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Compensation of Hyperspectral
Data for Atmospheric Effects
Michael K. Griffin and Hsiao-hua K. Burke

■ Hyperspectral imaging sensors are used to detect and identify diverse surface
materials, topographical features, and geological features. Because the
intervening atmosphere poses an obstacle to the retrieval of surface reflectance
data, algorithms exist to compensate the measured signal for the effects of the
atmosphere. This article provides an overview and an evaluation of available
atmospheric compensation algorithms for the visible-through-shortwave
infrared spectral region, including comparison of operational characteristics,
input requirements, algorithm limitations, and computational requirements.
Statistical models based on empirical in-scene data are contrasted with physics-
based radiative transfer algorithms. The statistical models rely on a priori scene
information that is coupled with the sensor spectral observations in a regression
algorithm. The physics-based models utilize physical characteristics of the
atmosphere to derive water vapor, aerosol, and mixed gas contributions to the
atmospheric signal. Treatment of aerosols in atmospheric compensation models
varies considerably and is discussed in some detail. A three-band ratio approach
is generally used for the retrieval of atmospheric water vapor. For the surfaces
tested in this study, the retrieved surface reflectances from the two physics-based
algorithms are similar under dry, clear conditions but differ under moist, hazy
conditions. Sensitivity of surface-reflectance retrievals to variations in scene
characteristics such as the solar zenith angle, atmospheric visibility, aerosol type,
and the atmospheric temperature profile is presented in an effort to quantify the
limitations of the models.

H    have been
used for more than a decade to help detect
and identify diverse surface materials, topo-

graphical features, and geological features. Hyper-
spectral data are not immune, however, to the effects
of the intervening atmosphere. Atmospheric compen-
sation refers to the removal of unwanted atmospheric
components of the measured radiance. For hyper-
spectral data analysis, the general objective of atmo-
spheric compensation algorithms is to remove solar
illumination and atmospheric effects (predominantly
aerosol scattering and water vapor absorption) from

the measured spectral data so that an accurate esti-
mate of the surface reflectance can be obtained. The
retrieved surface-reflectance spectra can then be com-
pared with a library collection of spectra representing
various materials.

Hyperspectral reflectance measurements of the so-
lar and near-infrared reflectance spectrum satisfy a
host of scientific research applications, including esti-
mating atmospheric water vapor, cloud properties
and aerosols, agriculture and forest properties, miner-
alogy, soil type, snow and ice hydrology, biomass
burning, environmental hazards, calibration of air-
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craft and satellite sensors, sensor simulation and vali-
dation, radiative transfer modeling, and atmospheric
compensation. Figure 1 depicts the relationship be-
tween spectral measurement and various features to
be retrieved. As shown in the figure, the contiguous
narrowband character of hyperspectral measurements
provides a unique source of information for a wide
variety of research areas, such as geological, ecologi-
cal, and oceanographic endeavors.

 Although numerous airborne hyperspectral plat-
forms exist, two platforms have been used extensively
in this study and are described in the section that fol-
lows. Using the data from these platforms, we can
take several different approaches to obtain an accurate
estimation of the surface reflectance; a description
and comparison of the more popular techniques for
atmospheric compensation is presented. Require-
ments for atmospheric compensation of hyperspectral
data include the ability to account for stressing atmo-
spheric conditions (e.g., high moisture, heavy aero-
sol/particulate loading, partial cloud cover, low sun
angle) as well as clear sky. Changing the inputs to the

compensation model can significantly affect the re-
trieved surface reflectance. The sensitivity of the re-
trieved reflectance to controlled variations in the
model input parameters is analyzed and discussed.
Lastly, the computational burden, an important con-
sideration for physics-based models, is estimated for
two of the models.

Hyperspectral Data Sources

To meet the requirements for a number of scientific
applications, airborne imaging spectrometers were
designed to achieve substantial improvements over
existing multispectral imaging systems in the areas of
spatial resolution, sensitivity, and accuracy of absolute
calibration. The Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor has been used exten-
sively to provide hyperspectral measurements in the
visible, near-infrared, and shortwave infrared (SWIR)
spectra [1]. AVIRIS contains 224 different detectors,
each with a spectral bandwidth of approximately
0.010 µm, allowing it to cover contiguously the entire
spectral range from 0.38 to 2.5 µm. AVIRIS uses a

FIGURE 1. The locations of spectral regions in the visible, near infrared, and shortwave infrared, which are used to retrieve the
features listed.
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scanning mirror to sweep back and forth in a whisk-
broom fashion, resulting in 614 pixels for each scan
line. Each pixel covers a 20-m × 20-m-square area on
the ground (with some overlap between pixels), yield-
ing a ground swath width of approximately 11 km for
an ER-2 aircraft flight altitude of 20 km. More re-
cently, AVIRIS has been mounted on a low-flying (~3
to 5 km) aircraft that provides higher spatial-resolu-
tion imagery and smaller swaths [2].

The Hyperspectral Digital Imagery Collection Ex-
periment (HYDICE) sensor is a push-broom imaging
spectrometer that uses a bi-prism dispersing element
and a two-dimensional focal-plane array (FPA) to en-
able a single optical path design [3, 4]. The FPA is a
320-element by 210-detector indium antimonide
(InSb) array that supports operations over the full
0.4-to-2.5-µm spectral range. Mounted on a CV 580
aircraft, HYDICE has an operating altitude range of
1.5 to 8 km and spatial resolutions of 0.8 to 4 m. At
the lowest flight altitude, the HYDICE swath width
is on the order of 270 m. Calibration is done in-flight
through the full optical system, and is referenced to a
National Institute of Standards and Technology
(NIST) ground standard.

Atmospheric Properties

The effects of the intervening atmosphere must be
considered to estimate the underlying surface reflec-
tance from a remote airborne platform. Typically, at
wavelengths below 2.5 µm, the incident solar flux is
impacted by (1) the absorption by well-mixed gases
such as ozone (O3), oxygen (O2), methane (CH4),
and carbon dioxide (CO2 ); (2) absorption by water
vapor; (3) scattering by molecules; and (4) scattering
and absorption by aerosols and hydrometeors. Gas-
absorption effects vary strongly with wavelength and
gas properties, and can have a significant impact on
the received solar flux. Aerosol absorption, on the
other hand, is relatively minor compared to molecu-
lar absorption, and is generally viewed as a smoothly
varying continuous function. Typical absorption loss
due to aerosols is limited to a few percent, with mini-
mum absorption occurring for maritime aerosols and
maximum absorption found in urban aerosols that
tend to contain significant amounts of carbon. Scat-
tering from both molecules in the visible/near infra-

red (VNIR) and aerosols in the VNIR/SWIR is also
found to vary slowly and continuously with wave-
length. The largest scattering effects are observed in
the visible with decreased effects at longer wave-
lengths. Molecular scattering effects are significant
out to 0.75 µm, while aerosol scattering continues to
have an impact at SWIR wavelengths (1.3 µm), pre-
dominantly due to the larger aerosol particle size,
which can reach 1 µm. Under cloud-free conditions,
which are usually desired for experimental hyperspec-
tral data collections, aerosols provide the bulk of the
solar scattering, while molecular (Rayleigh) scattering
can be important at visible wavelengths. Models have
been developed on the basis of the size and near-
spherical shape of aerosols to estimate the effects of
scattering on the incident solar flux [5]. Scattering by
molecules can be defined by the well-known Rayleigh
scattering theorem [6].

Mixed gases, while making a smaller and discon-
tinuous contribution to the transmittance spectrum,
can be modeled accurately and play an important role
in the retrieval of specific properties of the earth-at-
mosphere system [7]. Figure 2 shows the atmospheric
transmittance for a number of important gaseous ab-
sorption features observed in the spectral region from
0.4 to 2.5 µm for two atmospheric conditions: dry
and clear, or humid and hazy. Weak ozone absorption
is present from 0.5 to 0.7 µm. At 0.76 µm, a strong,
narrow oxygen absorption line is present; a weaker
oxygen line is located at 1.27 µm. CO2 absorbs
strongly from 1.9 to 2.1 µm. The effect of the CO2
absorption is partially negated by a strong overlap-
ping water vapor absorption band. CO2 also exhibits
a weak absorption line at 1.43 µm. Weak absorption
by methane (CH4 )is present from 2.2 to 2.5 µm.

