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Synthetic Aperture Radar
Image Coding
Robert Baxter and Michael Seibert

■ Many factors govern the design of image-coding systems, ranging from the
sensor type through storage and transmission limitations to the imagery end
use. Image-compression performance depends on the costs of storage or
transmission bandwidth (in bits per pixel), computational burden (in operations
per second), information loss (utility), and artifacts that may change the receiver
operating characteristics (probability of detection versus number of false alarms
per area). We describe how general image-coding concepts are specialized for
synthetic aperture radar (SAR) imagery, and we discuss design trade-offs with
respect to representation systems, quantizers, and bit allocation. We also discuss
criteria and techniques for evaluating the performance of compression systems.

S   (SAR) images
formed from spatially overlapped radar phase
histories are becoming increasingly important

in a variety of remote sensing and tactical applica-
tions. The capability of SAR sensors to operate in vir-
tually all types of weather conditions, from very long
ranges and over wide areas of coverage, makes them
extremely attractive for surveillance missions and for
monitoring the earth’s resources. With the increased
popularity and corresponding abundance of such im-
agery, the need to compress SAR images without sig-
nificant loss of image quality has become more ur-
gent. In addition, because SAR images are interpreted
for content by humans or by machines, appropriate
coding of images enables efficient and effective ma-
chine selection and interpretation.

The need for compression of image data usually
arises from two types of limitations: limited commu-
nications bandwidth or limited storage capacity. Fig-
ure 1 shows the SAR image-formation chain, with de-
creasing communications bandwidth requirements
from left to right. The SAR image-formation stage in-
volves the transformation of radar signals, both in-
phase (I) and quadrature-phase (Q) components, via
the Fourier transform and geometrical projections, to
produce a complex-valued image. A detected SAR im-

age is formed by sending the sum of the squares of the
I and Q components through a nonlinear (typically
logarithmic) transformation stage. Image analysts use
the detected SAR image to interpret the SAR scene.

A compression system could be employed at three
distinct points along the SAR image-formation chain:
(1) compressing the radar signals prior to or in the
process of forming the complex image, (2) compress-
ing the complex image, or (3) compressing the de-
tected image. Application-specific constraints and
processing constraints ultimately determine which of
these three options are selected. We have focused on
applications that require human interpretation of
SAR imagery, and, since humans interpret detected
SAR images, our work on image compression has fo-
cused on the third option—compressing detected
SAR images.

Figure 2 illustrates some of the differences between
SAR imagery and natural imagery. Figure 2(a) shows
a natural image of a rural scene containing a country
store. (We use the term “natural image” to indicate
that the image was not synthesized or computed and
that it was derived from a sensor that operates in the
visible part of the spectrum.) Most viewers can easily
recognize familiar features such as roads, buildings,
cars in the parking lot, trees in the fields, and perhaps
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even telephone poles along the road. Figure 2(b), a
SAR image of the same rural scene shown in Figure
2(a), demonstrates how SAR images differ from natu-
ral images in several ways. First, the dynamic range of
SAR images is typically much higher than natural im-
ages. To compensate for the increased dynamic range,
it is common practice to use a preprocessing opera-
tion, such as taking the logarithm of image intensity
values, to make the dynamic range more compatible
with the human visual system. In addition, the spatial
spectra of SAR images tend to have less spectral roll-
off (higher spatial frequencies) than natural images.
The high spatial-frequency content of SAR images is
mainly caused by speckle noise and isolated point re-
turns that represent localized scatterers or scattering

centers on electrically large objects. Objects can be
identified in SAR images by the spatial arrangement
and relative intensities of these isolated point returns.
Radar shadows are also important in SAR images be-
cause they allude to the shape and material composi-
tion of objects in the scene.

Speckle noise in SAR imagery is multiplicative
noise, whereas noise in natural images derived from
optical sensors is mostly additive. Speckle noise tends
to destroy the spatial redundancy that is common in
natural images. Although a significant amount of re-
search has been devoted to despeckling SAR images,
it is not clear that despeckled imagery is easier to
interpret or is preferred by image analysts.

Other differences between optical images and SAR

FIGURE 1. Synthetic aperture radar (SAR) image-formation chain. The complex SAR image is created
from the Fourier transform and geometric projections of  the radar signal. The detected SAR image,
which is used by image analysts to interpret a SAR scene, is created by sending the sum of the
squares of the in-phase (I) and quadrature-phase (Q) components of the complex SAR image through
a nonlinear transformation stage.

FIGURE 2. Images of  a rural scene formed from (a) an optical sensor and (b) a SAR sensor. Familiar features such
as roads, buildings, cars, and parking lots are easily recognizable in the optical scene. SAR images, however, have
higher dynamic range, which requires special processing, and higher spatial-frequency content because of speckle
noise and isolated point returns from localized scatterers. Objects in a SAR scene can be identified by the spatial
arrangement and relative intensities of these isolated point returns.
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images are related to the manner in which different
objects in the scene project onto the two-dimensional
image plane. For example, an effect known as layover
in SAR imagery causes objects such as tall buildings
to appear to lean toward the direction of illumination
because the tops of these objects are illuminated first.

For reasons of economy and simplicity it is desir-
able to have one universal compression system for all
types of images, but, as research has shown, compres-
sion systems designed for specific types of imagery
tend to perform better than universal compression
systems. Compression systems designed for specific
applications, however, usually require more memory
capacity and setup time because they utilize a pre-
designed compression codebook at the encoder and
decoder stages.

Archiving of imagery is one of the most common
applications for compression systems. It is also the
most difficult application because the ultimate utili-
zation of the imagery is often not known in advance.
In the archiving application, the goal is to achieve as
much compression as possible without significantly
altering the image. Of course, the meaning of “signifi-
cant” here depends on the possible applications of the
imagery after archiving. Most of our work has focused
on archiving applications in which there is a low tol-
erance for loss of image quality.

Background

The task of an image-compression system is to elimi-
nate unnecessary and redundant information in the
image and represent the remaining relevant informa-
tion with the fewest number of bits. Consider the
mathematical concept of the information contained
in an image. An image is a collection of intensities lo-
cated at distinct spatial locations, denoted by

I I x yk k k= ( , ) .

The set of possible intensities is denoted by

{ , , , } ,q q qL1 2 K

which can be thought of as the set of allowable quan-
tization levels.

Imagine that the image is to be sent over a commu-
nications channel so that we observe a stream of in-
tensity values (for the moment, ignore the order in

which the image is scanned). The probability that an
intensity value is equal to intensity qi is denoted by

p P I x y qi i= ={ ( , ) } .

Information theory says that if we observe an inten-
sity value with a low probability of occurrence, then it
contains more information than an intensity value
with a high probability of occurrence. In fact, if pi = 1,
information theory says that this intensity value car-
ries no information. The presumed form of the infor-
mation-content function is logarithmic, and if we
want to measure information content in bits then the
base 2 logarithm is used. In this way, information
theory provides us with a mathematically precise defi-
nition of information.

Instead of the individual amounts of information
in each intensity value, which could vary dramati-
cally, we are more concerned with the average infor-
mation content of the image. The average informa-
tion content of an image can be computed as

H p pi i
i

L

= −
=
∑ log ,2

1

which is measured in bits per pixel (bpp). It turns out
that H has a number of properties in common with
thermodynamic entropy, so H is called the entropy
function. The maximum value of H is obtained when
the intensity values are equally distributed, i.e., when
H Lmax log= 2 . Thus, contrary to intuition, an im-
age with a uniform distribution of intensity values
contains the maximum amount of information—
even if the image has no spatial correlations and looks
like pure noise! The converse seems more intuitive:
when all intensity values are the same, then H = 0,
which implies that the image contains no informa-
tion. For compression, lower values of H are more
desirable.

Types of Redundancy

With a precise definition of information, we can at-
tempt to be precise about redundancy. There are,
however, at least three different types of redundancy
in images. The first type is directly related to the en-
tropy and we refer to it as coding redundancy, which is
defined as
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If the distribution of intensity values in an image is
uniform, the coding redundancy is zero; if all inten-
sity values are the same, the coding redundancy is
unity. Methods that attempt to eliminate coding re-
dundancy are commonly called entropy coding meth-
ods. Many such methods exist; Huffman [1] and
arithmetic coding [2] are among the most popular.
Entropy coders are lossless because they eliminate re-
dundancy without any loss of information.

A second type of redundancy is spatial redundancy.
Figure 3 shows four figures that have the same coding
redundancy (Rc = 0). Information theory says that
each of these figures has the same amount of informa-
tion (H = 1). Each of these figures, however, has a dif-
ferent type of spatial correlation between pixels. It is
clear from the obvious visual differences in the four
figures that entropy coding will not be of use in elimi-
nating spatial redundancy. Fortunately, a number of
other computational methods exist that do eliminate
spatial redundancy to some degree. Transform-based
coders attempt to eliminate spatial redundancy by
changing the pixel-based image representation into
another representation that is more efficient from a
spatial-redundancy point of view. Run-length coding
can also be used to eliminate spatial redundancy.

A third type of redundancy is psychovisual redun-
dancy. Psychovisual, or perceptual, redundancy is a di-
rect result of the properties of the human visual sys-
tem (HVS). Consider the HVS as a black box. Images
pass through this black box, and our perceptual repre-
sentation of these images is the output. The proper-
ties of the HVS induce certain redundancies (of pos-

sibly different types) in the perceptual representation
of the image. The HVS black box is highly nonlinear
and depends on individual experience, attention, and
mental state. We don’t necessarily want to eliminate
psychovisual redundancy; in fact, we often want to
exploit it. For example, given that the HVS is less sen-
sitive to high spatial frequencies than to low spatial
frequencies (see the section entitled “Bit Allocation”),
it tends to be easier to hide errors in the reconstructed
image in regions with high spatial frequencies than in
spatially smooth regions. As another example, con-
sider the problem of detecting and classifying objects
in a SAR image. On the basis of previous experience,
we might expect to find certain symmetries in some
objects, particularly at specific aspect angles. If the
compression system destroys object symmetries or the
spatial arrangement and relative intensities of isolated
point returns, then this alteration of the image might
lead to inappropriate object classification or even un-
detected objects.

Compression-System Components

Most compression systems can be decomposed into
the components shown in Figure 4. The transform is
an essentially lossless process that converts the image
data at each pixel into a representation that tends to
make it easier to eliminate spatial redundancy and
hence is more appropriate and efficient for compres-
sion. In most compression systems, the transform
produces sets of coefficients that we refer to as coeffi-
cient subimages. Given a desired total bit rate, the bit
allocator determines how many bits should be allo-
cated to each coefficient subimage. The bit allocator
does not necessarily achieve the desired bit rate; the
bit rate ultimately achieved is called the actual bit

FIGURE 3. Four images with the same coding redundancy because the distribution
of intensity values is identical, but with different spatial redundancies because of  the
different spatial correlations between pixels. Entropy coding methods that eliminate
coding redundancy are not effective in eliminating spatial redundancy.
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rate. The quantizer, which is the major source of loss
in image quality, converts the high-precision coeffi-
cients into sets of discrete symbols. These symbols are
then converted into a compressed bit stream by the
encoder. To decompress the image the process is re-
versed. The decoder converts the compressed bit
stream into sets of symbols, which are dequantized
into sets of coefficients, which are then inverse trans-
formed to produce the reconstructed image.

