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M Airborne radars that track moving targets face the challenge of surveillance

over large geographic areas where military vehicles are interspersed with civilian
traffic. There is a major need to develop robust, efficient, and reliable
identification and tracking techniques to identify selected targets, and to

maintain tracks for selected critical targets, in dense target environments.

Traditionally, tracking and identification have been considered separately;

we identify a target first, and then we track it kinematically to sustain the
identification. The difficulty with separate identification and tracking is that
neither task is sufficient by itself to satisfy the demands of the other. We need to
incorporate the distinctive target signature information into the tracker, so that

identification and tracking, or signature comparison and tracking, perform

together as a unit. The moving-target identification and feature-aided tracking

approach described in this article combines kinematic association hypotheses

with accumulated target classification information obtained from high range
resolution (HRR), inverse synthetic aperture radar (ISAR), and synthetic
aperture radar (SAR) signatures, to obtain improved classification and

association. We describe the basics of moving-target classification and signature

comparison using HRR profiles. In addition, we show improvements in HRR-

based target identification using superresolution and Bayesian classification

techniques. We describe how this feature information may be incorporated into

kinematic tracking. Finally, we discuss methods to improve the robustness of the

HRR techniques with the addition of available SAR and ISAR signatures.

LASSIFYING AND TRACKING moving targets are

difficult problems for any surveillance radar.

The classification problem and the tracking
problem both complement and exacerbate each other.
For stationary vehicles, we can classify targets on the
basis of their high-resolution synthetic aperture radar
(SAR) imagery, which forms a fine-resolution two-di-
mensional image of the vehicle that can be compared
to a previously stored template. For moving targets,
however, such two-dimensional images cannot be re-
liably generated because of unknown vehicle motion.
The primary signature that can be reliably obtained
for moving targets is the high range resolution (HRR)
profile. For moving targets, classification information

can be obtained by comparing an HRR profile with
profiles collected from similar vehicles. However, an
HRR profile contains less information about a target,
compared to a two-dimensional SAR image, so reli-
able classification using HRR profiles relies on many
looks from different aspect angles.

While the classification of moving targets relies on
evidence accrued from many independent looks, such
accrual can take place only if the same vehicle remains
under track. Under difficult tracking situations, in-
cluding low target speeds, unfavorable geometries,
and dense traffic, kinematic trackers can make mis-
takes and associate target reports to the wrong tracks.
Thus, while effective target classification could be ac-
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complished with multiple-look evidence accrual, fail-
ures in track maintenance can prevent accurate target
classification.

The target classification approach described in this
article involves the integration of the target classifica-
tion capability into a kinematic tracker, merged in
such a way that the two capabilities complement and
support each other. In particular, while evidence ac-
crual for HRR-based classification relies on accurate
report-to-track association, we have integrated the ac-
cumulating classification information, along with tar-
get signature information, into the association logic
of the tracker. To improve the algorithm performance
we have also explored the use of additional informa-
tion that may be obtained by the radar on a sporadic
basis. These sporadic signatures include SAR imagery,
which may be obtained if a target stops while under
track (a situation notorious for breaking moving-tar-
get indicator [MTI]-based tracks with a typical radar
minimum detectable velocity of a couple of meters
per second), and inverse SAR (ISAR) imagery, which
may be obtained if a target turns while under track.
Combined with the readily available HRR signature,
these two-dimensional target signatures enable the
target classifier and feature-aided tracker to perform
robustly under a wide variety of circumstances.

The present work on identification and feature-
aided tracking builds on significant previous develop-
ments at Lincoln Laboratory. The use of HRR signa-
tures for target classification, which forms the
cornerstone of moving-target classification, was origi-
nally demonstrated by M.L. Mirkin [1]. His results
showed that HRR automatic target recognition
(ATR) performance benefits from a number of inde-
pendent looks at the targets, as well as fine resolution
and extended dwell time (i.e., multple looks for
speckle reduction at each observation aspect angle).
This work pointed out the reliance of HRR-based
classification on effective tracking, since multiple
looks on the same target will accumulate evidence
only as long as all reports correctly associate with the
track.

While Mirkin’s work focused on HRR profiles for
moving targets, L.M. Novak et al. performed classifi-
cation using SAR imagery [2]. Their work on the De-
fense Advanced Research Project Agency (DARPA)-
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sponsored Semi-Automated Image Intelligence Pro-
cessing (SAIP) program demonstrated the successful
application of a superresolution method called high-
definition vector imaging (HDVI) [3], developed by
G.R. Benitz, to SAR images. Their results indicated
that a two-dimensional ATR system using HDVI-
processed SAR images will outperform those systems
whose SAR images were processed with standard
non-data-adaptive processing methods (i.e., the
weighted fast Fourier transform, or FFT).

Successful application of template-based ATR
methods to ISAR imagery was later demonstrated by
R.L. Levin [4], who used SAR images as templates.
His results, in addition to demonstrating that ISAR
images could be successfully used for moving-target
ATR, also showed the benefits of the two-dimen-
sional ISAR signature over the one-dimensional HRR
signature, as well as the benefit of accumulating clas-
sification information over several looks, as a target
executes a turn.

On the basis of the success of HDVI-processed
SAR images in two-dimensional ATR systems, D.H.
Nguyen et al. extended the application of HDVI to
HRR profiles and demonstrated that the modified
one-dimensional HRR ATR system (based on the
system described in Reference 1) using these HDVI-
processed HRR profiles provided significantly im-
proved target recognition performance compared to
other ATR algorithms using HRR profiles obtained
from conventional image processing techniques, e.g.,
weighted FFT [5-7]. However, these HRR profiles
were formed from SAR images of targets taken from
the high-quality Moving and Stationary Target Ac-
quisition and Recognition (MSTAR) data set having
a high signal-to-noise ratio (SNR) of approximately
35 dB. From a radar resource perspective, however,
for an HRR ATR system to be operationally useful,
the system must operate at a significantly lower SNR,
in the range of 20 to 25 dB. Unfortunately, the dem-
onstrated performance of the HRR ATR classifiers
suffered significant losses as the SNR decreased from
35 to 20 dB. In particular, the improved performance
obtained with HDVI over conventional processing
seen at the high SNR was significantly reduced and
essentially eliminated at the lower SNR.

Recently, Nguyen et al. demonstrated the applica-



e NGUYEN, KAY, ORCHARD, AND WHITING
Classification and Tracking of Moving Ground Vehicles

tion of Benitzs new superresolution technique called
beamspace high-definition imaging (BHDI) to HRR
profiles and showed that the enhanced one-dimen-
sional ATR system using BHDI-processed HRR pro-
files exhibits significantly improved target-recogni-
tion performance at a low SNR compared to the
conventional FFT method and the HDVI HRR
method [8]. With the HRR profiles operating at a
reasonable SNR, the radar resource requirements are
sufficiently modest for frequent HRR interleave with
MTT for effective feature-aided tracking.

This article is organized as follows: we first describe
how the range profile, which is the only distinctive
radar signature for moving vehicles that does not de-
pend on the vehicle performing certain maneuvers,
can be used to identify the vehicle class. In this con-
text we introduce the concepts of improving the sig-
nature by using adaptive signal processing techniques
(HDVI and BHDI). We illustrate how to use the sig-
natures in conjunction with a template library to ob-
tain classification via a Bayesian classifier. Once iden-
tification is established, we show how to use the
vehicle classification so obtained, along with the radar
HRR signature, to improve on track/report associa-
tion, the feature-aided tracking component proper.
Finally, we show how to extend this framework to in-
clude distinctive two-dimensional signatures, includ-
ing SAR (stopping) and ISAR (turning) target signa-
tures. These two-dimensional signatures perform
both the functions of improving classification, by
comparison with a template library, and they can also
be used for on-the-fly template training in the ab-
sence of a pre-stored template library.

Moving-Target Classification

The main goal of any ATR algorithm is to correctly
identify an unknown target from its remotely sensed
signature. Given a sensed signature from an unknown
target, many ATR systems work by matching the
given signature against a set of candidate target hypo-
thetical possibilities that could give rise to this signa-
ture. The technique we have used for ATR is to com-
pare a radar signature with a template set from known
vehicles.

With a high-resolution radar, there are two signa-
tures that are readily available from moving vehicles,

the high-resolution range profile, or HRR, and an in-
verse SAR image, or ISAR. The HRR signal is a one-
dimensional measure of the radar cross section along
the range dimension of a vehicle. The ISAR image
takes advantage of the vehicle turning to create a two-
dimensional plan view of the vehicle. Other returns
from moving parts such as lug nuts have been ex-
plored, but they are not considered in the present
work for ATR purposes. If a vehicle stops, then it is
also possible to obtain a SAR plan view, which can
also be used for identification.

Since moving vehicles most often travel in rela-
tively straight lines, it is usually impractical to obtain
any vehicle signatures from a radar other than simple
HRR profiles. The general approach to classification
is to compare an HRR signature with a pre-stored set
from known classes, and estimate the likelihood that
each measurement corresponds to a particular vehicle
class by using a matching algorithm. The better the
match, the more likely the vehicle corresponds to a
particular class. As the radar views the vehicle in sub-
sequent scans, the classification evidence is accumu-
lated for greater confidence.

The HRR ATR process proceeds over several
stages. The basic profile is most directly formed by il-
luminating a target with a high-resolution waveform,
for a series of coherent pulses (a coherent processing
interval, or CPI). The target signature typically can be
contained in a single Doppler bin for relatively short
pulse streams by Fourier-transforming the pulse
stream, and correcting for target range rate. Depend-
ing on the radar parameters, clutter cancellation may
be necessary to better separate the target signature
from the stationary ground clutter. Subsequent CPlIs,
collected adjacent in time, and perhaps with a center
frequency offset, can be noncoherently combined to
average out the speckle that arises from phase interfer-
ence of different scattering centers on the vehicle. The
methodology used for forming a range profile from a
series of CPIs involves nominally averaging the power
returns for the Doppler bins containing the target.
We demonstrate an improved methodology for this
profile formation, using superresolution methods.

Once a range profile has been formed from a radar
detection, the process of classification involves
matching it against profiles taken from a template da-
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tabase of known vehicle types. A weighted mean
square error (MSE) metric is used to measure the dif-
ferences between the input test profile and the tem-
plate profiles. A search over unknown parameters,
such as precise target aspect angle, location, and radar
cross section, is performed, and the smallest MSE is
chosen to represent the fit between the test profile
and the class being considered. For a multiclass classi-
fier, we measure the MSE between the test profile and
template from each class under consideration. This
set of measurements—the MSE match between a
given profile and each classification target set—is re-
ferred to as a feature vector.

Given a feature vector for a particular profile, it is
necessary to infer actual classification. First the classi-
fier is trained with data from known vehicles to ob-
tain statistics of MSE distributions for both in-class
vehicles and out-of-class vehicles. These training sta-
tistics are used to generate a likelihood that each mea-
surement would come from a given class. Starting
from a fixed a priori probability, successive likeli-
hoods for each vehicle are combined with a Bayesian
classifier to generate a posterior probability vector,
which is presented to an operator.

Radar Resources and System Consideration

Moving-target ATR and tracking is a resource-con-
strained problem, and we cannot enter into a discus-
sion of the topic without first delineating the primary
issues involved. A radar is an active sensor, with a fi-
nite power and aperture. For a surveillance mission
particularly, we must be extremely parsimonious with
the radar resources.