Water vapor absorption in the VNIR spectrum is
characterized by a number of bands of various
strengths and spectral widths. Two very weak absorp-
tion bands are located at 0.6 and 0.66 µm. Slightly
stronger and more significant bands are located at
0.73, 0.82, and 0.91 µm. At 0.94 and 1.14 µm, water
vapor absorption is strong enough that measurements
at the band centers and off-center locations can be
used to derive the total column water vapor [8–10].
Water vapor absorption near 1.375, 1.9 and 2.5 µm is
strong enough to make retrieval of the surface reflec-



• GRIFFIN AND BURKE
Compensation of Hyperspectral Data for Atmospheric Effects

32 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 1, 2003

tance difficult or impossible. Therefore, these bands
are used to obtain information about high-altitude
moisture and cloud effects [11], since much of the
signal at these wavelengths comes from the mid-to-
upper troposphere. The large number of strongly ab-
sorbing water vapor bands makes the adjustment for
water vapor a significant focus of atmospheric com-
pensation routines.

While water vapor clearly has the largest effect on
the transmittance, aerosols play an important role
and must be handled properly by compensation rou-
tines if an accurate estimate of the surface reflection is
to be obtained. Aerosol effects can vary widely with
atmospheric moisture, aerosol type, or makeup and
optical depth or visibility [5].

The application of atmospheric compensation to
retrieve surface reflectance can also lead to better
characterization of the atmosphere. Secondary prod-
ucts of the physics-based atmospheric compensation
approaches can include a map of the integrated col-
umn water vapor and scene aerosol type and visibility.
The spectral information itself can be used to provide

quantitative information about atmospheric features
such as clouds, dust, or smoke [12]. For an example
of how spectral information is used to characterize a
hyperspectral image, see the sidebar entitled “Charac-
terization of a Hyperspectral Image.”

Atmospheric Compensation Models

Imaging spectrometers acquire images in an array of
contiguous spectral bands such that a complete set of
reflectance or emittance spectra is measured for each
pixel in the image. The two spatial image dimensions
(elements and lines) are combined with the spectral
dimension to produce the hyperspectral image cube.
Typical reflectance measurements from hyperspectral
sensors contain information not only about the spec-
tral characteristics of the surface but of the interven-
ing atmosphere as well. Because these sensors are pri-
marily used as a tool to derive spectral-reflectance
information for the earth’s surface, it is advantageous
to be able to remove, or compensate for, the effects of
the intervening atmosphere. Figure 3 shows an ex-
ample of the uncompensated, or at-sensor, radiance

FIGURE 2. Atmospheric transmission plotted for two conditions (dry-clear in green and humid-hazy
in red). The contributions to the overall transmission by mixed gases, aerosols, and water vapor are
shown in separate plots for the same spectral range.

Total

0.5 1.0 1.5 2.0 2.5

0.8

0.6

0.4

0.2

0

1.0

Gases

CO2

CO2O2

O2

O3
CH4

0.5 1.0 1.5 2.0 2.5

0.8

0.6

0.4

0.2

0

1.0
Aerosols

0.5 1.0 1.5 2.0 2.5

0.8

0.6

0.4

0.2

0

1.0
H2O

0.5 1.0 1.5 2.0 2.5

0.8

0.6

0.4

0.2

0

1.0

Wavelength (   m) Wavelength (   m) Wavelength (   m)

Wavelength (   m)
T

ra
ns

m
is

si
on

T
ra

ns
m

is
si

on

µ

µ µ µ

Molecular
Scattering

Dry-clear

Humid- 
hazy



• GRIFFIN AND BURKE
Compensation of Hyperspectral Data for Atmospheric Effects

VOLUME 14, NUMBER 1, 2003 LINCOLN LABORATORY JOURNAL 33

and reflectance spectra (radiance normalized by the
incident solar flux) for simulated hyperspectral mea-
surements of scenes with a spectrally uniform surface
reflectance. The radiance (Figure 3[a]) was computed
for two different atmospheric compositions: humid
and hazy, and dry and clear, for two uniform surface-
reflectance values (0.2 and 0.4). Differences in the
two cases are most noticeable in the absorption bands
where the measured radiance is strongly affected by
the moisture content of the atmosphere. The reflec-
tance spectra (Figure 3[b]) display similar features
throughout the VNIR region. It is clear that the ef-
fects of specific atmospheric constituents, such as wa-
ter vapor and aerosol particles, can mask the true na-
ture of a remotely sensed surface.

Various types of atmospheric compensation mod-
els exist for application to hyperspectral data. Most
fall into two basic categories: statistical or empirical,
and physics based. The former use a priori knowledge
of the reflectance characteristics of specific reference
objects (such as calibration panels) in a scene to de-
velop statistical relationships between the at-sensor
observations and the surface reflectance. The empiri-
cal line method (ELM) is a commonly used statistics-
based atmospheric compensation model [13, 14].
The ELM creates a linear-regression equation for

each spectral band that provides a relationship be-
tween the raw radiance and the surface reflectance.
This process is equivalent to removing the solar radi-
ance and the atmospheric path radiance from the
measured signal. Gain and offset factors for each
spectral band derived from this relationship are ap-
plied to all other pixels in the scene to remove the at-
mospheric component from the measurements. The
ELM provides good estimates of the surface reflec-
tance, assuming that the reference-object spectral
reflectances are accurately known. However, informa-
tion pertaining to the intervening atmosphere is not
derived with this type of approach, and ELM does
not properly account for topographic variations in
the atmospheric path, which can result in elevation-
dependent residual atmospheric absorptions.

Other statistical techniques are used to adjust or
normalize the raw radiance data. These techniques
tend to be more of a calibration tool than a compen-
sation method. Two such techniques are the internal
average relative reflectance (IARR) [15] and the flat
field correction (FFC) [13]. The IARR acts to nor-
malize images to a scene-average spectrum, which is
particularly effective for reducing hyperspectral data
to relative reflectance in an area where no ground
measurements exist and little is known about the
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FIGURE 3. Plots of (a) simulated radiance as measured by a hyperspectral sensor and (b) at-sen-
sor reflectance (solid lines) for two values of a spectrally uniform surface reflectance of 0.2 and 0.4.
Simulated radiances are shown for a solar zenith angle of 30° and for two atmospheric composi-
tions: hazy and humid (red lines) and clear and dry (green lines). At-sensor reflectances are
shown for the hazy and humid case only, for which dotted lines represent the surface reflectance
used in the simulations.
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  from
hyperspectral sensors contain in-
formation not only about the
spectral characteristics of the sur-
face but of the intervening atmo-
sphere as well. The imagery
shown in Figure A is from the
AVIRIS sensor, where the mea-
sured radiance has been con-
verted to at-sensor reflectance by
dividing by the incident solar ir-
radiance corrected for sun angle
and earth-sun distance. The
scene was collected in the foot-
hills east of Linden, California,
on 20 August 1992 and consists
of a forest fire emitting a thick
plume of smoke toward the east
(north is toward the top of the
image). A cloud produced by the
strong thermal properties of the

fire overlies the smoke plume.
Toward the northwest, two smol-
dering fires emit a thin veil of
smoke that covers much of the
upper half of the scene. The
southwest portion of the scene is
free of clouds and smoke. Shad-
ows are also observed just to the
north of the cloud. The left im-
age was generated via a natural
color rendition by using three
bands in the visible portion of
the spectrum (red: 0.65 µm,
green: 0.55 µm, blue: 0.45 µm).
The right image is formed by us-
ing visible and shortwave-infra-
red bands (red: 2.14 µm, green:
1.62 µm, blue: 0.55 µm). While
the left image displays the visible
characteristics of the scene, the
right image emphasizes features

C H A R A C T E R I Z A T I O N  O F  A
H Y P E R S P E C T R A L  I M A G E

present in longer wavelengths,
where the atmosphere is more
transparent to smoke. The dark
brown patch of burnt vegetation
in the region of the smoke from
the smoldering fires and the
bright red and yellow colors de-
picting the location of the fire
hot spots are visible. The radi-
ance measured near the fires is
due to a combination of reflected
solar and emitted thermal radi-
ance (from the intense heat of the
fire) that is most pronounced in
the shortwave-infrared bands.

