
• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 175

An Architecture for
Semi-Automated Radar
Image Exploitation
L. Keith Sisterson, John R. Delaney, Samuel J. Gravina, Paul R. Harmon,
Margarita Hiett, and Daniel Wyschogrod

T -, wide-area sensor
platforms on unmanned air vehicles (UAV)
will generate a profusion of data that dramati-

cally increases the demands on image analysts. For ex-
ample, Teledyne Ryan Aeronautical’s Global Hawk
UAV is designed to provide sustained high-altitude
surveillance and reconnaissance at large standoff
ranges. Its mission goals include the ability to loiter
over a target area for 24 hours at an altitude of 65,000
feet. This UAV will carry a synthetic aperture radar
(SAR) sensor that is projected to collect in one day
enough data sampled at 1.0 m × 1.0 m resolution to
cover 140,000 km2 (roughly the size of North Korea).

To analyze the growing quantities of image data,
the Defense Advanced Research Projects Agency
(DARPA) initiated a project to develop the Semi-Au-
tomated IMINT (image intelligence) Processing, or

SAIP, system. The SAIP system combines advanced
automatic target recognition (ATR) algorithms and
robust false-alarm mitigation techniques with com-
mercial off-the-shelf computer hardware to filter out
natural and cultural clutter, and to recognize and pri-
oritize potential targets. It annotates image areas con-
taining potential targets with target cues for the image
analysts, who use visualization tools provided by the
SAIP human-computer interface to establish true tar-
get types and produce a target report for the battle-
field commander. The results of the exploitation pro-
cess are saved and transmitted to other military
systems.

In this article, we describe the design elements of
the overall system architecture rather than the details
of individual algorithms, unless their nature forces a
particular architecture. We discuss how the compo-

■ To improve the timeliness and accuracy of synthetic aperture radar image
exploitation, the Defense Advance Research Projects Agency (DARPA) started
the Monitor program at Lincoln Laboratory. This program was combined with
related technologies from other contractors to develop the Semi-Automated
IMINT (image intelligence) Processing (SAIP) system as part of an advanced-
concept technology demonstration. The SAIP system accepts radar images in
real time, distributes them to a number of algorithms for automated analysis,
and organizes the images and algorithmic results for display to image analysts.
The SAIP software infrastructure, which mediates between the operating system
and the application code of the individual components, supports message
passing between those components and allows the system to operate as a
pipeline of parallel computation modules. In this article, we describe the design
considerations of the overall system architecture. We also discuss how the
component systems are organized and how the software allows many
components from different organizations to work together.

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

176 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

nent systems are organized and how the software al-
lows many components from different organizations
to work together. We also describe the parallel archi-
tectures of the detection and identification compo-
nents—high-definition vector imaging (HDVI) and
mean-square error (MSE) classification.

System Description

The SAIP system combines state-of-the-art automatic
target-detection and recognition algorithms with hu-
man image analysts. The algorithms can examine
large volumes of high-resolution imagery in great de-
tail but have limited ability to put the imagery into
context. Human analysts can use contextual cues and
an overall sense of purpose to derive an accurate mili-
tary analysis under difficult circumstances, but they
cannot examine large volumes of high-resolution im-
agery in near real time for extended periods.

The SAIP system was conceived to accommodate
the X-band radar planned for the Global Hawk plat-
form. The Global Hawk flies at about 175 m/sec and
illuminates a swath 10 km wide from an altitude of
20 km, resulting in an image pixel rate of 3,000,000
pixels/sec and a ground-area coverage rate of 2.3
km2/sec [1]. These factors determined the SAIP re-
quirements for computational power, data-transfer
rates, and storage. The SAIP system must have a
throughput capability that matches the imaging rate
and it must also have a low processing latency. Sys-
tems analyses [2] of the requirements for surveillance
systems of transporter-erector launchers (TELs, par-
ticularly those we know as SCUDs) found that the la-
tency from the initial imaging of a target to the dis-
patching of a report from an image analyst needed to
be less than five minutes. The latency of existing sys-
tems ranges from five to fifteen minutes [3, 4]. The
under-five-minute constraint provided a latency goal
for the SAIP system of two minutes for processing
and two minutes for image-analyst exploitation. The
imaging rate of the sensor makes an exploitable image
about every minute, so with two analysts, each has an
average of two minutes to exploit a scene while
matching the latency requirements.

Figure 1 shows the assignment of the SAIP system
components to the servers, and the data flow for the
complete baseline system. It is composed of several

symmetric multiprocessor servers and workstations
interconnected by an asynchronous transfer method
(ATM) network [5]. The SAIP software infrastruc-
ture supports message passing between the applica-
tion code of the individual components supplied by
different vendors and allows the system to operate as a
pipeline of parallel computation modules.

