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Hyperspectral Imaging System
Modeling
John P. Kerekes and Jerrold E. Baum

■ To support hyperspectral sensor system design and parameter trade-off
investigations, Lincoln Laboratory has developed an analytical end-to-end
model that forecasts remote sensing system performance. The model uses
statistical descriptions of scene class reflectances and transforms them to
account for the effects of the atmosphere, the sensor, and any processing
operations. System-performance metrics can then be calculated on the basis of
these transformed statistics. The model divides a remote sensing system into
three main components: the scene, the sensor, and the processing algorithms.
Scene effects modeled include the solar illumination, atmospheric
transmittance, shade effects, adjacency effects, and overcast clouds. Modeled
sensor effects include radiometric noise sources, such as shot noise, thermal
noise, detector readout noise, quantization noise, and relative calibration error.
The processing component includes atmospheric compensation, various linear
transformations, and a number of operators used to obtain detection
probabilities. Models have been developed for several imaging spectrometers,
including the airborne Hyperspectral Digital Imagery Collection Experiment
(HYDICE) instrument, which covers the reflective solar spectral region from
0.4 to 2.5 µµµµµm. This article presents the theory and operation of the model, and
provides example parameter trade studies to show the utility of the model for
system design and sensor operation applications.

H   ()  are
being applied to a number of areas, in-
cluding the environment, land use, agricul-

tural monitoring, and defense. Because it uniquely
captures spatial and spectral information, hyperspec-
tral imagery is often processed by traditional auto-
mated image processing tools as well as analyst-inter-
active approaches derived from spectroscopy. HSI
products often contain both quantitative and qualita-
tive information, arranged in an image to show the
spatial relationships present in a scene.

The interaction of spatial and spectral informa-
tion, the dependence on ancillary or library informa-
tion in the processing, and the wide range of possible
HSI products prevent using a single or multiple
instrument metric(s) to characterize system perfor-

mance in a general manner. Thus design and sensitiv-
ity analyses of hyperspectral systems require a more
comprehensive approach than traditional imaging
systems.

This goal of capturing the effects of the entire sens-
ing and processing chain motivates our HSI system
modeling. We are interested in developing tools to
understand the sensitivities and relative importance
of various HSI system parameters in achieving a level
of performance in a given application. Examples in-
clude understanding how sensitive the detection of a
subpixel object is to atmospheric haze or instrument
noise. Another aspect is understanding which system
parameters are most important and in what situa-
tions. Having a comprehensive modeling capability is
key to exploring these issues.



• KEREKES AND BAUM
Hyperspectral Imaging System Modeling

118 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 1, 2003

To support quick assessments of these kinds of sen-
sitivity analyses, we have pursued a statistical para-
metric modeling approach, based on earlier work [1],
as opposed to a physics-based system simulation
method [2–4]. The method described in this article
can be run quickly and efficiently through a large
number of parameter configurations to understand
these sensitivities.

End-to-End Remote Sensing System Model

The end-to-end remote sensing system model in-
cludes all the elements in the scene (illumination, sur-
face, and atmospheric effects), the sensor (spatial,
spectral, and radiometric effects), and the processing
algorithms (calibration, feature selection, and appli-
cation algorithm) that produce a data product. Figure
1 presents an overview of the model.

The underlying premises of the model are that the
various surface classes of interest, such as trees or
roads, can be represented by first- and second-order
spectral statistics, and that the effects of various pro-
cesses in the end-to-end spectral imaging system can
be modeled as transformations and functions of those
statistics.

The model is driven by an input set of system pa-
rameter descriptions that define the scenario, includ-
ing the scene classes, atmospheric state, sensor charac-

teristics, and processing algorithms. Table 1 contains
a list of model parameters and options available, as
well as their symbols used in this article.

These parameters are used in analytical functions
to transform the spectral reflectance first- and second-
order statistics of each surface class through the spec-
tral imaging process. The spectral mean and spectral
covariance matrix of each class are propagated from
reflectance to spectral radiance to sensor signals, and
finally to features, which are operated on to yield a
metric of system performance. The following sections
describe the scene, sensor, and processing modules of
the model.