Not shown in Figure 4 are the image preprocessor
and the image postprocessor. The purpose of the pre-
processor is to enhance features of interest in the im-
age and attenuate irrelevant information, and the
purpose of the postprocessor is to compensate for the
degradation in image quality caused by the compres-
sion process. The type of preprocessor or postproces-
sor used is highly application dependent. If the appli-
cation requires that the reconstructed image be as
close as possible to the original image, then prepro-
cessing and postprocessing may not be necessary. In
our experience with SAR image compression, at bit
rates below one bit per pixel, compression systems
tend to change the histogram significantly enough
that a perceptually more pleasing image is obtained
with a postprocessor that simply remaps the histo-
gram of the reconstructed image to that of the origi-

nal (which may require transmission or storage of side
information in the compressed file). What actually
happens is that the compression process decreases the
contrast in the image, and the remapping process
tends to restore the original tonal balance and con-
trast. For applications in which image enhancement is
desirable, the preprocessor may serve to enhance cer-
tain image features and perhaps provide some type of
noise reduction [3]. Most of the examples in this ar-
ticle assume the application requires that the recon-
structed image match the original as closely as pos-
sible in a perceptual sense.

A variety of techniques can be chosen for each of
the processing components shown in Figure 4. This
degree of choice suggests a modular approach to com-
pression-system design, which enables the system de-
signer to choose components that yield the highest
performance for a given set of constraints. As better
techniques are discovered, the older compression-sys-
tem components can be replaced with newer ones.

The JPEG Image-Compression Standard

The Joint Photographic Experts Group (JPEG) was
formed in 1986 for the purpose of developing a uni-
versal standard for grayscale and color image com-
pression. The word “Joint” indicates the cooperation

FIGURE 4. Compression-system and decompression-system components. The transform converts
image data into coefficient subimages, which are converted by the quantizer into sets of discrete
symbols at a bit rate determined by the bit allocator. The discrete symbols are then converted into a
compressed bit stream by the encoder. To decompress an image the process is reversed.

Image Transform Quantizer

Bit allocator

Desired bit rate

Compressed
bit stream

Encoder

Decoder Inverse
quantizer

Decompress

Compressed
bit stream

Reconstructed
Image

Inverse
transform

Compress
Actual bit rate



• BAXTER AND SEIBERT
Synthetic Aperture Radar Image Coding

126 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

between the International Organization for Standard-
ization, the International Telegraph and Telephone
Consultative Committee, and the International
Electrotechnical Commission. The name JPEG has
now become associated with the standard itself. It is
worth mentioning that JPEG compression was origi-
nally designed and optimized for natural imagery,
and, because SAR imagery has different characteris-
tics compared to natural imagery, we can expect that
the performance of JPEG compression on SAR imag-
ery may be somewhat deficient.

After researchers performed extensive subjective
evaluation of several methods, the discrete cosine
transform (DCT) was chosen in 1988 as the JPEG
transform technique. In 1989, the first JPEG stan-
dard was adopted. In this first standard, and in the
current JPEG standard, the DCT is applied to 8 × 8
disjoint subimages. The bit allocator is based on a
quantization matrix, and the bit-allocation rate is
controlled by a quality parameter set by the user,
which has the effect of amplifying or attenuating the
entries in the quantization matrix. The DCT coeffi-
cients are quantized by using the quantization matrix.
Each number in the quantization matrix corresponds
to a different two-dimensional spatial frequency, and
represents the coefficient amplitude that is just de-
tectable to the human eye. Dividing the DCT coeffi-
cients by their corresponding quantization-matrix
elements and then rounding yields quantized coeffi-
cients, which are then entropy encoded into a bit
stream. Either Huffman or adaptive arithmetic en-
coding can be employed.

The JPEG standard includes four operational
modes: sequential lossy, progressive lossy, sequential
lossless, and hierarchical. The sequential lossy and
progressive lossy modes employ the DCT, whereas
the sequential lossless mode uses a form of differential
pulse-code modulation (DPCM) predictive coding.
The hierarchical mode uses either DCT-based coding
or DPCM predictive coding, and allows for progres-
sive coding with increasing spatial resolution. De-
tailed descriptions of the JPEG standard can be found
in G.K. Wallace [4] and W.B. Pennebaker and J.L.
Mitchell [5].

The JPEG standard has been in widespread use
since the early 1990s. At low bit rates, however,

blocking artifacts in JPEG images can be visible and
annoying. These blocking artifacts are the result of
processing 8 × 8 blocks of the source image disjointly.
At low bit rates, mismatches at block boundaries (due
to the elimination of high-frequency coefficients) dis-
tort the overall appearance of the image.

A number of alternative methods of compression
have been proposed to reduce or eliminate the block-
ing artifacts that characterize the JPEG standard at
low bit rates. One of the most popular methods is to
use the wavelet transform. The wavelet transform has
three distinct advantages: it is inherently free of
blocking artifacts, it naturally allows for progressive
transmission, and it has a relatively low complexity.
(The section entitled “Representation Systems” dis-
cusses the wavelet transform in more detail.) Cur-
rently, the JPEG standard is undergoing an evaluation
process to determine how the present standard should
be improved. The test images for evaluation have
been derived from a variety of different sources. The
baseline algorithm for the revised standard is based on
a generalized wavelet-transform coder (specifically,
the wavelet packet transform described in the next
section).

Representation Systems

The ability to recognize and efficiently encode redun-
dant patterns in data is a critical proficiency of any
high-performance compression system. The choice of
representation system used in a compression system
can dramatically affect performance. For example,
consider a sinusoidal signal. If we represent the signal
as a set of amplitudes, our compression system must
find an efficient way to compress these amplitude val-
ues. However, if our representation system transforms
the amplitudes into a set of coefficients that represent
amplitudes of various sine waves by using the Fourier
transform, then most of the coefficients will be zero
(in fact, for a pure sinusoid all coefficients would be
zero except two). This example clearly shows that the
choice of representation system can dramatically af-
fect the compression performance. Of course SAR
images are not so simple; nevertheless, the choice of
representation can still significantly affect perfor-
mance. The representation not only serves to elimi-
nate spatial redundancy, but it also determines what
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type of artifacts will be present in reconstructed im-
ages that are compressed at low bit rates.

Representational Strategies for a Signal Coding System

In designing a signal coding system we consider the
following three representational strategies: (1) match
the representation to the input signal, (2) match the
representation to the task, or (3) match the represen-
tation to the user. The first strategy uses a representa-
tion system that efficiently encodes the characteristics
of the input signal. For example, if the input signal
consists of linear combinations of sine waves, then we
would expect a representation system based on sine
waves to efficiently encode the input signal. We
would not expect the same sinusoidal representation
system to efficiently encode a signal consisting of im-
pulses and ramps. In general, the first representational
strategy can be stated as the following optimization
problem: find the smallest set of functions that when
combined is complete with respect to the set of all
possible images of interest (an additional constraint
might also be imposed on the quantized coefficients
such that the reconstructed image is as close as pos-
sible to the original image). Here, complete is meant
to imply that the proper combination of functions re-
constructs the image without error.

The second representational strategy attempts to
find a representation system that makes the user more
effective at performing the task at hand. For example,
if the user is an algorithm that counts the number of
objects of interest, then the representation system
should make those objects easier to detect. Note that
in this example it is not necessary to reconstruct the
image without error; in fact, the reconstructed image
need not look much like the original image. Clearly,
this second representational strategy allows the possi-
bility that the reconstructed image will be superior to
the original image with respect to the user’s perfor-
mance of the task at hand.

If the goal is to make the reconstructed image
match the original, this second representational strat-
egy is inappropriate. Another problem with the sec-
ond representational strategy is that, in practice, hu-
mans want to view the imagery and understand how
an algorithm produces a given answer or conclusion.
That is, in practice, it is almost always necessary to re-

construct imagery that looks similar to, if not percep-
tually identical to, the original imagery. Otherwise,
the original imagery is lost forever.

The third representational strategy attempts to
find a representation system similar to that of the
user. Suppose we are able to construct a representa-
tion system that mimics that of the human visual sys-
tem (HVS), and we assume that a change in the out-
put of this HVS model corresponds to a perceived
change in the image. Given such a model, it is pos-
sible to control, minimize, and manipulate perceived
differences between an original image and a com-
pressed and reconstructed image. We call this ap-
proach HVS-guided compression.

Characteristics of the HVS Representation

Constructing a model of the HVS representation is
difficult because the HVS is a complex nonlinear sys-
tem. Over the past few decades, however, an enor-
mous amount of information about how the brain
processes images has been gathered by neuroscientists
and psychophysicists. We now know that the HVS
representation consists of filters that cover spatially
overlapping regions of the visual field. These filters,
which come in multiple spatial scales and orienta-
tions, collectively form a redundant nonorthogonal
representation of visual scenes.

Cortical Filters. The actual filters used by the HVS
cannot be measured directly, but the filters used by
the cat’s visual system and those of other animals have
been empirically determined. These filters are mea-
sured by inserting a small probe into an anesthetized
animal’s visual cortex near a neuron and recording the
response of this neuron to a small spot of light. The
firing rate of the neuron as a function of the location
of the light is referred to as the receptive-field profile
of the neuron. This receptive-field profile can be
thought of as a filter. The top row of Figure 5 shows
the measured filter characteristics of three different
neurons in a cat’s visual cortex (Area V1). It turns out
that two-dimensional Gabor functions, which are
Gaussian functions modulated by sinusoids, fit the
receptive-field profile data quite well. The middle row
in Figure 5 shows the best-fitting two-dimensional
Gabor functions for each of the neurons, and the bot-
tom row shows that the (Chi-square) residual error
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between the Gabor functions and the measured pro-
files is negligible. Note that these cortical filters are
tuned to different spatial frequencies (compare the
first and third images in each row), they can be odd or
even functions (compare the first and second images),
and they can have different polarities (compare the
first and third images).

While these cortical filters clearly play a part in the
HVS representation, it is not clear how they combine
to form the perception of a visual scene. From a
mathematical point of view, a linear combination of
two-dimensional Gabor functions of different spatial
scales, locations, and orientations can be constructed
such that any image can be represented. Such a repre-
sentation is redundant and nonorthogonal—like the
HVS representation. We refer to this transform as an
HVS-like Gabor wavelet transform. Although the
nonorthogonality complicates the reconstruction
process somewhat, near perfect reconstruction is pos-
sible [6]. The redundancy of the HVS representation
seems to be inconsistent with the compression objec-
tive because many more filter coefficients are needed
than the number of pixels in the image. (The redun-

dancy of the HVS representation may be consistent
with a broader set of objectives related to the surviv-
ability of the human species.) Even if we retain only
the significant coefficients, the process of deciding
which coefficients to keep tends to be computation-
ally intensive—especially when this representation is
implemented on a single-processor computer.

The computational burden is much less if we con-
sider reducing the number of spatial scales or reduc-
ing the number of orientations. Two alternative im-
age transforms are the two-dimensional Gabor
transform and the separable two-dimensional wavelet
transform. The filters, or basis functions, used in the
two-dimensional Gabor transform are quite orienta-
tion selective, but they cover only a single spatial
scale. The wavelet transform covers multiple spatial
scales, but the separable two-dimensional wavelet
transform has poor orientational selectivity due to its
separable construction.

