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Unmixing Algorithms
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■  Spatial pixel sizes for multispectral and hyperspectral sensors are often large
enough that numerous disparate substances can contribute to the spectrum
measured from a single pixel. Consequently, the desire to extract from a
spectrum the constituent materials in the mixture, as well as the proportions in
which they appear, is important to numerous tactical scenarios in which
subpixel detail is valuable. With this goal in mind, spectral unmixing algorithms
have proliferated in a variety of disciplines that exploit hyperspectral data, often
duplicating and renaming previous techniques. This article distills these
approaches into a unique set and surveys their characteristics through
hierarchical taxonomies that reveal the commonalities and differences between
algorithms. A set of criteria organizes algorithms according to the philosophical
assumptions they impose on the unmixing problem. Examples demonstrate the
performance of key techniques.

S    often record scenes
in which numerous disparate material sub-
stances contribute to the spectrum measured

from a single pixel. Given such mixed pixels, we want
to identify the individual constituent materials
present in the mixture, as well as the proportions in
which they appear. Spectral unmixing is the proce-
dure by which the measured spectrum of a mixed
pixel is decomposed into a collection of constituent
spectra, or endmembers, and a set of corresponding
fractions, or abundances, that indicate the proportion
of each endmember present in the pixel. Endmem-
bers normally correspond to familiar macroscopic ob-
jects in the scene, such as water, soil, metal, or any
natural or man-made material. Unmixing provides a
capability that is important in numerous tactical sce-
narios in which subpixel detail is valuable.

Multispectral imaging sensors such as Landsat pro-
vided the first opportunity to derive multichannel
spectral information from large scenes on a pixel-by-
pixel basis. The most significant products of multi-
spectral data processing have been classification maps
that assign a class label to each pixel in a scene. The

relatively low numbers of spectral bands in multispec-
tral sensors (usually a dozen or fewer) have proved
sufficient to provide classification maps for large
scenes with numerous applications to agriculture, for-
estry, oceanography, and environmental management
and protection. As electro-optical remote sensing has
evolved, hyperspectral sensors have been developed
with hundreds of spectral bands with significantly
improved spectral resolution. The ability of spectral
unmixing to identify the constituent components of a
pixel is a particularly important new application for
these sensors.

Pixel-wise classification identifies the material class
that a pixel spectrum most closely resembles, but it
does not yield any further insight into the other sub-
stances—if any—that might also reside within the
boundaries of the pixel. Mixed pixels contain a mix-
ture of more than one distinct material substance,
and they arise for one of two reasons. First, if the spa-
tial resolution of an imaging sensor is low enough
such that adjacent endmembers can jointly occupy a
single pixel, then the resulting spectral measurement
will be a composite of the individual endmembers.
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This occurs in remote sensing platforms flying at a
high altitude or performing wide-area surveillance,
where low spatial resolution is common. Second,
mixed pixels appear when distinct materials are com-
bined into a homogeneous mixture (e.g., sand grains
on a beach), which can occur regardless of the spatial
resolution of the sensor. Both circumstances arise in
military applications; the first occurs when a man-
made target of interest is smaller than the size of a
pixel, and the second occurs when we attempt to
characterize the conditions of naturally occurring
background (e.g., dry soil, moist soil, or swamp).

Broadly speaking, spectral unmixing is a special
case of the generalized inverse problem that estimates
system parameters by using one or more observations
of a signal that has interacted with the system before
arriving at the sensor. In the case of hyperspectral
sensing in the reflective regime, the incident signal is
electromagnetic radiation originating from the sun,
which is measured by a sensor after the radiation has
been reflected upward by natural and man-made ma-
terials on the surface of the earth.

The objective of this article is to systematically in-
troduce the reader to the wide variety of techniques
being employed for spectral unmixing. To accomplish
this, we undertake two important tasks: (1) decom-
pose the end-to-end unmixing process into three al-
gorithmic stages, and (2) organize the algorithms be-
longing to each stage into hierarchical taxonomies
according to a common set of criteria that reveal the
fundamental assumptions behind each algorithm.

This article employs the taxonomies as a tool to
graphically compare the features of algorithms in a
side-by-side fashion. Being inherently hierarchical,
the taxonomies demonstrate the commonalities and
the differences in a way that facilitates comparisons.
For completeness the taxonomies contain many algo-
rithms; only a few entries, however, are necessary to
provide the reader with insight on key approaches. A
more comprehensive treatment of the technical detail
for each algorithm is available in other references [1].

Two additional sections in this article discuss im-
portant related subjects. The first is a sidebar that
demonstrates how geometric modeling of hyperspec-
tral data has led to a new method for extracting end-
members from a scene, and the second is an appendix

that discusses the properties of distance metrics and
band selection.

A Taxonomy for Unmixing Algorithms

The various research communities that use hyper-
spectral data have developed numerous unmixing al-
gorithms to solve particular problems. Earth scien-
tists, for example, have correlated surface geophysical
processes with measurements taken from space and,
as a result, have approached the task of unmixing
from the perspective of meticulous physical models
that carefully capture the interactions of light with
mixed matter. Quite often, however, in spite of their
accuracy, these models are incapable of conveying the
statistical variability inherent in remote sensing obser-
vations, and the unmixing results, while accurate for
the situation described, lack the kind of robustness
desired for general implementation. In contrast, engi-
neers and statisticians often eschew the physics in fa-
vor of simpler, more tractable descriptions that utilize
robust statistical models, which may achieve some
measure of optimality. Unfortunately, statistical mod-
eling often fails to reflect the high degree of physical
detail that guarantees precision and physically plau-
sible answers for individual pixels.

Unmixing algorithms have been developed by dis-
parate communities of researchers, spanning a wide
gamut of approaches. Yet they frequently utilize the
same mathematical tools, but with different names
and nomenclature. A major objective of developing a
taxonomy has been to distill to a minimum set the
universe of algorithms that have arisen from disparate
communities. In order to perform this distillation, we
developed a method for hierarchically organizing al-
gorithms by the philosophies they employ for three
important characteristics of processing. Each succes-
sive characteristic can be thought of as a sieve of in-
creasing granularity, and the conjunction of the three
criteria provides incrementally greater refinement in
distinguishing algorithms. As will become apparent,
the end-to-end process of unmixing is actually a con-
catenation of three distinct procedures, each with
unique objectives. The same taxonomic approach has
been applied to every stage of processing, thus reveal-
ing philosophies and methods common across the
three algorithm types.
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A second objective of a taxonomy is to offer a road
map for developers of algorithms, so they can clearly
see what has and has not been attempted. In many
cases, particularly when performance comparisons are
needed, a taxonomy can streamline the tedious pro-
cess of comparative performance analysis by naturally
segregating groups of algorithms requiring similar in-
puts or common computational modules. Moreover,
scientists and engineers tasked with designing a spe-
cific application, such as unmixing, in a constrained
operational environment will do so with limited in-
formation and computational resources. This fact in
itself may automatically restrict the set of allowable
algorithms from which the developer has to choose.
The taxonomies organize information about algo-
rithms in a way that facilitates this kind of analysis.

Stages of Unmixing

Algorithms for spectral unmixing use a variety of dif-
ferent mathematical techniques to estimate endmem-
bers and abundances. Because hyperspectral scenes
can possess extremely large volumes of data (e.g., 640
scan lines, 320 samples per line, 200 spectral bands),
some unmixing algorithms first reduce the dimension
of the data to minimize the corresponding computa-
tion. Not surprisingly, the familiar trade-off for repre-
senting data in a reduced dimension is a decrease in
the accuracy of the intended application product.
Nevertheless, we can decompose the complete end-
to-end unmixing problem as a sequence of three con-
secutive stages: dimension reduction, endmember de-
termination, and inversion. Figure 1 illustrates these
three stages.