Scene Module

The end-to-end remote sensing system model consid-
ers a scene to consist of one or more background
classes and an object class. The user supplies the pro-
portion of the scene filled by each background class
and the fraction of a pixel occupied by the object
class. Each class is described by its first- and second-
order spectral reflectance statistics (mean vector and
covariance matrix). With user-supplied descriptions
of the atmosphere and the observation geometry, an
atmospheric code transforms weighted combinations
of these reflectance vectors and matrices into surface-
reflected and path-scattered radiances. These radi-

FIGURE 1. Block diagram of the end-to-end remote sensing system model. Surface
classes, such as trees or roads, can be represented by first- and second-order spectral
statistics. The effects of various processes in the end-to-end spectral imaging system
can be modeled as transformations and functions of those statistics.
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Table 1. Input System Parameters in Model

Scene

Total number of background classes M (≥ 1)

Area fraction of scene occupied by class m 0 ≤ fm ≤ 1, Σfm = 1

Pixel fraction occupied by subpixel object 0 ≤ fT ≤ 1

Object fraction in shadow 0 ≤ fS ≤ 1

Fraction of sky visible from object in shadow 0 ≤ fsky ≤ 1

Spectral covariance scaling factor for class m gm

Solar zenith angle 0 ≤ θs < 90°

Atmospheric model Tropical, midlatitude summer, midlatitude winter,
subarctic summer, subarctic winter, 1976 U.S. standard

Meteorological range (visibility) V

Aerosol model Rural or urban

Cloud at 2.4 km altitude Yes or no

Sensor

Sensor type HYDICE, Hyperion, and others

Number of spectral channels K

Channel wavelength, bandwidth λ, ∆λ

Spectral quantum efficiency η

Spectral optics transmittance τ

Pixel integration time t

Saturation spectral radiance Lmax

Number of radiometric bits Q

Sensor platform altitude z

Sensor view angle 0° ≤ θv < 90° (nadir = 0°)

Sensor noise factor gn

Relative calibration error cR

Data bit-error rate Be

Processing

Number of features F

Spectral regions for use as features Wavelength regions

Feature selection algorithm Contiguous regions, principal components, band averaging

Atmospheric compensation Empirical line method (ELM) or none

Performance algorithm metric Constrained energy minimization (CEM) spectral matched
filter, total error, spectral characterization accuracy

Desired false-alarm rate 10–6 < PFA < 10–2
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ances are then combined to produce the mean and
covariance statistics of the spectral radiance at the in-
put aperture of a spectral imaging sensor. The scene
geometry, reflectance inputs, transformations, and at-
sensor radiances are detailed below.

Scene Geometry and Subpixel Object Model

The model assumes a simple area-weighted linear
mixing model for a subpixel object within a scene that
contains M background classes, as shown in Figure 2.
Each background class m occupies a fraction fm of the
scene, with the constraint that the fractions sum to
one. The background class containing the subpixel
object is denoted m*. It is important to note that this
model does not actually simulate a specific spatial lay-
out; rather, it accounts for the effects of the multiple
background classes through the area-weighting
scheme.

A simple linear model is assumed for the object-
class pixel. The subpixel fraction fT , with 0 ≤ fT ≤ 1,
defines the fractional area of the pixel occupied by the
object with direct line of sight to the sensor. Parts of
the object occluded by the background are accounted
for in the background fraction.

Input Reflectance Statistics

The object and background spectral reflectance statis-
tics are computed externally and provided as inputs to
the model. They may be derived from field spectrom-
eters, laboratory measurements, airborne spectrom-
eter imagery converted to reflectance, or physics-
based simulations. For each class, the input statistics
consist of a spectral mean reflectance vector ρ and a
spectral reflectance covariance matrix Γρ.

The model assumes that the reflectance distribu-
tion of each class, background or object, is unimodal.
Thus the data used to compute the statistics must be
carefully screened, through spectral clustering or his-
togram techniques, to ensure they form a cluster
around a single mean point in the multidimensional
space. In some cases, a single terrain category needs to
be separated into multiple reflectance classes to en-
sure that each class is unimodal. For example, the
single category “grass” may need to be split into
classes of “dry grass” and “healthy grass,” each with a
different mean reflectance. Also, the model considers

the reflectance vectors to be hemispherical reflectance
factors for completely diffuse surfaces. Effects related
to the more complicated structure of the bidirectional
reflectance distribution function are not considered.

Atmospheric Radiance and Transmittance

The model uses the Air Force Research Laboratory
code MODTRAN [5] to compute the solar illumina-
tion and atmospheric effects. A number of calls are
made to the code to calculate the various radiance
vectors used to transform the reflectance statistics to
radiance statistics. For convenience in the current ver-
sion of the software, the sensor channel spectral re-
sponse functions are convolved with the spectral radi-
ances immediately after each MODTRAN run is
completed. Thus the spectral radiance vectors at the
output of the scene model have the same dimension-
ality as the sensor.