Gabor Transform

The Gabor transform is a windowed Fourier trans-
form with a Gaussian window function. The one-

FIGURE 5. Comparison of three measured receptive-field profiles of cortical neurons in a cat’s
visual system and two-dimensional Gabor functions that model these receptive fields. The top
row shows the measured receptive-field data and the middle row shows the best-fitting two-
dimensional Gabor functions. The bottom row shows the Chi-squared residual error between
the measured data and the theoretical data. (Reprinted with permission from J.G. Daugman [8].)
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dimensional Gabor transform was invented in 1946
by D. Gabor [7], and J.G. Daugman showed how it
could be extended to two dimensions [8]. A Gabor
function is a Gaussian modulated by a complex expo-
nential. In two dimensions, a Gabor elementary func-
tion (GEF) has the form

g x y e e

g x p y q e

pqrs
x p y q i xr ys

i xr ys

r s

r s

( , )

( , ) ,
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where the term g(⋅) represents a two-dimensional
Gaussian window function centered at the spatial lo-
cation (p , q). The parameter α controls the spatial ex-
tent of the window. The parameter β controls the ec-
centricity of the two-dimensional Gaussian shape;
here we assume β = 1. The GEF gpqrs is tuned to spa-
tial frequency ( , )Ω Ωr sr s ; (r , s) are the harmonic
numbers corresponding to this spatial frequency.

The two-dimensional Gabor transform is a com-
bined spatial-spectral transform that represents an
image as a set of spatially overlapping two-dimen-
sional Gabor functions. The Gabor expansion of an
image I(x , y) can be expressed as

I x y c g x ypqrs pqrs
r sp q

( , ) ( , ) .
,,

= ∑∑
Note that the Gabor transform linearly samples spa-
tial frequencies.

If there are fewer coefficients cpqrs than the number
of samples (the undersampled case), we cannot guar-
antee that this decomposition will represent all pos-
sible images. The fewest number of coefficients re-
quired to represent all possible images is equal to the
number of samples (pixels) in the image. This is called
the critically sampled case, or the complete case. For
the Gabor transform to have the same number of co-
efficients as pixels, we constrain the number of spatial
samples (np × nq) and the number of spatial-fre-
quency samples (nr × ns ) by

N WH n n n np q r s= = ,

where N is the number of pixels in the image, and W
and H are the pixel width and height of the image.

The implication of this constraint on the sampling
intervals can be most easily understood by assuming
for the moment that the image is square. In this case

we have the constraint

N W n np r= =2 2 2 .

This constraint implies that the spatial sampling in-
terval is equal to the number of spatial-frequency
samples; i.e., ∆ x = nr since ∆ x ≡ W/np . Generalizing
this result to non-square images yields the following
restrictions on the spatial sampling intervals:

∆ ∆x r y sn n= =, .

The fundamental spatial frequencies Ωr and Ωs are
related to the spatial sampling intervals by

∆ Ω ∆ Ωx r y s= = 2π .

With these constraints, the complete Gabor expan-
sion becomes
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Visualizing the Gabor Basis Functions. The set of
functions gpqrs(x, y) are the complex basis functions
for the complete Gabor transform. Figure 6 shows
these basis functions for nr = ns = 8 (64 basis func-
tions), and Figure 7 shows how the frequency compo-
nents are arranged in Figure 6. At each spatial sam-
pling position in a given image, with these parameters
there are nrns = 64 basis functions. For a 512 × 256-
pixel image there are 64 × 32 overlapping Gabor
neighborhoods. The coefficients of these basis func-
tions provide a local frequency analysis of the image
in each neighborhood. The spatial extent of each
neighborhood, as well as the degree to which the basis
functions overlap, is controlled by α (see Equation 1).
The orientation-selective properties of the Gabor ba-
sis functions are apparent in Figure 6, which illus-
trates how orientational selectivity increases as radial
frequency increases.

Computing Gabor Coefficients with the Zak Trans-
form. Since the Gabor transform is nonorthogonal,
computation of the coefficients is more complicated
than filtering with each basis function and down-
sampling. At least three different methods of comput-
ing Gabor coefficients have been proposed. M. Bas-
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tiaans described a biorthogonal expansion method in
which an auxiliary window function is made bior-
thogonal to the Gaussian window [9]. Daugman de-
scribed a gradient descent method in which the coef-
ficients are viewed as weights in an adaptive network
[10]. The gradient descent procedure adjusts the
weights such that the squared difference between the
image and the value of the Gabor expansion is mini-
mized across all pixels. L. Auslander et al. [11] as well
as I. Gertner and Y.Y. Zeevi [12] showed how the Zak
transform could be used to determine Gabor coeffi-
cients (this method is sometimes referred to as the
Zak-Gabor transform). Because of the numerical effi-
ciency of this approach, the Zak-Gabor transform is
preferred.

The Zak transform can be used to compute the
Gabor coefficients cpqrs as follows. The two-dimen-
sional discrete Zak transform computes the Fourier
transform of a spatially decimated image (subsampled
by np and nq in each spatial dimension) offset by
(p, q). The discrete Zak transform of I is given by

FIGURE 6. (a) Real components and (b) imaginary components of the Gabor-transform complex basis functions for nr = ns = 8.
The two-dimensional Gabor transform represents a given image as a set of spatially overlapping two-dimensional Gabor func-
tions. At each spatial sampling position in an image there are nrns basis functions of  limited spatial extent that form a Gabor
neighborhood. The coefficients of these basis functions provide a local frequency analysis of the image in each neighborhood.

(a) (b)

FIGURE 7. Arrangement of the Gabor-transform basis func-
tions shown in Figure 6. The basis function associated with
the unmodulated DC component (r = s = 0) is simply the
(shifted) Gaussian window function. The remaining basis
functions are modulated at spatial frequencies related to
(r, s). Indices of 5, 6, and 7 correspond to negative spatial
frequencies.
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where the transform is evaluated at spatial coordi-
nates (p, q) and at spatial-frequency coordinates (ρ, σ).

Taking the discrete Zak transform of both sides of
Equation 2 yields
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With this expression, the Gabor coefficients can be
computed as
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where DFT {·} denotes a discrete (four-dimensional)
Fourier transform.

Numerical Implementation Using the Fast Fourier
Transform. Equation 3 shows that the Gabor coeffi-
cients are the Fourier coefficients of the ratio of the
Zak transforms of the image and the Gaussian win-
dow function. If we assume that the image is periodic
in each dimension, then we can use the fast Fourier
transform (FFT) to compute the coefficients effi-
ciently. Figure 8 illustrates the processing steps in
computing the Gabor coefficients and reconstructing
the image. Note that in Figure 8 the Zak transforms
require two-dimensional FFTs, whereas the Fourier
transforms require four-dimensional FFTs.

Modification for Numerical Stability. Equation 3 re-
veals that it is crucial that Z(g) be nonzero. In fact, for
a Gaussian window, Z(g) = 0. Therefore, in a strict
sense, the Zak-Gabor transform does not converge.
However, K. Assaleh, Zeevi, and Gertner have shown
that if the Gaussian window is slightly shifted, its Zak
transform remains finite and the transform is numeri-
cally stable [13]. Therefore, we shift the Gaussian
window by one-half pixel in each dimension; i.e., the
window function becomes

g x p y q e x p y q( , ) .[( / ) ( / ) ]/− − = − − + + − +1 2 1 22 2 2α

Visualizing Gabor Coefficients. There are several
ways of visualizing Gabor coefficients. An intuitive
understanding of the coefficients can be gained from
viewing the set of coefficients associated with each
frequency component of the transform as a filtered

FIGURE 8. Processing steps in computing the Zak-Gabor transform. From Equation 3, the Gabor coefficients are the Fourier
coefficients of  the ratio of the Zak transforms of the image and the shifted Gaussian window function. We assume the image is
periodically extended in each dimension so that the fast Fourier transform (FFT) can be used to compute the Gabor coefficients
and reconstruct the image. The Zak transforms require two-dimensional FFTs, while the Fourier transforms require four-dimen-
sional FFTs.
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and subsampled version of the image (with correc-
tions to account for the nonorthogonality of the
transform). Of course, since the coefficients are com-
plex numbers, each of these subimages is complex.
Thus it is helpful to view them as two subimages—
one that represents the coefficient magnitudes and
another that represents the coefficient phases.

Figure 9 shows a 256 × 256-pixel test image with a

32 × 32 spatial sampling grid, and Figure 10 shows
the corresponding Gabor coefficients of the test im-
age. The spatial sampling grid identifies the centers of
all Gabor neighborhoods in the image, i.e., all spatial
locations (p , q). The coefficients associated with the
frequency harmonic corresponding to (r, s) = (0, 0)
are referred to as the DC component because they are
not modulated; coefficients associated with the other

FIGURE 10. Gabor coefficients corresponding to the test image in Figure 9: (a) coefficient magnitudes and (b) coefficient
phases. The subimages can be thought of as filtered and subsampled versions of  the test image.

(a) (b)

FIGURE 9. (a) 256 × 256-pixel test image; (b) test image with a 32 × 32 spatial sampling
grid (white dots) superimposed. The spatial sampling grid identifies the centers of all
Gabor neighborhoods in the image.

(a) (b)
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frequency harmonics are referred to as the AC com-
ponent. The basis function associated with the DC
component is simply the (shifted) Gaussian window
function. Because this basis function is real, and be-
cause the image is real, the coefficients associated with
the DC component are real. Similarly, coefficients as-
sociated with the (nr/2, 0), (0, ns/2), and (nr/2, ns/2)
frequency components are also real. For real images,
the remaining coefficients exhibit conjugate symme-
try about the origin of the spatial-frequency plane.
Note that, because of conjugate symmetry, the num-
ber of values required to uniquely specify the Gabor
coefficients is exactly equal to the number of pixels in
the image.

As mentioned previously, the subimages in Figure
10 can be thought of as filtered and subsampled ver-
sions of the image with corrections to account for the
nonorthogonality of the basis functions. Specifically,
with nr = ns = 8 and np = nq = 32, these coefficient
subimages are effectively downsampled by a factor of
eight to produce 32 × 32-pixel images. This down-
sampled image is easily recognized in the magnitude

subimage corresponding to the DC component,
which resembles a low-pass filtered and downsampled
version of the image. The artifacts present in this
subimage are caused by the corrections for the
nonorthogonal basis functions and by the periodic
boundary conditions that are enforced by the FFT.

Wavelet Transform

As the previous subsection explained, the Gabor
transform uses a fixed window size, and Gabor basis
functions sample frequency space linearly in each di-
mension. A wavelet is a waveform of limited spatial
extent that has an average value of zero. Wavelet basis
functions use larger window sizes at lower frequencies
and smaller window sizes at higher frequencies. Be-
cause the spatial extent of the window changes, wave-
lets analyze signals on multiple spatial scales. The
wavelet transform is essentially a decomposition onto
a set of frequency bands of approximately equal width
on a logarithmic scale. Therefore, we characterize the
Gabor and wavelet transforms as multifrequency and
multiscale representations, respectively. Figure 11

FIGURE 11. Comparison of Gabor basis functions and wavelet basis functions in one dimension.
(a) Gabor basis functions in one-dimensional spatial domain, (b) wavelet basis functions in one-
dimensional spatial domain, (c) Gabor basis functions in one-dimensional spatial-frequency
domain, and (d) wavelet basis functions in one-dimensional spatial-frequency domain.