In the dimension-reduction stage we reduce the di-
mension of the data in the scene. This step is optional
and is invoked only by some algorithms to reduce the
computational load of subsequent processing. In the
endmember-determination stage we estimate the set
of distinct spectra (endmembers) that constitute the
mixed pixels in the scene. Finally, in the inversion
stage we generate abundance planes that allow us to
estimate the fractional abundances for each mixed
pixel from its spectrum and the endmember spectra.

Numerous approaches exist in the literature for
completing the tasks at each stage. In the following
sections, we present an algorithm taxonomy for each

step that hierarchically organizes the algorithms, and
in doing so, we employ an identical top-down struc-
ture for each stage. The layers in this structure serve
to distinguish the algorithms by the philosophical
assumptions they impose on the task they seek to
accomplish.

FIGURE 1. The end-to-end stages of spectral unmixing. Di-
mension reduction reduces the amount of data in order to
decrease the computational load in subsequent processing
steps. Endmember determination estimates the set of dis-
tinct spectra, or endmembers, that comprise the mixed pix-
els in the scene. The inversion stage produces abundance
planes that provide estimates of the fractional abundances
for the endmembers in each pixel.
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Taxonomy Structure

In botany, starting from the time of the ancient
Greeks, plant types were organized into descending
categories, creating a top-down organization of
known plant species. An important development in
the classification of organisms occurred when Carolus
Linnaeus (1707–1778) published a taxonomic sys-
tem that worked in the opposite direction, beginning
with individual species and grouping them according
to characteristics that emphasized their similarities as
well as their differences. This system provided by
Linnaeus identified criteria for the classification of
living things that serves today as the basis for the sys-
tem of organization in modern botany.

In our effort to develop a taxonomy for unmixing
algorithms, we have uncovered criteria for distin-
guishing algorithms by integrating both approaches.
First, we reframe the unmixing problem as a special
case of the generalized inverse problem [2] that has
been studied for many years, and we pose basic ques-
tions regarding the inherent philosophical perspec-
tives employed by each algorithm. In contrast to the
ground-up viewpoint, this top-down assessment fo-
cuses on the fundamental assumptions that, know-
ingly or unknowingly, drive algorithms. Viewed hier-
archically, the downward flow of the taxonomy from
a single broad class of techniques sharing a common

objective occurs along pathways that distinguish the
variety of methods with increasing granularity. As an
example, algorithms that assume a Gaussian model
for the randomness of the data can be distinguished
from those which enforce no probabilistic model.
Among Gaussian techniques, a more detailed distinc-
tion can be drawn between maximum likelihood and
maximum a posteriori formulations.

The top-down examination of the unmixing prob-
lem yields a set of three criteria that categorize
unmixing algorithms. In order, these criteria are (1)
interpretation of data, which indicates how an algo-
rithm interprets mixed-pixel spectra; (2) description
of randomness, which indicates how an algorithm in-
corporates the randomness of the data; and (3) opti-
mization criterion, which indicates what objective
function is being optimized by the algorithm.

An algorithm can interpret the data it processes in
one of two ways. If an algorithm processes a mixed
pixel by using statistical measures (e.g., means or co-
variances), then the algorithm is statistical. Implicitly,
statistical algorithms quantitatively introduce the ag-
gregate behavior of a larger population of data into
the processing of an individual pixel, and they do so
having no knowledge of the probabilistic nature of
the data. In dimension reduction, for example, linear
transforms that achieve a basis transformation are of-
ten derived from the covariance of the data without

Non-parametric

Non-squared error

Squared error

StatisticalNon-statistical

Parametric

Squared error
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Maximum a posteriori
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FIGURE 2. Top-down conceptual organizing structure for a taxonomy of unmixing algorithms. Three criteria categorize these al-
gorithms: (1) interpretation of data indicates how an algorithm interprets mixed-pixel spectra, (2) description of randomness in-
dicates how an algorithm incorporates data randomness, and (3) optimization criterion indicates the objective function that is
being optimized.
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knowledge of the probability distribution that pro-
duces the data (e.g., Gaussian or Cauchy). In essence,
the dimension of a pixel is reduced by using knowl-
edge gained from a larger population of data. Algo-
rithms that perform their task without statistical mea-
sures are non-statistical. This distinction becomes
especially important in target detection, among other
places, where statistical characterizations of nontarget
behavior (background or clutter) can complicate the
detection of low-probability targets.

Likewise, the data interpretation upon which an
algorithm is based directly reflects how it addresses
the fundamental randomness in the data. To repre-
sent the aggregate behavior of data, algorithms can
use statistical measures, which may also be parameters
in analytical expressions that represent all or part of a
probability density function. Techniques vested with
the assumption that the received data originate from a
parameterized probability density function are con-
sidered parametric. Examples of parametric methods
arise whenever algorithms incorporate Gaussian
probability density functions in their derivation. It is
important to note, however, that a statistical algo-
rithm is not always parametric, although the converse
must be true. Algorithms that do not impose the
structure of a particular density function are non-
parametric.

Finally, algorithms are deemed optimal if they op-
timize an objective function. The choice of the objec-
tive function is key, and only in certain cases is it dic-
tated naturally by the previous two algorithm
classification criteria. Parametric algorithms optimize
some combination of densities and fall in the category
of either maximum likelihood or maximum a poste-
riori solutions. Non-parametric algorithms can utilize
one of a multitude of cost functions, but clearly the
most prevalent optimization criterion is minimiza-
tion of squared error. Not surprisingly, the category of
non-squared error encompasses a multitude of opti-
mization metrics that do not minimize squared error.

Figure 2 illustrates the organization of these classi-
fication criteria. Independently, each of these criteria
captures a fundamental aspect of how the algorithm
relates to the data it processes, and because the criteria
are not specific to any particular algorithm, the hier-
archical partitioning they induce map from one type

of algorithm to another. As we will see, complete
spectral unmixing is the concatenation of three con-
secutive and disparate operations, and to consolidate
their assessment we applied the same criteria to each
taxonomy to consistently organize the algorithms at
every stage.

While the three classification criteria in Figure 2
discriminate algorithms for a wide variety of tasks by
using a common top-down approach, further differ-
entiation within each class of algorithm is achieved by
a set of task-specific features. In contrast to the crite-
ria from Figure 2, which apply to every stage of un-
mixing, this bottom-up approach identifies bound-
aries for delineating algorithms on the basis of the
operating characteristics that are unique to each stage.
For example, the inclusion or omission of noise in sig-
nal models provides one axis of organization, whereas
the added distinction between Gaussian and non-
Gaussian noise yields further granularity. The features
that distinguish algorithms are organized into three
categories: output characteristics, input characteris-
tics, and noise modeling. The details of these algo-
rithm-specific properties become evident in the ap-
propriate sections. For a particular algorithm, Figure
3 depicts how these features of an algorithm are re-
lated to the criteria in Figure 2.