Mean Spectral Radiance†

The total mean spectral radiance for each class is the
sum of LS(ρ), the total surface reflected radiance (dif-
fuse and direct) for a mean reflectance ρ, and LP(ρave),
which is the path-scattered radiance (adjacent and
path) calculated with the scene average reflectance
ρave as the surface reflectance. Figure 3 shows the
paths for these various radiance components. This

† All radiance calculations are performed as functions of wavelength,
but for clarity in presentation, the subscript λ has been dropped.

FIGURE 2. Notional scene geometry with multiple back-
ground classes and a single subpixel object. This model as-
sumes a simple area-weighted linear mixing model for a
subpixel object within a scene that contains one or more
background surface classes.
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formulation for the path radiance models the “adja-
cency effect,” which is discussed below. The model
has been developed for sensors operating in the reflec-
tive solar portion of the optical spectrum, with scenes
near room temperature. Thermal emission effects are
not considered.

Background Classes. A separate call to MODTRAN
is made for each background class m, as well as one
for the background scene average. The total mean
spectral radiance LB for each case is

L L LB S m P avem
= +( ) ( ) ,ρ ρ

and

L L LB S ave P aveave
= +( ) ( ) .ρ ρ

The scene average reflectance ρave is computed by us-
ing the class fractions fm:

ρ ρave m
m

M

mf=
=
∑

1

. (1)

FIGURE 3. Sources of illumination and their paths from the sun to the scene
and into the sensor. The total surface-reflected radiance arriving at the sen-
sor consists of direct and diffuse components. The total path-scattered radi-
ance arriving at the sensor consists of adjacent and path components.

Object Class. The mean spectral radiance L̃T  for
the object class is

˜ ( ) ( ) .˜L L LT S T P ave= +ρ ρ (2)

The surface reflectance used in the MODTRAN call
to generate the first term of Equation 2 is computed
as

˜ ( ) .*ρ ρ ρT T T T mf f= + −1

The weighted sum of the object-class mean reflec-
tance and the background-class m* mean reflectance
implements the linear model described above.

Path Radiance Calculation. For all mean spectral
radiance calculations, the path-scattered contribution
LP is calculated by using the scene fractional area-
weighted average reflectance ρave, as shown in Equa-
tion 1. (Note that when MODTRAN runs with the
“multiple scattering” option on, the atmospheric
path-scattered radiance term depends on surface re-
flectance.) This approach accounts for atmospheric
adjacency effects caused by the scattering of nearby
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surface-reflected radiance into the sensor’s instanta-
neous field of view. The assumption here is that the
scattering scale of the effect covers the entire scene
being collected. Studies have shown this adjacency ef-
fect can occur out to several hundred meters [6], typi-
cal of the scenes considered by the model.

Spectral Radiance Covariance

The transformation of the spectral reflectance covari-
ance statistics Γρ to spectral radiance covariance sta-
tistics ΓL follows the same linear atmospheric model
assumed in the mean calculations. We interpolate
spectral radiances calculated for surface reflectances
equal to zero and one by using the entries of the re-
flectance covariance matrices.

These transformations use the following diagonal
matrices, with the described vectors along the diago-
nals and zeros elsewhere: ΛLS1 is the total surface-re-
flected spectral radiance for a surface reflectance of 1,
ΛLP1 is the atmospheric path-scattered spectral radi-
ance for a surface reflectance of 1, and ΛLP0 is the at-
mospheric path-scattered spectral radiance for a sur-
face reflectance of 0.

Background Classes. The background spectral radi-
ance covariance matrices for each background class m
and the scene average are computed as

Γ Λ Γ Λ

Λ Λ Γ Λ Λ

LB LS B LS

LP LP B LP LP

m m

ave

= +

−[ ] −[ ]
1 1

1 0 1 0

ρ

ρ ,

and

Γ Λ Γ Λ

Λ Λ Γ Λ Λ

LB LS B LS

LP LP B LP LP

ave ave

ave

= +

−[ ] −[ ]
1 1

1 0 1 0

ρ

ρ .