The key radar resources to be minimized are the
SNR, the number of pulses dedicated to a particular
task, and the resolution of these pulses. Dedicating
more pulses leads to a higher net SNR, but at the ex-
pense of less rapid revisits. Operating at very high
resolution may require higher SNR, and possibly re-
quire additional pulses to cover a wider bandwidth.
Moving-target classification generally functions in
conjunction with an MTI mode, which operates by
using a coherent pulse stream yielding a net SNR on
the order of 15 dB. If an ATR system were to require
35 dB, or even 25-dB SNR to function effectively,
and required that level of SNR for the entire coverage
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area, the ATR system would need so much of the ra-
dar energy as to drastically reduce the MTI coverage
area or drastically reduce the revisit frequency.

Superresolution Methods
To improve the features of the HRR profiles, given

limited radar resources, we consider superresolution
approaches. Unlike conventional Fourier imaging,
which uses a predetermined set of weighting coeffi-
cients for each pixel in the output image, super-
resolution techniques are data-adaptive image-forma-
tion methods that select an optimal set of weighting
coefficients for each pixel.

Superresolution methods have been used exten-
sively for SAR ATR applications. G.J. Owirka et al.
[9] used a two-dimensional template-based ATR met-
ric to compare SAR images formed from several spec-
tral estimation techniques and found that, of these
methods, Benitzs HDVI [3] provided the best perfor-
mance. These methods, including HDVI, consist of
D.H. Johnson’s eigenvector-based method [10], H.C.
Stankwitz et al.’s spatially variant apodization (SVA)
method [11], Stankwitz and M.R. KoseK’s super-
resolved SVA (SSVA) method [12], and J. Capon’s
maximum likelihood method (MLM) [13].

Recently, Benitz proposed a modification to
HDVI, which would reduce the computational costs
from 8000 operations per input pixel for a SAR image
by a factor of six. This new method, called beamspace
high-definition imaging (BHDI) [14], provides
speckle noise suppression that is comparable to its
HDVI predecessor but improves on HDVT’s ability
to preserve target edges. Figure 1 compares a BHDI-
processed SAR image of a Scud transporter erector
launcher (TEL) against the image of the same Scud
TEL formed by using a Taylor-weighted FFT (base-
line FFT). The inherent ability of BHDI to control
the main lobe and the sidelobes results in significant
reduction in speckle noise compared to the weighted
FFT.

BHDI, as applied to HRR profile estimation, in-
volves an estimation of the range profile, given a set of
noncoherent complex range cuts. For additional
detail on this estimation process see the appendix en-
titled “Beamspace High-Definition Imaging Super-
resolution Method.” Unlike the original SAR applica-
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tion, the covariance estimation is aided by indepen-
dent profiles from adjacent CPIs, so that the rank de-
ficiency in the covariance matrix, which necessitates
extensive constraints in the SAR estimation problem,
is greatly alleviated.

Mean-Square-Error Matching Metric
The principles behind template-based ATR involve

measuring the similarity between a test profile and
what is expected from a given hypothesized target.
The degree of similarity is used to determine the like-
lihood that the test profile originated from the hy-
pothesized target class. For the ATR effort described
here, we have employed a weighted MSE metric be-
tween the profile under test and the template, or ex-
pected profile, for a given hypothesized target.
Constructing a weighted MSE involves assuming a
mathematical model of the profile under test. Since
each range sample on an HRR range profile com-
prises a complex sum over all scatterers across the tar-
get with the same range, a single-CPI complex range
profile is generally modeled as a zero-mean Gaussian
random variate, with variance equal to the mean cross
section as found in the template. Noncoherently
combining several profiles results in a x* variate. With
such a model, an appropriate matching metric for a
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profile to a template is an MSE metric between the
profile and template, both expressed in decibels (dB).
Several extra variables must also be included in the
match, namely, matching of the receiver noise floor, a
search over target range and radar cross section (the
latter assuming that radar-cross-section calibration is
not well known), and finally a search over template
aspect angle to cover uncertainties in aspect-angle es-
timation. Figure 2 shows the effects of matching radar
cross section. For an /N-class classifier, we construct
the MSE match between each test profile and all tar-
get classes being considered, which results in an MSE

vector of length V.

Bayesian Classifier

With the MSE as the basic metric for similarity be-
tween each profile under test and each hypothesized
target class, the task of classification involves an infer-
ence step from a measured MSE vector; i.e., given an
MSE vector, how likely is it that the target under test
corresponds to one of the target classes in the tem-
plate set? We have employed a form of Bayesian infer-
ence, which constructs a posterior probability from a
combination of prior expectations and conditional
measurements, or likelihoods.

Successful application of Bayesian inference in-
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FIGURE 1: Comparison of a beamspace high-definition imaging (BHDI)-processed synthetic aper-
ture radar (SAR) image of a Scud transporter erector launcher (TEL) against a baseline image of the
same Scud TEL formed by using a conventional two-dimensional Taylor-weighted fast Fourier trans-
form (FFT). The Taylor-weighted FFT image on the left has 0.5 m x 0.5 m resolution. The image on the
right has been BHDI-processed to an approximate 0.25 m x 0.25 m resolution. The BHDI-processed
image is much sharper than the FFT-processed image as a result of speckle noise reduction.
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FIGURE 2. The graph on the left shows the resulting test and template profiles after they have been correctly
aligned in range and coarsely aligned in radar cross section (RCS). The graph on the right shows the resulting
test and template profiles after completion of the RCS alignment procedure, with a correspondingly lower value

of the mean square error (MSE) metric.

volves knowing something about the statistics of the
MSE measurements. What is needed is the probabil-
ity that a given MSE measurement is produced from a
known target class. To construct such a probability,
we employ training statistics, passing profiles from
known vehicles through the MSE calculation and
compiling statistics. Since the MSE vector is positive
definite, and not easily modeled, we have computed
statistics on the log of the MSE, which enables the
MSE vector to be modeled statistically as a multivari-

Probability density of other

Probability density of M109

ate Gaussian distribution. Figure 3 illustrates the pro-
cess of forming log-MSE statistics and constructing a
multivariate Gaussian model. In this figure we com-
pile log-MSE statistics for M1 and M109 test target
vehicles and a set of other vehicles, using templates
for the M1 and M109.

The training statistics themselves represent the re-
sults of computing log-MSE values for a number of
vehicles, over a number of conditions chosen to repre-
sent a test ensemble. Each point in the figure is the
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FIGURE 3. Training statistics for a two-class classifier, in which the template set consists of M1 and M109 test target vehicle
templates. The other class in the figure on the left consists of distinct vehicles similar in size to the test vehicles. The probability
distribution function was modeled as a multivariate Gaussian distribution of the log of the MSE.
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log-MSE for a given vehicle as measured against each
of the filters for the test set. Figure 3 represents a two-
class classifier, so each measurement is a point in the
two-dimensional log-MSE space. With the ensemble
suitably chosen, we arrive at a cloud of points repre-
senting MSE measurements under similar conditions.
These results illustrate a number of key points.
First, even a vehicle matched to the template set yields
significant scatter in log-MSE. This scatter is due in
part to the intentional use of distinct vehicles for tem-
plate construction and training, and in part to the in-
tentional mismatch in collection geometry. These in-
tentional mismatches are intended to represent the
variability that we might encounter in practice when
trying to match a profile collected in the field with
previously stored templates. Another key point is
that, in order to apply Bayes rule, we must estimate a
probability distribution function for the scatter of
measurements. Since the MSE is positive definite, it
is not easily modeled by a simple estimation proce-
dure. Modeling instead the log of the MSE alleviates
this problem, and for purposes of classification a mul-
tivariate Gaussian appears to be a reasonable repre-
sentation of the MSE vector for known vehicles.

Decision Regions

Figure 3 suggests that the training statistics for a given
target class in an /V-class classifier can be readily repre-
sented by an N-dimensional Gaussian random vari-
ate. The training statistics lead to a functional form
for each target class, as represented in Figure 3 by the
contours for the estimated Gaussian forms. Now,
when an unknown profile is encountered, we first cal-
culate a log-MSE vector for the profile against each of
the test templates. Then, by using the training statis-
tics, we evaluate the likelihood that the profile origi-
nated from each of the test target types, as well as the
likelihood that the test profile corresponds to a ve-
hicle outside the classification set. Application of the
well-known Bayes rule [7] then converts these likeli-
hoods, using prior probabilities, into posterior prob-
abilities that the test template originated from each of
the classification types or from an out-of-class vehicle.

With Bayes rule, the prior probabilities can
strongly determine the estimated posterior probabili-
ties. First, let us continue with the M1-M109 two-

class classifier as an example. There are two filters—
M1 and M109—but there are three questions that we
need to ask: is the target under test an M1, an M 109,
or neither? Setting the prior probability of neither
(designated the oher class) to zero forces the classifier
to choose either an M1 or an M109 for any target
profile under test. With equal prior probabilities for
each of these two classes, Figure 4 shows the posterior
probability that the target is an M109, as a function
of the log-MSE measured from a given profile. The
separation between the target decision regions is
clearly evident.

Generally, we do not want to force a decision be-
tween one or another among a small number of target
classes. More likely, most vehicles under observation
are not one of the types being classified. By varying
the prior probability of the other class, we can reject
such vehicles. Figure 5 shows the effect of varying the
other prior probability, or prior, on the decision re-
gions. For even small ozher priors, MSE vectors that
lie outside the main distribution of the M1 and
M109 training distribution are rejected, allowing the
classifier to correctly reject targets outside of the ve-
hicle classes for which it has templates.
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FIGURE 4. Posterior probability for the M1, assuming that
the other prior is zero. Setting the other prior to zero reduces
the three-class decision regions into the decision regions
for the M1 versus the M109. If a feature vector lies in the red
region, we classify the test profile resulting in that feature
vector as an M1. Similarly, if a feature vector lies in the blue
region, we classify the test profile resulting in that feature
vector as an M109.
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FIGURE 5. The contour lines in this figure represent the de-
cision boundaries between the three classes as a priori
knowledge about the other class varies from 0 to 1. The cen-
ter line, which corresponds to an other prior of 0, is the same
decision boundary shown in the previous figure. As the
other prior increases from 0 to 1, the decision region for the
other class increases at the expense of the M1 and M109 de-
cision regions. Note that the M109 decision region com-
presses much more quickly than that of the M1, indicating a
higher risk for an M109 high range-resolution profile than for
an M1 to be classified as an other type.

HRR ATR Measure of Performance

In this section, we present target-identification per-
formance results of the ATR classification methods
described in the previous section. To graphically dem-
onstrate the performance of the ATR classifier, we
borrow the concept of a receiver operating character-
istics (ROC) curve from communication theory, as
shown in Figure 6. The y-axis on the ROC curve dis-
plays the probability of correct classification (Pcc) of a
target of interest, while the x-axis shows the probabil-
ity of false classification (Pfc) of a target from the
other class as a target of interest. The Pcc is the prob-
ability that the targets of interest are correctly classi-
fied among themselves. The Pfc is the probability of
falsely classifying one of the targets in the other class as
one of the targets of interest. Note that an upward
shift of the ROC curve corresponds to an improve-
ment in Pcc, while a shift of the ROC curve toward
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the left corresponds to a reduction in Pfc. In other
words, any shift toward the upper left corner pertains
to an improvement in ATR performance.

Description of the Data

The raw HRR profiles used in these studies were
formed from SAR imagery provided to Lincoln Labo-
ratory by Wright Laboratories, Wright-Paterson Air
Force Base, Dayton, Ohio. These data were collected
in 1995 and 1996 by the Sandia National Laboratory
X-band (9.6 GHz) HH-polarization SAR sensor in
support of the DARPA-sponsored MSTAR program.

