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M   imaging
systems, operated from ground-, airborne-,
and space-based platforms, have found a

variety of civilian and military applications. This
technology has applications in fields that range from
environmental monitoring and geology to mapping,
military surveillance, and reconnaissance. The power
of multispectral and hyperspectral imaging arises
from the ability to image a scene rapidly in tens to
hundreds of spectral bands. The spectral signatures
acquired in this fashion make it possible to discrimi-
nate among different types of materials.

Operating at visible through shortwave infrared
wavelengths (0.4 µm to 2.5 µm), passive multispectral
and hyperspectral imaging systems measure reflected
solar radiation. The radiance measured at the sensor
represents a combination of the solar spectrum, the
atmospheric absorption along the path from the sun
to the scene to the sensor, the inherent reflectance
properties of objects in the scene, the illumination ge-
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■ With the ability to image a scene in tens to hundreds of spectral bands,
multispectral and hyperspectral imaging sensors have become powerful tools for
remote sensing. However, spectral imaging systems that operate at visible
through near-infrared wavelengths typically rely on solar illumination. This
reliance gives rise to a number of limitations, particularly with regard to military
applications. Actively illuminating the scene of interest offers a way to address
these limitations while providing additional advantages. We have been exploring
the benefits of using active illumination with spectral imaging systems for a
variety of applications. Our laboratory setup includes multispectral and
hyperspectral sensors that are used in conjunction with several laser illumination
sources, including a broadband white-light laser. We have applied active spectral
imaging to the detection of various types of military targets, such as inert land
mines and camouflage paints and fabrics, using a combination of spectral
reflectance, fluorescence, and polarization measurements. The sensor systems
have been operated under a variety of conditions, both in the laboratory and
outdoors, during the day and at night. Laboratory and outdoor tests have shown
that using an active illumination source can improve target-detection
performance while reducing false-alarm rates for both multispectral and
hyperspectral imagers.

ometry, and the sensor system characteristics. For
many applications, this dependence on the condi-
tions under which measurements are made can com-
plicate analysis, making it difficult, if not impossible,
to compare spectral data taken under different condi-
tions. In these cases, it becomes important to convert
the data from radiance units (measured at the sensor)
to reflectance units (an inherent property of a mate-
rial). The reflectance spectrum of an object is deter-
mined by its physical composition, and provides a
fingerprint that can be used for material classification
and identification.

The utility of reflectance spectra is ultimately de-
termined by the accuracy of the data conversion from
radiance to reflectance units and the conditions under
which measurements are made. For example, changes
in the angles between the sun, target, and imaging
system can affect the reflectance, and also introduce
shadowing within a scene. In shadowed regions, the
illumination may differ in both amplitude and spec-
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tral shape from areas that are directly lit. Variations in
spectral illumination in a scene increase the uncer-
tainty in the derived reflectance spectra, making ma-
terial identification more difficult and false alarms
more common.

An active spectral imaging system has the potential
to alleviate the aforementioned problems as well as
offer additional benefits. Placing the illumination
source on the sensor platform provides a constant
angle between the source, target, and sensor. This ge-
ometry eliminates illumination-angle variations that
can complicate analysis and degrade performance.
Laboratory and outdoor tests have shown that using
an active source also drastically reduces shadowing,
which reduces false-alarm rates. Moreover, active illu-
mination enables a sensor to operate day or night,
even under adverse weather conditions when solar il-
lumination is greatly reduced. If the illumination
source is pulsed, photons reflected from an interven-
ing obscurant between the sensor and the target (e.g.,
a tree canopy or camouflage netting) can be removed
through time gating. Discrimination capabilities can
be further enhanced through the addition of polariza-
tion and fluorescence measurements. Using an active
source with a known output polarization simplifies
measurement of polarization signatures, which can be
used to distinguish man-made from natural materials.
And when the appropriate stimulation wavelengths
are used, laser illumination can be used to induce
chlorophyll fluorescence, a vegetation marker.