(c) (d)

(a) (b)
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compares Gabor and wavelet basis functions in one
dimension, both in the spatial and spatial-frequency
domains. For a detailed comparison of wavelet and
Gabor representations see S.G. Mallat [14].

The wavelet transform actually involves two func-
tions: the wavelet function, which is denoted by ψ,
and the scaling function, which is denoted by φ. Un-
like the wavelet function, the scaling function has a
nonzero average value. In terms of quadrature mirror
filters, the wavelet function is determined by the
high-pass filter and the scaling function is determined
by the low-pass filter.

Wavelet functions are self-similar; i.e., they can be
generated from a single function by translation and
scaling. Denoting the wavelet function in one dimen-
sion by ψ, we can construct a family of wavelets

ψ ψ( , )( )a b x
a

x b
a

= −





1

that are scaled by a and translated by b. For certain
choices of wavelet and scaling functions, perfect re-
construction is possible with a discrete wavelet trans-
form if we restrict the values of a and b to a discrete
grid. The range of choices significantly increases if we
use a biorthogonal transform, i.e., if the scaling and
wavelet functions for decomposition and reconstruc-
tion are different. In this case, the decomposition and
reconstruction filters are called dual filters; for ex-
ample, ψ and ψ̃  are dual filters. If the same scaling

and wavelet functions are used for decomposition and
reconstruction, and reconstruction is perfect, the
transform is orthogonal.

Figure 12 denotes the signal processing steps in-
volved in a single-level wavelet decomposition. De-
composition consists of filtering and downsampling,
and reconstruction involves upsampling and filtering.
The low-pass and high-pass filters obey specific con-
straints such that they reconstruct the signal with
negligible error. For orthogonal wavelets, the filters
and their corresponding dual filters are identical; for
the more general case of biorthogonal wavelets they
are not. Figure 13 depicts multiple-level wavelet de-
composition as a binary tree. At each level, low-pass
and high-pass components are generated and the low-

FIGURE 12. Processing steps in a single-level one-dimensional wavelet transform. Decomposition consists of filtering and
downsampling, and reconstruction involves upsampling and filtering. The input signal is decomposed into a set of wavelet
coefficients and then reconstructed to yield a nearly perfect estimate of the input signal. The low-pass filter and the high-
pass filter, which are associated with the scaling function φ and the wavelet function ψ, respectively, obey specific con-
straints such that they reconstruct the signal with negligible error.

HPLP

LP

LP

HP

Signal

HP

Down-
sampling

Down-
sampling

Up-
sampling

Low-pass 
filter

∑

φφ

ψψ

Decomposition Reconstruction

High-pass 
filter

Low-pass 
filter (dual)

High-pass 
filter (dual)

Up-
sampling

Reconstructed
input signal

Input
signal

Wavelet coefficients

˜

˜

FIGURE 13. Binary-tree diagram of  a multiple-level one-di-
mensional wavelet transform. Branches labeled LP are low-
pass filters and branches labeled HP are high-pass filters.
At each level, low-pass and high-pass components are gen-
erated and the low-pass component of  the previous level is
used as the input to the next decomposition stage.
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pass component of the previous level is used as the
input to the next decomposition stage. In the litera-
ture, the low-pass component is often called the ap-
proximation signal and the high-pass component is
called the detail signal [15].

The separable two-dimensional wavelet transform
can be constructed from the one-dimensional wavelet
transform by combining horizontally oriented wave-
lets and vertically oriented wavelets [15]. Two-dimen-
sional wavelets are defined as a tensor product of the
one-dimensional wavelets. The two-dimensional
(unoriented) scaling function is the product of two
one-dimensional scaling functions:

φ φ φ( , ) ( ) ( ) .x y x y=

The two-dimensional wavelets are

ψ φ ψ

ψ ψ φ

ψ ψ ψ

V

H

R

x y x y

x y x y

x y x y

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( ) ,

=
=
=

where the subscripts stand for vertical, horizontal,
and high-pass residual components. Figure 14 depicts
the multiple-level wavelet decomposition in two di-
mensions as a quadtree. At each level, low-pass (L),
vertical (V), horizontal (H), and high-pass residual
(R) components are generated. The low-pass compo-
nent from the previous level is used as the input signal
to the next level. Figure 15 shows the separable wave-
let basis functions corresponding to a single spatial
scale. Here we have used seven and nine tap bi-
orthogonal filters (i.e., the decomposition wavelet fil-

ter consists of seven coefficients and the reconstruc-
tion filter consists of nine coefficients or vice versa), as
described in M. Antonini et al. [16]. Figure 16 shows
a three-level separable wavelet decomposition of the
test image shown in Figure 9. For each level, the up-
per left subimage corresponds to the low-pass coeffi-
cients, the upper right subimage corresponds to the
vertical coefficients, the lower left subimage corre-
sponds to the horizontal coefficients, and the lower
right subimage corresponds to the high-pass residual
coefficients.

Wavelet Packet Transform

The wavelet packet transform is a generalization of
the wavelet transform that provides a richer range of
possibilities for signal analysis. Instead of using only
low-pass components as inputs to the next level, the
wavelet packet decomposition considers the full tree
and chooses among the many possible representations
available. Figure 17(a) depicts the separable two-di-
mensional full wavelet packet tree, and Figures 17(b),
(c), and (d) depict three different decompositions, in-
cluding a Gabor-like representation in Figure 17(c)
and a wavelet representation in Figure 17(b). To em-
phasize the difference between the general wavelet
packet decomposition and the more restrictive wave-

FIGURE 15. Separable-wavelet-transform basis functions
corresponding to a single spatial scale.

FIGURE 14. Quadtree diagram of a multiple-level two-di-
mensional separable wavelet transform. Branches labeled L
represent low-pass filters, branches labeled V represent ver-
tical filters, branches labeled H represent horizontal filters,
and branches labeled R represent high-pass residual filters.
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let decomposition, we refer to the latter as the con-
ventional wavelet decomposition. The decomposition
in Figure 17(c) and the Gabor decomposition are
similar because frequency space is sampled linearly.
However, the wavelet-packet-transform basis func-
tions shown in Figure 18, corresponding to the de-
composition in Figure 17(c), are quite different from
the Gabor basis functions shown in Figure 6.

Several methods have been proposed for choosing
the best representation for a given signal. One of the
first methods was to use the energy, log energy, norm,
or “entropy” of the coefficients [17, 18]. The decision
to continue on to the next level of decomposition is
made by comparing the energy of the coefficients in
the current level, or node, to that of the coefficients in
all descendent components in the next level. In this
manner, we can achieve a minimum-energy decom-
position. A similar technique was used with an en-
tropy-like criterion to achieve a kind of minimum-
entropy decomposition. K. Ramchandran and M.
Vetterli improved the selection criterion by minimiz-

ing both rate and distortion [19]. Figure 19 shows a
Gabor-like wavelet packet decomposition of the test
image shown in Figure 9. It turns out that the mini-
mum-energy and minimum-entropy wavelet packet
decompositions of this same test image are identical
to the wavelet decomposition.

We have applied these techniques to SAR imagery
and found that different images and sensors require
different decompositions. Unfortunately, wavelet
packet decompositions based on minimizing energy
or minimizing distortion for a given rate do not nec-
essarily provide the best reconstructed images from a
perceptual point of view. In our image-quality evalua-
tions, we found that the Gabor-like wavelet packet
decomposition tends to provide better reconstructed
images for SAR imagery and complex visible imagery
than the conventional wavelet decomposition. For

FIGURE 17. Wavelet packet decompositions. Many different
bases can be chosen from (a) the full wavelet packet tree.
Examples (shown in red) include (b) a subtree correspond-
ing to a conventional wavelet basis, (c) a subtree corre-
sponding to a Gabor-like basis, and (d) an arbitrary subtree.

FIGURE 16. Three-level separable wavelet decomposition of
the test image shown in Figure 9. For each level the upper
left subimage corresponds to the low-pass coefficients, the
upper right subimage corresponds to the vertical coeffi-
cients, the lower left subimage corresponds to the horizontal
coefficients, and the lower right subimage corresponds to
the high-pass residual coefficients.

(a)

(d)

(b)

(c)
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many images derived from visible or infrared sensors,
decompositions closer to the conventional wavelet
decomposition tend to provide reconstructed images
with the highest perceptual quality. Here we focus
mainly on the Gabor-like wavelet packet decomposi-
tion and the conventional wavelet decomposition.

Summary of Transforms

We have compared three types of spatial-spectral
transforms: the HVS-like Gabor wavelet transform,
the Gabor transform, and the separable wavelet
packet transform. The separable wavelet packet trans-
form is a generalization of the separable wavelet trans-
form that includes many possible bases from which to
choose, including both a separable wavelet basis, as
shown in Figure 17(b), and a Gabor-like basis (the
WP-Gabor transform), as shown in Figure 17(c). The
major distinguishing attributes of the transforms are
the spatial scale selectivity, the orientational selectiv-
ity, the number of coefficients used to represent the
image, and the computational requirements. The
Gabor wavelet transform requires nθN coefficients to
represent the image, whereas the other transforms use
exactly N coefficients, where N is the number of pix-
els and nθ  is the number of orientations.

The computational requirements (in terms of
number of operations per second) of the Gabor wave-
let transform is high relative to that of the other trans-
forms because an iterative procedure is required to
determine the coefficients (for example, see Reference
10). Although the complexity of the separable wavelet
transform is of order N (where N is the number of
pixels in the image), and the complexity of the Gabor
transform and complexity of the separable wavelet
packet transform with a Gabor-like tree (the WP-
Gabor transform) are of order N log N, the actual
number of operations required to compute the WP-
Gabor transform of a 1024 × 1024 image is only
slightly higher than that required for the separable
wavelet transform. Table 1 summarizes the attributes
and computational requirements of these transforms.

The ability of the Gabor, WP-Gabor, and wavelet
transforms to reconstruct the original image accu-
rately at low bit rates can be simulated by setting
Gabor coefficients with absolute values that fall below
a threshold to zero (because these coefficients will be
quantized to zero). For the Gabor, WP-Gabor, and
wavelet transforms, we chose thresholds such that
90% of the coefficients were set to zero. For lower
threshold values, the differences between the recon-

FIGURE 18. Wavelet-packet-transform basis functions cor-
responding to a Gabor-like decomposition, as shown in part
c of Figure 17.

FIGURE 19. Three-level wavelet packet decomposition of the
test image shown in Figure 9, using a Gabor-like subtree.
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structed images are much harder to distinguish. Since
the tonal balance, contrast, and brightness of the re-
constructed images change after thresholding a large
percentage of coefficients, the histograms of these re-
constructed images were remapped so that their his-

tograms approximately matched that of the original.
We applied this thresholding and remapping pro-

cedure to several SAR images. Figure 20 shows the
original image and three reconstructed images for a
SAR image (of a vehicle on a road in a rural area) de-

FIGURE 20. Comparison of an original image and three reconstructed images after thresholding 90% of the Gabor coeffi-
cients and remapping the histogram of  the three reconstructed images to that of the original image. (a) The original image
(of a vehicle on a road in a rural area) was derived from the Lincoln Laboratory Advanced Detection Technology sensor.
The other three images were reconstructed from (b) the thresholded Gabor transform, (c) the thresholded separable wave-
let transform, and (d) the thresholded separable wavelet packet transform using a Gabor-like tree (the WP-Gabor trans-
form). Most subjects indicate the image in part d has the least disturbing artifacts and is most similar to the original image.