The data set contains SAR images of forty-four
military vehicles that were imaged in spotlight mode
at 15° and 17° depression angles over 360° of aspect
angles. Figure 7 shows ground-truth photographs of
the twenty-three distinct MSTAR targets from collec-
tions 1 and 2 combined. The target set includes six
distinct vehicles that are of interest to the classifier
and seventeen vehicles that are not. We refer to the set
of targets not of interest to us as the ozher class. Of the
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FIGURE 6. Receiver operating characteristics (ROC) curves
such as these are used to graphically display automatic tar-
get recognition (ATR) performance results. The probability
of false classification (Pfc) represents the probability of
falsely classifying targets not of interest as a target of inter-
est. The probability of correct classification (Pcc) denotes
the probability of correctly classifying among the targets of
interest. Since the objective of the ATR is to improve the
Pcc while at the same time reduce the Pfc, ATR performance
results are improved by moving the ROC toward the upper
left corner.
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twenty-three targets in both classes, we have three
variants each of the BMP2 armored personnel carrier
and the M2 Bradley fighting vehicle, eleven variants
of the T72 Russian tank, five variants of the M109
self-propelled howitzer, and four variants of the
BTR70 armored personnel carrier. The variants of the
M2, BMP2, M109, and BTR70 vehicles have minor
differences between their configurations. The eleven
T72 vehicles, however, vary significantly in configu-
rations: (1) four T72s are fully intact without any fuel
barrel mounted; (2) two T72s are fully intact with
barrels mounted on the rear; (3) two T72s are missing
skirts along the side but have fuel barrels mounted;
(4) two T72s are missing skirts and have no fuel barrel
mounted; and (5) one fully intact T72 with fuel bar-
rels has reactive armor mounted on the exterior.

We used 17° depression-angle images of the six tar-
gets of interest taken from collection 1 to construct
the six HRR classifier template profiles: BMP2#1,
M109#1, T72#1, M1, M110, and M113. A total of

Six-class classifier vehicles

T72 variants

128 images of each of the six targets, covering 360° of
aspect, were used to construct the HRR templates.
For each SAR chip imaged over a 3° aspect look, we
formed three 1° HRR templates by dividing the SAR
image into three contiguous non-overlapping subsets.
Each subset contains complex HRR profiles collected
over a continuous 1° aspect look.

The HRR test profiles were generated from
MSTAR target images taken at a depression angle of
15°. We tested the HRR ATR classifier on all forty-
four targets, covering 360° of aspect angles. Targets
taken from the ozher class were used as “confuser” ve-
hicles and thus were not part of the template data-
base. Ideally, we expect the ATR classifier to classify
these confuser vehicles as an ozher type.

Summary of HRR ATR Results

We now summarize the effects of the SNR, the num-
ber of CPIs, and the range resolution on ATR perfor-
mance results for HRR profiles conventionally pro-

Other vehicles

ZIL131

ZSU23-4

FIGURE 7. The Moving and Stationary Target Acquisition and Recognition (MSTAR) collection 1 and 2 data set
consisting of twenty-three distinct vehicles, six from the classifier target class and seventeen from the other class.
Our six-class classifier is constructed from the M1, BMP2, M109, M110, T72, and M113 target vehicles shown in the
upper left of the figure. This target set consists of three distinct models of the BMP2, four of the M109, and eleven
of the T72. Of the eleven T72 vehicles, some have fuel barrels mounted on the back with skirts on the side, some
have fuel barrels and no skirt, some have skirts and no fuel barrel, some have no skirt and no fuel barrel, and one
has reactive armor mounted around the exterior. Four of these T72 variants are shown above. The other class of ve-
hicles, representing targets we do not care about, consists of the seventeen targets shown on the right.
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cessed by using a Taylor-weighted FFT, HDVI, and
BHDI. Henceforth, we refer to the Taylor-weighted
FFT as the baseline FFT method and HDVI as the
baseline HDVI method.

First we show the gain in target identification per-
formance with the new superresolution BHDI
method, as compared against the conventional FFT-
based method. Figure 8 compares the ATR results ob-
tained with the BHDI-processed 20-dB SNR data at
1-m and 0.5-m range resolution against results ob-
tained by using HDVI-processed and baseline FFT
processed data. At 20-dB SNR the baseline HDVI
and FFT methods provide comparable performance
results. Figure 8(a), however, shows that the BHDI-
processed data provides, on average, a 10% improve-
ment in Pcc at all values of Pfc compared to data pro-
cessed with the baseline HDVI and with the baseline
FFT. Figure 8(b) expresses a similar improvement in
performance with the BHDI method at the 0.5-m
range resolution. In the 0.5-m resolution case, we see
that the BHDI-processed data provide approximately
5% improvement in Pcc over the baseline HDVI-
processed data and 8% improvement over the
baseline FFT—processed data.

Moreover, at 20-dB SNR, the BHDI-processed
data at 1-m range resolution exhibits performance

L e e e e A
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comparable to the baseline HDVI-processed and
baseline FFT—processed 0.5-m range resolution data.
In light of these results, we can expect a performance
improvement equivalent to doubling the resolution
by applying BHDI, compared to the two baseline
methods.

In addition to providing improved performance at
alower SNR, BHDI also reduces the degree of system
resources needed, as measured by, for example, the
number of CPIs needed to form an HRR profile. Fig-
ure 9 compares BHDI-processed profiles with base-
line FFT—processed profiles at 20-dB SNR, using five
and three CPIs. The results indicate that when the
number of CPIs is reduced from five to three, the
probability of correct classification with the baseline
FFT—processed HRR profiles degraded by 8% on av-
erage. With BHDI-processed HRR profiles formed
from three CPIs, we obtained a performance result
equivalent to the baseline FFT—processed profiles
formed from five CPIs. Effectively, when BHDI is
used, we can expect a performance improvement
equivalent to nearly twice the number of CPIs used to
form the HRR profiles, as compared to the baseline
FFT method.

BHDI also saves radar system resources compared

with HDVI. Initially, BHDI was developed to save
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FIGURE 8. Classifier performance results for (a) BHDI-processed 1-m and (b) 0.5-m HRR profiles at 20-dB
SNR processing compared against data processed with baseline HDVI and baseline FFT. The profiles were
obtained by processing five coherent processing intervals (CPI). The BHDI-processed data provide ap-
proximately 5% improvement in Pcc over the baseline HDVI-processed data and 8% improvement in Pcc
over the baseline FFT-processed data at 0.5-m range resolution.
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FIGURE 9. Classifier performance results for (a) BHDI-processed 1-m and (b) 0.5-m HRR profiles formed
from three and five CPls, compared against data processed with the baseline FFT method. The test profiles

were obtained at 20-dB SNR.

on computational requirements, i.e., reduce the num-
ber of operations needed to form an image. In addi-
tion, however, we have found that BHDI reduces
radar resources while providing improved target-
identification performance. For example, Figure 10
shows the performance results comparing BHDI-pro-
cessed 20-dB and 25-dB SNR data at 1-m and 0.5-m
range resolution against data processed with the
baseline HDVI method. The results show that at 25-
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dB SNR, BHDI provides approximately 5% im-
provement in Pcc at all values of Pfc. Moreover, at
both the 1-m and 0.5-m range resolution, the appli-
cation of BHDI at 20-dB SNR provides a perfor-
mance equivalent to the data at 25-dB SNR processed
with the baseline HDVI method. Consequently, we
can obtain a performance improvement equivalent to
5 dB of SNR by applying BHDI, compared to the

baseline methods.
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FIGURE 10: Classifier performance results for (a) BHDI-processed 1-m and (b) 0.5-m HRR profiles at 25-dB
SNR and 20-dB SNR compared against data processed with the baseline HDVI method. The test profiles
were obtained from five CPls.
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Figures 8 through 10 contain results for six classes
of vehicle types whose lengths and widths vary from
6.5 to 7.5 m and 3 to 4.5 m, respectively. To identify
these targets among each other by using HRR profiles
with such comparable range extents, the one-dimen-
sional classifier must rely solely on the scattering fea-
tures from the profiles. In the absence of confuser ve-
hicles (ozher targets), we can expect the Pcc to reach
0.8 and 0.9 for the 1-m and 0.5-m range-resolution
profiles at 20-dB SNR, respectively. The results dem-
onstrated in Figures 8 through 10 include the pres-
ence of confuser vehicles with lengths and widths
comparable to the six classes under test. Unfortu-
nately, identifying targets with such comparable
range extent with high confidence is difficult. We
therefore expect the Pcc to deteriorate significantly as
the Pfc of the other class improves.

We can experimentally verify this assertion by in-
cluding, into the template database, HRR profiles of
a Scud TEL and M978 Hemmt truck whose lengths
and widths exceed 10 and 2.5 m, respectively. These
targets have twice the range extents of the six vehicle
classes used to generate the results shown in Figures 8
through 10. After testing the HRR classifier with the
addition of the Scud TEL and M978, we can see in
Figure 11 that the Pcc of the resulting eight-class clas-
sifier improves on the six-class classifier discussed ear-
lier by approximately 10% in the regime of low Pfc (<
0.2). The improvement mentioned comes from aver-
aging individual Pcc results from the original six
classes with the high Pcc results from the Scud TEL
and M978. The black and green curves show indi-
vidual results for the Scud TEL and M978, respec-
tively, indicating discrimination of these long targets
well exceeding 95% Pcc. In the Pfc < 0.01 regime, the
classifier performance degrades significantly as a re-
sult of setting the oher prior probability close to one
(hence targets’ prior probabilities close to zero).

In many battlefield situations, only very high-value
targets such as a Scud TEL may be of interest to the
commander. Given this presumption, we may use the
one-class classifier to discriminate a Scud TEL from
the rest of the world. Figure 11 contains performance
results of a Scud TEL discriminator using HRR pro-
files at 1-m range resolution and 20-dB SNR. At Pfc

values greater than 0.3, the classifier can identify a
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Scud TEL from the other targets almost perfectly.
However, the performance degrades considerably as
the Pfc improves to below 0.3. We suspect two con-
tributing factors to the observed degradation. First,
the M978 Hemmt acts as a confuser vehicle, very
similar in range extent to the Scud TEL. With noth-
ing but training statistics for different vehicles, the
classifier does not have a good criterion for rejecting
the M978. Second, near broadside the MSE values
from all vehicles tend to collapse into a common
value, so that classifier performance is much poorer
for near-broadside aspects than for other aspects.

Other Class Information

At this point, we need to make a slight diversion back
into Bayes decision theory. We have come across the
situation in which a confuser vehicle prevents the
classifier from simultaneously classifying a Scud TEL
as a TEL, and rejecting a similar length M978 as a
non-TEL. The solution is twofold. The first part of

the solution is, not surprisingly, that it is necessary to

(8]
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FIGURE 11. Classifier performance results for BHDI-pro-
cessed 1-m HRR profiles at 20-dB SNR. The red curve repre-
sents previous results obtained for the six-class classifier
(with targets M1, T72, M109, M110, BMP2, and M113), while
the blue curve shows the eight-class classifier performance
resulting from inclusion of the Scud TEL and the M978 into
the six-class classifier. The black and green curves show in-
dividual results for the Scud TEL and the M978, respectively,
indicating that the classifier has no trouble discriminating
these two new targets from vehicles in the other class.
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add a template for the confuser, if it exists, to the clas-
sifier set. If a precise template is not available, it is still
beneficial to generate a surrogate confuser to use in
the template set. The second part of the solution will
involve modifying how the Bayes decision rule is
handled.

Having a confuser template adds information that
we would expect to improve the ability to distinguish
between a target of interest and a target that one
wishes to reject from classification. This additional
information plays a role in the Bayes decision process
by adding additional dimensionality to the problem.
Rather than simply rejecting a target as an ozher class,
which is rejection based only on targets we wish to
classify, we can reject a target on the basis of the addi-
tional information that the target under test in fact
yields a good MSE match to a confuser template.
When handled correctly, such information always im-
proves the ability of the classifier to perform.