Figure B shows a number of
spectral features that are promi-
nent in these images. Regions of
moderate to strong water vapor
absorption are found where the
observed reflectance is low. High

FIGURE A. AVIRIS sensor red-green-blue (RGB) imagery of a scene collected in the foothills near Linden, California.
The left image is a pseudo-natural color depiction. The right image is a false-color display emphasizing details visible at
shortwave-infrared band signatures.
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reflectance features such as
clouds, the thick smoke plume,
and highly reflective vegetation
in the near infrared have promi-
nent spectral signatures. Note
that while clouds exhibit high
spectral reflectance across all
wavelengths, the reflectance of
the thick smoke plume decreases
dramatically beyond the first
strong water vapor absorption
band (1.37 µm). Also note the re-
flectance difference between the
smoke (large particles) that over-
lays burnt vegetation and the un-
disturbed forest vegetation in the
near infrared, and to a greater ex-
tent in the shortwave infrared.

FIGURE B. Spectral curves for nine features identified in the AVIRIS sensor
imagery of Figure A.

scene. It works best for arid areas with no vegetation.
An average spectrum calculated from the entire scene
is used as the reference spectrum, which is divided
into the spectrum at each pixel of the image. The
FFC works similarly, normalizing the hyperspectral
data to an area of known flat reflectance, and again re-
ducing the hyperspectral data to relative reflectance.

 When true atmospheric compensation is desired
and direct information about a scene is unknown, sta-
tistical algorithms may not be applicable. For these
cases, a more robust algorithm is needed to retrieve
the surface characteristics. Typically, physics-based
models are chosen for this task. Two of the more com-
monly used models are Atmospheric Removal
(ATREM) [16] and Fast Line-of-Sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) [17].
While ATREM and FLAASH apply different meth-
ods of atmospheric compensation, both use variations
of the three-band ratio techniques [8, 9] to account
for the effects of water vapor on the hyperspectral
measurements. The methodology of the three-band
ratio technique and the model implementation dif-
ferences are described in more detail in a later section.

Atmospheric Compensation Theory

For physics-based models, the relationship between
the surface reflectance ρs and the at-sensor reflectance
ρ* can be represented by the following equation:

  ρ ρ
ρ

ρ

ρ ρ

ρ
* ,= +

−
+

−( )
−















↓ ↑ ↓ ↑

a g
s g

adj

adj s g

adj
T

T T T T T T

S S
r

1 1 (1)

where Tg is the gaseous transmittance, ρa is the atmo-
spheric reflectance, T T↓ ↑ and are the upward and
downward scattering transmittances, r is the diffuse-
to-total transmittance ratio for the ground-sensor
path, and S is the spherical albedo of the atmosphere.
The parameter ρadj represents the surface reflectance
averaged over a region around the pixel to account for
scattering into the pixel-to-sensor path, known as the
adjacency effect. While FLAASH has the option of
performing adjacency calculations, ATREM does not
incorporate scattering from adjacent pixels into its
computations. In ATREM, a simplification to Equa-
tion 1 is made of the form ρadj = ρs . Using this ap-
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proximation, and given a measured radiance spec-
trum, we can derive the at-sensor reflectance from the
sensor radiance and then compute the surface reflec-
tance from the following equation:

ρ

ρ
ρ

ρ
ρ

*

*

*
.=

−












+ −












↓ ↑

T

T T S
T

g
a

g
a

(2)

Figure 4 shows the schematic flow of the ATREM
program. ATREM uses a narrowband spectral model
[7] to derive the gaseous transmittance and the Sec-
ond Simulation of the Satellite Signal in the Solar
Spectrum (6S) code [18] to compute the necessary
scattering terms by using a user-selected aerosol
model. The individual gas concentrations are as-
sumed to be uniform across the scene except for water
vapor, which the algorithm treats separately. In this
manner, only a single scene transmittance spectrum is
calculated for each uniform gas. Water vapor trans-
mittances, however, are calculated on a pixel-by-pixel
basis. ATREM provides a simple input parameter in-
terface and relatively fast execution. Input parameters
are limited to basic atmospheric parameters (aerosol
visibility and model type, atmospheric model, and
ozone concentration) and solar and viewing geom-
etry. The model processes both AVIRIS and
HYDICE spectral hypercubes and has features for

processing hyperspectral data cubes from other sen-
sors such as Hyperion.

FLAASH [17] utilizes the full Moderate Resolu-
tion Transmittance (MODTRAN)* radiative-transfer
code [19] functionality, which includes a complete
package of transmittance and scattering methods, in-
cluding a full accounting for adjacency effects (the
scattering from adjacent pixels into the current pixel-
sensor line of sight) associated with atmospheric scat-
tering. Figure 5 shows the schematic flow of the
FLAASH code. FLAASH has multiple spectral reso-
lution options to increase processing speed. In addi-
tion to retrieving the surface reflectance and the col-
umn water vapor amount (for each pixel in a scene), it
also offers the options of retrieving the aerosol optical
depth (using a dark-pixel approach) and the terrain
elevation (using the 0.76-µm O2 line), and of mask-
ing out clouds. The technique used by FLAASH to
derive the surface spectral reflectance, which includes
the adjacency contribution, employs Equation 1.

Model Comparisons

For all atmospheric compensation models, the pri-
mary output product is the surface reflectance. For
physics-based models to derive an accurate estimate
of the surface reflectance, the effects of aerosols, water
vapor, and other mixed gases must be taken into ac-

* Throughout this article, all mentions of MODTRAN refer to ver-
sion 4 of the software.

FIGURE 4. Schematic flow of the physics-based Atmospheric Removal (ATREM) program. The diagram shows the
various steps used to convert the radiance data to surface-reflectance data.
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count. Because atmospheric concentrations of mixed
gases such as O2, O3, and CO2 are generally well
known, their absorption properties can be computed
quite accurately. The models must treat other gases,
for which the concentration is unknown and/or
highly variable, such as water vapor, separately. The
following section details the approach that both
ATREM and FLAASH take to estimate the atmo-
spheric water content of a scene. It was found that the
current technique used by ATREM to estimate col-
umn water vapor could be improved with the inclu-
sion of a weaker absorption band into the computa-
tion. This enhancement to ATREM is discussed
below. A comparison of the retrieved surface reflec-
tance from both models for three different scenes fol-
lows the water vapor discussion.

Water Vapor Retrieval Methodology

Both ATREM and FLAASH utilize a three-band ra-
tio method to estimate the water vapor transmittance
of the intervening atmosphere. The three-band ratio
technique selects channels in the 0.94-µm and
1.14-µm water vapor absorption bands [10, 20]. As
shown in Figure 6, the water vapor bands are well
characterized by the narrowband hyperspectral chan-
nels (shown as red horizontal bars in the image). Typi-
cally, three to five hyperspectral channels are chosen

to represent the strongest portion of the water vapor
band. Two more sets of channels located in the off-
band window (high transmission) regions, where ab-
sorption due to water vapor is small are selected (one
set on each side of the water vapor absorption band).