(d)(c)

(a) (b)



• BAXTER AND SEIBERT
Synthetic Aperture Radar Image Coding

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 139

rived from Lincoln Laboratory’s Advanced Detection
Technology sensor [20]. The image reconstructed
from the thresholded wavelet transform had the low-
est mean-square error, the image reconstructed from
the thresholded WP-Gabor transform had the next
lowest mean-square error, and the image recon-
structed from the thresholded Gabor transform had
the highest mean-square error. In this case, the image
quality (as judged by several subjects with experience
in viewing SAR imagery) is closely related to the
mean-square error. Table 2 summarizes the results of
applying this thresholding and remapping process to
several SAR images. In general, the image quality of
the reconstructed images based on the thresholded
wavelet and WP-Gabor transforms was significantly
higher than that of the Gabor transform when 90%
of the coefficients were set to zero.

Quantization

The task of the quantizer is to convert high-precision
(high bit rate) transform coefficients into a smaller set
of symbols with lower entropy. This section compares

scalar, vector, and trellis-coded quantizers. Frequency
variant and spatially variant grouping strategies for
quantizing transform coefficients are also discussed.

Scalar Quantizers

Scalar quantizers are the simplest quantizers because
they quantize only a single coefficient at a time. Con-
sequently, their computational complexity is quite
low and there is no significant processing delay. Uni-
form scalar quantizers are the simplest scalar quantiz-
ers because the decision and reconstruction levels are
equally spaced. Uniform scalar quantizers are optimal
with respect to a squared-error distortion criterion if
the data are uniformly distributed. Unfortunately, co-
efficients tend to come in groups with histograms
that depart significantly from a uniform distribution.
When the coefficient histogram is nonuniform, the
quantizer reconstruction levels need to be adjusted, or
adapted, to minimize the distortion. Finding the
minimum distortion reconstruction levels for a scalar
quantizer is very similar to optimal clustering in one
dimension.

Table 2.  Comparison of the Image Quality of Reconstructed Images after Thresholding
90% of the Transform Coefficients for Several SAR Images

Transform Mean-Square Isolated-Point-Return Shadow Texture

Error Quality Quality Quality

Gabor High Poor Poor Poor

Separable wavelet Low Good Good Fair

WP-Gabor Low Good Good Good

Table 1.  Comparison of the Gabor Wavelet, Gabor, Separable Wavelet,
and WP-Gabor Transforms

Transform Orientation Multiple Number of Computational

Selectivity Spatial Scales Coefficients Requirements

Gabor wavelet Good Yes nθ N High

Gabor Good No N Low+

Separable wavelet Poor Yes N Low

WP-Gabor Poor Yes N Low+
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The most popular adaptive scalar quantizer (ASQ)
is the Lloyd-Max quantizer [21, 22]. The Lloyd-Max
algorithm for quantizer design uses an iterative tech-
nique to adjust the quantizer reconstruction levels so
the distortion is minimized. Entropy-constrained sca-
lar quantization minimizes the distortion for a given
rate constraint [23].

To avoid the computational burden of optimizing
scalar quantization levels for each different set of coef-
ficients, a statistical modeling approach can be used
to precompute optimal quantizer levels for a set of
predefined coefficient probability density functions
(PDF). A generalized Gaussian PDF has been used by
several authors to characterize coefficient histograms
[24]. The generalized Gaussian PDF has the form
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where Γ(⋅) is the Gamma function. The parameter ρ
controls the shape of the distribution. For small val-
ues of ρ the density is peaked, whereas for large values
of ρ the density has a flattened peak about the mean
value. The Laplacian PDF corresponds to ρ = 1 and
the Gaussian PDF corresponds to ρ = 2.

Mallat [15] devised a method of estimating ρ for a
data sequence by solving
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and where m1 is the mean absolute value and m2 is the
second moment. Using Mallat’s technique, we have
found that coefficient histograms for wavelet packet
transforms and Gabor transforms for a variety of dif-
ferent types of imagery can be modeled by generalized
Gaussian PDFs with ρ ranging from 0.5 to 4. To ap-

ply this statistical modeling approach to the scalar
quantization problem, we chose the best-fitting gen-
eralized Gaussian PDF from a set of eight models cor-
responding to

ρ = { }0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0. , . , . , . , . , . , . , . .

Optimal scalar quantizers are predesigned for these
eight different models by using entropy-constrained
scalar quantization.

Vector Quantizers

A vector quantizer (VQ) assigns labels to blocks of
coefficients. According to C.E. Shannon’s rate-distor-
tion theory [25], quantizing and encoding blocks of
coefficients always yields a lower average distortion
for a given bit rate. In fact, A. Gersho and R.M. Gray
claim that vector quantization is “the ultimate solu-
tion to the quantization of a signal vector” and “no
other coding technique exists that can do better” [26]
(p. 313). The basis of this statement lies in the fact
that if we are allowed to select an appropriate code-
book, vector quantization can perform as well as any
other technique. What is not said is that the memory
capacity required to store the codebook may be im-
practical, and the time required to search the code-
book to find the most appropriate codevector may
also be impractical. Thus the key issues in designing a
VQ-based coder are (1) block size, (2) codebook de-
sign, and (3) the codebook search scheme.

VQs with the highest complexity are referred to as
full-search, flat, or unconstrained VQs. The most
popular VQ algorithm is a type of clustering tech-
nique known as the LBG algorithm [27], so named
after the initials of the authors’ last names. If R bits
per vector are used with n-dimensional vectors, the
complexity of a flat VQ is of order 2nR because there
are 2nR possible codevectors that must be searched for
the best match to the input vector.

There are three major ways to reduce the complex-
ity of a VQ for a given rate: (1) reduce the block size
(decrease n), (2) add structure to the codebook, or (3)
reduce the size of the codebook. Unfortunately, each
of these solutions decreases the accuracy or generality
of the quantizer. Tree-structured VQs increase the
efficiency of the search by adding structure to the
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codebook. Limited-size VQ codebooks are usually
designed by collecting a set of typical images of inter-
est, called the training set. The training set is used to
design a set of codevectors that minimize a distortion
criterion. Entropy-constrained VQs minimize a two-
sided distortion criterion that includes both distor-
tion and rate [23]. (See the section entitled “Bit Allo-
cation” for a more thorough discussion of minimizing
distortion and rate simultaneously.) There are many
varieties of VQs; for a thorough discussion of the vari-
ous types of VQs applied to compression, see Refer-
ence 26.

Trellis-Coded Quantizers

Trellis-coded quantization is an efficient type of tree-
structured vector-quantization method with low to
moderate complexity, compared to full-search VQs.
In fact, trellis-coded quantization represents a com-
promise between the efficiency of scalar quantization
and the accuracy of full-search vector quantization.

A trellis was originally conceived as a state-transi-
tion diagram for a finite-state machine. It can be
thought of as a tree with a restricted branching struc-
ture. The name trellis is based on the resemblance of a
restricted tree-evolution diagram (which depicts the
paths taken through the tree structure during the de-
coding operation) to a common garden trellis [26].
Trellis coding is a proven, asymptotically optimal (in
a rate-distortion sense) technique for source coding
[28, 29], but most implementations use a stochasti-
cally populated trellis and have high computational
complexity. Trellis-coded quantization is an efficient
approach that uses a structured and deterministic sca-
lar codebook and a restricted trellis structure.

Consider the quantization of a set of real numbers
(possibly transform coefficients) into a restricted set
of output (reconstruction) levels. Each real number is
to be quantized into one output level. In scalar quan-
tization, each input number is quantized indepen-
dently from other input numbers. In vector quantiza-
tion, however, the set of output symbols emitted by
the quantizer depends on all input numbers within a
block. Trellis-coded quantization considers the entire
sequence and finds the best (e.g., minimum squared
error) path through the trellis, which is equivalent to
finding the sequence of allowable output levels that

minimizes the distortion. The trellis path lengths are
determined by the distance between the current input
number and each output level. The Viterbi algorithm
[30], described in the sidebar entitled “The Viterbi
Algorithm,” is used to find the minimum distortion
path through the trellis.

To illustrate the concept of trellis-coded-quantiza-
tion, we consider the input sequence {–2.5, 0.5, 3.5}
and the four-state trellis and subset labeling shown in
Figure 21. We assume that the initial state is S2 (the
third node from the top in the figure). Note that only
two paths emanate from each state, and each subset
(D0, D1 , D2 , and D3) contains only two codewords.
Thus only two bits are required to specify each ele-
ment in the output sequence; i.e., the output bit rate
is two bits per sample. The trellis path lengths are as-
signed according to the distance (absolute difference)
between the input numbers and the codewords. The
minimum distance (minimum squared error) output
sequence is {–3, 1, 5}, which has a squared error of
2.75. The trellis-coded-quantization output bit se-
quence corresponding to this output sequence is
{00, 01, 11}.

Both fixed-rate and variable-rate trellis-coded-
quantization systems can be designed. M.W. Marcel-
lin [31] and Marcellin and T.R. Fischer [32] discussed
fixed-rate trellis-coded quantization, but more re-
cently Fischer and M. Wang [33] and Marcellin [34]
introduced a variable-rate trellis-coded quantization
called entropy-constrained trellis-coded quantization
in order to achieve better performance at lower bit
rates. These entropy-constrained trellis-coded-quan-
tization approaches require a computationally inten-
sive procedure for designing the codebook.

Two simpler alternatives have been developed that
do not require a computationally intensive codebook
design procedure. R.L. Joshi, V.J. Crump, and Fischer
developed a trellis-coded-quantization procedure
based on uniformly spaced codewords [24]. J.H.
Kasner, Marcellin, and B.R. Hunt developed a more
accurate alternative with a negligible increase in com-
plexity, which they call universal trellis-coded quanti-
zation (UTCQ) [35]. UTCQ does not require large
codebooks or a computationally intensive codebook
design procedure. Instead, the encoder computes cer-
tain coefficient statistics that are used by the decoder
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to achieve nearly optimal reconstruction levels for the
first two codewords on each side of zero. These four
codewords add negligible side information to the
compressed bit stream. The rate distortion (mean-
square error) performance of UTCQ on natural im-
agery is competitive with the best techniques known
[16, 36–39], and we think it represents the best trade-
off between accuracy and complexity among current
techniques.

Quantizing Transform Coefficients

Given a spatial-spectral transform, such as the Gabor
transform or the WP-Gabor transform, the following
design question arises. How should the coefficients be
grouped for quantization? The simplest approach is
to quantize all coefficients with the same quantizer.
However, if the coefficients have different statistics or
varying significance, then grouping the coefficients

T H E  V I T E R B I  A L G O R I T H M

   is an
optimal recursive solution to the
problem of finding the shortest
path through a trellis. In the con-
text of trellis-coded quantization,
the Viterbi algorithm is used to
find the path through the trellis
that minimizes the squared error
between a given input sequence
and all possible quantized output
sequences.

To describe the use of the
Viterbi algorithm within the
context of a trellis-coded quan-
tizer, we consider the trellis and
subset labels of Figure 21. We
start in state S2 . The first number
in the input sequence is –2.5.
The upper segment emanating
from S2 corresponds to choosing
a codeword from subset D2 . The
two codewords in subset D2  are
–3 and 5; thus the closest code-
word in subset D2 to the input
number is –3. We assign segment
lengths in the trellis according to
the absolute difference between
the closest codeword and the in-
put number, so that the upper

segment emanating from S2 is as-
signed a length of 0.5. Similarly,
the lower segment is assigned a
length of 3.5 because the closest
codeword in subset D0 is 1. This
process is continued for all seg-
ments until the end of the input
sequence, and of each path, is
reached.