In evaluating the efficacy of adding additional in-
formation to the classification, we need to be careful
to keep the criteria for success and failure constant as
we add information. This careful attention plays in
two places in the decision process—when formulat-
ing the decision and when scoring the result. The de-
cision process is first obviously changed by the addi-
tion of the other class template, as we would expect.
The decision process is next changed by splitting the
a priori probability for the other class between the tar-
gets without templates and the confuser for which a
template is provided. The second place in which the
additional information affects the decision process is
more subtle but, in hindsight, more obvious: the cri-
teria for success should not change. Thus, for ex-
ample, if we consider a single-class Scud TEL detector
and add an M978 filter to aid in the rejection of this
similar length vehicle, then the criterion for success
will still be whether the TEL is properly classified as a
TEL, and if a non-TEL is properly identified as a
non-TEL. If an M978 is improperly classified as an
other type of vehicle, or an other type of vehicle is im-
properly identified as an M978, then this classifica-
tion is not an error.

When the classifier is provided additional informa-
tion about the M978 by using the approach described

above, we see that the classifier Pcc performance im-

proves dramatically, as shown in Figure 12. For a
simple single-class classifier, for the example shown,
the classifier achieves a probability of detection of
80% while correctly rejecting 80% on non-TELs.
Here, note that for a single-class classifier, the prob-
ability of detection is synonymous with Pcc. With in-
clusion of the M978 filter, the 80% probability of de-
tection is achieved while rejecting 90% of non-TELs.
As more and more confuser filters are included, the
classifier approaches perfection. Additionally, since
the widths of all the vehicles are comparable, espe-
cially on the scale of the 1-m resolution used, signifi-
cant and unavoidable confusion occurs at broadside
looks. When classification in the context of a tracker
is applied, the classifier does not effectively update
near-broadside looks when all targets are indistin-
guishable. Simulating this situation for the example
here, we exclude targets near broadside, and find the
simple TEL detector can achieve a 90% probability of
detection with a 93% rejection of other vehicles, and
adding the M978 improves this result to 90% prob-

ability of detection and 97% rejection of non-Tels.

TEL (M1, T72, M109, M110, —|
M113, BTR70, M978)

TEL (M1, T72, M109, M110,
M113, BTR70) —

TEL (M978 results,
no broadside)

TEL (no additional info, —
no broadside)

Probability of correct classification

0.2 - TEL (M978)
01 | =" TEL (no additional info) —
0 N S N E S I B

0 01 02 03 04 05 06 0.7 08 09 1.0

Probability of false classification of other

FIGURE 12. The dotted blue curve shows the results of the
one-class classifier trying to discriminate a Scud TEL from
all other targets. When provided with additional knowledge
of the M978 vehicle, the classifier performance improves by
20% in the Pfc < 0.2 regime. If profiles within £30° of broad-
side are removed, the performance improves by approxi-
mately 35% in the Pfc < 0.2 regime. As knowledge of addi-
tional vehicle targets are added to the classifier, the Scud
TEL discriminator performance approaches the desired per-
formance result.
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Feature-Aided Tracking

For moving targets, target identification cannot be
considered separately from tracking, since the targets
are in motion, and target identification becomes rap-
idly perishable information if the target is not kept in
track. As was discussed above, there are three primary
target signatures that are useful for identification: (1)
the HRR range profile that is visible when the target
is in motion, (2) the ISAR signature that is visible
when the target undergoes a turn, and (3) the SAR
signature that is visible when the target stops. For
identification using HRR, several looks at the target
from different aspect angles are necessary to arrive at a
high-confidence identification, requiring the tracker
to maintain target identity over the accumulation pe-
riod for the classification evidence to be properly ac-
cumulated. Since ISAR and SAR both yield a two-di-
mensional signature, we would expect a greater
classification confidence than with HRR for each ob-
servation. But again the tracker must properly link re-
ports and maintain track for such identification to be
of anything but a transient nature.

We have pursued the viewpoint that identification
information can be accumulated from a number of
signatures, be it HRR, ISAR, or SAR. Linking this
information together requires a tracker that not only
can fuse different identification types such as HRR,
ISAR, and SAR, but ideally one that can also take ad-
vantage of this non-kinematic information to im-
prove tracking.

The objective of a tracker is to maintain track on
moving targets, and to estimate the target state. A ki-
nematic tracker produces estimates of the track state
(e.g., position, velocity, and heading) based on radar
measurements such as range, range rate, angle, and
angle rate, by correctly associating new detections
with existing target tracks assuming appropriate kine-
matic transition models. A feature-aided tracker
builds upon the traditional kinematic tracker and
uses additional target features, such as the HRR pro-
file and target classification information, to help im-
prove this association.

Feature-aided tracking encapsulates a suite of algo-
rithms, consisting of signature-aided tracking (SAT),
classification-aided tracking (CAT), and classification
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diffusion-aided tracking (CDAT). SAT uses the de-
gree of similarity between the HRR profiles obtained
from successive detections of the target. No inference
is made in regard to the identification, or type, of the
vehicle under track. In other words, SAT addresses
the question of whether the target at the current time
is the same as the target from an earlier time. In con-
trast, CAT uses the degree of similarity between the
identification associated with the current report and
an existing track; i.e., if the identification of the re-
port and track are similar, then the report and track
are more likely to be associated. Finally, CDAT at-
tempts to mitigate the degradation in target identifi-
cation that occurs when the tracker associates a report
with the wrong track [15]. The approach of CDAT is
to blend prior classifications from tracks that are ki-
nematically ambiguous so that built-up classification
information is not completely associated with the
wrong report.

This article focuses on the more mature feature-
aided tracking methods, namely, SAT and CAT, and
defers further discussion of CDAT until a later date.
In the next four sections we describe SAT and CAT in
general terms and present initial results that strongly
suggest that sufficient additional benefit can be ob-
tained from feature-aided tracking.

Signature-Aided Tracking Algorithm and Architecture

For the purposes of feature-aided tracking analysis,
we use a kinematic tracker previously developed at
Lincoln Laboratory in the 1990s to support a small,
lightweight radar payload located on an unmanned
air vehicle, or UAV [16]. The focus of this article is
not on the details of this particular tracker, but rather
on how the feature-aided tracking algorithms fit
within this very general type of tracker architecture.
In general, a tracker receives M reports from a sensor
and attempts to find the best match between these re-
ports and NV existing target tracks. (For simplicity, we
ignore any discussion of how the tracks are initiated
and begin our discussion with the tracks already in
existence.) We briefly walk through the basic steps of
a generic kinematic tracker to make clear how the fea-
ture-aided tracking algorithms are added.

First, for a given hypothesized track-report pair,
the tracker determines if the track and report are suf-



* NGUYEN, KAY, ORCHARD, AND WHITING
Classification and Tracking of Moving Ground Vehicles

Compare signatures

| 0 O r T T T 17
B S -1of 18
- ) B R
— v % —20- — Track Y | %
° o - — Report |+ o
| o) N [ R Y [
Ll 0 10 20 30 40 0 10 20 30 40
-30 . .
0 10 9 30 40 Range (pixel) Range (pixel)
Range (pixel)
) | 0 0
= —~ ~ -
g — Radar ’ Q 10 Q ol |
3 B line of sight g g n |
o \ s 20 g 20
— we o~ S T PN ek ] |
B a £ o
. -30 o S [ I
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Range (pixel)

Range (pixel) Range (pixel)

FIGURE 13. Tracking of two targets—an M1 (upper left) and an M109 (lower left), where each starts out moving on a separate
road. The goal of the tracker is to associate the M1 track to the M1 report and the M109 track to the M109 report. This association
problem is unsolvable, given only the targets’ kinematics information. We can supplement the kinematics information with the

targets’ HRR profiles to provide target identification and resolve the ambiguity in the kinematics.

ficiently “close” in a kinematic sense such that they
may be plausibly associated. If so, the track is propa-
gated (i.e., extrapolated) to the time of the report. A
non-negative score is then calculated on the basis of
the degree of similarity between the kinematic states
of the track and report. This process is repeated for all
tracks and reports from the current radar scan, gener-
ating a matrix of scores—one number for each plau-
sible track-report pairing. To determine the correct
associations, we use an optimization algorithm to
find the best pairings among all the viable hypotheses.
We now discuss the problem that SAT tries to solve,
our approach for solving this problem, and the archi-
tecture for implementing this solution.

Consider the simple scenario shown in Figure 13
as an illustration of the problem, where, at time 7, as
shown at the left, two targets are widely separated and
located on different branches of the road. We arbi-
trarily designate one of the vehicles as an M1 (shown
in blue), and it is located on the top branch of the
road with aspect angle 6,. The other vehicle we desig-

nate as an M109 (shown in red) with aspect angle 6,.
The corresponding HRR profiles for the two vehicles
are also shown, with the scattering differences be-
tween the two clearly visible. At a later time, the two
vehicles have merged on the road. Using kinematic
information alone, we have an approximately 50%
chance of obtaining the correct association. However,
if we use the HRR profiles obtained from the targets
at time 7 + Az, as shown on the right in Figure 13, and
compare with the target profiles at time #, we expect a
greater chance of getting the association correct; i.e.,
the degree of similarity between the track and report
HRR profiles will help resolve the ambiguity of the
track-report association. The degree of similarity be-
tween the two profiles at # + Az with the two profiles
at earlier time # (four possible cases) is used to help
determine whether the M1, for example, is the lead or
trailing vehicle at time 7+ Az. We now discuss the par-
ticulars of the algorithm in some detail and explain
how to modify the kinematic tracker for SAT.

The main assumption of SAT is that if the HRR
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profiles of the track and report indeed come from the
same vehicle, then the corresponding differences in
the profiles, as measured by the MSE score, should be
smaller than if the HRR profiles came from two dif-
ferent vehicles. How do we characterize these differ-
ences? Using the DARPA MSTAR vehicles, we com-
puted MSE scores for all possible pairings of vehicles
for all aspect angle differences less than 5°. (We found
that for angles greater than approximately 5° it is
more difficult to distinguish between vehicles with
similar sizes only on the basis of their HRR profiles).
The HRR profiles used to generate the above men-
tioned results have 1-m range resolution and 20-dB
SNR, and were formed by using the superresolution
BHDI method developed by Nguyen et al. [8] at Lin-
coln Laboratory.

We observed that the so-called matched scores (the
vehicles are the same) and mismatched scores (the ve-
hicles are different) are each normally distributed
with the match mean, as expected, smaller than the
mismatched mean. The variance of the mismatch case
was slightly larger than the match value. In the fol-
lowing discussion we represent the match and mis-
match mean by u,,,., and w,, ..., respectively, and
the match and mismatch standard deviation by o,

atch

and o respectively. Consequently, given an
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MSE score for a track-report pair, we can calculate the
log-likelihood ratio by using the expressions for the
probability density function (pdf)
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The signature 5« value is then added to the kine-
matic-based % score to obtain the total SAT »* score.

Figure 14 shows the Gaussian probability density
functions and corresponding 5 scores as a function of
MSE scores. As expected, the signature Xz score in-
creases monotonically with MSE score. Recall that
the larger the Xz score, the less likely the track and re-
port signatures belong to the same target.
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FIGURE 14. The left graph shows the match and mismatch Gaussian probability density functions obtained
from training HRR profiles at 1-m range resolution and 20-dB SNR. We generate the training data used to esti-
mate the match probability density function by comparing profiles from the same target but separated by up to
5° in aspect. To generate the training data for the mismatch probability density function, we randomly compared
profiles from two different targets. The negative log-likelihood ratio of match to mismatch is used to normalize
an MSE score into a signature ;f value. The right graph depicts the transformation of the log-MSE scores into
equivalent »* values, using the match and mismatch mean (u) and standard deviation (o) distributions shown in
the left graph. As expected, the »*values increase monotonically with log-MSE scores.
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FIGURE 15. The key components of the signature-aided tracker with HRR profiles as features. For each hypoth-
esized track-report association, a maneuver is detected and a kinematics X2 value computed from the extrapolated
track state. Each track and report contains, in addition to the kinematics information, an HRR profile with the track
also containing an estimated aspect angle of its HRR profile. The Kalman filter then updates the state of the track
to the hypothesized report from which the report-HRR aspect angle is estimated. If the track and report-HRR pro-
files differ by a large aspect angle, then the feature information is ignored. Otherwise, a signature »? is computed

and fused with the kinematics 5.