A mean radiance is computed for each of the three
channel sets. The two window radiances are com-
bined by using a spectrally weighted average, and a ra-
tio of the water vapor band radiance to the overall
window radiance is computed, producing a pseudo-
transmittance value. This value is compared with a
precomputed table of three-band ratios for the same
band specifications over a range of column water va-
por amounts, as shown in Figure 7. Ratios are shown
for three water vapor bands: the default 0.94-µm and
1.14-µm bands used in both ATREM and FLAASH
and the weaker 0.91-µm band. Each band has a dis-
tinct array of ratio values, with the 0.91-µm band
having the smallest range of ratios for the given span
of column water vapor values. Figure 7 shows that the
1.14-µm band provides the greatest sensitivity to wa-
ter vapor variations for amounts less than 3 cm. For
column water vapor amounts greater than about 4 or
5 cm, the ratio values change very little. Thus small
variations in the ratio values can lead to large changes
in the retrieved column water vapor. Significant er-
rors are possible when dealing with very moist scenes.

FIGURE 5. Schematic flow of the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
code. The diagram defines the basic steps used to convert the sensor measured radiance to surface reflectance.
Secondary products such as the column water vapor and the aerosol optical depth can also be obtained. The dot-
ted connection lines indicate an optional selection in FLAASH.
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FIGURE 7. Three-band ratios for three water vapor bands in
the near-infrared region as a function of the total water va-
por content. The ratio value is computed as the water vapor
band radiance relative to the adjacent window radiance. Ver-
tical dashed lines represent the column water vapor for three
standard atmospheric models.

Water vapor transmittance and column water va-
por amounts for ATREM are determined from the
closest match to the measured three-band ratio values
and are used to define the water vapor characteristics

of the pixel. This procedure is repeated for every pixel
in the image. In ATREM, the operation tends to be
fast, since it involves a simple ratio calculation and a
look-up table (LUT) search for each pixel.

FLAASH uses a slightly different approach to ob-
tain the column water vapor. FLAASH computations
depend on separate within-band and window radi-
ances and not the ratio of the two. This process re-
quires a onetime calculation of a two-dimensional
LUT and an interpolation step for each pixel. The
LUT is generated from MODTRAN calculations of
the full gaseous absorption characteristics and aero-
sol/molecular scattering for each spectral band; there-
fore, taking the ratio of the two values is not required.

Test Scenes for Water Vapor Retrievals

Hyperspectral data collected from three different lo-
cations, summarized in Table 1, were selected for
evaluating ATREM and FLAASH retrievals of water
vapor. Figure 8 depicts the scenes as false-color images
obtained by displaying three channels, one in each of
the primary colors (red, green and blue). The chan-
nel-color combinations for these figures were chosen

FIGURE 6. Atmospheric transmittance in the region of three water vapor absorption features
(lines and continuum) in the near infrared. Nominal Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) channels are represented by their 10-nm bandwidths (red horizontal bars
positioned near the representative mean channel transmittance).

Water vapor 
continuum

1.14

0.91 0.94

0.8 0.9 1.0 1.1 1.2 1.3

0.4

0.2

0

0.6

0.8

1.0

T
ra

ns
m

itt
an

ce

Wavelength (   m)µ

Total water vapor

AVIRIS channels

Tropical

Ratio 0.91   m

Ratio 0.94   m

Ratio 1.14   m

Midlatitude
summer

Subarctic
winter

Column water vapor (cm)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.3

0.1

0
0 1 2 3 4 5 6 7 8 9 10

R
at

io µ

µ

µ



• GRIFFIN AND BURKE
Compensation of Hyperspectral Data for Atmospheric Effects

VOLUME 14, NUMBER 1, 2003 LINCOLN LABORATORY JOURNAL 39

to enhance surface feature identification in the dis-
played images. Different channel combinations can
be used to highlight other features such as haze/aero-
sol clutter and atmospheric moisture content.

Figure 9 displays the derived water vapor images,
based on the FLAASH and ATREM retrievals, of col-
umn water vapor for the Jasper Ridge case. As shown,
the atmosphere was relatively free of water vapor, and
results from both algorithms were similar, agreeing
well with values derived from nearby National Oce-
anic and Atmospheric Administration (NOAA)–Na-
tional Weather Service (NWS) radiosonde observa-
tions (0.67 cm of water vapor at 12 UTC, 3 April
1997 and 1.13 cm of water vapor at 00 UTC, 4 April
1997). Similar spatial variability is found in both de-
rived images; the standard deviation is less than 10%
of the mean value, which is indicative of a spatially
homogeneous water vapor field. Surface features such
as roads, a lake, and urban structures are apparent in
the ATREM water vapor image and to a lesser extent
in the FLAASH image. The appearance of these fea-
tures is an indication of the failure of the three-band
retrieval approach to eliminate the surface-reflectance
effect. Retrieval of the column water vapor over water
surfaces is a challenging task for atmospheric com-
pensation models because of the extremely low sur-
face radiance signal. Water surfaces are often excluded
in the processing for this reason. A key assumption of
the retrieval approach is that the surface reflectance
varies linearly across the water vapor band such that
an average of adjacent window reflectances simulates
the value for the absorption band. For some surface
features, such as urban areas, this assumption may not
be valid. Also, terrain-elevation variations can induce

water vapor values to follow the terrain contours.
Both ATREM and FLAASH assume a constant eleva-
tion across the image; large variations in terrain eleva-
tion can result in misleading water vapor features, as
can be observed in the left side of the column water
vapor images in Figure 9.

In contrast to the Jasper Ridge scene, the Keystone
scene represents a moderately moist atmosphere, as
shown in Figure 10. The derived water vapor images
from ATREM and FLAASH were quite different for
this scene. ATREM retrieved unreasonably high wa-
ter vapor content, while the FLAASH retrieval is close
to radiosonde observations and is also climatologi-
cally more realistic. One reason for this overestima-
tion of the water vapor may be due to the exclusion of
the effects of the water vapor continuum in the
ATREM calculations. This possibility is explored
more in the next section. Again, for both codes, less
than 10% spatial standard deviation was observed
across the scene.

The Moffett Field scene, shown in Figure 8, is lo-
cated approximately 20 km from the Jasper Ridge
scene. Both scenes consist primarily of a hilly ridge
and an urban area. However, in the FLAASH-derived
water vapor image for the Moffett Field scene shown
in Figure 11, a moisture gradient can be observed
with largest values in the lower left corner, decreasing
toward the upper right. The southern portion of the
San Francisco Bay is located just to the left (west) of
the image. The foothills provide a boundary for the
flow of moist air from the bay. This geography is evi-
dent both in the image and from the histogram of the
water vapor, which clearly shows a bimodal distribu-
tion corresponding to the low-lying urban area

Table 1. Test Scenes for Water Vapor Retrievals from Hyperspectral Data

Hyperspectral Image Location Scene Dimensions Date/Time Pixel Resolution
Sensor (km2) UTC (m)

AVIRIS Jasper Ridge, California 11 × 10 3 April 1997/2010 20

HYDICE Keystone (Able), Pennsylvania 0.25 × 0.25 10 April 1997/1730 ~2

AVIRIS Moffett Field, California 11 × 10 20 June 1997/1850 20
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(moist) and the higher-altitude foothills region (dry).
Figure 12 displays the retrieved column water vapor
amounts for three cross sections in the image. The left
side of the abscissa corresponds to the top of the im-
age. The curves in Figure 12 are consistent with the
local topography and perceived moisture flow from
San Francisco Bay. While the trend from top to bot-
tom of the image along these cross sections is toward
increasing water vapor amounts, the fine scale struc-
ture displays many features associated with both ter-
rain changes and local water vapor variations.