FIGURE 3. Model for algorithm features. Specific algorithm
features add further refinement to the classification of algo-
rithms. Models for the inputs, outputs, and noise provide
practical processing requirements for how an algorithm in-
stantiates the top-down criteria in Figure 2.
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Mixing Models

Any approach for effectively unmixing hyperspectral
data must begin with a model describing how con-
stituent material substances in a pixel combine to
yield the composite spectrum measured at the sensor.
Mixing models attempt to represent the underlying
physics that are the foundation of hyperspectral phe-
nomenology, and unmixing algorithms use these
models to perform the inverse operation, attempting
to recover the endmembers and their associated frac-
tional abundances from the mixed-pixel spectrum.
Figure 4 illustrates the two categories of mixing mod-
els—the linear mixing model and the nonlinear mix-
ing models.

Linear Mixing Model

The dynamics behind the mixing of two or more sub-
stances depends largely upon the kind of mixture
within a pixel that scatters the incident solar radia-
tion. Figure 4(a) illustrates the reflecting surface as a
checkerboard mixture of endmembers, and the inci-
dent radiation bounces only once upon its surface. By
this model, if the total surface area is divided propor-
tionally according to the fractional abundances of the
constituent substances, then the reflected radiation
conveys with the same proportions the characteristics
of the associated materials. In this sense, a linear rela-

tionship exists between the fractional abundance of
the substances comprising the area being imaged and
the spectrum of the reflected radiation.

If we have K spectral bands, and we denote the ith
endmember spectrum as si and the abundance of the
ith endmember as ai , the observed spectrum x for any
pixel in the scene can be expressed as

x s s s w

s w Sa w

= + + + +

= + = +
=
Â
a a a

a

M M

i i
i

M
1 1 2 2

1

L

,

where M is the number of endmembers, S is the ma-
trix of endmembers, and w is an error term account-
ing for additive noise (including sensor noise, end-
member variability, and other model inadequacies).
This model for pixel synthesis is the linear mixing
model (LMM). Block matrix notation is used as an
extension for the case in which multiple pixel spectra
x(n), for n = 1, …, N , where N is the number of pix-
els, are organized as columns within a matrix X hav-
ing a corresponding abundance matrix A and noise
matrix W, such that X = SA + W. To be physically re-
alizable, the abundance coefficients should be non-
negative and should sum to one. Satisfying these
physically driven abundance constraints, which is dis-
cussed in more detail in later sections, is important
for various applications.

(a) (b)

FIGURE 4. Two mixing models. (a) The linear mixing model assumes a well-defined proportional checkerboard mixture
of materials, with a single reflection of the illuminating solar radiation. (b) Nonlinear mixing models assume a randomly
distributed, homogeneous mixture of materials, with multiple reflections of the illuminating radiation. These models
represent the underlying physics at the foundation of hyperspectral phenomenology. Unmixing algorithms use these
models to recover endmembers and associated abundances from the mixed-pixel spectrum.
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Nonlinear Mixing

Figure 4(b) depicts a more complicated scenario. The
arrangement of the constituent material substances is
not as orderly as in Figure 4(a) because the substances
comprising the medium are not organized propor-
tionally on the surface. This intimate mixture of ma-
terials results when each component is randomly dis-
tributed in a homogeneous way. As a result, the
incident radiation can experience reflections with
multiple substances, and the aggregate spectrum of
reflected radiation may no longer uphold the linear
proportions (either in mass fraction or in volume) of
the constituent substance spectrum. Because the
LMM is inappropriate to describe this interaction,
this scenario, which has many variations, is referred to
as nonlinear mixing.

Data

To demonstrate the performance of different unmix-
ing algorithms, we utilize the scene in Figure 5. This
image was acquired by the Hyperspectral Digital Im-
agery Collection Experiment (HYDICE) sensor dur-

ing the Alpine Radiance I data collection on 22 Sep-
tember 1997. The scene contains several naturally oc-
curring objects (e.g., trees, brush, grass, soil) as well as
man-made artifacts (e.g., roads). The image consists
of 400 lines of data, 320 samples per line, and 210
spectral bands collected between 400 nm and 2500
nm, with the width of each band varying between 3
nm and 11 nm. The spatial resolution of each pixel is
on the order of one meter.

Dimension-Reduction Taxonomy

In this section, we examine the set of algorithms that
reduce the dimension of hyperspectral data. We in-
tentionally differentiate between dimension-reduc-
tion algorithms and the more widely recognized set of
related data-compression algorithms in order to high-
light an important distinction. Dimension-reduction
algorithms do not reduce the dimension of data with
the goal of reconstructing an approximation to the
original signal. Instead, the goal of dimension reduc-
tion is to arrive at a minimal representation of the sig-
nal in a lower-dimensional space that sufficiently
retains the requisite information for successful un-
mixing in the lower dimension. Ideally, dimension-
reduction algorithms are designed with consideration
of the performance of unmixing procedures per-
formed in the lower dimension.

Figure 6 shows the taxonomy of dimension-reduc-
tion algorithms; the algorithms are organized by the
top-down criteria appearing in Figure 2. In addition,
specific features concerning the outputs, inputs, and
noise models used by these algorithms are included
according to the model in Figure 3 to specifically dis-
tinguish the properties of dimension-reduction algo-
rithms. With regard to outputs, do the algorithms
yield axes for dimension reduction that are orthogo-
nal? With regard to inputs, do the algorithms process
all of the data for dimension reduction, or just a sub-
set? With regard to noise, do the algorithms incorpo-
rate any knowledge of noise? For example, by its posi-
tion in the taxonomy, principal-component analysis
is a statistical, non-parametric algorithm that opti-
mizes a squared-error criterion. While it does not in-
corporate noise in its signal model, it uses all the data
in the scene and yields orthogonal axes for its coordi-
nate transformation.

FIGURE 5. Image acquired by the Hyperspectral Digital Im-
agery Collection Experiment (HYDICE) sensor during the
Alpine Radiance I data collection in 1997. The variety of
natural materials and man-made artifacts makes this scene
a good candidate for testing unmixing algorithms.
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FIGURE 6. Taxonomy for dimension-reduction algorithms, organized by the same three classification criteria appearing in Fig-
ure 2—interpretation of data, description of randomness, and optimization criterion. Specific features concerning the outputs,
inputs, and noise models used by these algorithms are also included. For example, by its position in the taxonomy, principal-
component analysis is a statistical, non-parametric algorithm that optimizes a squared-error criterion. While it does not incor-
porate noise in its signal model, it uses all the data in the scene and yields orthogonal axes for its coordinate transformation.
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FIGURE 7. Cumulative normalized energy in eigenvalues for
the HYDICE sensor scene in Figure 5. Most of the energy of
the scene is in the first four eigenvalues. Thus a linear trans-
formation of the scene using the first four eigenvectors
transforms the data to a lower dimension, yet retains nearly
all the energy of the original higher-dimensional data.

Dimension-Reduction Algorithm

Because the three algorithms in the dimension-reduc-
tion taxonomy in Figure 6 do not presume any prob-
ability density function for the data, they are all non-
parametric. The category of statistical algorithms
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derives their transformations from statistical informa-
tion about the data and can be further differentiated
by the optimization criterion that is utilized. Princi-
pal-component analysis (PCA) [3], a technique based
on squared error, identifies orthogonal axes for di-
mension reduction by performing an eigendecompo-
sition of a covariance estimate of the data,
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where mmx  is the mean vector of the pixel set. The re-
sulting eigendecomposition can be expressed as GGx  =
U USS T , where U is a unitary matrix of eigenvectors,
and SS is a diagonal matrix of eigenvalues.