The image receiver distributes complex-valued ra-
dar image data to registration and detection algo-
rithms and up to three analyst workstations. The de-
tector finds bright objects in the scene and computes
characteristic features for each object. The locations
on the ground of these detected objects are computed
by using a sensor model calculated from the registra-
tion information. The list of detected objects, their
features, and their geolocations are processed by algo-
rithms aimed at false-alarm mitigation and change in-
dication. These algorithms process only the detected
objects, not all the imagery. The discrimination
thresholding algorithm computes a score for each ob-
ject by using the results from the preceding algo-
rithms and rejects objects with a score below a thresh-
old. The discrimination thresholding algorithm tries
to lower the false-alarm rate by up to a factor of about
one hundred. It also assigns a priority ranking for
each detected object, or candidate target, that passes
the threshold.

After the discrimination-thresholding algorithm,
the HDVI module processes candidate targets in or-
der of priority by using a complex image chip con-
taining the detected object, followed by the applica-
tion of an MSE classifier, which attempts to identify
the object by comparing it to a stored library of signa-
tures. A component called the MSE manager man-
ages the work flow of the MSE classifier. Finally, the
force-structure-analysis component analyzes the data
to establish deployment patterns by comparing the
distributions of detections to known deployment pat-
terns of military forces such as tank battalions.

The results and the imagery from which they were
derived are stored by the exploitable-image former
component in a database for examination by the im-
age analysts. This arrangement relieves the analyst
from the necessity of keeping up in real time on a
short-term basis and allows the analyst the flexibility
to spend as long as necessary to exploit a scene.

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 177

FIGURE 1. Semi-Automated IMINT (image intelligence) Processing (SAIP) baseline system to analyze image data and detect
targets. Image data are processed to find bright objects and to determine the positions of these objects on the ground. The
main data path through the system, highlighted in blue, starts with the complex imagery being sent to the image receiver. Each
processing stage enclosed by a box represents a Silicon Graphics, Inc. server with the configuration indicated. Bright detected
objects and their features are analyzed by false-alarm mitigation algorithms that reduce false alarms, recognize specific target
types, and determine military force structures. In the target-recognition algorithms, the discrimination threshold ranks candi-
date targets before they are processed by the high-definition vector imaging (HDVI) and mean-square error (MSE) classifier.
The results and corresponding original imagery are stored in the exploitable-image former to be retrieved by the image analysts.

4 R8000s
256 MB RAMHDVI/MSE

HDVI/MSE
4 R8000s

256 MB RAM

6 R4400s
500 MB RAM

Image-analyst
workstations

Image
server

Exploitable-
image
former

Target-
recognition
algorithms

False-alarm
mitigation
algorithms

Data and results distribution

User interfaces

6 R8000s
256 MB RAM

6 R4400s
500 MB RAM

Results

Detections

Object
database
(40 GB)

Image
database

for
registration

(96 GB)

Exploitation
database
(30 GB)Temporary

image
database
(30 GB)

8 R8000s
1.5 GB RAM

12 R1000s
2 GB RAM

12 R4400s
1.5 GB RAM

i

HDVI/
MSE

Complex
imagery

CFAR
detector

Feature
extractor

Registration

Geolocation

Image
receiver

MSE
manager

Discrimination
thresholding

Terrain
delimitation

Spacial
clustering

Force-
structure
analysis

Object-level
change

detection

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

178 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

The computational complexity of each algorithm
and the data-transfer rate required between algo-
rithms determine the nature and organization of the
hardware. Table 1 shows the design parameters used
to estimate the computational complexity of Lincoln
Laboratory SAIP algorithms, which are listed in Table
2. The main driving factor for the computational
complexity differs for each algorithm. The image re-
ceiver and detection components process all the im-
agery, and their computational complexity depends
primarily on the incoming pixel rate. After the detec-
tion stage, the remaining algorithms process messages
containing feature information about the detections.
The computational complexity of these algorithms
depends on the detection rate.

The detection-rate model used for Table 2 assumes
a dense target environment in a high-false-alarm re-
gion at a detection probability of 90%. The false-
alarm rate represents a worst case typified by forested
regions around well-populated areas, and was derived
from work with data collected by the Advanced De-

tection Technology sensor developed at Lincoln
Laboratory [6]. Figure 2 shows how the false-alarm
density varies widely with location. Several algo-
rithms need more than one processor (given the pro-
cessor capability in 1997) to achieve the computation
rates for handling the incoming image stream.

The image-receiver and detector components each
process all imagery in various formats. Therefore, the
communications data-transfer rate between these
components is the highest in the system, and an 80-
MB/sec high-performance parallel interface connects
the servers used by these components. However, after
the detection stage, the data-transfer rate between al-
gorithms is moderate. While the complete system
could be run within a single large processing system,
the comparatively low interconnect bandwidth argues
for the much less expensive solution of using several
multiprocessor servers with a suitable network be-
tween them. This choice of architecture is reinforced
by the practical need to have several independent or-
ganizations supply software components, some of
which already exist for other environments, that will
work together and have clean interfaces for straight-
forward integration. Thus the resulting architecture is
a pipeline of parallel subsystems; each subsystem has
enough parallelism to keep up with the average pro-
cessing rate. The main connection between the serv-
ers is a 155-MB/sec ATM network.