Object Class. The object-class spectral radiance co-
variance matrix ΓLT  is computed by using the total
surface-reflected radiance output from MODTRAN:

Γ Λ Γ Λ

Λ Γ Λ

Λ Λ Γ Λ Λ

LT LS T LS

T LS B LS

LP LP B LP LP

f

f
m

ave

= +

− +

−[ ] −[ ]

2
1 1

2
1 1

1 0 1 0

1

ρ

ρ

ρ

( )

.
*

Sensor Module

The sensor module takes the spectral radiance mean
and covariance statistics of the various ground classes
and applies sensor effects to produce signal mean and
covariance statistics that describe the scene as imaged
by an imaging spectrometer. The sensor module in-
cludes a limited number of radiometric noise sources,
with no spatial or spectral sources of error. Also, as we
noted earlier, the channel spectral response of the sen-
sor is applied during the input radiance calculations
described in the previous section.

Radiometric noise processes are modeled by add-
ing variance to the diagonal entries of the spectral co-
variance matrices. Off-diagonal entries are not modi-
fied because it is assumed that no channel-to-channel
correlation exists in the noise processes.

The radiometric noise sources come from detector
noise processes, including photon (shot) noise, ther-
mal noise, and multiplexer/readout noise [7]. The to-
tal detector noise σn is then calculated as the root-
sum-square of the photon noise, the thermal noise,
and the multiplexer/readout noise. Because detector
parameters are often specified in terms of electrons,
the noise terms are root-sum-squared in that domain
before being converted to noise equivalent spectral
radiance.

After the total detector noise σn (in electrons) has
been converted back to the noise equivalent spectral
radiance σLn , it is then scaled by a user-specified noise
factor gn . Next( )gn Ln

σ 2  is added to the diagonal en-
tries of the spectral covariance matrices for each sen-
sor spectral channel.

Another noise source is relative calibration error cR.
This error is also assumed to be uncorrelated between
spectral channels; it is described by its standard devia-
tion σcR

as a percentage of the mean signal level. Ex-
pressed as a variance, it is added to the diagonal en-
tries of the covariance matrices of each class, as with
the other noise sources.

The last two noise sources are quantization noise
in the analog-to-digital conversion and bit errors in
the communications or data recording system. These
sources depend on the assumed dynamic range of the
sensor Lmax. The quantization error variance σnq

2  is
calculated for a system with Q radiometric bits as
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σnq Q

L2
2

1
12 2 1

=
−







max .

The model for the effect of bit errors in the data
link (or onboard storage) assumes that bit errors are
uniformly distributed across the data word and could
be of either sign. Thus, for Q bits, the error will take
on one of 2Q values, ±2i for i = 0,…,Q – 1, with
equal probability of 1/(2Q). The noise variance σnBe

2 ,
caused by a bit error rate of Be , is

σnB
e q

Q
q

Q

e

B
Q

L2
2

0

1

2
2 1

=
−









=

−

∑ max .

These last two noise terms are also added to the di-
agonal entries of the spectral covariance matrices.

For reporting as a performance metric, the class-
dependent sensor signal-to-noise ratio is calculated as
the ratio between the mean signal and the square root
of the sum of the noise variance terms.

Processing Module

The signal means and covariances computed by the
sensor module are then transformed by options
within the processing module to produce outputs for
evaluating the modeled hyperspectral system. An at-
mospheric compensation algorithm may be applied
to the signal statistics to retrieve class reflectance sta-
tistics, reduced-dimensionality feature vectors may be
extracted from the class signal vectors, and scalar per-
formance metrics may be calculated. Each of these
processing options is described below.

Atmospheric Compensation

Atmospheric compensation is accomplished by defin-
ing surrogate low- and high-reflectance calibration
panels and computing the slope and offset of a two-
point linear fit between the mean panel signals and
the known reflectances. This approach models the
empirical line method (ELM) often used for atmo-
spheric compensation. The slopes and offsets are ap-
plied to the mean signal and covariance matrices of
the object and background classes to compute the re-
trieved (or estimated) class reflectance mean ρ̂ and
covariance Γ̂  statistics.

Feature Selection

Several options exist for extracting a reduced-dimen-
sionality feature vector F from the signal vector: (1)
all channels within contiguous regions (e.g., to avoid
water-vapor absorption spectral regions), (2) princi-
pal components, and (3) band averaging to simulate
multispectral channels. Each option is implemented
as a linear transformation by applying an appropriate
feature-selection matrix Ψ to the mean vectors and
covariance matrices of the object class and each back-
ground class. This matrix Ψ     can be applied in either
the retrieved reflectance domain (if atmospheric com-
pensation was performed) or the signal domain (di-
rectly on the statistics output by the sensor model):

F XT= Ψ (3)

and

Γ Ψ Γ ΨF
T

X= , (4)

where X refers to the signal type (retrieved reflectance
or sensor signal) for the object class and each back-
ground class.