With such a short sequence,
the shortest path can be easily
and quickly found by computing
the lengths of each of the eight
possible paths. If the sequence is
significantly longer, however (or
if the trellis is less restricted),
computing the lengths of all pos-
sible sequences can quickly be-
come prohibitively expensive.

 The first person to address the
problem of finding the shortest
path through a graph of this type
was G.J. Minty [1, 2]. Minty’s
solution was to build a string
model of the trellis with knots at
each state node and string
lengths corresponding to the seg-
ment distances. Then with the
initial state anchored, the knots

at the final states are pulled tight.
The shortest path is indicated by
the strings that stretch most
tightly when pulled. Unfortu-
nately, this solution is not appro-
priate for long sequences, nor is it
easy to program on a computer.

 In studying convolutional
codes and their corresponding
decoding algorithms, Viterbi
identified a forward dynamic
programming solution [1]. Viter-
bi’s key insight was to recognize
that at any time k the shortest
paths to each node can be com-
puted, and the shortest path
through the trellis must pass
through one of these nodes. Thus
the shortest path can be com-
puted recursively by extending
each shortest path from the cur-
rent node at time k to time k + 1
and computing the shortest path
to each node at time k + 1. (Time
here really means sequence item.
The time index k corresponds to
the kth item in the sequence. We
speak of time k because we are
stepping through the trellis se-
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according to their statistics or their significance and
using more than one quantizer tends to yield better
performance (lower distortion for the same rate).
Since coefficients associated with different frequency
bands tend to have different statistics and different
perceptual significance, one such approach is to as-
sign each different frequency component to a differ-
ent quantizer. This approach groups coefficients be-
longing to the same frequency band and is called

frequency-variant quantization, or subband quantiza-
tion. Another approach is to group coefficients be-
longing to the same spatial region and assign different
spatial regions to different quantizers. This approach
is called spatially variant quantization. Approaches
that combine both strategies are referred to as spatial-
frequency quantization (SFQ).

J.M. Shapiro developed one of the first SFQ meth-
ods using the separable wavelet transform [36]. Spa-

quentially in time.) The number
of shortest paths that must be
stored never exceeds the number
of states.

 Figure A illustrates the recur-
sive determination of the shortest
path via the Viterbi algorithm.
This figure is an example of a
four-state trellis with segment
lengths as labeled. We assume we
start at state S1. For the first two
time units we extend the paths to
each of the four nodes and com-
pute the lengths of the paths to
each node, as shown in Figure
A(2). We extend each of these
paths to the next time unit by se-
lecting the shortest path to each
node at time k = 3, given the pre-
viously computed path lengths
up to time k = 2 and the segment
lengths from time k = 2 to time
k = 3. The shortest paths to times
k = 3 and k = 4 are shown in Fig-
ures A(3) and A(4), and Figure
A(5) shows the shortest path
through the trellis.
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FIGURE A. Illustration of the recursive determination of  the shortest path
through a trellis by using the Viterbi algorithm. (1) Four-state trellis with seg-
ment lengths as labeled. The initial state is S1 (the second node from the top).
(2) Paths from time k = 0 to k = 2. The path lengths are given at the end of each
path. (3) Shortest paths from time k = 0 to each node at time k = 3, and their
path lengths. (4) Shortest paths from time k = 0 to each node at time k = 4 and
their path lengths. (5) The shortest path through the trellis.
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tial quantization was achieved via wavelet zerotrees,
which are based on the hypothesis that if a coefficient
at a coarse spatial scale is quantized to zero, then all
coefficients of the same orientation in the same spa-
tial location at finer scales should also be quantized to
zero. Zerotrees efficiently encode values of multiscale
coefficients by using a single symbol to represent the
set of all coefficients with the same orientation in the
same spatial location that are quantized to zero with
this hypothesis.

Z. Xiong, Ramchandran, and M.T. Orchard devel-
oped an improved but more computationally inten-
sive SFQ procedure for wavelet transforms. This SFQ
procedure optimizes, in a rate-distortion sense, the
trade-off between zerotree encoding and scalar quan-
tizing coefficients [39]. Their SFQ approach has been

used for compressing natural imagery, and their per-
formance is among the best reported in the literature
[16, 36–38]. The performance of their technique on
SAR images has yet to be determined. There is some
indication that SFQ tends to despeckle SAR images,
but, as mentioned previously, it is not clear that
despeckling is desirable because despeckling degrades
the background texture.

Summary of Quantizers

We have discussed scalar quantizers, vector quantiz-
ers, trellis-coded quantizers, and spatial-frequency
quantizers. Table 3 compares these quantizers with re-
spect to computational requirements, training re-
quirements, storage requirements, and the ability to
reduce spatial redundancy.

FIGURE 21. A four-state trellis with subset labeling and the correspondence to the quantizer outputs. (a) The codewords indi-
cate the possible output values from the quantizer. The quantizer assigns output codewords and associated subset labels
based on the path through the trellis. Numbers input to the quantizer can lie anywhere on the line. (b) Output codewords, their
subset labels, and their bit assignments. (c) Trellis states and their corresponding subset labels and bit assignments. (d) Four-
state trellis with emanating path labels. The path labels indicate the trellis path taken and the subset from which the codeword
was chosen. For example, from trellis state S2 (third node from the top), 0/D2 indicates the upper path was taken (with bit assign-
ment 0) and the codeword was chosen from subset D2. If  the input value is –2.5, then the closest codeword is –3, so the emitted
bit sequence is 00. The minimum squared-error path corresponding to the input sequence {–2.5, 0.5, 3.5} is indicated in red (as-
suming initial state S2). The trellis-coded-quantization output sequence is {–3, 1, 5} and the emitted bit sequence is {00, 01, 11}.
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Bit Allocation

Given a set of N quantizers, the bit-allocation prob-
lem is to assign bit rates ri to each quantizer such that
the overall coefficient distortion D is minimized, sub-
ject to the constraint that the total bit rate is less than
or equal to some specified target bit rate R ; in other
words, the problem is to minimize

D D ri i
i

N

= ∑ ( )

subject to

r Ri
i

N

≤∑ ,

where D ri i( ) is the distortion incurred by the ith
quantizer at rate ri . Note that this formulation mini-
mizes the distortion in the coefficient domain, as op-
posed to the image domain. Orthogonal transforms
are variance preserving [40], so minimizing distortion
in the coefficient domain is equivalent to minimizing
distortion in the image domain for orthogonal trans-

forms. However, for nonorthogonal transforms such
as the Gabor transform, minimum distortion in the
coefficient domain does not guarantee minimum dis-
tortion in the image domain.

Minimizing Distortion with a Bit-Rate Constraint

Dynamic programming approaches can be used to
obtain solutions to the bit-allocation problem. How-
ever, the complexity of these approaches is high—on
the order of B2 operations per quantizer if the total
number of bits is B. For some quantizers at high rates,
D ri i( ) can be approximated as

D ri i i i
ri( ) ,≈ −ε σ2 2 22

where σ i
2 is the variance of the coefficients quantized

by the ith quantizer and ε i is a performance factor
that depends on the probability density of the coeffi-
cients and on the type of encoding. The bit-allocation
solution derived from this approximation, using the
method of Lagrange multipliers [40], is

R Ri
i i

j
N

j j

N
= +

( )
1
2 2

2 2

2 2 1
log .

/

ε σ

ε σΠ

Table 3.  Summary of Quantizer Characteristics

Quantizer * Storage Training Computational Spatial-

Requirements Required Requirements** Redundancy

Reduction

Uniform scalar quantizer None No None/low None

Adaptive scalar quantizer Scalar codebook Yes Moderate/low None

Entropy-constrained scalar quantizer Scalar codebook Yes High/low None

Universal trellis-coded quantizer Negligible No None/moderate None

Entropy-constrained trellis-coded quantizer Scalar codebook Yes High/moderate None

Vector quantizer Vector codebook Yes High/moderate Yes
to high

Spatial-frequency quantizer using a
    uniform scalar quantizer (SFQ/USQ) None No None/high Yes

* With the exception of  SFQ/USQ, the quantizers are listed in order of  increasing quantization accuracy for a given bit rate
when tested on pseudo-randomly generated sequences with generalized Gaussian probability density functions (ρ = 1, 2).
SFQ/USQ is designed to work with spatially meaningful data such as a set of  coefficient subimages.

** Computational requirements are listed for training and operational modes (training/operational).
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As we might expect, the high-rate approximation
for D ri i( ) tends to break down at low rates for most
quantizers. Y. Shoham and A. Gersho devised a bit-al-
location procedure that works for arbitrary D ri i( )
[41]. Their algorithm efficiently determines the rate-
allocation vector

B r r rn
* * * *( , , , ) ,= 1 2 K

which is a solution to

min ( ) ,
B

i i
i

N

i
i

N

D r r
= =
∑ ∑+











1 1

λ (4)

subject to

r R a r bi
i

N

i i i
=
∑ ≤ ≤ ≤

1

 and  , (5)

where the admissible rates are bounded by ai and bi
and λ is a Lagrangian multiplier that can be thought
of as the rate cost factor. With λ = 0 the cost function
is independent of the bit rate; as λ → ∞ the cost
function is essentially independent of the quantizer
distortions D ri i( ). The solution to the constrained
problem (Equations 4 and 5) is also a solution to the
unconstrained problem (Equation 4 only). Shoham
and Gersho’s major insight was that the uncon-
strained Equation 4 can be minimized by minimizing
each term in the sums separately. That is, the solu-
tions ri* to

min ( )D r ri i i+{ }λ

for each i = 1, 2,…, N comprise a solution to Equa-
tion 4.

As previously mentioned, the bit-allocation for-
mulation does not guarantee that the reconstructed
image distortion is minimized for nonorthogonal
transforms. However, a large reduction in the distor-
tion in the coefficient domain tends to reduce the dis-
tortion in the image domain.

Perceptually Weighted Distortion

If a mean-square-error distortion metric is used, as is
typically the case in the image-compression literature,
the perceived distortion is not necessarily minimized.
For frequency-variant quantization methods, the per-

ceived distortion is related to the spatial-frequency
characteristics of the human visual system (HVS).
The HVS is more sensitive to low spatial frequencies
than to high spatial frequencies, as shown in Figure
22(a). This reduced sensitivity to high spatial fre-
quencies produces a type of psychovisual redundancy.

Figure 22(a) shows the HVS spatial-frequency sen-
sitivity function, which is sometimes referred to as the
contrast sensitivity function, because the data in Fig-
ure 22(a) are obtained by measuring thresholds at
which subjects can just noticeably detect changes in
the contrast of a sinusoidal grating stimulus as a func-
tion of spatial frequency. Although the contrast sensi-
tivity function tells us something about the spatial-
frequency sensitivity of the HVS, we must keep in
mind that it depends not only on controllable factors
such as ambient lighting and viewing distance, but
also on local context. For example, D.H. Kelly
showed that the presence of edges can dramatically
change the contrast sensitivity function [42]. Never-
theless, we can incorporate the HVS spatial-fre-
quency sensitivity characteristics into the bit-alloca-
tion procedure by simply weighting the coefficient
distortion corresponding to each frequency band ac-
cording to the contrast sensitivity function. In this
case, the total distortion becomes

D w D ri i i
i

N

= ∑ ( ) ,

where the coefficients wi are referred to as perceptual
weighting factors.