We now present the architecture for implementing
the SAT algorithm. Figure 15 shows a high-level dia-
gram of this architecture. As was discussed with the
kinematic tracker, we assume that there are /V existing
tracks and M new detections (reports) at time # Fur-
thermore, for the sake of clarity and simplicity, we as-
sume that each track and report has an HRR profile.
Consider first a single hypothesized track-report pair.
As before, using kinematic information alone, we de-
termine if the track and report are sufficiently close so
that the hypothesized pairing is plausible; i.e., are the
range, range rate, and angle, for example, sufficiently
similar? If so, we project the kinematic state of the
track forward to the time of the report and we com-
pute the kinematic-based y* score. Since HRR pro-
files are quite sensitive to target aspect angle, resulting

in a loss of target specificity after an aspect-angle
change of approximately 10°, we need to exclude
those signature scores computed by matching track
and report signatures differing by more than 10° in
aspect. To properly determine the aspect angle of a re-
port, the tracker must calculate an updated estimate
of the track aspect angle. We therefore assume for the
moment that this track does associate with the report
and consequently we filter the report data with the
track to obtain an updated estimate of the track state.

Using the updated state estimate, we determine the
aspect angle of the report and ask the following ques-
tion: has the aspect angle between the track and the
report changed too much such that SAT should not
be used? If the answer is yes, then we, as with the tra-
ditional kinematic tracker, use only the kinematic in-
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formation to determine the score associated with this
track-report pair. If, however, the track has undergone
a change in aspect angle that is sufficiently small, then
we calculate the signature « score, which is then
added to the kinematic y* value to obtain a total »*
score. Repeating this process for all possible track-re-
port pairings, and using proper normalization of the
scores to account for the different number of degrees
of freedom, we obtain an association matrix from
which the final track-report pairings are made by op-
timizing for this tracker with Munkres algorithm.

Discussion of SAT Performance Results

We now present some initial SAT results that indicate
the level of improvement to expect in tracker perfor-
mance. To obtain these results, we use instrumented
ground vehicles, simulated target detections, and
HRR profiles derived from SAR imagery. The vehicle
motion data were collected for the DARPA Afford-
able Moving Surface Target Engagement (AMSTE)
program at Patuxent River Naval Air Station, Mary-
land, in 1999, by using Global Positioning System
(GPS)—instrumented vehicles. The sensor detections
were derived from the GPS data by adding sensor
noise and measurement error consistent with a typical
radar sensor. The radar scan rate used to generate the
detections was set to five seconds, which is consistent
with a small-region-of-interest rapid-scan mode. The
probability of detection was set to 0.9. The MTT de-
tections were augmented with HRR profiles formed
with the superresolution BHDI method [7] at 20-dB
SNR with 1-m range resolution, using SAR images
collected for the DARPA MSTAR program.

We consider a simple scenario consisting of two
vehicles—an M1 and an M109—traveling along a
straight road. For this scenario, there are 320 detec-
tions with 130 of these detections resulting in poten-
tial misassociations. Figure 16 illustrates one particu-
lar example of the type of confusion that may occur
for this scenario. At times 7 and 7 + Az the M109 is in
fact ahead of the M 1. However, from the perspective
of the tracker, an equally plausible alternate hypoth-
esis exists: the M1 overtook the M109 during the
time interval between scans and is now ahead of the
M109. Figure 16 illustrates these two kinematically
ambiguous hypotheses.
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Hypothesis 1

Hypothesis 2
M1 M1
M109 M109
/

FIGURE 16. A sample two-target tracking scenario consist-
ing of an M1 and an M109 following each other closely. Two
position measurements of each vehicle are shown in this
figure. Hypothesis 1 depicts the true trajectory of the tar-
gets, with the M1 following the M109. Alternatively, the M1
could have passed the M109 between the two position mea-
surements, which would result in a reversal of track identifi-
cation, as shown in hypothesis 2.

Using kinematic information alone, the tracker got
the vehicle identification wrong 21% of the time.
That is, 27 times out of 130, the tracker paired the
reports with the wrong tracks. In contrast, by using
SAT, the number of misassociations was reduced
from 21% to 9%; i.e., the number of misassociations
was reduced by more than a factor of two. Figure 17
illustrates these results. This simple example illus-
trates the potential for SAT to help the tracker resolve
kinematically confusing close encounters between ve-
hicles. Clearly, additional work—e.g., more challeng-
ing scenarios with an expanded set of tracker mea-
sures of performance, such as track lifetime and
continuity—are needed before a more quantitative
measure of the added value of SAT can be stated with
full confidence. These results strongly suggest, how-
ever, that additional effort in this area is warranted.

One-Dimensional SAT Variants

We have seen how HRR profiles can be used to im-
prove tracker performance. HRR profiles are, how-
ever, typically obtained from vehicles that are moving
with a range rate above the minimum detectable ve-
locity along a relatively straight line. When a vehicle
turns or stops, it is possible to obtain two-dimen-
sional signatures that are more informative than HRR
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FIGURE 17. (a) The two-target simulation contains a total of
approximately 450 detections made at five-second update
intervals and a probability of detection of 0.9. Of the 450 de-
tections, 130 of them could potentially result in misassocia-
tions. (b) By using only kinematics information, the kinemat-
ics tracker made 27 misassociations, or 20.8% of the 130
possible misassociations. In signature-aided tracker (SAT)
mode, the number of misassociations dropped by over half
to 12, or 9.2% of the possible misassociations.

profiles. In this section, we present two variants of
SAT that make the best use of the vehicle signatures
collected while the vehicle is turning or stopped. The
proposed approach takes SAR and ISAR images, ob-
tained while the target is stopped or turning, respec-
tively, and collected at target aspect angle 6. We then
generate HRR profiles at an angle 6 + A, where A6 is
large (i.e., much greater than the few degrees we
would normally anticipate). The ability to generate
HRR profiles at angles substantially different from
the image collection angle results in a significant ex-
tension of the range of applicability of SAT.

We first consider the case of HRR profiles derived
from a SAR image. The procedure for generating
HRR profiles for angles present in the SAR image are

well understood and commonly used. What is new,
however, is that by performing a simple rotation of
the SAR image, we can obtain representative HRR
profiles at angles outside the range of normally ex-
pected values. There apparently are target features
(e.g., dominant scatterers) present in the two-dimen-
sional image that are sufficiently robust to these types
of operations (i.e., simple rotations), at least for the
purposes we are considering (one-dimensional SAT).
For example, in Figure 18, we show the distribution
of match and mismatch MSE scores for HRR profiles
against HRR profiles derived from SAR images. The
match scores are formed from the HRR profile of a
Scud TEL at angle 6 against the HRR profile of a
Scud TEL derived from a SAR image at angle 6 + 30°.
The mismatch scores are obtained by comparing the
HRR profile of a Scud TEL at an angle 6 against the
SAR-derived HRR profile of a M60 tank at aspect
angle 6 + 30°. The HRR profiles are at 1-m range
resolution and 35-dB SNR. For the case considered
here, the separation between the match and the mis-

14 — = Match
— Mismatch
12

10

0 0.5 1.0 15 2.0 2.5 3.0
Log (MSE)

FIGURE 18. The match and mismatch probability density
functions resulting from comparing HRR profiles of a Scud
TEL against SAR-derived HRR profiles of a Scud TEL and
an M60 tank, respectively. The aspect-angle separation be-
tween HRR profile and SAR image was approximately 30°. In
the match case, SAR images of the Scud TEL are rotated to
the aspect angle of the HRR profiles. By collapsing the ro-
tated SAR image in range, we can form an HRR profile. The
resulting HRR profile is then matched against the given HRR
profile. In the mismatch case, we replace the SAR images of
the Scud TEL with images of an M60. The HRR profiles used
in this case have a range resolution of 1 m and SNR of 35 dB.
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FIGURE 19. The expected match )(2 values compared against
the expected mismatch »? values for aspect-angle differ-
ences from 10° to 180°. At all aspect-angle differences, the XQ
probability density functions show a notable separation be-
tween match and mismatch.

match scores is clearly evident, and as a result it is ex-
pected that the SAR-derived HRR profiles will pro-
vide greater aspect-angle diversity, thus extending the
applicability of SAT.

For example, as shown in Figure 19, the separation
between the mean of the match and mismatch scores
persists for a very large range of aspect angles, far
greater than could possibly have been anticipated.
Naturally, these results are most likely reflective of the
great dissimilarity between the Scud TEL and the
MG60 tank, and we fully expect the separation to
lessen as the vehicles become more similar in size,
while the depression angle is reduced to values more
consistent with long-range surveillance geometries.

The same approach can, in general terms, be ap-
plied to HRR profiles derived from ISAR images. Fig-
ures 20 and 21 show the corresponding results. Al-
though this method is not apparently as robust as the
SAR-based method, there is still considerable separa-
tion between the match and mismatch scores, which
persists over the full range of angles from 0° to 180°.

In summary, target features in HRR profiles de-
rived from SAR and ISAR images that have under-
gone significant rotations (to align them with the cor-
responding HRR profile) appear to be robust to angle
diversity, thus significantly extending the applicabil-
ity of SAT to more challenging scenarios.
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FIGURE 20. The match and mismatch probability density
functions resulting from comparing HRR profiles of a Scud
TEL against ISAR images of a Scud TEL and an M60, re-
spectively. The aspect separation between HRR profile and
ISAR image was approximately 30°. We perform the match
and mismatch comparison in the same manner as in the
HRR versus SAR mode. However, the ISAR mode intro-
duces an additional complication in that the cross-range
resolution must be estimated prior to rotation. The MSE
computation, in this case, requires a search in cross range
for the appropriate resolution.
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FIGURE 21. The expected match 5 values compared against
the expected mismatch »? values for aspect-angle differ-
ences from 10° to 180°. As shown, the mean match X2 in-
creases with the aspect-angle difference. As the aspect-
angle difference increases, the separation between match
and mismatch ;(2 probability density functions decreases.
For aspect-angle differences greater than 60°, however, the
match distribution falls almost entirely within the mismatch
distribution. Consequently, a X2 value near zero could have
resulted from either a match or mismatch comparison.
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Classification-Aided Tracking Algorithm
and Architecture

Classification-aided tracking (CAT) uses information
about the identification of the target to help the
tracker resolve kinematic ambiguities [17, 18]. Un-
like SAT, which uses the target signature directly to
determine if the target at time # + Az is the same as the
target at an earlier time 7, CAT goes one step further
and determines if the target at the two times is the
same vehicle type. The degree in similarity between
the identification of the track and the identification
of the report is used to compute a CAT score, which,
as with SAT, is added to the kinematics-based score.
We can think of CAT as closing the feedback loop in
the tracker with classification; classification informa-
tion on targets is built up with successive reports asso-
ciated and accumulated in the tracker. With CAT, the
classification itself is used to improve the tracker asso-
ciation performance, which in turn improves classifi-
cation. In this section we present the CAT algorithm
and a high-level architectural diagram illustrating the
implementation of the method, and we conclude
with some preliminary but suggestive results.