The magnitude of an eigenvalue indicates the en-
ergy residing in the data along the component of the
data parallel to the associated eigenvector. The larger
eigenvalues identify basis components whose average
contribution to x – mmx  in the squared-error sense is
greater than those with smaller eigenvalues. Hence
the effective dimensionality of the data can be esti-
mated by counting the number of significantly non-
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zero eigenvalues. If the data are transformed by pre-
multiplication with UT, then the resulting linear
transformation moves x to a new system of decor-
related variables oriented along the eigenvectors in U,
which can be truncated to retain only those having
significant eigenvalues. The result is a lower-dimen-
sional multivariate random vector that conveys most
of the energy in the original, higher-dimensional sys-
tem. Figure 7 depicts the distribution of energy in the
eigenvalues for the scene in Figure 5. More than 99%
of the total energy is retained by the first four eigen-
values.

Another statistical technique that optimizes signal-
to-noise ratio (SNR), is maximum noise fraction
(MNF) [4]. This approach, based on the LMM, re-
quires estimating the covariance ĜGw  for the additive
noise in addition to the covariance ĜGx  of the data.
Given a vector v, the ratio of noise energy in v to the
received signal energy is given by

v v

v v

T
w

T
x

ˆ

ˆ .
GG
GG

The axes that optimize this ratio are the left-hand
eigenvectors of ˆ ˆGG GGw x

-1 and, unlike the axes for PCA,
are not necessarily orthogonal. They do, however,
identify and order the components of the received
signal possessing the maximum SNR. The noise-ad-
justed principal components (NAPC) transform for-
mulates the problem differently [5], but achieves the
mathematically equivalent answer as MNF. As in
PCA, the ordering of components can estimate one
type of effective signal dimensionality, and the set of
random variables obtained after the MNF transform
can be truncated to retain only those components
possessing a minimum SNR.

A non-statistical and non-parametric technique
that optimizes squared error for dimension reduction
is the optical real-time adaptive spectral identification
system (ORASIS) [6], which is a series of hyper-
spectral processing modules designed to process data
from airborne and spaceborne hyperspectral plat-
forms. The dimension reduction is achieved by iden-
tifying a subset of representative, or exemplar, pixels
that convey the variability in a scene. When a new
pixel is collected from the scene by the sensor, its

spectrum is compared to each exemplar pixel by using
an angle metric (the first pixel in a scene automati-
cally becomes the first exemplar). The appendix en-
titled “Distance Metrics, Band Selection, and Dimen-
sion Reduction” shows how a quantity such as angle is
a common measure of spectral difference. If the new
pixel is sufficiently different from each of the existing
exemplars, it is added to the exemplar set. If it is not
sufficiently different, the exemplar set remains un-
changed. An orthogonal basis is periodically created
from the current set of exemplars by using a modified
Gram-Schmidt process, which adds new dimensions
until every exemplar can be approximated within a
prescribed tolerance. In this reduced dimension, the
exemplars are submitted to another module to deter-
mine endmembers geometrically. The ORASIS flow-
chart in Figure 8 illustrates this dimension-reduction
procedure.

The performance of the dimension-reduction al-
gorithm is linked to the value of the user-chosen pre-
screen error-angle threshold, which restricts the ad-
mittance of new exemplars. Smaller values of the
prescreen threshold admit more exemplars, and hence
this parameter may be tuned to admit different levels
of scene variability into the exemplar set. The pre-
screen threshold, however, also defines the required
dimension of the projected space to preserve a mini-
mum fidelity in the exemplars. This dimension is
critical to the subsequent module that determines
endmembers.

Endmember-Determination Taxonomy

In this section we address endmember determination,
which yields the first primary output of unmixing.
The objective of endmember-determination algo-
rithms is to estimate the constituent spectra that oc-
cupy the columns of S in the LMM. From a strictly
mathematical viewpoint, the determination of S is
comparable to the estimation of a nonorthogonal
subset of basis vectors. More physical interpretations,
however, begin with the stipulation that the vectors
must have non-negative entries in order to be physi-
cally realizable. Furthermore, endmembers should re-
tain physical characteristics of the constituent sub-
stance such as absorption bands and spectral intervals
of high and low reflectance. Consequently, identify-
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FIGURE 8. Flowchart for the optical real-time adaptive spectral identification system (ORASIS) dimension reduc-
tion technique, which transforms a data cube having M spectral channels into a data cube with m dimensions,
where k < K. ORASIS identifies a set E of exemplar pixels that convey the spectral variability in a scene. Scene
pixels x are individually compared to the current exemplars and added to E if any comparison exceeds a user-
specified error-angle threshold Q. The exemplars are periodically orthogonalized into a unitary basis U by a modi-
fied Gram-Schmidt procedure. A limited subset of the columns in U, called Uk, is retained as a reduced-dimen-
sion orthogonal basis for the scene, which produces a reduced-dimension representation of x, called xk.

ing endmembers that satisfy both physical and math-
ematical imperatives is a considerable challenge, mak-
ing autonomous endmember determination the
hardest part of the unmixing problem.

Of the three stages that comprise unmixing, end-
member determination is the most closely aligned
with the material identification capabilities of un-
mixing. An accurate assessment of subpixel composi-
tion begins with a reliable estimate of what pure sub-
stances comprise mixed pixels in the scene. This fact
confirms that endmember-determination techniques
must not only contend with extracting spectra that
are physically meaningful and—we hope—recogniz-
able, but they must also perform in environments
having limited and imperfect information. Non-sta-
tistical algorithms essentially assume the endmembers
are deterministic quantities, whereas statistical ap-
proaches view endmembers as either deterministic,
with an associated degree of uncertainty, or as fully
stochastic, with random variables having probability
density functions.

Figure 9 shows a taxonomy of endmember-deter-
mination algorithms. As discussed earlier, the algo-
rithms are organized by the three criteria given in Fig-
ure 2. In addition, specific features concerning the
outputs, inputs, and noise models used by these algo-
rithms are included according to the model in Figure
3 to specifically distinguish the properties of end-
member-determination algorithms. With regard to
outputs, do the algorithms yield deterministic or sto-
chastic endmembers? With regard to inputs, do the
algorithms require all pixel spectra and abundances or
just a subset? With regard to noise, do the algorithms
incorporate any knowledge of noise?

Endmember-Determination Algorithms

Statistical methods of endmember determination
identify endmembers by optimizing objective func-
tions derived from the statistics of the data. Further-
more, the non-parametric algorithms attempt this
without optimizing a parametric model, but instead
by minimizing an objective function using the statis-
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tics derived from the data. A common objective func-
tion for this goal is squared error. Typical examples are
clustering algorithms, such as the fuzzy K-means par-
titions algorithm [7], which is a variation on the well-
known K-means iterative clustering algorithm [8]
that progressively minimizes an objective function
Jq(A, S) to simultaneously arrive at optimal estimates
of deterministic endmembers and abundances for N
pixels. This function is expressed as

J dq in
q

in
n

N

i

M

( , ) .A S A= ( ) ( )
==
ÂÂ 2

11

Ain is an estimate of the ith abundance for the nth
pixel. The factor din is the squared error between the
nth pixel and the ith centroid, or estimated endmem-
ber ŝi , and is given by

d n nin i
T

i( ) = -[ ] -[ ]2
x s W x s( ) ˆ ( ) ˆ .

The weighting matrix W applies different weights to
each abundance, and the inverse class covariance may

be inserted here. The minimization of Jq(A, S) is con-
strained by physical restrictions on the values of
abundances, and these requirements are inserted into
the estimator for A. Moreover, the shapes of the re-
gions associated with each class vary with q. Sug-
gested values fall in the range 1.5 < q < 3.0. The opti-
mization of Jq(A, S) is accomplished iteratively until a
minimum value is achieved by using final estimates of
Ŝ for the endmembers and Â  for the abundances.