Performance Metrics

Three algorithms are available to determine a perfor-
mance metric for a given scenario: (1) spectral charac-
terization accuracy, a measure of how well the spectral
reflectance can be retrieved from the sensor measure-
ments; (2) a version of a spectral matched filter,
known as constrained energy minimization (CEM)
[8], that can be used to predict probability of detec-
tion versus probability of false-alarm curves (PD/PFA);
and (3) total error, which approximates the sum of
false-alarm and missed-detection probabilities to pro-
duce a scalar performance metric.

The first performance metric, spectral character-
ization accuracy, is quantified by both the mean dif-
ference SCbias between the retrieved surface reflec-
tance of the object and its initial known reflectance,
and by the standard deviation σSC of the difference for
each spectral channel l :

SC l l lbias( ) ( ) ( ) ,ˆ= −ρ ρ

and
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σ σ σρ ρSC l l l( ) ( ) ( ) .ˆ= −2 2

The second performance metric, the matched fil-
ter, uses a known object spectral “signature” and an
estimate of the background spectral covariance to
minimize the energy from the background and to em-
phasize the desired object. In the model implementa-
tion, the known “signature” is the object’s original
mean spectral reflectance used at the input to the
model. The filter operator w is

w FB FT FB

FT FB
T

FB FT FB

ave ave

ave ave ave

=
−

− −

−

−

ˆ ( )

( ) ˆ ( )
,

ˆ

ˆ ˆ

Γ

Γ

ρ

ρ

ρ ρ

ρ ρ ρ ρ

1

1

where the subscript F indicates the signal means and
covariances have been transformed to the desired fea-
ture space by using Equations 3 and 4. The filter is
applied to the combined object/background class fea-
tures and to the features of each background class.
The operator w transforms the mean and covariance
from each class feature space to a scalar test statistic
with mean θ and variance σθ

2
:

θ ρ ρ

θ ρ ρ

σθ ρ

T
T

FT B

Bm
T

FBm FB

T
FT

w

w m M

w w

ave

ave

T

= −

= − =

=

( ) ,

( ) ,

ˆ ,

ˆ ˆ

ˆ ˆ for 1

2

K

Γ

and

σθ ρBm m
w w m MT

FB
2 1= =ˆ .Γ for K

After this transformation, the PD/PFA curve can
then be calculated. The probability of detection PDm
(computed separately for each background class m)
is computed for a user-specified probability of false
alarm PFA by assuming a Gaussian probability density
function for the test statistic output. This assumption
is somewhat justified by the Central Limit Theorem
because the operator is a summation of a large num-
ber of random variables. The threshold hm is deter-
mined from the variance σθ

2
Bm

and mean θBm
for each

background class m and the desired probability of
false alarm:

h Pm B FAm Bm
= + −θ σθ Φ 1( ) .

The function Φ–1 returns the cutoff value such that
the area under the standard normal curve to the right
of the cutoff is equal to the argument of the function.
Then, using hm, the probability of detecting the ob-
ject in background class m is

P
x

dxD
T

h
m

T Tm

= −
−

















∞

∫
1

2 2

2

2σ π

θ

σθ θ

exp
( )

.

For scenarios with multiple backgrounds, the
threshold h* yielding the minimum PD is used to re-
compute the false-alarm probabilities for the other
classes. These new probabilities are then summed by
using the background class area fractions fm to yield a
combined PFA:

P f P hFA m FA
m

M

m
=

=
∑ ( *) .

1

The combined PD is simply the minimum PDm
:

P PD Dm
= min .

The third performance metric included in the
model approximates the total error Pe (i.e., the over-
lap between multivariate distributions) in a two-class,
equal a priori probability case:

P P Pe D FA≈ − +
1

2
1

1

2
( ) .

Pe is approximated by using the standard normal error
function and the Bhattacharyya distance Bdist in the
following function, which was found to provide a
good estimate of the true error value [9]:

P
x

dxe
Bdist

= −










∞

∫
1

2 2

2

2π
exp ,

where

B F F F Fdist T B
T FT FB

T B

FT FB

FT FB

= −( ) +





 −

+

+

−
1

8 2

1

2
2

1
Γ Γ

Γ Γ

Γ Γ

( )
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While Pe does not distinguish between errors
caused by false alarms and those caused by missed de-
tections, it does provide a single scalar metric that can
be used for relative performance comparisons. It is
normally used in the model to assess the relative con-
tribution to system error from the various system pa-
rameters, as shown in the section on example results.

