data. Figure 28 shows these images, with the 
common detection in the red circle in the ALI image. 
The high-resolution panchromatic-band sharpened 
ALI image in the figure shows similar spatial features 
as the AVIRIS image at the detection. (Note: AVIRIS 
spatial resolution is 20 m.) Figure 29 shows spectral 
signatures of the detections from both Hyperion and 
AVIRIS data.

Figure 30 shows a photograph of the building at the 
detected site. The detections in the Hyperion hyper-
spectral data appear to be of the blue roofing material 
of the building. For verification, three panels of sample 
material similar to the blue roofing material were ac-
quired and measured with a hand-held spectrometer. 
The spectral signatures of the sample roof panels are 
plotted together with the detected data from both Hy-
perion and AVIRIS images, as shown in Figure 31. 

Terrestrial Analysis Summary

Examples of Hyperion data applications are shown 
for terrain characterization, spectral unmixing, and 
anomaly detection. For terrain characterization, vari-
ous simple indices are used to characterize the soil and 
vegetation conditions. They include the normalized 
difference vegetation index (NDVI), the liquid water 
index (LWI), and the soil moisture index (SMI). Con-
sistent results were demonstrated between Hyperion 
and ALI. These indices were further used to map the 
bare and vegetated fields, with promising results. For 
spectral unmixing, some adjacent fields with distinct-
ly different materials (soil and verdant soybean) were 
used for subpixel analysis. The results illustrate how 
unmixing algorithms can be applied to hyperspectral 
data to obtain quantitative abundance information of 
the materials contained in a given pixel.

The Hyperion data from San Francisco Bay were 
used first to compare with AVIRIS data collected some 
two and a half years earlier. Anomaly detection algo-
rithms were then applied to both data sets. A building 
complex with distinct roof material was detected with 
both images. Subsequently, samples of similar roof 
panels were acquired and their spectral signatures were 
measured with a hand-held spectrometer, corroborat-
ing the detections by both Hyperion and AVIRIS.

Summary

This article describes three examples that demonstrate 
the utility of the EO-1 Hyperion sensor data in dif-
ferent applications: cloud-cover analysis, coastal water 
feature extraction, and terrestrial analysis applications. 

Cloud-cover analysis deals primarily with the prob-
lem of discrimination of clouds from surface features. 
A simplified cloud detection algorithm was developed 
that utilizes only six bands in reflected solar measure-
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FIGURE 27. Retrieved surface reflectance from the Atmo-
spheric Removal (ATREM) algorithm applied to Hyperion and 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
data for selected features. Hyperion and AVIRIS data appear 
similar in overall spectral shapes, except that the Hyperion 
data are consistently lower in their reflectance signatures.



• griffin, hsu, burke, orloff, and upham
Examples of EO-1 Hyperion Data Analysis

294	 LINCOLN LABORATORY JOURNAL	 VOLUME 15, NUMBER 2, 2005

ments from the EO-1 Hyperion sensor to discriminate 
clouds from all other features in the image. The selec-
tion of the six bands provided spectral information at 
critical wavelengths, while keeping processing costs to 
a minimum, because onboard computer memory and 
processing time are both limited for this intended ap-
plication. The cloud-cover detection process was ap-
plied to a set of twenty Hyperion scenes with varying 

FIGURE 28. Anomaly detections in Hyperion and AVIRIS data. The high-resolution panchromatic-band 
sharpened ALI image shows spatial features similar to the AVIRIS image at the detection. 

FIGURE 29. Spectral reflectance signatures of anomaly de-
tections from Hyperion and AVIRIS data. The detections ap-
pear similar in spectral shapes to a specific type of paint in 
our spectral library.

FIGURE 30. Photograph of building at the detected site. The 
anomaly detections in the hyperspectral data shown in Fig-
ure 29 appear to be caused by the blue roofing material of the 
building.

Hyperion Sharpened ALI image

AVIRIS detection (in red)
over single color chip

cloud cover, cloud type, surface characteristics, and 
seasonal collection times.

Coastal-water feature-extraction analysis was per-
formed on EO-1 data recorded over Chesapeake Bay 
on 19 February 2002 to demonstrate the potential 
value of Hyperion data to coastal characterization. 
Spectral applications for ocean waters were briefly dis-
cussed. EO-1 data from both the ALI multispectral 
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sensor and the Hyperion hyperspectral sensor were 
compared to establish the relative quality and addi-
tional feature-extraction potential for Hyperion data. 
Chlorophyll retrieval was carried out by using an exist-
ing simple algorithm. The results compared favorably 
with data from other satellite and aircraft sources.

Application examples are also shown for terrain 
characterization, spectral unmixing, and anomaly de-
tection. Data sets from Coleambally Irrigation Area, 
Australia, on 7 March 2000 and the San Francisco Bay 
area on 17 January 2000 were employed for the analy-
sis. Soil and vegetation properties such as soil mois-
ture, vegetation chlorophyll, and plant liquid water 
were explored to characterize various agriculture fields. 
Spectral unmixing, feature extraction, and anomaly 
detection algorithms were also applied for different 
applications.

In each of the applications considered we demon-
strated that hyperspectral data can provide utility; in 
some cases this was done by using only a few selected 
bands, while in other cases this was done by explor-
ing full spectral information. The ultimate strength of 
hyperspectral remote sensing is exactly its versatility 
in data use; simple band thresholds, ratios, and differ-
ences are used to take advantage of known phenome-
nology. Signal processing approaches, such as anomaly 
detection and matched filtering algorithms, take ad-
vantage of the full spectral data such that subtle dif-

FIGURE 31. Spectral reflectance signatures of three different 
colored roof panels, plotted with the detected data from Hy-
perion and AVIRIS images. The signatures compare well in 
overall shape.

ferences can be explored. This article highlights both 
approaches and illustrates a variety of applications for 
Hyperion data. 
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