Laser illumination in a sensor system is not a new
concept. A coherent laser radar that uses a carbon di-
oxide (CO2) laser was developed in 1967 [1]. Other
early proposed applications of laser illumination in-
clude improving signal-to-noise ratio, mitigating
backscatter from intervening atmosphere, and ob-
taining relative target reflectance [2]. More recently,
semiconductor and microchip lasers have played a
key role in the development of three-dimensional im-
aging laser radar (ladar) systems [3]. The active spec-
tral imaging program at Lincoln Laboratory has been
exploring the benefits of combining laser and laser-
like illumination with compact hyperspectral and
multispectral imagers. The program initially focused
on phenomenology associated with hyperspectral de-
tection of targets and backgrounds when using active

illumination [4]. We studied targets with relevance to
military applications, such as inert land mines and
various camouflage materials and paints. Subse-
quently, we expanded our investigations to include
active multispectral imaging and conducted a series of
laboratory and outdoor tests to demonstrate detec-
tion of concealed targets in natural backgrounds. The
remainder of this article describes our equipment,
laboratory setup, analysis techniques, and results of
laboratory and outdoor measurements.

Equipment and Laboratory Setup

We assembled a pair of sensor systems for hyperspec-
tral and multispectral imaging in the visible and near-
infrared (VNIR), ~0.4 µm to 1 µm, and shortwave in-
frared (SWIR), ~1 µm to 2.5 µm, wavelength regions.
The VNIR and SWIR hyperspectral systems were de-
veloped for laboratory-based phenomenological stud-
ies, providing images with high spatial and spectral
resolution. Both hyperspectral systems can be con-
verted to multispectral by simply changing the means
of spectral dispersion. The multispectral imagers,
with their compact size and a coarser spectral resolu-
tion that increases the data-collection rate, are more
suited for outdoor measurements than are the hyper-
spectral imagers.

Each of the systems can be used with or without an
active-illumination source. The choice of illumina-
tion source depends on the application. For phenom-
enological investigation that requires high-resolution
spectral measurements, a white-light laser is used for
illumination. This compact laser source, developed at
Lincoln Laboratory [5], generates broadband spectral
illumination (532 nm to ~850 nm) while retaining
the high-brightness, subnanosecond-length pulse
characteristics of its pump laser. (Additional informa-
tion on this laser can be found in the sidebar entitled
“White-Light Laser.”) For fluorescence and polariza-
tion imaging, the higher-power single-frequency (532
nm) output of the pump laser is used directly. Results
from phenomenological measurements made in the
SWIR indicate an interesting anomaly-detection
technique that requires using just two spectral bands
[6]. On the basis of these results, we obtained 1410-
nm and 1600-nm continuous wave (CW) lasers, each
with 500-mW output power.
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Figure 1 illustrates how the individual components
of each system can be combined to operate as either
hyperspectral or multispectral imagers. The VNIR
system uses a silicon charge-coupled device (CCD)
focal-plane array, with either a grating-based slit spec-
trometer for hyperspectral measurements, or indi-
vidual bandpass filters for multispectral measure-
ments. (The center wavelength of the filters ranges
from 400 nm to 950 nm in increments of 50 nm with
~40-nm spectral width.) The SWIR system uses an
indium gallium arsenide (InGaAs) focal-plane array,
with either an acousto-optical tunable filter (AOTF)
for hyperspectral measurements, or individual band-
pass filters for multispectral measurements. The

AOTF has 10-nm spectral resolution with continu-
ous coverage from 1.2 µm to 2 µm. Although the
AOTF can be tuned over this entire range, the longest
wavelength detectable by the InGaAs camera is 1.7
µm. The SWIR filters range from 1 µm to 1.9 µm
with widths of 20 nm to 100 nm.