Endmember-determination algorithms that utilize
statistical information in conjunction with paramet-
ric density functions find estimates by optimizing ei-
ther a forward or posterior density function. Several
algorithms have been formulated to provide maxi-
mum-likelihood solutions for endmembers on the
basis of different formulations of the LMM as a for-
ward density px S x S| ( | )  that is optimized to yield Ŝ.
Each approach differs in technique, and ultimately in
their answers, because of the degree of a priori knowl-
edge as well as the assumptions they impose on the
problem.

The technique of nonlinear least squares [9] mod-

FIGURE 9. Taxonomy of endmember determination algorithms, which are organized by the same three classification criteria ap-
pearing in Figure 2—interpretation of data, description of randomness, and optimization criterion. Specific features concern-
ing the outputs, inputs, and noise models used by these algorithms are also included. For example, by its position in the tax-
onomy, Gaussian class estimation is a statistical, parametric algorithm that optimizes a maximum-likelihood criterion for
Gaussian signals. While it does not incorporate noise in its signal model, it uses all the data in the scene, and unlike other
endmember determination algorithms, it models endmembers as stochastic.
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els the additive noise w in the LMM as Gaussian, and
assumes both S and a are deterministic unknowns for
a single mixed pixel x. Moreover, this technique inte-
grates a priori knowledge into least-squares formula-
tions for unmixing by initializing an iterative estima-
tor for S and a with guesses for what endmembers and
abundance values should be. Associated covariances
are set to values that quantify the confidence of the
initial guesses. As a consequence of estimating S and a

concurrently, the forward density can be alternately
expressed as px S a x S a| , ( | , ). By virtue of Gaussianity,
the likelihood function is quadratic in form, but the
matrix product Sa recasts the simpler traditional
maximum-likelihood optimization into a nonlinear
least-squares problem [3].

The Gaussian class estimation method [10] also as-
sumes Gaussianity, but does so without the presump-
tion of additive noise. Instead, the method presumes

G E O M E T R I C  E N D M E M B E R  D E T E R M I N A T I O N

   dimension re-
duction demonstrates how princi-
pal-component analysis (PCA)
can identify the axes that contain
the most energy in a scene. The
next step in spectral unmixing is
to determine the collection of
constituent material spectra, or
endmembers, that correspond to
these principal-component axes.
This sidebar gives one technique
for determining the endmembers
that takes advantage of the results
in dimension reduction shown
earlier.

Geometric endmember deter-
mination techniques exploit the
strong parallelism between the
linear mixing model (LMM) and
the geometric orientation of hy-
perspectral data in multidimen-
sional spaces. The principal as-
sumption is that pure substances,
or endmembers, that appear in
mixed pixels must necessarily re-
side at the extremities of the vol-
ume occupied by the pixels in a
scene. Thus endmembers can be
extracted from the vertices of a

simplex that encloses the data in a
scene, where a simplex is a convex
volume having a number of verti-
ces that is one greater than the di-
mension of the enclosed data.

The number of endmembers in
a scene, along with the endmem-
bers themselves, is unknown, but
we can use the PCA results gener-
ated earlier to conclude that the
number of significant eigenvalues
is an approximate upper bound on
the number of endmembers in a
scene. Thus, with the results in
Figure 7 as an example, this as-
sumption permits the multidi-
mensional data to be linearly
transformed to a four-dimen-
sional space by using the first four
eigenvectors of the scene covari-
ance. In this reduced space, the
data are shrinkwrapped by a sim-
plex, and endmembers are esti-
mated from the five vertices of the
final simplex enclosing the data.

Because the shrinkwrapping
procedure requires the pixels re-
siding only on the outer edge of
the volume, the convex hull of the

pixels in the reduced four-dimen-
sional space is calculated. After-
ward, the minimum-volume
transform is used to iteratively
minimize the volume of the sim-
plex, starting from an initial struc-
ture, by maneuvering each face
until no further reduction in vol-
ume can be achieved. The five
endmember spectra are recovered
from the vertices of the final sim-
plex by inverting the linear trans-
formation.

The result of this procedure for
the scene appears on the left in
Figure A. Shown on the right in
Figure A are sample spectra for
common natural materials in the
same scene. Endmember 3 has a
distinct resemblance to the spec-
trum for trees, whereas endmem-
ber 1 shows a resemblance to the
spectrum for bare soil (i.e., road).
Endmember 4 also shares some
spectral characteristics with the
spectrum for grass. Endmember 2
is clearly a noise endmember that
arises from the need to enclose ab-
errant pixels as well as shade pixels,
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that the endmembers are Gaussian classes, and this
technique is a deliberate attempt to fuse the geomet-
ric interpretation of linear mixing with Gaussian mix-
ture modeling and maximum-likelihood estimation
techniques. The stochastic mixing model (SMM) in-
troduces the concept of hard endmember classes as
the stochastic extension of deterministic endmem-
bers, and it assumes that all data in a scene are Gauss-
ian and arise from a linear combination of at least one

hard class. Geometrically, each stochastic endmember
describes one cluster of pixels on the perimeter of the
data cloud that is parameterized by a mean, covari-
ance, and prior probability N ( , , )mm GG p  so that every
mixed pixel belongs to a combination of hard classes.
If each combination of hard classes is a mixed class
with its own Gaussian statistics (i.e., mean, covari-
ance, and prior probability), then optimal unmixing
determines the combination of classes having the

which typically have very low
reflectances. Endmember 5 corre-
sponds clearly to another distinct
material present in the scene.

While three endmembers show
a resemblance in shape to three
materials in the scene, their abso-
lute reflectance values are signifi-
cantly different. In fact, some of
the geometrically determined
endmembers have reflectance val-
ues that are greater than one and
less than zero, which is a physical
impossibility! There are several
reasons why these values occur.
First, endmember reflectance val-

ues exceed one because the sim-
plex encloses the data, which
means the position of a vertex near
a cluster of pixels of the same type
must be positioned to enclose ev-
ery pixel. If some clusters have
high values and also exhibit sig-
nificant variability, the vertex may
have to be positioned well beyond
a reflectance value of one to pro-
vide complete enclosure. The
magnitude of the spectrum might
be well beyond the average value
of the material, but the general
shape will be maintained. A simi-
lar argument can be made for end-

member values that are less than
zero.

In contrast to statistical tech-
niques for endmember detection,
geometric techniques are capable
of revealing low-probability tar-
gets. A drawback, however, is that
aberrant pixels that arise due to
sensor artifacts may also be identi-
fied as endmembers. As a conse-
quence, geometric techniques are
especially suited to identifying
low-probability targets, but they
perform best with data that are
free of artifacts that can create spu-
rious results.
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FIGURE A. (a) Five endmembers extracted from four-dimensional reduced data by using geometric endmem-
ber determination techniques; (b) sample spectra extracted from different materials and objects in the scene.
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greatest likelihood of realizing that pixel. After an ini-
tial partition of the data, the reclassified pixels are
used to generate new class statistics, and the proce-
dure repeats until the SMM class parameters cease to
change.

An area of active research for endmember determi-
nation models the volume in a high-dimensional
space occupied by hyperspectral data collected from a
scene. Geometric approaches to endmember determi-
nation are non-parametric and non-statistical, and in-
stead exploit the strong parallelism between the
LMM and the theory of convex sets [11, 12]. These
approaches rely on the assumption that pixel spectra
from a scene reside within a high-dimensional vol-
ume, and by virtue of the LMM, endmembers must
reside at the extremities of this volume in order for
mixed pixels to arise. The objective then is to estimate
the position of the vertices that demarcate an en-

closed surface having minimum volume, while still
enclosing every pixel.