As with SAT, CAT functions by modifying the
pairwise  error between reports and tracks. The
added term is referred to as the CAT score, with a
small value designating a good match that increases
the likelihood of association, and a large value indi-
cating a poor match that decreases the likelihood of
association. To calculate the CAT score we assume
that we have an estimate of the identification of the
target track; i.e., we have some prior knowledge of the
track identification, built up from previous reports.
The first step in calculating the CAT score is to com-
pute an estimate of the identification of the target as-
sociated with the sensor report. However, to perform
this calculation, we must first have an updated esti-
mate of the track aspect angle. As we did with SAT,
we obtain a hypothesized estimate of the report aspect
angle by updating the track state with the report in-
formation, as if the track would associate with the re-
port. We then match the report HRR profile with
HRR profiles in the template library for angles near
the estimated angle. We compute an MSE vector M,
where each element of the vector corresponds to an

MSE score between the report HRR profile and the
best matching template HRR profile taken from each
class type. By properly conditioning the MSE scores
as described earlier, we can approximately fit a multi-
variate Gaussian distribution to the MSE vector
whose first-order and second-order statistics have
been pre-calculated during training. Using Bayes’
rule, we can combine & priori knowledge of the track
identification with the multivariate Gaussian likeli-
hood generated from the MSE vector to calculate the
a posteriori probability that the report corresponds to
a target of a particular type. Given the set of a poste-
riori probabilities, referred to as the classification vec-
tor, we can now calculate the CAT score, as described
below.

To determine if track 7 should associate with report
J» we ask the following question: what is the likeli-
hood that track i gave rise to (is connected with)
report j on the basis of identification information?
Basically, as the degree of similarity between the iden-
tification (as measured by the classification vector) of
track 7 and report j increases, it is more likely that this
particular pair should be associated. To compute this
likelihood, we let the probability that track 7 gave rise

to report j be given by the expression

P(track; — report j) o
N +1
P, (track;) L,(M| reportj) ,

n=1

where P, (track;) is the prior probability that track 7 is
a target of type n, and where =1, 2, ... N+ 1. (The
N + 1 element is for targets of the other class.) The
term L,(M|report ;) is the likelihood that a target for
the jth report gave rise to the MSE vector M when the
jth report is compared with the templates from the NV
classes.

To illustrate the computation of the CAT score in
simpler terms, we consider the following example. Let
the degree of the classifier /V be 1; i.e., we are inter-
ested only in determining if the target is of a single
particular type, say a Scud TEL. Consequently, the
N + 1 = 2 elements of the classification vector corre-
spond to the probability that the target is a TEL or a
non-TEL. For this case, the expression for the CAT

score can be expressed as
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Ptrack; — report ;)
o (probability that track 7 is a TEL)
x (likelihood that a TEL gave rise to MSE score)

+ (probability that track 7 is ot/Jer)

likelihood that an ozher gave rise to
X .
MSE score

Given the value of P(track; — report ;), we compute
the x7, score as

Xip = - log[P(tmc/ei — reportj)],

and subsequently add the term xfi, to the kinematic
score x2,. . to obtain the CAT score xgar-
Figure 22 illustrates a high-level architectural dia-
gram for the CAT algorithm. The steps are nearly
identical to SAT in that a feature-based score is com-
puted and added to the usual kinematic score. The
difference from SAT, of course, is that the score is
now derived from an estimate of the target identifica-
tion. The steps of this block diagram have been de-
scribed in detail in the earlier section entitled “Signa-

ture-Aided Tracking Algorithm and Architecture.”

Report, Report,,
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Tracky association track
4 (Track;, Reportj)
Priors  HRR ot
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Fusion
R t for all
e ATR x?and

possible track-report
association pairing

Track association and posterior probability

Munkres

algorithm

Discussion of CAT Performance Results

We now discuss some preliminary results using CAT.
We consider a six-class classifier, in which the vehicles
of interest are M1, M109, T72, M110, M113,
BMP2, and the other class, consisting conceptually of
all vehicles that are not members of the six classes. As
before, we use BHDI-formed HRR profiles at 1-m
range resolution and 20-dB SNR. Likewise, we use
the same radar simulation parameters (i.e., radar
noise, measurement error, and a scan rate of five sec-
onds) as was done with SAT. We first examine target
identification performance and subsequently show
how identification can be used to improve tracker
performance, as measured by the number of correct
track-report associations, with the CAT method.

For the purposes of assessing identification perfor-
mance, we consider a single-target scenario and desig-
nate the target as an M109. The vehicle identification
of each track is characterized by a classification vector.
For example, the first element is the probability that
the target is an M1, the second that the target is an
M109, and so on. In the top graph of Figure 23, the
accumulated a posteriori probability that the target is
an M109 is shown as a function of scan number. A

Kalman
filter
estimate
aspect Hj

Compute
MSE vector

Bayesian
classifier

v

Compute

kinematics x> <

ATR »2

: |

HRR ATR classifier

FIGURE 22. The incorporation of the HRR ATR classifier into the kinematics tracker to form the classification-aided tracker
(CAT). For each kinematically possible association between track and report, we compute the kinematics 3 score as de-

scribed previously in Figure 15.
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FIGURE 23. The top graph contains the accumulated posterior probability of classification for the M109 as a function
of scan number. A blue dot in this graph indicates that the largest value in the classification vector for this scan corre-
sponded to the M109. A red dot indicates that the largest value in the classification vector corresponded to the other
class. On average, the probability of correctly classifying the M109 was 0.74. The second graph shows the aspect error
resulting from estimating the M109's aspect angle from its heading. The third graph shows the estimated aspect angle
of the M109. The bottom graph depicts the M109’s true speed as a function of scan number.

blue dot indicates that the largest value of the classifi-
cation vector is the element corresponding to the
M109. In contrast, red dots indicate those times
when the largest value of the classification vector be-
longed to the other class. For this case, 74% of the
time the tracker correctly identified the target as be-
ing an M109.

To help understand the possible source of errors in
classification, we examined the following parameters:
the error in the aspect-angle estimate, the value of the
aspect angle, and the speed of the vehicle. We antici-
pate that the identification performance will degrade
as the error in the aspect-angle estimate increases.
Likewise, as the target approaches broadside, we also
expect performance to degrade because targets appear
more similar when viewed from the side. Further-
more, as the speed of the vehicle approaches zero, the
range rate will necessarily also approach zero, result-

ing in a poorer estimate of the target velocity and cor-
responding heading, ultimately resulting in a poor es-
timate of the target aspect angle. For the second and
third graphs in Figure 23, we observe that when there
is a large change in aspect angle, there is often a sig-
nificant increase in the error of the estimated aspect
angle, resulting in a decrease in target identification
performance, as indicated by the increase in the num-
ber of red dots. For example, for scan numbers be-
tween 300 and 400, the vehicle is undergoing signifi-
cant changes in aspect angle (third graph), resulting
in large spikes in the error of the aspect-angle estimate
(second graph), giving rise to a larger number of red
dots (top graph). During this interval, the speed of
the vehicle changed markedly, often nearing zero,
which further exacerbated the estimation of the target
aspect angle. And finally, although not clearly evident
from this figure, due to the scale, it can be shown that
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FIGURE 24. The accumulated posterior probability of classification for the M109, given perfect estimation of the re-
port aspect angle, as a function of scan number. The blue dots indicate that the M109 was correctly classified with
maximum a posteriori probability. The red dots indicate that the M109 was classified as an other vehicle. On average,

the probability of correctly classifying the M109 was 0.83.

the identification performance did indeed degrade
when the target was near broadside.

To estimate the expected improvement in tracker
performance as the estimate in target aspect angle im-
proves, we simply substituted the true value of the as-
pect angle for the estimated value; i.e., we assumed
there was no error in the estimation process. This ap-
proach provides an upper bound on the gain in per-
formance as related to errors in angle estimation. Fig-
ure 24 shows that there are fewer red dots indicating
misclassification for this case, resulting in an increase
in the percentage of time the tracker correctly identi-
fied the target as an M 109 from 74% to 83%. Conse-
quently, this change suggests that any improvements
to the tracker that result in a decrease in the error of
the aspect-angle estimate, such as added road con-
straints, can be expected to provide significant im-
provement in identification performance.

We now demonstrate how CAT, using target iden-
tification, can be used to improve tracker perfor-
mance. We consider a scenario in which two vehicles
approach an intersection from different roads. At the
intersection, one vehicle (an M109) turns right and
the other (an M1) turns left, as illustrated on the left
in Figure 25. This results in a kinematically challeng-
ing situation. With the usual motion models, the il-
lustration on the right in Figure 25 is a more likely
hypothesis for this scenario, where each vehicle is as-
sumed to continue along a straight path. Using kine-
matic information alone, the tracker chose the correct
path 20% of the time; i.e., it determined that the ve-
hicles had turned. In contrast, with CAT; the percent-
age increased to 100%—a significant improvement
in tracker performance.

The CAT performance results, shown in Figure
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26, show tracker improvement and suggests a strong
performance dependency on a priori knowledge of
each track’s vehicle identification. In particular, as the
prior knowledge of the identity of the vehicle in-
creases, the separation in the values of target identifi-
cation x* corresponding to the correct and incorrect
association increases, resulting in an increase in the
probability of correctly identifying the target. For ex-
ample, as the value of the prior increases from 0.5 to
0.9, the penalty for an incorrect association increases
from -5 to —3, while the benefit for a correct associa-
tion increases from —7 to —8 (a lower score is better).

Hypothesis 1

109 { M1 M109 M1
/ \

FIGURE 25. Consider a tracking scenario in which two tar-
gets—an M109 and an M1—moving on separate roads come
together briefly at an intersection and then each turns and
diverges. The left image shows the true motion of the ve-
hicles (hypothesis 1) while the right image shows a kinemati-
cally possible alternative (hypothesis 2). If a linear motion
model is used in the Kalman filter (constant velocity), we ex-
pect the tracker to choose hypothesis 2, which would be an
incorrect description of the tracking scenario. With classifi-
cation-aided tracking (CAT), however, the true motion
shown in hypothesis 1 is correctly tracked 100% of the time.

Hypothesis 2
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FIGURE 26. Improvement in CAT performance as a function of prior knowledge. The target
identification »? values for correct and incorrect association are shown as a function of the a
priori value. As prior knowledge increases, the gap between the X2 values increases, showing
an improved discrimination between the correct and incorrect associations. As a result, the
probability of correct classification also increases as the prior knowledge increases.

That is, as prior knowledge increases, the penalty for
an incorrect association also increases, resulting in a
better chance of correctly identifying the target. In
addition, as the scan rate increases from ten seconds
to five seconds, as expected, the probability of cor-
rectly identifying the target increases, with a very pro-
nounced benefit for cases when the prior knowledge
is large, such as seen when the prior equals 0.8.

Naturally, additional work is needed to quantify
the impact of CAT upon tracker performance more
reliably, but these preliminary results suggest that
such additional work is warranted.

Two-Dimensional Feature-Aided
Tracking Variants

Thus far we have considered the HRR profile to be
the target feature, which is subsequently used for tar-
get identification or to help resolve kinematic ambi-
guities with the SAT and CAT feature-aided tracking
algorithms. Although the HRR profile is readily ob-
tainable with a high-bandwidth waveform, it does
contain limited target feature information—a few
tens of pixels represent the entire target. In addition,
the HRR profile is known to be very sensitive to angle
variation, thus significantly limiting the robustness of

HRR-based SAT algorithms. In contrast, a two-di-
mensional image of the target contains significantly
more information about the target scattering. In ad-
dition, HRR profiles are available when the target is
moving along a relatively straight path. When the tar-
get stops or turns, we have the opportunity to collect
two-dimensional signatures. We show how these SAR
and ISAR images may be used in a meaningful way to
improve tracker performance.