The output of a hyperspectral or multispectral im-
ager can be thought of as a three-dimensional image
cube with two spatial dimensions and one spectral di-
mension. Figure 2 shows an example of a hyperspec-
tral image cube, in which each pixel in the two-di-
mensional array has an associated spectral signature
that represents the spectral contributions from every
object in the pixel. Because only two of the dimen-

FIGURE 1. Four possible spectral imaging system configurations: visible and near-infrared (VNIR) hyperspectral, VNIR
multispectral, shortwave infrared (SWIR) hyperspectral, and SWIR multispectral. The hyperspectral systems were devel-
oped for laboratory-based phenomenological studies to provide images with high spatial and spectral resolution. Both hy-
perspectral systems can be converted to multispectral by simply changing the means of spectral dispersion. With the
VNIR system, the spectrometer is replaced with a set of VNIR bandpass filters; with the SWIR system, the acousto-optic
tunable filter (AOTF) is replaced by a set of SWIR bandpass filters. More than the hyperspectral systems, the multispectral
systems are suitable for outdoor measurements because of their compact size and a coarser spectral resolution that in-
creases the data-collection rate. Separate detectors must be used for the VNIR and SWIR systems—a silicon charge-
coupled device (CCD) focal-plane array and an indium gallium arsenide (InGaAs) focal-plane array, respectively.
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 - , devel-
oped at Lincoln Laboratory, is
based on a 532-nm diode-
pumped microlaser. The 532-nm
microlaser, shown in Figure A, is
pumped by a 3-W near-infrared
(808 nm) diode laser coupled to
the microlaser by 1 m of optical
fiber. The microlaser is passively
Q-switched to produce short
pulses (~400 psec) at high repeti-
tion rates, up to 16 kHz, with ap-
proximately 5 to 8 µJ of energy
per pulse. The output from the
532-nm diode-pumped micro-
laser is focused into a single-

mode silica fiber (core diameter
~6 µm) of approximately 100 m
in length to generate the broad-
band output. Intensities greater
than 10 GW/cm2 are achieved in
the fiber core, and within a few
meters of propagation a Stokes-
shifted stimulated Raman scat-
tering (SRS) pulse is generated.
This pulse, which occurs at 440
cm–1 from the 532-nm radiation,
is spectrally broadened because of
the inherently large Raman gain
bandwidth (~40 THz) of silica fi-
bers. This initial Stokes-shifted
pulse induces a second-order SRS

pulse, which is further spectrally
broadened, that pumps the
higher-order Stokes shifts. After
eight to ten Raman shifts, the
pulses are sufficiently broadened
that they overlap to form a con-
tinuum. For fibers of ~100 m,
the continuum extends from
about 680 nm to 900 nm, as
shown in Figure B. The energy
conversion from the green 532-
nm input to the broadband
“white light” output is between
10 to 15%. The high repetition
rate and short pulse structure of
the input beam are preserved.

W H I T E - L I G H T  L A S E R

sions can be acquired at once, there are two different
modes of operation possible. In the staring mode, the
entire scene is imaged onto the focal plane, one spec-
tral band at a time. In the scanning mode, the spectral
dimension and one spatial dimension are imaged

onto the focal plane, and the entire system is scanned
spatially across the scene.

Only the VNIR hyperspectral system operates in a
scanning mode, imaging a single vertical strip, one
pixel wide, through a grating-based slit spectrometer,
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FIGURE A. Simplest embodiment of passively Q-
switched microchip laser. The microchip laser is at-
tached to the end of an optical fiber, through which it is
pumped with an 808-nm diode laser.

FIGURE B. White-light laser output spectrum. Indi-
vidual Raman peaks start at 532 nm and broaden into a
continuum by approximately 680 nm.
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FIGURE 2. Example of a three-dimensional hyperspectral image cube. Two dimensions are spatial, and one
spectral. Each pixel contains a spectrum that represents a combination of the spectral contributions from
every object in the pixel.