Typically, the determination consists of two steps.
The first involves data reduction, which like dimen-
sion reduction essentially minimizes computation by
discarding information (a dimension-reduction step,
such as PCA, commonly precedes data reduction). In
this case, however, data reduction discards pixels, not
bands. Only the perimeter of the volume occupied by
the scene data is necessary to establish the location of
the endmembers, and consequently the pixels resid-
ing within the convex hull [13] of the data are dis-
carded.

The second step, known as shrinkwrapping, em-
ploys a class of procedures known as minimum-vol-
ume transforms (MVT) to iteratively fit a multifac-
eted simplex of minimum volume around the convex
hull, where a simplex is a geometric surface in an

FIGURE 10. Taxonomy of inversion algorithms (continues on facing page), which are organized by the three classification crite-
ria appearing in Figure 2—interpretation of data, description of randomness, and optimization criterion. Specific features con-
cerning the outputs, inputs, and noise models used by these algorithms are also included. For example, by its position in the
taxonomy, unconstrained least squares (ULS) with full additivity is a non-statistical, non-parametric algorithm that optimizes a
squared-error criterion. It does not incorporate noise in its signal model, and it does assume endmembers are deterministic. Its
estimates for abundances are continuous-valued and uphold the full additivity condition, but do not enforce the purity and non-
negativity conditions.
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n-dimensional hyperspace defined by exactly n + 1
vertices. The dark-point-fixed transform (DPFT) is a
variant of the MVT that assumes knowledge of the
dark point of the sensor. In contrast, the fixed-point-
free transform (FPFT) assumes the dark point is un-
known. Shrinkwrapping begins with a simplex of ar-
bitrarily large size whose faces are consecutively
adjusted to minimize its volume.

Geometric methods for endmember detection are
decidedly non-statistical. They presume the presence
of deterministic endmembers at the vertices of the
simplex and, consequently, are sensitive to outliers or
bad pixels arising from faulty elements on the sensor
focal-plane array. However, geometric techniques can
expose rare objects that would otherwise go unno-
ticed by statistical approaches. The sidebar entitled
“Geometric Endmember Determination” describes
the processing module that determines endmembers
geometrically.

Inversion Taxonomy

In this section we address inversion, which yields the
second primary output of unmixing. The objective of
these algorithms is to determine the fractional pres-

ence of each endmember in the received pixel spec-
trum or, in terms of the LMM, find the vector a
whose entries weight the columns of S to yield x. Any
meaningful estimate of a, however, must comply with
constraints that make it physically realizable. In fact,
the single most challenging aspect of inversion is de-
termining how to reconcile mathematical and statisti-
cal techniques with the underlying physical restric-
tions. With this in mind, any estimate of a should
obey the following constraints for non-negativity, pu-
rity, and full or partial additivity. With regard to non-
negativity, the abundances should be non-negative to
be meaningful in a physical sense (ai ≥ 0, i = 1, … ,
M). With regard to purity, a fractional abundance co-
efficient cannot exceed 1 (ai £ 1, i = 1, … , M). With
regard to additivity, full additivity requires the abun-
dances for a mixed pixel to sum to one, with the im-
plicit assumption that all the endmembers compris-
ing the pixel spectrum in x are present in the columns
of S,
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Partial additivity is a generalization that requires only
the sum of abundances to be less than or equal to one,
and it applies when the set of endmembers in the
scene might be incomplete, which occurs when

ai
i

M

<
=
Â 1

1

.

Several endmember-determination algorithms dis-
played in Figure 9 also simultaneously estimate the
abundance vector a in the LMM. More often than
not in unmixing, both the endmembers and abun-
dances are unknown in a scene, and sometimes both
quantities are sought simultaneously. In many situa-
tions, however, the endmembers for a scene are
known, and the only remaining task is to recover the
abundances. Both these families of algorithms are in-
cluded in the inversion taxonomy in Figure 10. As
discussed earlier, the algorithms are organized by the
broad categories appearing in Figure 2. In addition,
specific features concerning the outputs, inputs, and
noise models used by these algorithms are included
according to the model in Figure 3 to specifically dis-
tinguish the properties of inversion algorithms. With
regard to outputs, do the algorithms yield abundance
values that are continuous-valued or defined only on
a discrete lattice of values? Does the estimation also
uphold the full additivity, non-negativity, and purity
constraints? With regard to inputs, do the algorithms
utilize stochastic or deterministic endmembers? With
regard to noise, do the algorithms employ a noise
model?

Inversion Algorithms

Inversion algorithms are dominated by approaches
that invoke some aspect of the method of least
squares. Many statistical and parametric algorithms
indirectly fall under the umbrella of least-squares
analysis either by the squared-error-minimizing prop-
erties of the singular-value decomposition and eigen-
decomposition, or the Euclidean geometry of Gauss-
ian analysis. The predominance of inversion methods
based on least squares discussed here demonstrates
how much of the current development of hyperspec-
tral algorithms is based, correctly or not, on a single
notion of distance.

The family of non-statistical, non-parametric,
squared-error inversion algorithms begins with the
unconstrained least squares (ULS) solution [3] for a,

ˆ ( ) .–a S S S xU T T= 1

Under the assumption of the LMM and no additive
noise, this unconstrained estimate for a minimizes
| ˆ |x Sa- U 2. This estimate exists when there are more
bands than columns (a reasonable assumption for hy-
perspectral sensing), and when S has full column rank
(i.e., endmembers are linearly independent). This es-
timate enforces none of the physical constraints on a.

The simplest variations on âU  incorporate the key
physical constraints on a by constraining the set of al-
lowable solutions for â . Full additivity requires the
abundances in a to sum to one [14], and this require-
ment restricts the solution to lie on the hyperplane
given by

ai
i

M

=
=
Â 1

1

.

The general solution for a least-squares estimate hav-
ing linear constraints is given by

ˆ ˆ ( ) ( ) ( ˆ ) ,a a S S Z Z S S Z Za bF U T T T T U= - [ ] -- - -1 1 1

where Z is a 1 ¥ M row vector having all ones and
b = 1. Closer examination of â F reveals that this solu-
tion consists of the unconstrained least-squares solu-
tion âU with an additive correction term that de-
pends on the matrix of endmembers S and the error
incurred by âU in satisfying the full additivity con-
straint.

The second constraint, non-negativity, is not as
easily addressed in closed form as full additivity.
Minimizing | |x Sa- 2 while maintaining ai ≥ 0, for
i = 1, … , M, falls in the domain of quadratic pro-
gramming with linear inequalities as constraints. An
alternative that has been employed in practice is the
non-negative least-squares algorithm (NNLS) [15].
The approach here is to iteratively estimate a and, at
every iteration, find a least-squares solution for just
those coefficients of a which are negative by using
only the associated columns of a. By selectively refin-
ing and moving those entries of a which still violate
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the non-negativity condition, and integrating the
newfound coefficients with the existing non-negative
values, the algorithm acquires a new estimate of a.
The procedure is repeated until the algorithm con-
verges to a final non-negative estimate â NN , which
has a subset of entries that are exactly zero. In com-
parison, whereas âU  is an unconstrained solution for
a that best minimizes | |x Sa- 2, â NN  is a constrained
solution that minimizes a similar but different crite-
rion, | |x S a- pos

2, where Spos = S for those columns of
Spos where the associated entry of â NN > 0, and the
zero vector appears in columns where â NN = 0.