Implementation

The model has been implemented as part of a soft-
ware package named Forecasting and Analysis of
Spectroradiometric System Performance (FASSP).
The package is written in the Interactive Data Lan-
guage (IDL) of Research Systems Incorporated to
take advantage of IDL’s integrated graphical user in-
terface and plotting capabilities, as well as the port-
ability between computing platforms. The model has
been set up to run on UNIX, PC, and Macintosh
platforms. A typical parameter trade study takes only
a few minutes to run.

FASSP contains several routines for reading the in-
formation necessary for executing runs. Files that
contain the material reflectance statistics and the sen-
sor models are stored in ASCII files. The parameters
that define a model run are stored outside of the
FASSP environment in ASCII files called parameter
files. Parameter files can be created and edited either
inside FASSP or outside and then imported.

 When FASSP is run, the individual scene, sensor,
and processing modules (see Figure 1) are executed in
series, without user interaction, using the model val-
ues in the parameter file as their inputs. It is not un-
usual to test several different sensor parameters or
processing methods against a single scenario. In this
case, the scene module results are static and only the
sensor and processing modules need to be repeated.
Because executing the scene module dominates the
model run time, this approach allows analyses to be
conducted quickly.

Run output is saved in an IDL native binary for-
mat. The output of a model run can be restored either
within FASSP or it can be restored and manipulated
in IDL outside the FASSP environment. Graphical
displays are also available for plotting results from
various stages of the model, such as material
reflectances, at-sensor spectral radiance, signal-to-

noise ratio, PD /PFA curves, and other processing
metrics. FASSP allows the plots to be saved in JPEG,
PostScript, or ASCII formats.

Validation

The model and its implementation have been vali-
dated with airborne hyperspectral imagery. A recent
publication [10] provides comparisons of measured
data and model predictions at points in the end-to-
end spectral imaging process. Comparisons include
the spectral radiance at the sensor input aperture, the
sensor signal-to-noise ratio, and the detection perfor-
mance (PD /PFA) after applying a spectral matched fil-
ter. At all points in the process, the model predictions
compare favorably with the empirical data.

Example Results

One advantage of an end-to-end system model is that
the user controls all of the scene, sensor, and process-
ing parameters and can specify nearly arbitrary con-
figurations. With these capabilities, our model can be
applied to investigate which parameters have the
most impact on a system’s performance and to study
the sensitivity of a given system’s performance to
changes in the scene and/or sensor. We present one
example of a “relative impact” analysis, followed by
two examples of “sensitivity” analyses.

Relative Roles of System Parameters

Our model includes an option to study automatically
the relative roles of system parameters in a quantita-
tive manner. We considered, as an example, the prob-
lem of detecting subpixel roads in a forested back-
ground. This application could arise in the use of
moderate spatial-resolution hyperspectral imagery to
derive a road network layer for a Geographic Infor-
mation System (GIS). For our example, we used a
sensor model of a generic hyperspectral imager. Re-
flectance statistics for a gravel road and an area with
trees were derived from atmospherically compensated
radiance data collected by the airborne Hyperspectral
Digital Imagery Collection Experiment (HYDICE)
instrument [11].

The analysis was conducted by calculating the total
probability of error Pe with all parameters at their
nominal values, and then recalculating Pe as each of
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the parameters was changed to an “excursion” value,
while leaving all other parameters at their nominal
values. The parameter excursion values were chosen
to represent an ideal value or one that would have a
minimal effect on system performance. Table 2 lists
the system parameters studied, their nominal values,
their excursion values, the model-calculated probabil-
ity of error, and a quantitative estimate of the relative
importance to system performance of each parameter.
The Pe metric was used as a measure of the separabil-
ity of the subpixel road class and the forest back-
ground. The relative importance of each parameter
was computed by taking the difference between the
error calculated by using the excursion value of that
parameter and the system nominal error, and then
normalizing by the sum of all such differences.