Enhancements to Water Vapor Retrievals

The apparent overestimation of water vapor by
ATREM prompted further analysis. We found that
by using channels in the ratio computation offset
from the 0.94-µm water vapor band, specifically in
the weaker 0.91-µm band, the ATREM ratio calcula-
tion produced more reasonable values for moist
scenes. ATREM does not include a contribution from
the water vapor continuum in its computation of the
water vapor effects. From Figure 6, it is clear the con-
tinuum provides a significant contribution to the wa-
ter vapor absorption, which may in part be respon-
sible for the high retrieved column water vapor
values. The continuum contribution is negligible at
0.91 µm, so any error due to its omission is mini-
mized. In addition, since the absorption is weaker at
0.91 µm, this band is less sensitive to higher amounts
of moisture. When we used the 0.91-µm band ratio,
the mean water vapor amounts that ATREM com-
puted for the Keystone case reduced from 6.14 to
5.49 cm, a modest reduction in the right direction,
but still well above the observed value.

To investigate further the use of the 0.91-µm band
ratio, we generated simulated AVIRIS data from
MODTRAN calculations for clear-sky, uniform sur-
face-reflectance scenes under various moisture and
rural aerosol conditions. As shown in Table 2, retriev-
als of the column water vapor amounts from ATREM
for the simulated data with the 0.91-µm band were
close (∆ < 0.5 cm) to the input model values for these
simulated test cases and to those obtained by
FLAASH. The near-perfect retrieval of water vapor
by FLAASH is somewhat misleading in that both the
simulated AVIRIS data and the FLAASH model are

FIGURE 8. AVIRIS and Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) test images. The top and
middle AVIRIS images were collected at Jasper Ridge and
near Moffett Field, California, respectively. The bottom
HYDICE scene was collected at Keystone, Pennsylvania.
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dependent on MODTRAN computations. It is
therefore not unexpected that the FLAASH results
were accurate under these circumstances.

Surface-Reflectance Comparison

In this section, we compare the model retrieved sur-
face reflectance for the three test scenes listed in Table
1. For these three scenes, depicted in Figure 8, sets of

three to four pixels were chosen whose location
matched specific surface features. For the Jasper
Ridge AVIRIS image, pixels representing the radiance
from a paved road, an urban area, ridgeline vegeta-
tion, and a lake were examined and the spectral sur-
face reflectances were retrieved by using both
FLAASH and ATREM atmospheric compensation
models. Identical input parameter specifications de-

FIGURE 9. FLAASH-computed and ATREM-computed column water vapor images for the AVIRIS
Jasper Ridge Test Scene (2010 UTC on 3 April 1997). Mean and standard-deviation column water vapor
values are shown for both models. Surface features such as roads, a lake, and urban structures are ap-
parent in the ATREM water vapor image and to a lesser extent in the FLAASH image.

FLAASH water vapor ATREM water vapor

Mean = 0.72 cm,     = 0.07 cm Mean = 0.75 cm,     = 0.05 cm σ σ

Table 2. Retrieved Water Vapor for Simulated AVIRIS Test Cases*

Model Surface  Visual Water         Derived Column Water Vapor (cm)
Atmosphere Albedo Range (km) Column (cm) ATREM FLAASH

Wavelength** 0.91 µm 0.94 µm 1.14 µm 0.94 µm 1.14 µm

Subarctic winter 0.2 23 0.42 0.42 0.47 0.39 0.42 0.41

Subarctic winter 0.4 23 0.42 0.43 0.48 0.40 0.42 0.42

Midlatitude summer 0.2 10 2.93 2.98 3.79 4.00 2.92 2.94

Midlatitude summer 0.4 10 2.93 3.12 4.01 4.21 2.92 2.92

Tropical 0.2 5 4.11 4.40 5.60 6.10 4.11 4.19

Tropical 0.4 5 4.11 4.66 6.04 6.52 4.11 4.16

*   All cases were generated by using MODTRAN with a rural aerosol model and a 30° solar zenith angle.
** These wavelengths correspond to the water vapor band-ratio curves shown in Figure 7.
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scribing the ambient scene characteristics were pro-
vided to both models. The Jasper Ridge image was
collected on a clear, dry day at 2010 UTC (1210
PST). Figure 13 shows the resulting retrieved surface-
reflectance comparison. The models compare well, es-
pecially for the water pixel and the vegetation pixel

(outside the near-infrared water vapor absorption re-
gion). Both the road and urban comparisons show
slightly higher retrieved reflectance differences (still
less than 0.02), most noticeably near the weak water
vapor absorption bands and the 1.6-µm atmospheric
window. In Figure 13 and subsequent figures, the re-
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FIGURE 11. Retrieved integrated water vapor AVIRIS image from the Moffett Field test case
(1850 UTC on 20 June 1997) and the associated histogram showing a bimodal distribution of
water vapor in the image. Vertical lines correspond to column water vapor cross sections
shown in Figure 12.

FLAASH water vapor ATREM water vapor

Mean = 3.40 cm,     = 0.25 cmσ Mean = 6.14 cm,     = 0.43 cmσ

FIGURE 10. FLAASH-computed and ATREM-computed water vapor images for the HYDICE Keystone
Test Scene (1730 UTC on 10 April 1997). Mean and standard-deviation column water vapor values are
shown for both models; nearby radiosonde values of 2.97 and 3.25 cm were observed.
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trieved surface reflectance is zeroed out near the 1.38-
and 1.88-µm water vapor absorption bands, since the
component of the measured signal emanating from
the surface is almost completely masked by the strong
water vapor absorption.

In the Keystone HYDICE image, the four pixels
chosen represented the radiance from a bare soil sur-

face, an unpaved road, and two different types of
trees. The Keystone data were collected in August
during a typical warm, hazy day. Identical input pa-
rameters were again provided to the models. Figure
14 shows the spectral surface reflectances retrieved by
using ATREM and FLAASH. The comparison is
good, especially above 1.5 µm. The largest differences
occur near the water vapor bands where exaggerations
of reflectance values, or spiking, occurs. Spiking may
be due to inaccurate band wavelength assignment.
The spiking artifact is largest for ATREM retrievals,
presumably because of its difficulty in processing
scenes where moist atmospheric conditions prevail.
Inaccurate spectral wavelength values tend to enhance
the moisture retrieval errors. FLAASH also displays
some reflectance spiking, but to a lesser degree than
ATREM.

Data for the third test scene were collected near
Moffett Field, California. Ambient conditions ob-
served at the time of the collection were somewhat
warmer and more humid than the Jasper Ridge scene
(located approximately 20 km to the northwest), but
still much dryer than the HYDICE scene discussed
previously. Figure 15 shows the retrieved surface
reflectances modeled by ATREM and FLAASH for
three surface features (paved road, green ridge, and

FIGURE 12. FLAASH-computed column water vapor
amount (cm), shown as a function of pixel location along
cross sections from top to bottom of the AVIRIS image in
Figure 11. The three curves correspond by color to the
cross-section lines in that image.

FIGURE 13. Comparison of retrieved surface reflectances from ATREM and
FLAASH for the Jasper Ridge AVIRIS image. Four surface types—road, ur-
ban, ridge, and water—were located in the image and their spectral surface
reflectances retrieved.
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brown grass). The ATREM and FLAASH results
compare well, with absolute model differences in re-
trieved reflectance of less than 0.01 across the spec-
trum for all three surface features. Interestingly, the
reflection spikes seen in the other two comparisons
are less prominent here; the reason is not apparent.

For all three cases, the comparison between
ATREM and FLAASH was quite good. The largest
differences were observed in the 0.6-to-1.1-µm spec-
tral region, where numerous water vapor absorption
bands can cause the retrieved surface reflectance to
exhibit sharp spikes with differences greater than 0.05

FIGURE 14. Comparison of retrieved surface reflectances from ATREM and
FLAASH for the Keystone HYDICE image. Four surface types—soil, unpaved
road, and two types of trees—were located in the image and their spectral
surface reflectances retrieved.