FIGURE 3. Operation of the VNIR hyperspectral imager. The system acquires a spectral signature for every
pixel in the vertical slit field of view of the imager. The system is scanned in azimuth to build a three-dimen-
sional hyperspectral image cube. The laser divergence is matched to the field of view of the imager.

as shown in Figure 3. The spectrometer disperses the
light onto the CCD, such that one dimension repre-
sents spatial sampling and the second dimension rep-
resents spectral sampling. The whole setup is
mounted on a tripod and scanned in azimuth across
the scene to acquire the second spatial dimension,
completing the image cube. The vertical entrance slit
of the spectrometer determines the instantaneous
field of view of the imager. Cylindrical optics are used
to shape the outgoing laser beam to match the field of
view of the imager.

Data Processing

Before the raw output of the sensor can be used, the
data must be corrected for sensor-related effects. This

initial preprocessing includes wavelength calibration
and correction for detector nonuniformity, sensor ar-
tifacts, and background levels. After the data have
been corrected, further analysis steps are determined
by how the data will ultimately be used. For example,
detecting and identifying specific materials or targets
by using a reference spectrum requires high-resolu-
tion spectra plus conversion of the data to reflectance
units to remove environmental and sensor effects. Re-
moving these effects allows us to compare spectra
taken under different conditions. In contrast, detect-
ing anomalies or doing broad classification of the pix-
els in a scene can often be accomplished with lower-
resolution spectra, and the data may not need to be
converted to reflectance units.
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In our experiments, the goal was usually target
identification or anomaly detection. Figure 4 outlines
the processing steps performed in each case. For tar-
get identification, the spectrum from each pixel in the
data set is compared to a library of reflectance spectra
for various target and background materials in an at-
tempt to find the best match. Most of the library
spectra we use were compiled from high-resolution
scans of the targets taken in the laboratory, and some
spectra were drawn from the Aster Spectral Library.*

Before a meaningful comparison between library
and image spectra can be made, the image cubes are
converted from radiance units to reflectance units by
using one of many existing techniques. An extensive
discussion of these methods is beyond the scope of
this article, but numerous references can be found

[7]. We used an in-scene calibration panel with
known spectral characteristics as a reference to nor-
malize the data. The calibration panel has a reflec-
tance of almost 99% over the VNIR-SWIR spectral
range and is a well-characterized, highly Lambertian
scatterer. This technique has the advantages of being
both accurate and easy to implement, and the disad-
vantage of being impractical to use in a noncoopera-
tive scenario.

Once the data have been converted to reflectance
units, a variety of spectral detection algorithms can be
used to find and identify targets in the scene [8]. Two
of the algorithms that we use for processing are spec-
tral angle map (SAM) and Euclidean minimum
distance (EMD). These simple distance measures
quantify the difference between a library reference
spectrum and a measured spectrum by treating them
as a vector in spectral space and calculating the cosine
of the angle between them (in the case of SAM) or
calculating the geometric distance between them (in
the case of EMD). These detection methods are far

FIGURE 4. Hyperspectral/multispectral data processing procedure. Raw sensor data must first undergo a prepro-
cessing step that includes calibration and correction. In our work, the next step is processing related to either tar-
get identification or anomaly detection. The target-identification processing begins with converting the data to re-
flectance units. Then we apply spectral distance or matched-filtering algorithms to identify targets. For anomaly
detection, conversion to reflectance units is not a prerequisite. Spectral band ratios and principal-component
analysis are two examples of anomaly-detection techniques that can be applied to the data.

* The ASTER Spectral Library includes data from three other spec-
tral libraries: the Johns Hopkins University Spectral Library, the Jet
Propulsion Laboratory Spectral Library, and the United States
Geological Survey Spectral Library. More information can be found
at <http://speclib.jpl.nasa.gov>.
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from optimal, but they are computationally efficient
and they have reasonably good performance for our
applications.

We use two approaches to anomaly detection. One
approach involves detecting small, localized spectral
anomalies, such as man-made objects, in an otherwise
natural background. We search for a small number of
pixels whose spectra differ from the local or the global
background spectra. The second approach uses a dis-
tinguishing spectral feature in the target that enables
detection with just a few spectral bands.