The results indicate that the most important sys-
tem parameters are the number of spectral channels,
the forest background covariance scaling, and the me-
teorological range (atmospheric visibility). The im-
portance of the number of spectral channels is not

only because the dimensionality of the measurements
is increased, but also because the additional channels
cover a broader spectral range. In this example, the
nominal 30 channels covered only 0.4 to 0.7 µm,
while the excursion 60 channels covered 0.4 to 1.0
µm. After these three parameters, the sensor view
angle has the next biggest influence, then the subpixel
fraction, and so on. In this scenario, the impact of off-
nadir viewing is predicted to be more significant than
off-zenith solar angle. Although the model does not
take into account the bidirectional reflectance distri-
bution function of the surface, this result can be ex-
plained by the increase in the path radiance scattered
into the sensor aperture, which, because of the adja-
cency effect [6], reduces separability between the road
and the forest classes.

It is important to note that the conclusions from
this type of analysis are extremely dependent upon
the scenario configuration and the system parameters
considered. The results shown in Table 2 are not in-
tended to apply to the general case, but are shown to

Table 2. Relative Importance of System Parameters in Detecting Subpixel Roads in a Forest

Scenario Nominal Excursion Pe for Relative
Parameter Value Value Excursion Value* Role

Number of spectral channels 30 60 0.1245 28%

Background variability scaling factor 1 0 0.1740 24%

Meteorological range 5 km 50 km 0.1894 22%

Sensor view angle (nadir = 0°) 60° 0° 0.3002 12%

Object subpixel fraction 0.5 1.00 0.3557 7%

Sensor relative calibration error 2% 0% 0.3778 4%

Solar zenith angle 60° 0° 0.3974 3%

Number of radiometric bits 8 16 0.4235 0%

Object variability scaling factor 1 0 0.4249 0%

Sensor noise scaling factor 1 0 0.4254 0%

Bit-error rate 10–9 0 0.4255 0%
——

Total 100%

*(Pe = 0.4255 with all nominal values)
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illustrate a use of the model and a methodology for
quantitatively assessing the relative importance of di-
verse system parameters in an end-to-end spectral im-
aging system.

Subpixel Detection Sensitivity to
Various System Parameters

Another use of the model is to study how sensitive a
given sensor might be to either design changes or
scene conditions. This type of analysis can be helpful
when setting system requirements or when setting
data collection parameters for systems that have con-
trollable parameters.

To illustrate this use of the model, we present two
examples showing parameter sensitivities. The sce-
nario for both is the detection of subpixel roads in a
forested background, as previously described, but
with the use of a road spectrum (from a library or pre-
vious data collection) and a spectral matched filter.
The analyses use a model of the Hyperion [12] sensor,
and an atmospheric compensation algorithm with

1% (1 σ) accuracy. Table 3 presents other parameters
and values assumed in the analyses.

In the examples given below, the probability of de-
tection (at a constant false-alarm rate) is presented as
a function of the pixel fill factor fT , the fraction of a
pixel occupied by the road. This pixel fill factor can be
loosely translated to an actual object size, given a pixel
ground resolution, and assuming the object is not
split across adjacent pixels. As an example, Figure 4
illustrates how a 15-m-wide road running through
the middle of a 30-m resolution pixel would roughly
correspond to a 50% pixel fill factor (ignoring the de-
tailed effects of sensor and atmospheric point spread
functions). Because the model assumes a linear mix-
ing of the object and the background class, we can
present PD as a function of the pixel fill factor and
avoid specifying a particular sensor spatial resolution
and object size. Thus the analysis results can be ap-
plied to a range of absolute pixel ground resolutions
and object sizes. The exact performance, however,
will vary because of sensor noise considerations and
the variability of the spectral statistics at the various
resolutions.

Sensitivity to Atmospheric Meteorological Range.
Changes in atmospheric visibility, specified by the
meteorological range parameter, will affect the signal
level in a spectrally dependent manner, as well as af-
fect the amount of radiance scattered from the back-
ground into the object pixel. Even though the sce-
nario includes an atmospheric compensation step,
this scattered radiance can affect performance. Figure
5 shows that the required pixel fill factor fT for a high

FIGURE 4. Overhead view showing 50% pixel fill factor for a
15-m road in a forest. This scene geometry ignores the de-
tailed effects of sensor and atmospheric point spread
functions.

Table 3. Detection Scenario for Road in Forest
(Nominal)

Parameter Value

Object subpixel fraction Variable

Background Trees

Meteorological range 10 km

Solar zenith angle 45°

Sensor view angle (nadir = 0°) 0°

Sensor relative calibration error 1%

Sensor noise scaling factor 1

Number of radiometric bits 12

Bit-error rate 10–9

Number of spectral channels 121

Spectral processing algorithm CEM spectral
matched filter

False-alarm rate (per pixel) 10–5

Forest

Road15 m

30-m 
pixel
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detection probability (PD ≥ 0.9) increases with de-
creasing meteorological range. However, the increase
in required fT is relatively moderate (from 30% to
40%) for a significant decrease (80 km to 5 km) in
the meteorological range. Thus, in this scenario, we
can conclude that detection performance is only
moderately affected by atmospheric haze over a rea-
sonable range of visibility values.