In the previous examples of least-squares inversion
algorithms, the common objective has been to esti-
mate abundances that minimize the squared error be-
tween the actual spectrum and the approximated
spectrum. The statistical and non-parametric analog
of least-squares estimation minimizes the variance of
the estimator. Given that the additive noise vector w
in the LMM is a zero-mean random process and has a
covariance GGw , the minimum-variance estimate of
the abundances âV  is

ˆ ( ) .a S S S xV T
w

T
w= - - -GG GG1 1 1

This estimator of a is not only the best linear unbi-
ased estimator (BLUE), it is also the minimum-vari-
ance unbiased estimator (MVUE).

Clustering algorithms that are used for endmem-
ber determination frequently also yield abundance es-
timates. Figure 11 depicts the results of using the
fuzzy K-means partitions algorithm under the as-
sumption of four endmembers and q = 2.5. By virtue
of the rules for assigning abundance values to each
pixel at each iteration, the abundance estimates neces-
sarily fulfill the full additivity, purity, and non-nega-
tivity constraints. Endmember 1 resembles the spec-
trum of bare soil and road, whereas endmember 2 is
most closely associated with grass and low brush.
Endmembers 3 and 4 correspond to two different va-
rieties of trees in the scene.

The family of statistical and parametric inversion
algorithms consists of abundance estimators that de-
rive estimates for a by optimizing either forward or
posterior densities. Many of the maximum-likelihood
approaches discussed earlier for endmember determi-
nation also estimate abundances simultaneously.

Another maximum-likelihood formulation is the
weighted Mahalanobis distance [16], which restruc-
tures the LMM by eliminating the uncertainty intro-
duced by additive Gaussian noise, and considering
the endmembers as stochastic, each having a multi-
variate Gaussian mean and covariance. The LMM
can then be rewritten as x = (S + E)a, where E is a ran-
dom Gaussian matrix. Consequently, the covariance
for px a x a| ( | ) is a sum of the covariances for each
endmember, weighted by a. The dependence of the
covariance on a makes the optimal estimation of a
considerably more difficult, and an iterative solution
achieves the result.

Nonlinear Unmixing

While unmixing algorithms based on the LMM have
emerged and proliferated, nonlinear unmixing algo-
rithms have yet to demonstrate that the physical
mechanisms present in a scene can be capably mod-
eled to perform unmixing reliably. A few distinctive
techniques, however, have emerged. They include the
two-stream method [17], which incorporates mul-
tiple scattering into the expression for the bidirec-
tional reflectance function for a surface consisting of
particles of arbitrary shape in close proximity to one
another. Inversion is accomplished by means of a
single parameter known as the single-scattering al-
bedo, which is the probability that a photon survives
interactions such as Fresnel reflection, absorption,
scattering, and diffraction due to the presence of a
single grain of a substance.

A more macroscopic viewpoint is achieved from
the perspective of radiosity [18]. Formulated for spe-
cific geometries of soil and vegetation, assessments of
fractional leaf cover are estimated by balancing equa-
tions representing the transmitted and reflected radia-
tion. Solutions have been formulated for simple
canopy geometries in which multiple reflections oc-
cur between soil, leaf layers, layered canopies, and
rough soil.

Not surprisingly, in contrast to the LMM, which
trades physical specificity for analytical tractability,
physical models do not easily lend themselves to
simple mathematical solutions. Despite the complex-
ity of these solutions, researchers continue to seek ef-
ficient ways to perform unmixing. As progress is
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FIGURE 11. Abundance maps for four endmembers derived by using fuzzy K-means clustering with q = 2.5.
(a) Abundance map for endmember 1; (b) abundance map for endmember 2; (c) abundance map for end-
member 3; (d) abundance map for endmember 4; (e) endmember spectra. On the basis of knowledge of
known materials in the scene, endmember 1 resembles the spectrum of bare soil and road, whereas end-
member 2 is associated with grass and low brush, and endmembers 3 and 4 correspond to two distinct vari-
eties of trees.
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made, it is certain that a taxonomy of physically based
unmixing algorithms will naturally emerge around
core principles, in the same way that the organizing
criteria for the linear spectral unmixing taxonomies
discussed here became evident.

Conclusion

We have demonstrated an approach to hierarchically
organizing the set of algorithms in the literature that
comprise spectral unmixing. To organize the algo-
rithms in this way, we discussed the progression of
sensors that have to led to the development of hyper-
spectral sensing, and in parallel, we touched upon the
evolution of passive remote sensing that has culmi-
nated in the ability to decompose mixed pixels into
their constituent substances.

The taxonomies we have introduced have been
constructed from the viewpoint that unmixing is an
inverse problem that attempts to estimate important
physical parameters from an electromagnetic signal
that has interacted with the material of interest. Abso-
lute knowledge of every variable is impractical, and
this fact is manifested in varying degrees by the as-
sumptions imposed by algorithms on the problems
they attempt to solve.

Most importantly, the taxonomies reflect the wide
disparity that exists in the approaches undertaken to
solve the same problem. Hyperspectral sensing exem-
plifies a subject area that has drawn together an eclec-
tic collection of participants, but increasingly this is
the nature of many endeavors on the cutting edge of
science and technology. Organizing and standardiz-
ing these approaches will be an increasingly impor-
tant task for similar endeavors, and it is anticipated
that future taxonomies developed for hyperspectral
unmixing will reflect the increasing sophistication of
a field that is rapidly maturing at the intersection of
many different disciplines.
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A P P E N D I X :  D I S T A N C E  M E T R I C S ,  B A N D
S E L E C T I O N ,  A N D  D I M E N S I O N  R E D U C T I O N

The subject of dimension reduction has become in-
creasingly prominent for sensor systems that generate
high volumes of data. With hundreds of spectral mea-
surements for each spatial pixel, the processing of hy-
perspectral data from a single scene can be daunting.
Moreover, the associated subsystems for a sensor must
bear the burden of storage, transmission, and visual-
ization of the data. In light of this, minimizing the
quantity of data necessary for applications to succeed
has become a top priority.

Dimension reduction differs from compression in
that the goal for the former is to identify and preserve
features in a lower-dimensional space that still allow
algorithms to achieve acceptable performance. Com-
pression, on the other hand, minimizes the quantity
of data representing a signal to meet some bandwidth
constraint (e.g., for storage or transmission) with the
eventual goal of reconstructing the signal in its origi-
nal dimension. In the case of images and video, the
quality of the reconstruction is measured through its
visual fidelity. However, if the goal is for algorithms to
subsequently detect, classify, and identify small and
possibly rare objects in the images, lower-dimensional
representations must retain such information. In this
sense, dimension-reduction algorithms include in
their formulation constraints from the eventual appli-
cation that will utilize the data, whereas compression

schemes typically find compact representations of
data independent of any subsequent analysis.

At the core of hyperspectral dimension-reduction
and compression algorithms are distance metrics that
quantify the difference between two K-dimensional
signals [1]. A distance metric d ( · , · ) yields a scalar
measure of distance and must satisfy the following
three basic properties:
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Thus, given two K-dimensional signals x and y, the
distance d(x, y) between them can be measured sev-
eral different ways, depending on the feature that the
metric exploits. In the same way, a dimension reduc-
tion technique formulated around a specific distance
metric identifies a reduced dimension that optimizes
d( · , · ) over a class of signals.