As a final step, the results of either target identifica-
tion or anomaly detection can be combined with
polarization and/or fluorescence measurements to en-
hance target-detection performance and reduce false-
alarm rates.

Fusion of Hyperspectral, Polarization,
and Fluorescence Data

In this section we demonstrate the benefit of combin-
ing polarization and fluorescence data with active hy-
perspectral data. These three types of measurements
provide complementary information that can be
combined to enhance detection performance and
reduce false alarms.

A number of studies have demonstrated the use of
polarimetry to detect man-made objects in a natural
clutter background [9]. Polarimetry offers an addi-
tional discriminant because naturally occurring ob-
jects such as grass, soil, and other rough surfaces tend
to depolarize incident light more than smoother
man-made objects. Consequently, a scene imaged at
orthogonal polarizations will show variations in the
intensity of the detected light that depend on the rela-
tive smoothness of the objects in the scene.

There can be situations in which a natural back-
ground, such as a smooth, broad leaf plant, shows as
much polarization as some man-made materials. In
this case, laser-induced fluorescence imaging, used
primarily to monitor vegetation for signs of stress and
disease [10], allows us to discriminate between veg-
etative and non-vegetative materials. With this tech-
nique, a laser source excites chlorophyll fluorescence,
which has spectral peaks at 685 nm and 740 nm.

To test the fusion of active hyperspectral, polariza-
tion, and fluorescence data, we constructed a target

scene in the laboratory. Figure 5 shows a photo of the
target scene, which contains an empty metal shell cas-
ing and three different types of plastic (similar to the
plastics used in antipersonnel and antitank land
mines). The scene was imaged by using the VNIR hy-
perspectral imager with the white-light laser for illu-
mination. For the polarization measurement, the ver-
tically polarized 532-nm pump laser illuminated the
scene. A polarizer was placed in front of the detector,
and the scene was imaged with the receive polariza-
tion both parallel and perpendicular to the outgoing
beam. Then the polarizer was removed from the de-
tector and a fluorescence measurement was taken,
again by using the 532-nm laser for illumination.

Initial preprocessing of the hyperspectral data cube
was performed as described earlier. We applied the
SAM and EMD algorithms to detect the targets in
the scene. A library of target spectra, including vari-
ous plastics, metals, paints, and vegetation, had been
collected earlier in separate measurements. These ref-
erence spectra served as inputs into the SAM and
EMD algorithms, which worked effectively at detect-
ing the plastics, but were not able to detect the metal
shell casing, as shown in Figure 6. To detect the shell
casing, we used the additional discrimination pro-
vided by the polarization and fluorescence data.

The two orthogonal polarization images were used
to calculate the degree of polarization (DOP), which
is a measure of the amount of polarization in the laser
light reflected from objects in the scene. The DOP is

FIGURE 5. Digital-camera photo of the target scene, con-
taining soil, vegetation, rocks, sticks, three different types of
plastic, and a metal shell casing.
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the difference of the two orthogonal polarization
measurements divided by their sum:

DOP || 

|| 

=
−

+
⊥

⊥

I I

I I
,

where I|| is the parallel polarization component and I⊥
is the perpendicular polarization component. Objects
with smooth surfaces tend to have a higher DOP than
objects with rough surfaces.

Figure 7 shows grayscale images of the target scene
showing DOP and fluorescence imaging. Higher
DOP values appear brighter and lower DOP values
appear darker. Some of the smooth, flat leaves in the
scene have a DOP as high as the metal targets, which

indicates that polarization alone is unable to distin-
guish between the two materials. We used fluores-
cence imaging to highlight the vegetation in the scene
and eliminate the false detections in the DOP detec-
tion of the metal shell casing. Figure 8 shows the de-
tections, including the metal shell casing, that result
from the fusion of the active hyperspectral, polariza-
tion, and fluorescence data.