Sensitivity to Random Calibration or Compensation
Errors. The effects of random error in this analysis are
studied by adding zero-mean “noise” with a standard
deviation σ equal to a user-specified percentage of the
mean radiance. In a real sensor system, this random
error could come from a number of sources, such as
residual nonuniformity correction error or random
errors in the atmospheric compensation.† Figure 6
presents the sensitivity of detection probability to
random errors of 0%, 1%, 2%, and 4% of the mean
signal level. This range of additive error is typical for
state-of-the-art sensors, nonuniformity correction

routines, and atmospheric compensation algorithms.
As in the previous example, for this range of values,
the detection performance sensitivity is moderate,
with the required (PD ≥ 0.9) fill fraction changing
from 30% to 40%, as 4% random error is added.

Summary and Conclusions

We have presented an approach to predict detection
performance, analyze sensitivities, and determine
relative contributions of system parameters for multi-
spectral or hyperspectral sensors used in the detection
of subpixel objects. The end-to-end system model
builds on a previously developed approach using first-
and second-order spectral statistics and transforma-
tions of those statistics to predict performance. En-
hancements include a linear mixing model for the
subpixel objects, additional sensor modeling capabil-
ity, atmospheric compensation approaches, and a
matched filter detection algorithm. Unlike image
simulation models, this model does not produce a
simulated image, but rather predicts detection or er-
ror probabilities. Thus our model avoids the compu-
tational complexity of pixel-by-pixel ray tracing simu-
lation approaches.

The model has been, and continues to be, vali-

FIGURE 6. Sensitivity of road detection to additional (be-
yond sensor detector and electronics noise) random error
(with a standard deviation expressed as a percentage of the
mean signal) as a function of pixel fill factor.

FIGURE 5. Sensitivity of road detection to atmospheric me-
teorological range as a function of pixel fill factor fT. Note
that the required fill factor for a high detection probability
(PD ≥ 0.9) increases with decreasing meteorological range.

† Another way to interpret these error levels is to recognize that with
the additive error, the spectral radiance in each spectral channel has a
signal-to-noise ratio hard limited to the inverse of the additive error.
For example, with 2% random error added, the signal-to-noise ratio
cannot be higher than 50.
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dated by showing good agreement between predic-
tions and measurements of spectral radiances, sensor
signal-to-noise ratios, and detection probabilities de-
rived from airborne hyperspectral sensor data.

We presented an example model analysis that
showed which system parameters were most impor-
tant in a given scenario. Also, we presented examples
that predicted detection performance sensitivity to at-
mospheric and sensor parameters. In the cases exam-
ined, the most important and most sensitive model
parameters were characteristics of the surface classes
and environmental conditions of the scene, rather
than sensor parameters or algorithmic choices. Cer-
tainly, though, situations exist in which these other
parameters or choices can have significant effect.

The model has many advantages over other perfor-
mance prediction tools, including quick execution,
which enables extensive sensitivity studies to be con-
ducted expeditiously. The model does, however, have
a number of limitations, some of which can be ad-
dressed with further development, while others are
inherent in the analytical approach. Inherent limita-
tions include the inability to model specific geom-
etries of scene objects or materials, especially those
that involve multiple reflections, and sensor artifacts
or processing algorithms that involve nonlinear
operations.

Limitations of the model that we plan to address
through additional development include implemen-
tation of additional sensor types and artifacts (e.g.,
Fourier-transform instruments, spectral jitter) and
processing algorithms (e.g., physics-based atmo-
spheric compensation, anomaly detection, linear
unmixing, material identification). Also, we continue
to assess the appropriate statistical distributions for
various classes of hyperspectral data, as well as de-
velop confidence intervals for detection probability
predictions using appropriate models for the variabil-
ity of the contributing factors.

Even as the model is evolving and improving, it has
already been useful in understanding the potential
performance and limiting factors in spectral imaging
scenarios supported by its current status. Thus it rep-
resents a step along the path toward the ultimate goal
of a comprehensive understanding necessary for the
optimal design and use of remote sensing systems.
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