FIGURE 15. Comparison of retrieved surface reflectances from ATREM and
FLAASH for the Moffett Field AVIRIS image. Three surface types—green
ridge, brown grass, and paved road—were located in the image and their
spectral surface reflectances retrieved.
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from the accepted truth value. There was also a small
increase in the model differences for the moist, hu-
mid HYDICE case over the drier AVIRIS cases. This
difference was not believed to be an instrument arti-
fact, but rather a known difficulty with ATREM in
determining the column water vapor for vapor-laden
scenes and the subsequent effects on retrieval
computations.

Sensitivity to Input Parameter Specification

As discussed previously, atmospheric compensation
models have been developed to isolate the surface re-
flectance signal and remove unwanted atmospheric
and illumination affects. These models all require
some a priori information about the atmospheric and
surface characteristics, which is used in the compen-
sation process. Incomplete knowledge or inaccurate
estimation of certain input parameters adds a degree
of error to the retrieval of the surface reflectance. To
illustrate the sensitivity of the retrieved surface reflec-
tance ρs to mis-specification of FLAASH input pa-
rameters, we performed a study by using estimated
input parameters to depict the atmospheric state for
the Moffett Field AVIRIS image shown in Figure 8.
The study compared retrieved surface reflectance at
three specific locations in the image obtained from
FLAASH runs by using two sets of physically reason-
able input specifications. These results, along with the
input specifications for both runs, are given in Figure
16. Under these circumstances, differences in the re-
trieved ρs values can range up to 0.11 (absolute differ-
ence), depending on the surface feature and the wave-
length. For most remote sensing applications, these
errors are unacceptable. Accurate specification of the
input parameters is clearly an important part of the
hyperspectral image analysis process.

Further sensitivity analysis utilized simulated
AVIRIS data generated by using MODTRAN calcu-
lations for clear-sky, uniform surface reflectance
scenes under three different moisture and visibility
conditions. The conditions ranged from a relatively
clear and dry atmosphere to one with hazy, wet condi-
tions, as listed earlier in Table 2. Using these test-data
cubes, we can vary specific input parameters to the at-
mospheric compensation models and determine the
effect they have on the retrieved surface reflectance.

Comparison to the known ρs provides an absolute
measure of the sensitivity to the varied input param-
eter. The following subsections attempt to isolate the
degree to which errors in each of the following atmo-
spheric compensation model-input parameters can
affect the final retrieved ρs: visibility, aerosol model,
atmospheric model, and solar zenith angle.

Visibility

Atmospheric visibility is inversely proportional to the
optical depth. The optical depth varies in part as a
function of the aerosol and moisture content of the
lower 2 to 3 km of the atmosphere. Water vapor ab-
sorbs and aerosols scatter the radiance in proportion
to their concentration. In general, the higher the
aerosol concentration (or optical depth), the lower
the visibility. Hence visibility is an indicator of the
amount of attenuation in the lower atmosphere and
therefore a useful characterization for the atmo-
spheric compensation process.

To examine the sensitivity of the models (FLAASH
and ATREM) to uncertainty in visibility, we used two
model surface-reflectance values—0.2 and 0.4—both

FIGURE 16. Sensitivity of FLAASH to atmospheric charac-
terization for surface features. The spectral surface
reflectances are retrieved for three surface types in the
AVIRIS Moffett Field scene by using two different sets of
model-input conditions. The input specifications for the two
runs are (1) midlatitude summer atmosphere, urban aerosol
model, and 16-km visibility, and (2) U.S. Standard atmo-
sphere, rural aerosol model, 60-km visibility, and time offset
error of 20 minutes (equivalent to a 2° error in the solar ze-
nith angle).
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spectrally invariant. Figure 17 displays the absolute
difference in the surface reflectance (shown as the re-
trieved reflectivity error) for FLAASH runs using
three assumed input visibilities (5, 10, and 23 km) at
the two model ρs values. The error is computed by
subtracting the model ρs values (0.2 and 0.4) from the
retrieved ρs values, for three FLAASH runs with the
three different visibility values. All runs utilized a
midlatitude summer atmosphere with a rural aerosol
model. The “truth” visibility value is 10 km. Because
MODTRAN and FLAASH share the same radiative-
transfer code, we expect FLAASH will accurately re-
trieve the test cube reflectances, given the correct in-
put parameters. Such is the case, as denoted by the
green line in Figure 17.

The reflectivity errors for both the 5-km and 23-
km visibility runs are within + 0.03 of the true values
except near the 0.94-µm and 1.14-µm water vapor
absorption bands. The sloping error lines in the
shortwave region are the result of the increased effect
of aerosol and Rayleigh scattering. At these wave-
lengths, the reflectance due to aerosol and Rayleigh
scattering dominates the measured reflectance signal
(for lower ρs values, 0.2). When the visibility of a
scene is underspecified (hazier), the resulting increase
in perceived atmospheric reflectance is compensated
for by an underestimation of ρs. In the near infrared,
where atmospheric scattering is not as dominant, the
perceived reduction in the atmospheric transmission
is compensated for by an overestimation of the sur-
face reflectance. An analogous situation results for an
overspecification of the visibility (clearer), although
the error values are not quite as large.

Figure 18 shows the retrieved reflectance errors for
the ATREM runs. ATREM does not reproduce the
surface-reflectance values as accurately as FLAASH
for a number of reasons. ATREM model parameteri-
zations are based on less accurate molecular band
models and different aerosol models than those used
in MODTRAN. Also, ATREM decouples the ab-
sorption from the scattering processes in the radia-
tive-transfer model calculations. This effect can be
seen in Figure 18(a), in which the model truth ρs val-
ues are, as before, subtracted from the retrieved ρs val-
ues for the three optimal visibility values (5, 10, and
23 km). Here the water vapor absorption line struc-

ture is still quite apparent in the spectral reflectance
curves. To remove the absorption and other model ef-
fects from the reflectance, we subtract the ATREM-
retrieved ρs values for the 10-km visibility run (the
truth visibility) from the retrieved ρs values for the
other visibility runs, with results shown in Figure
18(b). These error curves, which are in effect com-
pensated for model-induced differences, are much
more similar to what FLAASH produces.

For surfaces with moderate or high reflectances, if
the value assumed for the visibility, as input to the
model, is greater (clearer) than the actual “truth” vis-
ibility of the scene, the retrieved surface reflectance is
underestimated. The converse is also true: an input
visibility smaller (more opaque) than the “truth” vis-
ibility results in an overestimate of the surface-reflec-
tance values.

Aerosol-Model Type

There are a variety of predefined aerosol models that
are available for use in ATREM and FLAASH. The
models typically represent the characteristics of aero-
sols found in the lowest 2 km (within the atmospheric
boundary layer) for a set of basic topographic types:
desert, maritime, rural, and urban. Each model con-
sists of a weighted mixture of four basic kinds of aero-
sol particles: dust, oceanic, water-soluble, and soot.
Urban, for example, has more soot and water-soluble

FIGURE 17. FLAASH-retrieved surface reflectance minus
model-input surface reflectance for three input visibility
conditions. The model-input surface-reflectance values are
either 0.2 (dotted curves) or 0.4 (solid curves) and are spec-
trally invariant. The true scene visibility is 10 km.
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particles than maritime, which consists of predomi-
nantly oceanic particles such as salt and sea-foam
evaporates. The rural (or continental) aerosol model
consists of a large percentage of dust particles. With
such a diversity of scatterers, the choice of an aerosol
model for a particular scene can have a significant ef-
fect on the radiative transfer in the lower atmosphere
and on the retrieved surface reflectance.

Figure 19 displays the sensitivity of the FLAASH-
retrieved reflectance to various aerosol models for two
highly different atmospheres. For the dry and rela-
tively clear rural aerosol case in Figure 19(a), the ef-
fect of varying the aerosol model produces errors in
retrieved reflectance of less than + 0.02, except at vis-
ible wavelengths, where the effect gradually increases
with decreasing wavelength for the urban model only.
The results obtained with the urban aerosol model
seem to be most sensitive to the atmospheric compo-
sition, as can be seen for the tropical, hazy test case in
Figure 19(b). While the other model errors in re-
trieved reflectance are generally less than 0.04, the er-
rors for the urban model results are within 0.10 at
wavelengths greater than 1 µm but increase rapidly at
shorter wavelengths. This behavior seems to indicate

a strong sensitivity of the urban model results to
moisture and visibility. The significant degree of soot
in the model can have a strong absorbing effect under
low visibility (high aerosol density) conditions mask-
ing the signal from the surface and producing errone-
ous results from the model.