Shadow Reduction

We live in a three-dimensional world, and three-di-
mensional objects cast shadows. Within the shadows,
what little illumination exists is a combination of dif-
fuse sky illumination and secondary scattering from
nearby objects. Because the exact composition of the

FIGURE 6. The hyperspectral image cube (upper right) processed by using library spectra with spec-
tral angle map (SAM) and Euclidean minimum distance (EMD) algorithms, resulting in detection of
the plastic, but not the metal, targets. Detections are indicated in red. Note that the color balance in
the rendition of the hyperspectral image cube is skewed by the lack of blue wavelengths because the
shortest wavelength in the white-light laser illumination is 532 nm (green).
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shadow illumination is unknown, the retrieved reflec-
tance spectra from shadow regions are unreliable.
Shadow regions are a problem for passive sensors be-
cause the illumination and viewing angles are almost
always different, which results in shadows in the
scene. By using an illumination source at the sensor
platform, we can force the illumination and viewing
geometries to be the same. This arrangement greatly
reduces shadows, which increases the visibility of tar-
gets and decreases the false-alarm rate [11].

To demonstrate the effects of shadow reduction,
we acquired a hyperspectral image cube of the scene
pictured in Figure 5, first using ambient illumination
(fluorescent room lights) and then using active illu-
mination with the white-light laser.* Figure 9 shows
grayscale single-band (572 nm) images taken under
ambient and active illumination. Although the
shadow regions in the ambient image have three
times the amount of light as the same regions in the
active image, the circular shapes of plastics A and B
are more discernible in the active image. This effect,
seen across all spectral bands, occurs because the ac-
tive illumination source is aligned with the detector,
allowing more direct light to reach the targets, which
in turn reduces shadows and increases visibility.

To quantify the benefits of shadow reduction, we
used the SAM algorithm to find and identify the two
plastic mine-like objects (plastics A and B in Figure 5)
in both the ambient and active data sets. Spectral
angles between each pixel in the two data sets and the

library spectra were calculated. The resulting spectral
angle maps were then compared to a truth map that
indicated which pixels in the scene consisted entirely
of plastic A or plastic B. A spectral angle threshold
was set for each target such that 60% of the target
pixels were correctly identified. With these thresh-
olds, we calculated false-alarm rates on a per-pixel ba-
sis for each data set and target. This procedure was
then repeated on both data sets for varying levels of
spectral resolution. Lower spectral resolution was
simulated by binning adjacent bands to achieve the
desired spectral bandwidth.

Figure 10 compares the false-alarm rates for the ac-
tive and ambient data sets for varying spectral resolu-
tions. For both targets, the false-alarm rates for the ac-
tive image cube are significantly lower than those of
the ambient image cube by as much as two orders of

FIGURE 8. Detections, in red, of the plastic and metal tar-
gets. Fusion of the spectral-reflectance, polarization, and
fluorescence data allows us to detect the metal shell casing
(bottom left), which we could not detect with active hyper-
spectral data alone.

FIGURE 7. Degree of polarization of the target scene, left,
and a corresponding fluorescence map, right. Note that
some of the smooth, flat vegetation returns high polariza-
tion values, which could be interpreted as possible targets.
Fluorescence imaging, which identifies vegetation, helps
eliminate some of these possible targets.

FIGURE 9. Ambient (left) and active (right) images taken at
572 nm. Notice the increased contrast in the actively illumi-
nated image

* We refer to data taken under ambient illumination as the ambient
data, and to data taken under active illumination as the active data.