Psychophysical experiments [43] suggest that the
HVS spatial-frequency sensitivity function has the
form

A f a f b er r
c f br

c
( ) ( / ) ,( / )= +[ ] −1

2

where f r is the radial frequency in cycles per degree of
visual angle. The form of A( f r ) was derived from psy-
chophysical experiments in which the contrast sensi-
tivity of sinusoidal gratings as a function of frequency
was measured. Although the form of A( f r ) can
change for different contexts, it has been used suc-
cessfully for bit allocation by several authors for opti-
cal imagery [44, 45]. We use the parameter values a =
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0.192, b = 4.38, and c1 = c2 = 1, which is quite similar
to the function used by R.H. Bamberger and M.J.T.
Smith [45], and compare this bit-allocation scheme
to the distortion-rate scheme described previously.

It is important to point out that A( f r ) depends on
the visual angle subtended by the image, i.e., on the
image size and the viewing distance. For example, the
harmonic frequencies used in the Gabor expansion
can be converted to cycles per degree of visual angle
by determining the number of cycles per degree for
the highest frequency.

Psychophysical experiments have shown that the
HVS is more sensitive to distortions oriented in the
horizontal and vertical directions than other direc-
tions [46]. Physiological experiments indicate, how-
ever, that this orientation sensitivity changes dramati-
cally for different contexts [47]. The section entitled
“Evaluating Compression System Performance” de-
scribes an experiment in which images were com-
pressed with the Gabor transform, using perceptual
weights with no orientational variation (isotropic)
and with the following orientational sensitivity func-
tion, consistent with M.M. Taylor’s data [45, 46]:

B f
f f f

f f f
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θ θ θ

θ θ θ
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Figure 22(b) shows the function B( f θ);  f θ  denotes the
(spatial frequency) angle relative to the horizontal.

In the experiment described in the section entitled
“Evaluating Compression System Performance,” the
number of bits per pixel (bpp) allocated to each fre-
quency component for the contrast-sensitivity-func-
tion-based bit-allocation method was determined by
using

R
N

N
l wrs

rs
rs=

2 2log ( ) ,max

where N is the number of pixels and Nrs represents the
number of coefficients in the (r , s ) frequency compo-
nent (Nrs = npnq for the real components and Nrs =
2npnq for the complex components). The wrs are fre-
quency weighting factors corresponding to the prod-
uct A( f r )B( f θ) evaluated at the (r , s) harmonic. The
parameter lmax controls the maximum number of
quantization levels allocated across all harmonics and
is adjusted to yield the desired total bit rate. The total
bit rate is determined by summing Rrs across all pairs
(r , s), except those components which can be deter-
mined by conjugate symmetry.

Summary of Bit-Allocation Techniques

The bit-allocation problem can be viewed as a con-
strained optimization problem in which image distor-
tion and bit rate are jointly minimized. The bit-allo-

FIGURE 22. (a) Estimated spatial-frequency sensitivity function of the human visual system (HVS), indicat-
ing less sensitivity to high spatial frequencies. (b) Estimated orientational sensitivity function of the HVS,
indicating greater sensitivity to distortions in the horizontal and vertical directions.
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cation problem is traditionally viewed as a trade-off
between image quality and bit rate, and image quality
is considered a nondecreasing function of bit rate. In
the next section, however, we show that the mini-
mum distortion for a given bit-rate constraint does
not necessarily yield the minimum perceptual distor-
tion. This dilemma is caused by the inconsistency be-
tween objective distortion criteria, such as mean-
square error, and subjective distortion criteria.

We have discussed two approaches to overcoming
this problem. In the rate-distortion minimization
framework, the distortion can be perceptually
weighted according to the spatial-frequency sensitiv-
ity of the HVS. A slightly less computationally inten-
sive approach is to assign quantizer bit rates or, more
directly, step sizes according to the HVS spatial-fre-
quency sensitivity. We have tried both approaches
and found only minor differences in perceived image
quality. We have also found that taking into account a
preference for vertical and horizontal spatial-fre-
quency components with this latter method does not
improve the perceived image quality.

Evaluating Compression-System Performance

Compression systems can be evaluated by objective or
subjective measures. The most appropriate evaluation
criteria are dictated by the applications in which the
compression system will be used. For visible imagery,
we know that the most widely used objective measure
for compression-system optimization—mean-square
error—is a poor predictor of subjective image-quality
ratings. Even so, most researchers use it because it
provides a quick and easy measure of performance,
and it can be minimized by using various optimiza-
tion techniques such as the one described in the pre-
vious section. In contrast, subjective measures, based
on psychophysical experiments involving three to
twelve human subjects, are time consuming and ex-
pensive. However, if humans are the users of the com-
pressed images, then subjective measures are usually
required.

Objective Measures of Performance

As mentioned above, the most commonly used objec-
tive performance measure is the mean-square-error
metric. Other similar pixel-comparison metrics in-

clude the mean absolute error and the maximum ab-
solute error. Most pixel-comparison metrics fail to
correlate with subjective ratings because the HVS ap-
pears to weight visual differences according to local
context and features of interest. However, there is
some evidence that the distortion contrast metric,
which represents the average contrast between the in-
tensities of pixels in the original and reconstructed
images, tends to correlate with subjective ratings [48].

The normalized mean-square-error (NMSE) met-
ric is defined as

NMSE =
−∑

∑
( )

,

I R

I

i i
i

i
i

2

2

and the distortion contrast (DCON) metric is de-
fined as

DCON =
−

+ +∑1
N

I R

a I R
i i

i ii

,

where Ii is the intensity value of the ith pixel in the
original image, Ri is the intensity value of the ith pixel
in the reconstructed image, and N is the number of
pixels. The constant a depends on the relationship
between luminance and gray level for the display; we
used a = 23/255.

Several researchers have attempted to use objective
measures that do not depend on pixel comparisons.
For example, T.D. Penrod and G.G. Kuperman com-
pared a measure based on the –3-dB width of isolated
point returns and a region-based contrast ratio mea-
sure to subjective ratings, but they found no correla-
tion [49]. N. Chaddha and T.H.Y. Meng developed a
psychovisual distortion measure for a limited set of
visible images and were able to predict subjective im-
age-quality ordering quite well, but this technique has
not been applied to SAR imagery [50].

In an effort directed toward the development of
perceptual distortion metrics, we have studied the ef-
fect of sharpening isolated point returns and attenuat-
ing noise in shadows on the perceived image quality.
We found that both of these operations, when ap-
plied only to objects or shadows, respectively, tend to
increase the perceived image quality. However, we
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FIGURE 23. Original detected log-amplitude SAR 512 × 512-
pixel reference image used as input to the compression sys-
tem. The spatial resolution in this image is approximately
one foot.

have yet to translate these operations into reliable
metrics for predicting perceived image quality.

Subjective Measures of Performance

The most popular and dependable experimental para-
digms for the assessment of image quality include (1)
the simultaneous-rating paradigm, (2) the two/three
alternative forced-choice (TAFC) paradigm, (3) the
flicker paradigm, and (4) task-dependent paradigms.
The guiding principle in psychophysical experimen-
tation is to design the experiment to make it easy for
the subject to choose, i.e., limit the number of choices
and make the choices as simple as possible.

In the simultaneous-rating paradigm, all images
are shown to the subject simultaneously and the sub-
ject rates the imagery on a five-point or ten-point
scale. Only a small number of images can be dis-
played with this paradigm, and the fewer the better.
Because the subject has to compare several images
and decide what rating to assign to each image, this
paradigm is the least reliable and the most fatiguing
of the four. The TAFC paradigm tends to be more re-
liable than the simultaneous-rating paradigm because
only two images have to be compared, and the subject
has only two possible choices. A variation gives the
subject a third choice (no preference of one image
over the other).

In both the simultaneous-rating and TAFC para-
digms, the subject must make numerous eye move-
ments within and between images. The accuracy of a
subject’s choice depends to some extent on the short-
term memory associated with retaining the image fea-
tures that are being compared. The flicker paradigm
eliminates the need for making eye movements be-
tween images by placing the images in the same spa-
tial location and temporally switching between im-
ages (say, at one-second intervals). For this reason, the
flicker paradigm tends to be more robust than the
first two paradigms. Task-dependent paradigms re-
quire the subject to perform a task that is usually asso-
ciated with the application. For example, a subject
might be required to point to an object in a scene,
and the accuracy and response time can be used as the
subjective performance measures.

Subjective measures are also used to evaluate arti-
facts in images. At low bit rates, only a few coeffi-

cients are used to reconstruct the image in some re-
gions. As a result, transform artifacts that reveal the
structure of the basis functions are apparent. Given
several transforms, subjective experiments must be
performed to determine which transform has the least
annoying artifacts. For example, in our evaluations
we have found that the Gabor and the Gabor-like
wavelet packet decompositions have the least annoy-
ing background artifacts in SAR images.

We have conducted several psychophysical experi-
ments, all of which have shown that mean-square er-
ror is also a poor predictor of subjective ratings for
SAR imagery. First, we present a comparison of three
different compression systems, each based on a differ-
ent representation system. The original image was de-
rived from SAR spotlight-mode imagery collected in
Stockbridge, New York, using the Lincoln Laboratory
Advance Detection Technology sensor. Figure 23
shows the original detected log-amplitude SAR image
(512 × 512 pixels) that was processed by the compres-
sion system. The spatial resolution is approximately
one foot. Receiver voltages from the in-phase (I) and
quadrature-phase (Q) channels were digitized with
20-bit precision (two 8-bit mantissas and one 4-bit
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exponent common to I and Q), and the entropy of
the log-amplitude image is approximately 14 bpp.

The original image was compressed to 0.5 bpp and
then reconstructed. Three different compression sys-
tems were used: (1) a Gabor transform system, (2) a

separable wavelet system, and (3) a separable wavelet
packet transform-based system with a Gabor-like ba-
sis (i.e., a WP-Gabor transform-based system). The
bit allocator for the Gabor system used a spatial-fre-
quency weighted distortion metric. Without spatial-

FIGURE 24. (a) Subimage (256 × 256 pixels) of  the original SAR image shown in Figure 23. For the original image, the en-
tropy is 14 bits per pixel (bpp), stored as 20 bpp. (b) Reconstructed image using a Gabor-based compression system with a
spatial-frequency-weighted distortion metric. (c) Reconstructed image using a separable wavelet-based compression sys-
tem. (d) Reconstructed image using a separable wavelet packet transform with a Gabor-like basis (WP-Gabor transform).
All of the compression systems used trellis-coded quantizers and arithmetic entropy coders. The three reconstructed im-
ages were each compressed to 0.5 bpp prior to reconstruction. Most subjects indicate that the image in either part b or part
d is most similar to the original image.

(d)(c)

(a) (b)
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Table 4.  Comparison of Objective Measures of Image Quality and
Subjective Ratings for the Images Shown in Figure 24

Transform NMSE* DCON * Isolated-Point- Shadow Texture

Return Quality Quality Quality

Gabor 0.121 0.178 Good– Good– Good

Separable wavelet 0.097 0.164 Good Good Poor

WP-Gabor 0.101 0.164 Good– Good Good

* NMSE is the normalized mean-square-error metric; DCON is the distortion contrast metric.