Atmospheric Model

In MODTRAN, there are six choices for model at-
mospheres. Each model atmosphere includes a set of
profiles defining the pressure, temperature, air den-
sity, water vapor, and ozone characteristics representa-
tive of the seasonal conditions for a geographic re-
gion. Surface temperatures for these atmospheres vary
from 257 K for a subarctic wintertime atmosphere to
300 K for a tropical atmosphere. Table 2 shows that
the amount of moisture an atmosphere can support
varies greatly over the range of standard atmospheres
used in MODTRAN. This variation is a function of
the temperature profile: i.e., colder temperatures
saturate at lower levels of moisture than higher tem-
peratures, which limits the choices of model atmo-
spheres for a specific scene. Errors result if a model
atmosphere incapable of supporting the moisture

FIGURE 18. ATREM-retrieved reflectances with (a) model-input surface reflectance subtracted and (b) the ATREM retrieved re-
flectance using the true visibility as input subtracted, for three input visibilities. Truth scene values are midlatitude summer at-
mosphere with a rural aerosol model and 10-km visibility. The model-input surface-reflectance values are either 0.2 (dotted
curves) or 0.4 (solid curves) and are spectrally invariant.
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FIGURE 19. FLAASH-retrieved reflectance errors for four aerosol model types. Values are shown
for two atmospheric scenes, (a) dry and relatively clear (subarctic winter atmosphere, rural aerosol
model, 23-km visibility) and (b) humid and hazy (tropical atmosphere, rural aerosol model, and 5-km
visibility). The model-input surface-reflectance values are either 0.2 (dotted curves) or 0.4 (solid
curves) and are spectrally invariant.

content of the scene is used. A set of model atmo-
spheres was used with this limitation in mind as input
to FLAASH to study the sensitivity of the model re-
trievals to changes in the atmospheric profiles.

Results of varying the atmospheric model type
(and associated moisture and temperature profile)
seem to have little effect on the retrieved reflectance
values as long as the input model temperature profile
can support the total column water vapor of the
scene. In Figure 20, retrieved reflectance errors are
generally less than + 0.01, except near the water vapor
absorption bands. FLAASH performs well in estimat-
ing the actual water vapor content when using any
moderately moist atmospheric profile. Similarly, in
relatively dry scenes, FLAASH internally adjusts the
moisture content of the model to provide the closest
approximation to the scene moisture amount. How-
ever, the converse does not always apply. Using a cold,
dry atmospheric model as input when processing a
moist scene can lead to erroneous results.

Solar Zenith Angle

For a typical AVIRIS scene, the date, time, and loca-
tion are known accurately; therefore, the solar zenith
angle can be computed with high precision. The plots
in Figure 21 show the errors incurred by using a con-
stant solar zenith angle (SZA) assumption for all

scenes taken at different times during a flight. For a
forty-minute flight centered in time at solar noon, the
SZA varies by approximately 2° (from a mid-flight
value of 30°) and the retrieved reflectance errors are
within + 0.04. As would be expected, these errors in-
crease for a two-hour flight exceeding 0.10 at visible
wavelengths. Specifying input of a larger SZA than
the true value results in an overestimate of the re-
trieved reflectance value; the converse is also true. It is

FIGURE 20. FLAASH-retrieved reflectance errors for runs
made with three atmospheric models (truth atmosphere is
midlatitude summer). The model-input surface-reflectance
values are either 0.2 (dotted curves) or 0.4 (solid curves) and
are spectrally invariant.
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also useful to note that errors tend to be smaller at low
SZAs (high sun elevation) than for high SZAs (low
sun elevation) because of the differing rates of change
in the SZA at those times.

Computational Complexity

Until now, this discussion on the merits of the atmo-
spheric compensation models has not considered the
effect these operations have on the overall computa-
tional budget for processing hyperspectral data cubes.
The decision on how best to use these models requires
an inquiry into the benefits versus computational
costs. The primary metric for computation time/
complexity is the number of floating-point opera-
tions (FLOPs) per data processing task. The FLOPs
metric has the advantage of being independent of the
processor speed. On the other hand, it does not take
into account the cost of I/O (file reading and writing)
time, which can be a significant portion of the atmo-
spheric compensation processing time.

Basic Atmospheric Compensation Computational Costs

ATREM calculates the reflectance for each pixel ana-
lytically from Equation 2. The solution to this equa-

tion requires 6 FLOPs and 3 one-dimensional LUTs
(each comprising 3 FLOPs), for a total expected
number of FLOPs per pixel per channel of 15. For the
FLAASH model, the computational complexity is di-
rectly related to the selected complexity of the model
analysis. With the adjacency option turned off,
FLAASH’s calculation is mathematically equivalent
to ATREM’s, so it is possible to use equivalent code
and achieve the same number of FLOPs (15 per pixel
per channel). With the adjacency option activated,
the number of FLOPs per pixel per channel is ex-
pected to increase by a factor of two or three. [21]. An
alternative method that involves tabulating param-
eters from Equation 1 in multidimensional LUTs can
result in a computational savings of one-third, yield-
ing a value similar to that for the ATREM model.

Computational Costs of Enhanced
Atmospheric Compensation

While ATREM is limited to the basic atmospheric
compensation process described above, a number of
enhancements to the basic FLAASH processing can
have a considerable impact on the net computational
burden. These enhancements include compensation

FIGURE 21. FLAASH-retrieved reflectance errors for a constant solar zenith angle (SZA) in the model calculations for two
flight lengths (40 minutes and ~2 hours). Values are shown for two atmospheric scenes, (a) dry and relatively clear (subarctic
winter atmosphere, rural aerosol model, 23-km visibility) and (b) humid and hazy (tropical atmosphere, rural aerosol model and
5-km visibility), both with a true SZA value of 30°. The SZA for each of the offset times is shown in the graphs.
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Table 3. Increase in Computational Burden
Associated with FLAASH Code Enhancements

         FLAASH FLOPs per pixel
    Enhancement per channel

Aerosol compensation Double

Sensor angular Double
field-of-view correction

Thin cloud (cirrus) Add 5–10
compensation

Spectral polishing Add 6–25

Smile correction Add 0–32

for nonuniform aerosol content, sensor angular field-
of-view variations, cirrus clouds, spectral polishing,
and channel wavelength variations. While each en-
hancement can provide improved surface-reflectance
retrievals under certain scenarios, they all require fur-
ther processing of the data.

After clouds and water vapor, aerosol amount (as
indicated by the visibility parameter) is the next most
variable constituent in the atmosphere. FLAASH uti-
lizes an approach that finds dark (low reflectance) pix-
els in an image and performs an extended radiative
transfer calculation to obtain a number of visibility
values for the scene [22]. While the computational re-
quirements increase in proportion to the number of
visibility values determined, a doubling of the num-
ber of FLOPs is not an unrealistic estimate.

Across a scene, the line of sight (LOS) to the sensor
varies. For near-nadir views, most atmospheric com-
pensation codes assume a single LOS associated with
the center of a scene. However, for off-nadir measure-
ments, it may be necessary to perform the radiative-
transfer calculations at multiple viewing angles to ac-
count for the variations in absorber column densities.
The increased FLOPs required to account for this
added computational burden are similar to the aero-
sol content computation.

The ability to identify thin cirrus clouds has been
demonstrated by using spectral channels located in
water vapor bands, and the potential exists for com-
pensating the surface reflectance to account for the
presence of clouds. One method involves the subtrac-
tion of a cloud radiance or reflectance signal from the
observed radiance [11]. An approximate reflectance
or radiance post-processing method requires only a
few additional FLOPs per pixel channel. A similar
method is being implemented in FLAASH [23].