Plastic A Plastic B
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magnitude. This improvement is entirely due to
shadow reduction. The lower false-alarm rate for ac-
tive illumination holds even as the spectral resolution
of the data is degraded. It appears that for plastic B,
the false-alarm difference between the active and am-
bient images gets smaller as spectral resolution de-
grades. This effect is an artifact of the white-light laser
spectrum. Spectral binning of data taken with the
white-light laser involves binning over successive
Raman peaks (see Figure B in the sidebar entitled
“White-Light Laser”). The phase of the spectral bin
with respect to the Raman peaks changes the signal-
to-noise ratio of the binned data, causing the appar-
ent false-alarm convergence for ambient and active
data as spectral resolution decreases. Even under these
non-ideal conditions, false-alarm rates for the active
data are significantly lower than those of the ambient
data.

We note that the false-alarm rates quoted here are
quite high. Because the image contains about 105 pix-
els, a false-alarm rate of 10–4 indicates about 10 false
alarms in this scene. However, no spatial processing
has been performed to reduce the false-alarm rate,

and requiring 60% of the visible target pixels to fall
within our “detection” threshold is a relatively strict
requirement.

SWIR Anomaly Detection

In a related study, we have discovered that water-va-
por absorption lines in the SWIR are exploitable
sources of contrast that enable us to distinguish be-
tween natural and man-made objects [5]. Man-made
objects, particularly paints and plastics, tend to be hy-
drophobic; they are designed to repel water to prevent
rust, corrosion, and degradation. Natural materials,
on the other hand, tend to be hydrophilic; they retain
water because they are either porous (in the case of
rocks and soils), or living (in the case of vegetation).
Consequently, natural objects like rocks and foliage
typically absorb more radiation in the 1.4-µm and
1.9-µm water-vapor absorption lines than do man-
made objects. By taking a simple ratio of two broad
SWIR spectral bands, one within a water-vapor ab-
sorption line and one outside a water-vapor absorp-
tion line, we can achieve good anomaly-detection
performance and distinguish man-made objects from
natural objects.

We performed an outdoor experiment using sur-
face-scattered inert land mines to test this anomaly-
detection technique. Five mines and a calibration
panel were placed in a scene that contained natural
clutter such as grass, rocks, sticks, and plants, as
shown in Figure 11. The scene was imaged with and
without active illumination at a range of 20 m. The
active illumination was provided by a pair of lasers
operating at 1410 nm and 1600 nm. Three of the
mines in the scene were positioned such that when
active illumination was not used, they were either
partially or completely shadowed by plants and rocks.
The other two mines were completely exposed.

Figure 12 shows a simple band ratio (dividing one
image by the other on a pixel-by-pixel basis) of the
1410-nm image to the 1600-nm image for the scene
taken with and without active illumination. Man-
made materials tend to have larger band-ratio values
(brighter pixels in the image), while natural materials
tend to have smaller band-ratio values (darker pixels
in the image). A band-ratio threshold value was cho-
sen such that at least one pixel on each of the targets
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FIGURE 10. Per-pixel false-alarm rate for detecting mine-like
objects (plastics A and B) in the scene from Figure 5. The
use of active illumination reduced the false-alarm rate by
about two orders of magnitude.
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was detected. The pixels in each image exceeding the
threshold are denoted in yellow. While the targets are
detectable by using this two-band technique without
active illumination, the number of false alarms in the
actively illuminated scene is clearly lower. In Figure

13 a horizontal profile taken across the position of
one of the mines illustrates the difference in contrast
between the two data sets.

We explored this reduction in false alarms by ex-
amining the cumulative probability distributions of
the band-ratio values in the targets and in the back-
ground. The first step in calculating the distributions
was subtracting a wide area (20 × 20 pixels) median-
filtered version of the band-ratio image from itself to
eliminate a gradient across the scene that was caused
by variations in the spatial illumination pattern of the
two lasers. The distribution of the background pixels
was then calculated from all the pixels in the band-ra-
tio image, excluding the targets and the calibration
panel. The target distributions were calculated sepa-
rately for each target.