FIGURE 25. Objectionable test image. This image was pro-
duced by using an adaptive scalar quantizer with only two
levels for each of the modulated (AC) components.

frequency weighting, the Gabor system was not com-
petitive. Figure 24 shows the original SAR image and
three reconstructed images, and Table 4 gives the nor-
malized mean-square-error (NMSE) metric and the
distortion contrast (DCON) metric for each image.
The objective metrics reveal that the separable-wave-
let-based system has the lowest NMSE and DCON
values, while the Gabor-based system has the highest
values. Table 4 also summarizes the image-quality rat-
ings of four subjects. For most SAR images, the sepa-
rable-wavelet system tends to preserve the quality of
the isolated point returns quite well, but it tends to
reconstruct textures poorly. The Gabor and wavelet-
packet systems tend to reconstruct textures better
than the separable-wavelet system.

Next we present an example of an experiment in
which eleven subjects were asked to rate nine SAR
images. The purpose of this experiment was to deter-
mine which quantization method—adaptive scalar,
vector, or trellis-coded—yielded the highest perceived
image quality for a Gabor-transform-based compres-
sion system. All of the subjects had experience view-
ing SAR imagery but none were experts in analyzing
SAR imagery. The training and test images were de-
rived from SAR spotlight-mode imagery collected in
Stockbridge, New York, again using the Lincoln Lab-
oratory Advance Detection Technology sensor. Since
the data were collected at different aspect angles, the
training and test sets were designed such that the
training images consisted of data collected at aspect
angles from 0° to 45° and the test image represented
data collected at an aspect angle of 60°.

Different quantizers were used to compress the test

images in a Gabor-based compression system with an
arithmetic entropy coder. We chose to compress the
images to bit rates as close to 0.5 bpp as possible
(within 0.05 bpp). Figures 25 through 29 show the
test images that correspond to each of the recon-
structed images, and Table 5 summarizes the NMSE
values and the normalized maximum absolute error
(NMXE) values for each of the test images except the
original. The JPEG image has the lowest NMSE, and
the Gabor/VQ image corresponding to frequency-de-
pendent block sizes has the highest NMSE. The ori-
entation-selective Gabor/TCQ image has the lowest
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FIGURE 26. Adaptive-scalar-quantizer test images. (a) Orientation-selective bit allocation (0.53 bpp). (b) Isotropic bit allo-
cation (0.54 bpp). Transform and quantization artifacts are clearly visible in these images.

FIGURE 27. Trellis-coded quantizer test images. (a) Orientation-selective bit allocation (0.54 bpp). (b) Isotropic bit alloca-
tion (0.50 bpp). These images are similar in image quality, and clearly superior to the adaptive-scalar-quantizer images in
Figure 26.

NMXE, and the objectionable image has the highest
NMXE.

Two types of image quality assessment experiments
were conducted. In the first experiment, referred to as
type A, nine images were displayed simultaneously

with a reference image (identical to the original) in
the center of the display. Subjects rated each image
according to similarity to the reference image, on a
scale of 0 to 4 with the following scale guide: 0 = very
annoying differences (objectionable), 1 = annoying

(a) (b)

(a) (b)
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differences, 2 = noticeable differences, 3 = just notice-
able differences, and 4 = no differences (half-point
ratings were allowed). In the second experiment, re-
ferred to as type B, two images were displayed side by
side and the reference was centered below the two test
images. Subjects indicated which of the two test im-

ages was most similar to the reference image by plac-
ing the cursor inside the image region and clicking
the left mouse button. If the subjects judged the two
test images as equally similar or dissimilar to the refer-
ence image, they were told to click on the reference
image. After each selection, another pair of test im-

Table 5.  Bit Rates and Objective Quality Measures
for Each of the Test Images in Figures 25 through 29

Image * Bit Rate (bpp) NMSE** NMXE **

Objectionable 1.06 0.13549 0.64008

Adaptive scalar quantizer (OS) 0.53 0.13684 0.54345

Adaptive scalar quantizer (ISO) 0.54 0.13606 0.50816

Trellis-coded quantizer (OS) 0.54 0.13079 0.42353

Trellis-coded quantizer (ISO) 0.50 0.13449 0.51373

Vector quantizer (block size = 1) 0.52 0.13963 0.49662

Vector quantizer (1 ≤ block size ≤ 4) 0.49 0.15398 0.55832

Joint Photographic Experts Group (JPEG) 0.52 0.10669 0.47843

* OS is orientation-selective bit allocation; ISO is isotropic bit allocation.
** NMSE is normalized mean-square error; NMXE is normalized maximum absolute error.

FIGURE 28. Vector-quantizer test images. (a) Block size is 1 × 1 for all frequency components (0.52 bpp). (b) Block sizes
range from 1 × 1 for low-frequency components to 4 × 4 for high-frequency components (0.49 bpp). Although the texture
quality is good in these images, the vector quantizer in this case adds undesirable false isolated point returns, which can
be seen in the left center region of part a and in the right center region of part b.

(a) (b)
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ages was displayed and the cycle continued until all
thirty-six image pairs were displayed.

The advantage of experiment type A is that all im-

ages can be viewed at once, and relative differences
between each image and the reference image can be
compared. Most subjects take advantage of the fact
that all images are displayed at once and try to make
their ratings reflect the relative differences. The disad-
vantage of experiment type A is that a comparison of
images is more difficult because subjects have to make
fairly large eye movements to compare all of the im-
ages, and subjects have to decide on a rating value for
each different image (one of nine possible values).

The advantage of experiment type B is that fewer
and smaller eye movements are required, and the de-
cision process is much easier—there are only three
choices. The disadvantage of experiment type B is
that the subject has to view thirty-six image pairs for
each trial, so the selection process tends to take
longer, and some subjects report that the images tend
to “fuzz over” after so many images are viewed. The
results from experiment type B can be compared to
those of experiment type A by assigning a score of +1
to “more similar” responses, –1 to the corresponding
“less similar” responses, and 0 to the “equally dissimi-
lar” responses. The total scores for each image are
scaled to the interval [0,4].

The original and an “objectionable” image were in-

Table 6.  Mean and Standard Deviation of Subjective Ratings
for Each of the Test Images in Figures 25 through 29*

Experiment Type A Experiment Type B

Image Mean SD Mean SD

Original 3.9 0.3 4.0 0.0

Objectionable 0.1 0.5 0.2 0.3

Adaptive scalar quantizer (OS) 1.1 0.7 1.4 0.7

Adaptive scalar quantizer (ISO) 1.3 0.9 1.4 0.6

Trellis-coded quantizer (OS) 2.7 0.7 2.8 0.7

Trellis-coded quantizer (ISO) 2.7 0.8 2.7 0.7

Vector quantizer (block size = 1) 1.3 0.7 1.3 0.8

Vector quantizer (1 ≤ block size ≤ 4) 1.6 0.5 1.3 1.1

JPEG 1.5 0.7 1.5 1.1

* Based on responses from eleven subjects.

FIGURE 29. Joint Photographic Experts Group (JPEG) test
image (0.52 bpp). Annoying block artifacts, characteristic of
the block-based discrete cosine transform used in the JPEG
image-compression standard, are apparent in this image.
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cluded in the set of test images for scaling purposes.
The objectionable image was compressed by using
ASQ with only two quantization levels for each of the
modulated (AC) components. The objectionable im-
age was characterized by noticeable salt-and-pepper
noise and severe distortion of isolated point returns.

The displayed images were 256 × 256 subimage
cutouts from the full size (512 × 512) test images.
The experiments were conducted under dark ambient
lighting conditions. The images were displayed on a
Sony GDM-1961 monitor with a Digital Equipment
Corporation Alpha computer system. The viewing
distance was about eighteen inches and the test im-
ages subtended about 9.5° of visual angle. In both
types of experiments, there were no constraints on
viewing time.

The difficulty of experiment type A is reflected in
the fact that some subjects were not able to identify
the original as the most similar to the reference image.
In spite of the difference in task difficulty, the corre-
spondence between the two tests is remarkable. In
fact, according to paired and unpaired Student’s T

tests for significance at the p = 0.05 level [51], there is
no statistically significant difference between the cor-
responding means (p > 0.21 for the unpaired test and
p > 0.15 for the paired test).

Table 6 summarizes the results of this experiment
in tabular form, and Figure 30 summarizes these same
results by plotting the mean subjective ratings as a
function of the NMSE. The red line in Figure 30 rep-
resents a least-squares regressive linear fit. This figure
clearly shows that the mean subjective ratings are es-
sentially uncorrelated from the NMSE. From Table 6,
the mean subjective ratings for both types of experi-
ments reveal four distinct groupings: (1) the original
image, (2) the objectionable image, (3) the TCQ im-
ages, and (4) the other images. Each of these groups
has means that, according to paired and unpaired
Student’s T tests for significance at the p = 0.05 level,
are significantly different. Also, the differences in
means within these groups do not reflect statistically
significant differences. Thus both TCQ images were
rated as the most similar to the original, and they
were superior to all other reconstructed images. There
is no statistically significant difference between the
mean ratings for ASQ and VQ and the JPEG image.

Summary

In this article we describe how general image-coding
concepts relate to the compression of SAR imagery.
We focus on the compression of detected SAR imag-
ery for image archiving applications in which the end
users are typically image analysts. The transform or
representation scheme is a critical component of any
image-compression system at low bit rates because it
determines the structure of artifacts when very few
transform coefficients are not quantized to zero.

We studied two complete transforms in detail: the
Gabor transform and the Gabor-like wavelet packet
(generalized wavelet) transform. At low bit rates, both
of these transforms preserve isolated point returns
well; however, each of these transforms has individual
strengths and weaknesses. The Gabor transform tends
to preserve textures well, and the Gabor-like wavelet
packet transform tends to preserve textures and shad-
ows well. Conventional wavelet decompositions tend
to minimize mean-square error and preserve isolated-
point-return quality well.

FIGURE 30. Normalized mean-square error as a function of
mean subjective ratings averaged across eleven subjects.
The red line represents a least-squares linear fit, and shows
that mean-square error and mean subjective ratings are es-
sentially uncorrelated. In this experiment, the system with
the trellis-coded quantizer (TCQ) yielded higher mean sub-
jective ratings than systems with the adaptive scalar quan-
tizer (ASQ) or the vector quantizer (VQ). The TCQ system
also had a significantly higher mean subjective rating than
the JPEG image-compression standard, even though the
JPEG standard had a lower mean-square error.
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Our preferred compression system for the highest
perceived SAR image quality consists of a wavelet
packet transform that uses a Gabor-like tree structure
with smooth biorthogonal wavelet filters. Currently, a
universal trellis-coded quantizer followed by an arith-
metic entropy coder seems to provide the best trade-
off between complexity, accuracy, and bit rate. A
distortion-minimizing and rate-minimizing bit-allo-
cation procedure is used with the wavelet packet
transform. The use of perceptually weighted distor-
tion measures with the wavelet packet transform re-
mains a topic for future investigation.

Other future directions of our research include de-
veloping better perceptual distortion metrics, adapt-
ing the decomposition to each test image, applying
our system to applications in which algorithms are
the end users (such as automatic target detection, au-
tomatic target recognition, and superresolution), de-
signing distortion measures that are consistent with
these applications, and applying general coding con-
cepts to the compression of other data types such as
SAR phase history data and multispectral data.
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