Spectral polishing is a mathematical method for re-
moving artifacts from reflectance spectra. When
properly implemented, it dramatically reduces spuri-
ous, systematic spectral structure due to wavelength
registration errors and molecular absorption residuals
while leaving true spectral features intact. A number
of processing steps are involved, including spectral
smoothing, reference-pixel selection, scaling param-
eter determination, and application of the linear
transformation to the data cube. Since polishing is a

post-processing step, the computation time simply
adds to that required to generate the original reflec-
tance spectra, an increase of 6 to 12 FLOPs per pixel
per channel.

Spectral smile refers to a wavelength calibration
problem such as that experienced with the HYDICE
spectrograph sensor. The problem arises from the ten-
dency of spectrographs to have a slight variation in
dispersion along the dimension of the entrance slit.
This means that each row of the array has a slightly
different wavelength calibration, which translates
into small, known spectral shifts in the data that de-
pend on the pixel location or sample number along
the cross-track direction of the data cube. One
method of compensating for smile is through spectral
polishing. Another method is to compensate explic-
itly for the wavelength shifts in the atmospheric com-
pensation algorithm. The latter can result in an in-
crease in FLOPs analogous to the aerosol visibility
determination.

Table 3 shows a summary of the increase in com-
putational burden due to the enhancements to the
FLAASH code. We see that correcting for aerosol or
LOS angle variations can significantly increase the
computational burden. Other enhancements such as
spectral polishing and smile compensation are rela-
tively efficient and provide little additional
computation.
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FLOPs Measurements

The computationally significant components for at-
mospheric compensation include the radiative-trans-
fer calculations to set up the basic reflectance re-
trieval, perform the basic retrieval, and make any
additional computations needed to enhance the basic
retrieval. Below we break down each of these compo-
nents into computational tasks to determine the total
computational burden.

Radiative-transfer calculations for ATREM runs
were obtained by computing the number of FLOPs
for scenes with various pixel dimensions and extrapo-
lating the curve (assuming a linear change in FLOPs
with number of pixels) to the limit as the number of
pixels approaches zero. This value depicts the compu-
tational burden of the radiative-transfer calculations
and was found to be 8 × 108. While FLAASH has a
number of variations regarding how the radiative-
transfer calculations are obtained, for a typical model
run, the computed FLOPs count was 7 × 1010, ap-
proximately two orders of magnitude greater than the
ATREM run.

The total FLOPs may be approximated as the sum
of the radiative-transfer FLOPs and the reflectance-
retrieval FLOPs, of which the latter scales with the
number of pixels and channels. Estimated results for a
200-channel sensor are shown in Figure 22 as a func-
tion of the number of pixels for the current FLAASH
and ATREM codes, for an optimized FLAASH, and
for an optimized version of FLAASH’s adjacency-cor-
rected method. Figure 22 shows that the performance
of optimized versions of FLAASH is similar in com-
putational burden to ATREM.

Implications and Alternatives

Compensating for the atmospheric effects for a full
frame of hyperspectral data can mean processing mil-
lions of pixels of spectral information, a time-con-
suming task. Various methods have been explored to
reduce the amount of compensation needed to ana-
lyze a scene. Anomaly identification is a method that
involves identifying small numbers of pixels that are
spectrally unique. These unique groups of pixels take
up only a very small portion of the image. The tech-
nique can be applied to data prior to correcting for at-

mospheric effects. Typically, anomaly identification is
used as an initial filtering step to select a small subset
of potentially significant pixels from the scene. The
atmospheric compensation can be applied to that
subset of pixels rather than to the entire data cube,
saving computation time.

With FLAASH, there are several possibilities for
speeding up the calculations. Using a coarser band
model (15 cm–1 versus 1 cm–1) can reduce the FLOPs
for a typical run by an order of magnitude. Coarser
atmospheric layering can save an additional factor of
two. Another approach is to eliminate the radiative-
transfer calculation step completely by interpolating
from a comprehensive precalculated database that
covers all anticipated geometries and atmospheric
conditions.

Water vapor computations are normally per-
formed on a pixel-by-pixel basis. Some computation
time can be saved if this operation is performed on a
regional scale. For example, a clustering type of algo-
rithm could be applied to the scene radiance (or on
the measured three-band radiance ratios) to group
pixels with similar water vapor characteristics and to
reduce the amount of processing time required.

Currently, physics-based and pixel-level atmo-
spheric compensation algorithms are computation-

FIGURE 22. Estimated floating-point operations (FLOPs)
versus data-cube size for selected atmospheric compensa-
tion methods.

109

1010

1011

1012

FL
O

P
s

105 106 107

Pixels

1998 FLAASH beta
Optimized FLAASH, adjacency

ATREM 3.0
Precalculated radiative transfer, 

no adjacency



• GRIFFIN AND BURKE
Compensation of Hyperspectral Data for Atmospheric Effects

52 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 1, 2003

ally burdensome. Achieving efficient atmospheric
compensation may require the use of a multiproces-
sor computing system. Many aspects of the atmo-
spheric compensation process can be applied simulta-
neously to individual pixels by dividing the workload
among the processors, which could speed up the ex-
ecution time by an order of magnitude or more.

Summary

In this article, hyperspectral measurements in the vis-
ible, near-infrared, and shortwave-infrared reflected
spectrum collected by the AVIRIS and HYDICE air-
borne sensors have been used to compare retrieved
values of column water vapor and surface reflectance
obtained from the ATREM and FLAASH atmo-
spheric compensation models. ATREM and
FLAASH, two commonly used physics-based atmo-
spheric compensation models, were also evaluated for
sensitivity to the specification of scene characteriza-
tion input parameters and respective computational
complexity.

Both models retrieved similar column water vapor
fields for two relatively dry scenes while a notable dif-
ference was observed for a scene collected during a
warm and humid day. The mean ATREM-retrieved
column water vapor for this warm humid scene was
significantly larger than those observed by a nearby
radiosonde. The exclusion of the effects of the water
vapor continuum in the ATREM model calculations
is believed to contribute in part to this error, which
was confirmed by the improved results from using the
weaker 0.91-µm water vapor band in the water vapor
calculations. However, the approach used by ATREM
for column water vapor estimation displays limited
sensitivity for column water vapor values over 3 cm
(small variations in the computed band ratio result in
large changes in the estimated column water vapor),
which would also contribute to the overestimation.
The effect of the inaccurate water vapor estimation
was most notable in the retrieved surface reflectance
for the near infrared region, where spectral variations
in water vapor absorption are common.

To retrieve the surface reflectance, both ATREM
and FLAASH require some knowledge of the scene
characteristics, which in general are not precisely
known and must be estimated from available scene

information. We assessed the sensitivity to incom-
plete knowledge or inaccurate estimation of specific
input parameters in terms of the degree of error to the
retrieval of the surface reflectance. Results of our
study show that certain variations in the inputs to the
atmospheric compensation models produce retrieved
reflectance differences near 0.1; these errors can be
cumulative as we showed in one example. Collection
of ambient atmospheric and surface information dur-
ing hyperspectral data acquisition is the best strategy
for avoiding this type of processing error.

An examination of the computational budget for
processing hyperspectral data cubes showed that opti-
mized versions of the more complex FLAASH model
are similar in computational costs to those of
ATREM model. However, enhancements to the
FLAASH processing, including computations with
nonuniform aerosol content, sensor angular LOS
variations, spectral polishing, and channel wave-
length corrections can add significantly to the overall
processing burden. Several possibilities for speeding
up the calculations were highlighted in the text. The
optimization of the atmospheric compensation pro-
cess to take advantage of multiprocessor computers
provides the best possibility of reaching the goal of ef-
ficient processing of hyperspectral data cubes.
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