In this section we show how two-dimensional im-
ages, in particular SAR and ISAR images, can be used
in a two-dimensional variant of the SAT algorithm
previously discussed. Furthermore, we show how the
two-dimensional images are significantly more robust
to aspect-angle variability. In addition, we recall that
SAR and ISAR images can be used to generate HRR
profiles at angles significantly different from those
contained in the image; i.e., a few two-dimensional
images can be used to populate an HRR template da-
tabase covering a significant portion of the full 0°-to-
360° range of aspect angles. This latter capability
leads to the possibility of using SAR images of oppor-
tunity to construct an on-the-fly template set for a
target type lacking previously collected templates for
classification.

VOLUME 13, NUMBER 2, 2002 LINCOLN LABORATORY JOURNAL 299



e NGUYEN, KAY, ORCHARD, AND WHITING
Classification and Tracking of Moving Ground Vehicles

Two-Dimensional Signature-Aided Tracking

Consider a situation whereby a vehicle stops, starts
moving again, and then stops. For a high-valued tar-
get, the operator could collect a SAR image of the tar-
get each time the target stopped. The degree of simi-
larity between the two SAR images can be used to
determine if the stopped vehicle is in fact the same ve-
hicle in each image. The vehicles in the two images
are, however, most likely at different aspect angles.
Before a comparison of the SAR images can be made,
the vehicles must be rotated to a common aspect
angle, and before the vehicles can be rotated, an accu-
rate estimate of the target aspect angle must be ob-
tained. We have developed such a method but, for the
sake of brevity, we do not include it in this discussion.
Given the aligned, decluttered SAR images, the ap-
propriately normalized two-dimensional signature x
value is calculated from the MSE score obtained by
comparing the two images. As with the one-dimen-
sional version of SAT, where HRR profiles are com-
pared, the signature 5 value is added to the kinematic
XZ score to obtain a two-dimensional SAT score.

We anticipate that the MSE scores from aligned
SAR images corresponding to the same vehicle (the
match case) will be lower than the MSE score ob-
tained from different vehicles (the mismatch case).
Figure 27 shows the scores for the match and mis-
match cases. The match scores were generated by
comparing the SAR images of a Scud TEL at aspect
angles separated by 30°, while the mismatch scores
were obtained by comparing the SAR images of a
Scud TEL and an M60 tank. It is evident that there is
significant separation between the match and mis-
match mean values, with minimal overlap in the dis-
tributions of scores. The fact that the two images are
30° apart is an indication that the SAR images are
more robust to aspect-angle variability when used for
SAT. However, part of the separation in distributions,
possibly most of it, is due to the fact that the Scud
TEL and M60 tank have different lengths. These re-
sults suggest that this two-dimensional SAT variant
can provide additional benefit to the tracker. Future
work will integrate this algorithm into the tracker,
and we will perform further evaluation of the algo-
rithm at that time.
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FIGURE 27. The match and mismatch probability density
functions resulting from comparing SAR images separated
by 30° in aspect angle. For the match case, we compared
SAR images of a Scud TEL separated by 30° in aspect angle
and rotated so that the images were aligned in aspect angle.
In the mismatch case, we compared SAR images of a Scud
TEL against images of an M60 tank separated by 30° in as-
pect angle and rotated so the images were aligned in aspect
angle. The MSE scores for the match case are significantly
lower than the mismatch case, as expected, with minimal
overlap in distribution.

We just described an algorithm that addressed the
kinematic ambiguity that can result when a vehicle
executes a “stop-move-stop” maneuver. In contrast,
we now present a method for dealing with the so-
called “move-turn-stop” scenario. Consider a vehicle
that travels down a road, makes a turn, and then
stops. If the operator has information about the road
network, he can schedule an ISAR collection when
the vehicle is anticipated to turn. If the operator is
tracking a high-valued vehicle, he can justify expend-
ing the extra radar resources for a ISAR image since
the two-dimensional image does contain more infor-
mation about the target than an HRR profile. If the
vehicle stops sometime thereafter, the operator can
collect an SAR image of the area where the vehicle
was last known to be located. The new variant of SAT
that we are proposing compares the ISAR and SAR
images in a manner similar to the procedure discussed
for comparing two SAR images. As was described for
comparing the SAR images, we must first align the
ISAR and SAR images to a common aspect angle.
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FIGURE 28. The match and mismatch probability density
functions resulting from comparing SAR images of a Scud
TEL against ISAR images of a Scud TEL and ISAR images
of an M60 tank, respectively. The aspect-angle separation
between the SAR and ISAR images was approximately 30°.
For both match and mismatch cases, the SAR and ISAR im-
ages were aligned in aspect angle through rotation, and then
compared. Moreover, the MSE computation required a
search in cross range for the appropriate resolution.

Once aligned, a simple MSE calculation in range and
cross range is performed, the appropriately normal-
ized signature Xz value is calculated, and this value is
added to the kinematic »* value to obtain the total
SAT Xz score. In Figure 28, we show the distribution
of match and mismatch scores, where the match
scores are obtained by comparing the SAR and ISAR
images of a Scud TEL, which before alignment are
separated by 30°, while the mismatch scores are ob-
tained by comparing the SAR image of a Scud TEL
with the ISAR image of a M60 tank, also initially
separated by 30°. The separation in distributions be-
tween the match and mismatch scores provides fur-
ther evidence that the target signatures present in the
two-dimensional images are more robust to target as-
pect-angle variability than the HRR profile.

The last variant of two-dimensional SAT we
present involves the comparison of two ISAR images.
For this case, the operator has collected ISAR images
at two different times when the vehicle is turning.
With proper alignment of the targets to a common
aspect angle, the MSE difference is calculated. In Fig-

9 \ \ \
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FIGURE 29. The match and mismatch probability density
functions as a result of comparing ISAR images of a Scud
TEL against ISAR images of a Scud TEL and an M60 tank,
respectively. The aspect-angle separation between ISAR
images was approximately 30°. The MSE calculation be-
tween a pair of ISAR images required a search for the ap-
propriate cross-range resolution for both images.

ure 29, the distribution of match and mismatch
scores is calculated, as was done for the previous cases
in Figure 27 (SAR versus SAR) and Figure 28 (SAR
versus ISAR). We see reasonable separation between
the match and mismatch scores, thus providing the
basis for hope that, with two-dimensional SAT, the
tracker can make beneficial use of the extra informa-
tion present in the images.

Two-Dimensional Classification-Aided Tracking

CAT uses target identification to help the tracker re-
solve kinematically ambiguous situations. We have
presented a method for obtaining an estimate of the
target identification by using HRR profiles. In this
section, we show how target identification obtained
from two-dimensional images—SAR and ISAR—can
also be used. This estimate of target identification can
be used to obtain a x{}, score that can be added to the
kinematic score to obtain the CAT Xz value.

When a high-valued target stops, it is possible to
collect a SAR image of the area where the vehicle was
last known to be moving. A chip of the target from
the SAR image can be obtained by using fixed-target
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indication and extraction methods. Given the target
chip, the target identification can be estimated by us-
ing a template-based matching scheme. On the basis
of the Semi-Automated Image Intelligence Processing
(SAIP) work of Novak [2], we can expect the estimate
of the target identification obtained with the SAR to
be significantly better than that obtained with an
HRR profile. For example, in Figure 30, we show the
SAR image and HRR profile of the Scud TEL.
Clearly, more information about the target structure
is present in the two-dimensional SAR images than in
the one-dimensional HRR profiles. Furthermore,
with the advances we have made in superresolution
techniques—BHDI in particular—the estimate of
the target identification is better than previously re-
ported. In Figure 31, we show the gain in perfor-
mance, using a SAIP ATR classifier, for a six-class
classifier, as measured by a ROC curve in BHDI ver-
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sus baseline HDVI and conventional baseline FFT
processing. The improvement in performance, espe-
cially at the operationally significant lower Pfc values,
say 0.1 to 0.01, is significant.

When a high-valued target turns, an operator may
collect an ISAR image. A template-based matching
scheme may also be used for ISAR images. In this
case, however, we need to compare ISAR images
against SAR images in the template database. Figure
32 illustrates an example of this type of comparison.
Previous work by Levin on template-based ISAR
ATR [4], and our work on signature-aided tracking,
summarized in Figure 28, showed that there are suffi-
cient differences between Scud TEL and M60 tank
ISAR images that reasonable discrimination can be
obtained. Our ongoing feature-aided tracking work
incorporates the ISAR mode into the tracker to help
improve both SAT and CAT.
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FIGURE 30. The two upper images depict a SAR image of a Scud TEL and its
best-matched SAR template, while the graphs below show HRR profiles corre-
sponding to the test and template images. Visual inspection of these images and
graphs clearly signifies that the two-dimensional SAR mode provides signifi-
cantly higher matching confidence than the one-dimensional HRR counterpart.
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FIGURE 31. Performance results using the Semi-Automated
Image Intelligence Processing (SAIP) two-dimensional
ATR classifier for SAR images of the same six vehicles
demonstrated in the HRR case (and shown in Figure 7).
These results indicate that BHDI-processed SAR images
provide the best ATR performance, compared to baseline
HDVI and Taylor-weighted FFT methods. More importantly,
the two-dimensional classifier using SAR images provides
much more reliable classification confidence than the one-
dimensional classifier using HRR profiles.

Summary

Identification and tracking of moving targets are
coupled problems, consisting of identification tech-
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niques that use successive target signatures and accu-
mulate classification information in a tracker, and
feature-aided tracking techniques that take advantage
of target signatures and accumulated classification
information to improve tracker performance. In this
article we consider the problems of improving mov-
ing-target classification and track continuity by using
radar signatures of the targets, e.g., HRR, SAR, and
ISAR. Our feature-aided tracker incorporates these
radar signatures into a kinematic tracker algorithm
[16] using two modes: classification and verification.

In the classification mode, a one-dimensional tem-
plate-based automatic target recognizer provides tar-
get identification based on the target’s HRR profile.
For operational consideration, we used feature-en-
hancement algorithms such as Benitz’s BHDI to im-
prove the feature quality of the HRR profiles. We
demonstrate a Bayesian classifier using the resulting
super-resolved profiles to provide moving-target
identification. By incorporating the classifier into the
traditional tracker, we then established a technique by
which the HRR feature information can be fused
with the kinematic information to improve track-to-
report association and resolve kinematic ambiguities.
To demonstrate the performance of the classification-
aided mode, we simulated a kinematically confusing
two-target scenario by emulating target MTI detec-
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FIGURE 32. Comparison of an ISAR image and a SAR template image of the same target, showing the degree of
similarity of the images. The ISAR image on the left shows a Scud TEL moving in a circular arc of 50-m radius
and turning at a rate of 9.78° per second. The ISAR image has a 1-ft range resolution and approximately 1-ft
cross-range resolution. The SAR image on the right shows the exact same target, also at 1-ft by 1-ft resolution.
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tions augmented with HRR profiles by merging
noise-injected GPS data with profiles generated from
SAR images taken from the MSTAR and Data Col-
lection system (DCS) data sets. The CAT mode suc-
cessfully resolved all tracks-reports misassociations
made by the kinematic tracker. Furthermore, we
showed that the performance improvement provided
by ATR can be quantified by a priori knowledge of
the tracks’ vehicle types.

In the verification mode, track and report signa-
tures are systematically compared, presuming that
these signatures are similar if they come from the
same target. We demonstrated an approach to fuse
the signature comparison results with the UAV’s ki-
nematic information by using a log-likelihood ratio.
Applying this approach to a simulated kinematically
confusing two-target scenario, we showed that the
signature-aided component provided modest im-
provement to the traditional tracker due to HRR fea-
ture variability on aspect angle.