For instance, principal-component analysis (PCA)
is a statistical technique that exploits the Euclidean
minimum distance, or EMD (also known as the 2-
norm), as its distance metric:
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Figure 1(a) illustrates EMD for two vectors x and y.
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FIGURE 1. (a) The Euclidean minimum distance (EMD) is the scalar distance D be-
tween x and y; (b) the spectral angle mapper (SAM) gives the angle q between x and y.



• KESHAVA
A Survey of Spectral Unmixing Algorithms

VOLUME 14, NUMBER 1, 2003 LINCOLN LABORATORY JOURNAL 75

Given a zero-mean, K-dimensional random vector x
having covariance GG , PCA essentially identifies the
vector components that minimize the average dis-
tance between x and a rank k (where k = 1, …, K)
approximation of x̂ .
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The vector components that PCA identifies for di-
mension reduction are exactly the eigenvectors of G,
and by the ordering provided by their associated
eigenvalues, they can be used in linear transforms to
achieve lower-dimensional representations that mini-
mize the average representation error between x and
x̂ , as measured by EMD.

There is, however, no certainty that the reduced-
dimension representations from PCA retain all the in-
formation necessary for algorithms to succeed. In
fact, targets of interest that appear with a low prob-
ability, and whose spectrum is significantly different
from the majority of the scene, can often be cor-
rupted by statistical dimension-reduction techniques,
causing subsequent classification or detection algo-
rithms to fail. In short, although PCA (and implicitly
EMD) may preserve the energy in signals, the conser-
vation of energy may not be the driving factor that
maintains algorithm performance.

EMD is one common metric in hyperspectral pro-
cessing, but the most frequently used distance metric
for comparing two spectra is the spectral angle map-
per (SAM), which measures the angle between two
hyperspectral signals. Given two K-dimensional spec-
tra x and y, the angle q between them is given by
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Figure 1(b) illustrates SAM for two vectors x and y.
While SAM and EMD offer complementary mea-

sures derived from simple Euclidean geometry, SAM
possesses mathematical properties that are useful for
overcoming a particular form of signature variability.
Atmospheric compensation algorithms convert radi-
ance measurements from the sensor into estimates of
the intrinsic reflectance value belonging to materials
under observation. However, depending on its angu-

lar orientation with respect to the sun and the sensor,
the measured radiance from a material can vary, and
under ideal circumstances, the variation is in the form
of a multiplicative constant. Since the angular orien-
tation of objects observed by a sensor is unknown, the
recovered estimate of the reflectance spectrum is also
inexact, but known within an unknown near-multi-
plicative constant. Figure 2 depicts the spectra for sev-
eral pixels derived from the same target, and while
each pixel spectrum possesses similar artifacts, a near-
multiplicative scaling is discernible between spectra.

By the definition of SAM, the angle created by two
spectra is invariant to scaling by multiplicative con-
stants a and b; namely, q(ax, by) = q(x, y). Thus if x is
a library spectrum for a target of interest that is com-
pared to a test pixel y, the invariance of SAM to mul-
tiplicative variability in y becomes a useful benefit.

SAM possesses another intriguing property. Again,
let x and y be two K-dimensional spectra, but now
represent each spectrum as the concatenation of two
smaller vectors: x = [ xA  xB ] and y = [ yA  yB]. Then xA
and yA are K1-dimensional, and xB  and yB are K2-di-
mensional, such that K1 + K2 = K. A simple reorgani-
zation of cos q(x, y) can be expressed as
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In essence, this decomposition indicates that
cos q(x, y) can be interpreted as cos q(xA, yA), scaled
by a function b of the band values in xB and yB . More
importantly, this decomposition provides the frame-
work for a simple iterative technique, called band
add-on (BAO), to identify a subset of bands B in x
and y that increase their angular separation. Starting
with an initial pair of bands to serve as xA and yA (e.g.,
the most or least orthogonal pair of bands in x and y),
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the value of b can be scored for the remaining bands
(individually or as groups) to determine how they
scale cosq(xA, yA). The band or bands that yield the
smallest b < 1 can then be appended to the starting
pair of bands, and the process is repeated until no
bands further increase the angle.

The procedure can be illustrated with two spectra,
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x and y, as shown in Figure 3(a). Here the red and
blue curves represent the reflectance spectra for two
different materials. From the original 210 spectral
bands, several bands have been discarded (gaps in the
spectra appear at those locations) because water-vapor
absorption significantly degrades the measurements
in those spectral intervals, leaving 144 usable bands.
The angle between x and y using all 144 bands is
28.1∞.

Band selection was performed on this pair of spec-
tra by using two variants of the aforementioned tech-
niques. In the first variation, BAO was initialized
with the most orthogonal pair of bands (BAO-MO),
and four bands were incrementally added. Figure 3(a)
illustrates these six selections (629, 2099, 613, 417,
621, and 420 nm) as dashed magenta stripes. In the
second variation, BAO was initialized with the least
orthogonal pair of bands (BAO-LO), and five bands
were subsequently added. Figure 3(a) illustrates these
seven selections (466, 577, 2099, 629, 613, 417, and
420 nm) as dashed green stripes. Figure 3(b) shows
the increase in spectral angle as bands are incremen-
tally added for each method, and compares the results
to the angle of 28.1∞ achieved with all 144 bands.
Table 1 summarizes the results.

FIGURE 2. Reflectance spectra for several pixels derived
from the same target vehicle. A multiplicative scaling effect
is clearly evident in the spectra, but the shape of the spectra
itself is nearly invariant.
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FIGURE 3. (a) Band selection results using two variations—least orthogonal (LO) and most orthogonal (MO)—of
the band add-on (BAO) algorithm. The dashed magenta stripes indicate the wavelengths selected by BAO-MO, and
the dashed green stripes indicate the wavelengths selected by BAO-LO. (b) This plot shows the SAM angle between
two spectra for BAO-MO and BAO-LO as spectral bands are incrementally added. When all 144 usable bands are
employed, the angle between the two spectra is 28.1∞.
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Both variants of BAO exceeded the spectral angle
produced when all 144 bands were used. Perhaps
more compelling is that, despite the use of different
initial conditions, five bands were commonly selected
by both techniques, indicating a strong predilection
for certain parts of the spectrum to increase angular
contrast. While BAO is an inherently suboptimal
technique for finding the largest angle, exhaustive
evaluations of all possible subsets of bands have
shown that BAO-MO frequently arrives at an angle
near or equal to the maximum.

Band selection for SAM is an example of feature
selection for a non-convex cost function, which is a
common problem in pattern recognition. BAO has
been extended to increase the angle between two
classes of spectra, where each class consists of a hand-
ful of spectra, but not enough to estimate a covari-
ance. This simple model for class variability strongly
parallels the hyperspectral material identification
problem, in which each material class is characterized
by a handful of instrument measurements, and a dis-
tance metric compares an unknown pixel with a tem-
plate from each class. Experiments have shown that
band selection has significantly increased the angular
contrast between classes and, hence, the capability of
distinguishing spectrally similar targets, a common
occurrence in camouflage and concealment scenarios
[2,3]. Dimension reduction is a concomitant benefit.
The strength of hyperspectral processing is in the
physical measurements it collects. Exploiting metrics
with a physical underpinning is a key part of taking
full advantage of that strength.
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Table 1. Summary of Results for Two-Band Selection Algorithms
That Maximize the Angle between Two Spectra

Method Starting bands Additional bands Total number Final angle
(nm) (nm) of bands  (degrees)

Least orthogonal (LO) 466, 577 2099, 629, 613, 417, 420 7 46.2

Most orthogonal (MO) 629, 2099 613, 417, 621, 420 6 46.8

Entire spectrum 144 28.1
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