Figure 14 shows the cumulative probability distri-
butions of band-ratio values for the scene imaged first
without active illumination and then imaged with ac-
tive illumination. By looking at these cumulative
probability distributions, we can compare the per-
centage of target pixels exceeding the band-ratio
threshold (detections) to the percentage of back-
ground pixels exceeding the band-ratio threshold
(false alarms). For example, suppose we want to set a
band-ratio threshold value for each scene such that we
detect at least 60% of the pixels on each target. For

FIGURE 11. Photograph of the imaged scene comprising
five inert land mines amidst clutter of rocks, sticks, and veg-
etation. White circles indicate target positions and the black
square indicates the position of the calibration panel.

(a) (b)

FIGURE 12. 1410-nm/1600-nm band ratios, using data taken (a) without active illumination and (b) with active
illumination. Circles indicate target positions. Yellow pixels have values that exceed the band-ratio thresh-
old. The positions of the horizontal profiles shown in Figure 13 are indicated by a dashed white horizontal
line on the band-ratio images.
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the scene imaged without active illumination, this
constraint leads to a band-ratio threshold of 0.15, as
indicated by the dashed gray vertical line in Figure
14(a). At this threshold, 6% of the background pixels
exceed the threshold and are considered false alarms.
For the actively illuminated scene, the band-ratio
threshold necessary to detect at least 60% of the pix-
els on each target is 0.13, which corresponds to only
0.1% of the background pixels exceeding the thresh-
old, an improvement factor of 60.

It is important to note that these numbers are con-

servative estimates. Our targets ranged in size from
280 cm2 down to 25 cm2. For the smallest mines,
given the resolution of our camera, we had only about
4 pixels on target. The odds of each target pixel falling
exactly within a pixel on the sensor were quite small,
which means that there were few, if any, “pure” pixels
on the smaller targets. This effect was exacerbated by
the fact that the lens on our camera was not achro-
matic in the SWIR, which caused a difference in the
focus between the two bands. When the spectral con-
tent of a given pixel is mixed between target and

FIGURE 13. Horizontal profiles taken across the same vertical position (indicated by dashed white lines in the
band-ratio images shown in Figure 12) taken (a) without active illumination and (b) with active illumination. The
central portion of the mine across which the profiles are taken is made of a material different from the outer por-
tion. The dip in ratio values seen in (b) may be caused by a spectral feature present in the mine’s inner material
but not present in its outer material.

FIGURE 14. Cumulative probability distribution curves for each target and the background in a scene imaged
(a) without active illumination and (b) with active illumination. The cumulative probability distributions for the ac-
tive illumination show greater separability between the targets and the background.
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background, the band ratio will be smaller. Given
these factors, the performance increase due to active
illumination could potentially be greater.

Summary

Multispectral and hyperspectral imaging continues to
grow and evolve as a powerful remote sensing tool.
But relying on the sun for illumination introduces an
additional source of uncertainty that can impact the
opportunities for collecting data as well as the utility
of the data. Controlling the illumination source can
reduce some of these uncertainties and also offer ad-
ditional benefits. Tactical applications especially will
benefit from the ability to operate at night, and hav-
ing the illumination source coincident with the im-
ager reduces shadowing within the target scene. In
both laboratory and outdoor measurements we have
shown that the reduced shadowing results in in-
creased contrast and reduced false-alarm rates. Active
illumination also provides the opportunity to use po-
larization and fluorescence features in conjunction
with the spectral data to improve detection capability.

While the research summarized in this article has
explored the phenomenology and demonstrated
proof-of-concept approaches for active spectral imag-
ing, the promise shown does motivate a number of
more detailed follow-on questions.  In particular,
questions come to mind with regard to the sensitivity
of active spectral imaging to the number, width, and
location of spectral bands, with target detection and
identification performance as quantitative metrics.
Also, the performance gains from the addition of
three-dimensional imaging or polarization sensitivity
are areas worthy of further investigation.  This addi-
tional research in developing more quantitative per-
formance estimates and comparisons is best pursued
in the context of specific target materials and detec-
tion scenarios, and, we hope, will be the subject of
our future work.
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