To improve the performance of the SAT mode, we
considered a supplemental approach to handle large
aspect differences by incorporating SAR and ISAR
images into the tracker. We demonstrated metrics to
compare HRR, SAR, and ISAR signatures, and we
extended the range of aspect-angle mismatch seen in
the SAT mode with only HRR profiles. When we en-
countered track and report profiles whose aspect
angles differed by more than 10° we used a two-di-
mensional image associated with the track to generate
an HRR profile at the same aspect angle as that of the
report profile. To obtain SAR images while tracking,
we considered a go-stop-go scenario in which the tar-
gets stopped long enough for the radar to obtain a
SAR image. To obtain ISAR images while tracking,
we assumed the availability of a road network to pre-
dict ISAR opportunities.

The classification and verification modes of the
feature-aided tracker can potentially operate simulta-
neously to provide improved track continuity and tar-
get identification.

Acknowledgments

The authors would like to thank Gerald Benitz of the
Sensor Exploitation group at Lincoln Laboratory for
providing us with his expertise on superresolution

304 LINCOLN LABORATORY JOURNAL VOLUME 13, NUMBER 2, 2002

techniques, as well as his HDVI and BHDI codes. We
would also like to thank Keith Sisterson, also of the
Sensor Exploitation group, for providing us with the

UAV tracker. This work was sponsored by DARPA.

REFERENCES

1. M.I Mirkin, B.E. Hodges, and J.C. Henry, “Moving Tar-
get Recognition,” presentation for DARPA ATR Exposition,
17 Sept. 1998.

2. L.M. Novak, G.J. Owirka, W.S. Brower, and A.L. Weaver,
“The Automatic Target-Recognition System in SAIR” Linc.
Lab. . 10 (2), 1997, pp. 187-202.

3. G.R. Benitz, “High-Definition Vector Imaging,” Linc. Lab. J.
10 (2), 1997, pp. 147-170.

4. R.L. Levin, private conversation.

5. D.H. Nguyen, G.R. Benitz, ].H. Kay, and R.H. Whiting,
“Super-Resolution HRR ATR Performance with HDVI,”
SPIE 4050, 2000, pp. 418-427.

6. D.H.Nguyen, G.R. Benitz, ].H. Kay, B.]. Orchard, and R.H.
Whiting, “Super-Resolution High Range Resolution ATR
with HDV1,” IEEE Trans. Aerosp. Electron. Syst. 37 (4), 2001,
pp. 1267-1286.

7. D.H. Nguyen, J.H. Kay, B.J. Orchard, and R.H. Whiting,
“Improving HRR ATR Performance at Low SNR by Multi-
Look Adaptive Weighting,” SPIE 4379, 2001, pp. 216-228.

8. D.H. Nguyen, G.R. Benitz, ].H. Kay, B.J. Orchard, and R H.
Whiting, “‘HRR ATR Performance Enhancementat Low SNR
Using Beamspace HDI,” SPIE 4379, 2001, pp. 266-276.

9. G.J. Owirka, S.M. Verbout, and L.M. Novak, “Template-
Based SAR ATR Performance Using Different Image En-
hancement Techniques,” SP/E 3721, 1999, pp. 302-319.

10. D.H. Johnson, “The Application of Spectral Estimation
Methods to Bearing Estimation Problems,” Proc. IEEE 70 (9),
1982, pp. 1018-1028.

11. H.C. Stankwitz, R.J. Dallaire, and J.R. Fienup, “Non-Linear
Apodization for Sidelobe Control in SAR Imagery,” JEEE
Trans. Aerosp. Electron. Syst. 3 (1), 1995, pp. 267-279.

12. H.C. Stankwitz and M.R. Kosek, “Super-Resolution for SAR/
ISAR RCS Measurement Using Spatially Variant Apodization
(Super SVA),” Proc. AMTA Symp., Williamsburg, Va., 137
Nov. 1995, pp. 251-256.

13. J. Capon, “High-Resolution Frequency-Wavenumber Spec-
trum Analysis,” Proc. [EEE 57 (8), 1969, pp. 1408-1418.

14. G.R. Benitz, “Beamspace High-Definition Imaging (B-HDI)
SAR Image Enhancement,” submitted to /EEE Trans. Image
Process.

15. J.H. Kay and R. Levin, internal presentation.

16. L.K. Sisterson, private conversation.

17. D.H. Nguyen, J.H. Kay, B.J. Orchard, and R.H. Whiting,
“Classification-Aided Tracking,” Proc. 55th ATRWG Science
and Technology Symp., Aerospace Corp., Chantilly, Va., 6—18 July
2001.

18. D.H. Nguyen, J.H. Kay, B.J. Orchard, and R.H. Whiting,
“Feature-Aided Tracking of Ground Moving Vehicles,” SPIE
18, 2002, pp. 234-245.



e NGUYEN, KAY, ORCHARD, AND WHITING
Classification and Tracking of Moving Ground Vehicles

APPENDIX:
BEAMSPACE HIGH-DEFINITION IMAGING
SUPERRESOLUTION METHOD

WE PRESENT A BRIEF DISCUSSION of the new
superresolution method called beamspace high-defi-
nition imaging (BHDI), as applied to synthetic aper-
ture radar (SAR) images and high range resolution
(HRR) profiles. This method was originally devel-
oped by Gerald R. Benitz of Lincoln Laboratory for
forming SAR images. Since BHDI is related to high-
definition vector imaging (HDVI), we first discuss
HDVI, and how it is related to ]J. Capon’s method,
and then we show how HDVTI is extended to BHDI.

Recently Benitz proposed a modification to HDVI
that reduces the computational cost of BHDI to one-
sixth the amount needed for HDVI. In particular,
HDVI required 8000 operations per pixel. With
BHDI, only 8000/6 operations are needed. BHDI
provides speckle noise suppression that is comparable
to HDVI but improves and better preserves target
edges. In Figure 1 in the article we compare a BHDI-
processed SAR image of a Scud TEL with an image
formed with the conventional Taylor-weighted FFT
(baseline FFT) method. The inherent ability of
BHDI to control the main lobe and the sidelobes is
clearly visible as evidenced by the significant reduc-
tion in speckle noise in the BHDI image compared to
the weighted FFT.

With this success with BHDI in forming SAR im-
ages, we adapted the method to the one-dimensional
case for forming HRR profiles. The superresolution
of HRR data can be viewed as a parameter estimation
problem in which we seek to estimate the reflectivity
intensity at each pixel by selecting an appropriate set
of weighting coefficients. The basic one-dimensional
spectral estimation problem can be posed in the form
of Capon’s maximum likelihood method (MLM), by
which it is desired to estimate the power spectrum p(-)
such that

o(x) = n;i,nE {HerHZ}

= min [Rw, w] s

subject to the constraint

[v.w]=1,

where w = w(x) is a weight vector, r = r(x) is an HRR
profile, v = v(x) is an ideal point scatterer response,
and R = R(x) is a covariance matrix at pixel location x.
We used E{ - } to denote the expectation, ” . ” to de-
note the Euclidean L,-norm, and [-,-] to denote the
vector inner-product operator. For an invertible cova-
riance matrix R, the spectral estimate p(x) is given by
the well-known result

1
p(x) = m

Since R is unknown, it must be estimated before
Capon’s technique can be applied. Several strategies
exist for estimating a covariance matrix, including
subband averaging, forward-backward subband aver-
aging, and block-Toeplitz methods. In our work, we
employed the forward-backward subband averaging
technique in which each HRR is sectioned into over-
lapping subsets whose correlations are subsequently
averaged to obtain an estimated covariance matrix R.
Let H = {r|, 1), ..., £;;}, where r; € RN(z' =1,.., M),
denotes a set whose elements represent /N-sample
HRR profiles. If 4 subbands from each profile are
used to estimate the covariance matrix, then R is
given by

R=-—(R+JR]),

N | =
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FIGURE A. Comparison of HRR profiles of a T72 tank formed by using the weighted FFT, HDVI, and BHDI algo-
rithms. The graph at the bottom left shows an HRR profile at 0.5-m range resolution and 20-dB SNR, while the other
three graphs show the same data at 1-m range resolution. The HDVI-processed profile at 1-m range resolution clearly
exhibits scattering responses resembling those of the 0.5-m range-resolution profile processed with the weighted
FFT. However, HDVI failed to preserve both of the scattering responses at the edges of the T72. BHDI, on the other

hand, successfully preserved all the scattering responses seen in the HDVI-processed profile as well as both of the
responses at the T72's edges.

where technique to accommodate a noninvertible R. The
y first modification, called the quadratic constraint, lim-
R - 1 { [r r] its the norm of the weight vector from exceeding
- Mgq & 0 some threshold. The second modification, called the
) subspace constraint, constrains the weight vector to the

and subspace spanned by R.
The basic idea of HDVI is to solve the constrained

0 1 optimization problem subject further to
0 2
J = 0 HW - Wproj = /3)
0 and
0 0 0_ (N—g+1)x(N—g+1)

2

>

[pri’ W] B H ¥ proj

When the estimated covariance matrix is singular,

HDVI introduced a twofold modification to Capon’s
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where w € span{R}. Here, v, denotes the projec-
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tion of v onto the column space of R, and B is a posi-
tive real number used to limit how far away w can de-
viate from v, ..

BHDI employs a different approach to estimate
the radar cross section at each pixel of interest. The
basic assumption in BHDI is that most of the energy
contamination to the pixel of interest comes mainly
from the adjacent pixels. To estimate the radar cross
section at each pixel of interest, we need only to add
and subtract the contributions from the adjacent pix-
els. Let r;; denote the jith pixel of the 7th profile r;, and

define a vector z; as follows:

Z, = rl]
7 LG-n) * LG

The estimated covariance matrices of the real and
imaginary components at the jth pixel of the ith pro-
file hence depend only on the adjacent pixels (j — 1)
and (7 + 1):

lire_ re(, re H
ij = Zi\%
H

(2 x 2 matrices)

5 im im[,_im
Rl] = Zl’]’ (Zl] )

The estimated power spectrum p(j) at pixel j is
thus given by the equality

S

( )
p(j) = I?vip< WfLi (RZ; + Ri-]r-n)JWj L,
j £

Il
—

A

R;

|

and £ €R, forj=1, ..., N, where N is the number of

range pixels in each profile. We note that as long as

where

M > 1, the estimated covariance matrix at pixel , de-
noted Rj , will be nonsingular. As an effect, the sub-
space constraint developed originally for HDVI is no
longer required.

We now discuss a sample result using BHDI. Fig-
ure A shows sample HRR profiles of a T72 tank at
20-dB SNR and 1-m and 0.5-m range resolutions.
The baseline-FFT—processed profile at 1-m resolu-
tion (upper left in the figure) exhibits two broad scat-
terer responses, whereas the baseline HDVI-pro-
cessed profile (upper right) reveals two additional
scatterer responses. When we compare the 0.5-m
range-resolution profile processed with the baseline
FFT (lower left), we see that the additional scatterer
responses shown in the baseline HDVI-processed
profile also appear at the higher resolution. However,
the baseline HDVI profile failed to detect the scat-
terer response that appears along the left edge of the
0.5-m resolution baseline FFT profile. The applica-
tion of BHDI (lower right) successfully picked up the
scatterer responses at both edges of the target. Since
the baseline HDVI algorithm attempts to estimate
the radar cross section at each pixel of interest by add-
ing and subtracting out contributions from every
other pixel, the algorithm may be treating noisy infor-
mation along the edges as relevant information.
BHDI, however, uses only the adjacent pixels and is
thus less prone to contributions from noisy scatterer
responses about the edges. As an effect, BHDI tends
to preserve the scatterer responses toward the edges of
the target, while HDVTI is inclined to null them out.
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