FIGURE 2. Area distribution of false alarms. The false-alarm
density fluctuates widely as data are processed by the sys-
tem. The average false-alarm density from the detector is 170
false alarms/km2. The distribution has a much larger tail
than an equivalent Poisson distribution. The variation in
false-alarm density leads to a large variation in the process-
ing load for those algorithms which depend upon the detec-
tion rate.

Table 1. Parameters for Estimating
SAIP Computational Complexity

Parameter Value

Input pixel rate 3,000,000 pixels/sec

Real target density 25/km2

Detection false-alarm rate 110/km2

Area coverage rate 2.3 km2/sec

Target-image chip size 31 pixels

HDVI pixel size 3
reduction factor

Average size of 4,000,000 pixels
region of interest (ROI)

Detected-object message size 500 bytes

Detections processed 20%
by HDVI/MSE

Overview-display 12
downsample factor

Image-frame interval 3

Number of false alarms/km2

0 200 400 600 800

40

30

20

10

0

Fr
eq

ue
nc

y False-alarm density distribution
(Total false alarms = 43,171)

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 179

Table 2. SAIP Computational Complexity and Data-Transfer Rate Estimates

Processing Estimated Driving Required Detection Message Message

Component Computational Factor Processors Output Rate Input Rate Output Rate

Loading (Estimate) (detections/sec) (MB/sec) (MB/sec)

(MFLOPS)

Image receiver 96 Pixel rate 8 NA 24 15

Image server 15 Pixel rate and 1 NA 0.003 8
detection rate

Detector 150 Pixel rate 4 311 12 3

Feature extractor 124 Detection rate 3 311 3 0.2

Discrimination 31 Detection rate 1 54 0.2 0.03
thresholding

HDVI/MSE 1408 Real-target density 20 54 2 2
classifier and false-alarm rate

from discrimination
thresholding

Exploitable-image 8 Pixel rate and 1 1 6 0
former force-unit density

From the beginning, we realized that a message-
passing environment configurable for any combina-
tion of single-processor and multiprocessor nodes
would provide flexibility in architecture and perfor-
mance and allow independent development of the
various components. Whether processes are executed
on the same node or across a network should be a
run-time configuration issue that does not affect the
application code at all. This idea led to the develop-
ment of the message-passing infrastructure compo-
nents described in the next section.

Parallelism in Lincoln Laboratory components is
achieved by many techniques. The choice of tech-
nique depends largely on the transfer rate of the in-
coming data. Table 2 shows the data-transfer rate esti-
mates for the various processing stages of the SAIP
system. When the incoming transfer rate is high, as
for the detector stage, we achieve parallelism by logi-
cally dividing the image into range subswaths and
performing the computations for each subswath on a
different processor. Each processor shares the
memory in which the image and results are stored to

minimize data exchange between the activities on
each processor.

In contrast, the HDVI/MSE classifier, with low
bandwidth and high computation per object,
achieves parallelism by distributing the computation
for each object processed to a separate processor,
which can be in a separate server. The amount of time
SAIP spends transferring data to and from the
HDVI/MSE module is small compared to the time it
spends on computing. Shared memory is used for the
reference image data when there is more than one
processor in a server and the object data are passed by
using the message-passing infrastructure. By allowing
arbitrarily large numbers of servers and processors per
server, this object-level parallelism is more efficient,
more flexible, and much simpler to organize than a
fine-grained parallelism in which individual compu-
tations such as scalar products are distributed across
multiple processors.

While standards played little formal role in the de-
velopment of the SAIP system, we considered the fol-
lowing guidelines to be important in controlling the

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

180 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

complexity and volume of our work:
1. Although ANSI C++ was our preferred stan-

dard, we allowed ANSI C for some algorithm
code, especially legacy code.

2. For data structures and methods, we defined a
centralized library to provide common facilities
to component developers, thereby providing a
de facto coding standard. This library was built
on the Standard Template Library (STL) [7, 8],
which encouraged component developers to use
the STL also.

3. We layered construction to hide communica-
tions methods from the application code.

4. We used commercial object-oriented database
software for storing data.

5. We used commercial software for configuration
control.
Although early in the development phase a deci-

sion was made to use Silicon Graphics, Inc. (SGI)
workstations and servers, the Lincoln Laboratory
software was written to be ported to alternative
UNIX platforms at modest cost because only generic
UNIX operating system functions are used and the
code is ANSI C++ or ANSI C.

The remainder of this article explains the design
and implementation of most of the Lincoln Labora-
tory components shown in Figure 1. We start with
the infrastructure software that allows the compo-
nents to communicate.

Infrastructure Software

The SAIP infrastructure components are the layered
software common to most SAIP software compo-
nents. The two major parts of the infrastructure are
the SAIP interprocess communication (IPC) library
and the SAIP data structures C++ class library, which
both facilitate communication. A pair of UNIX pro-
cesses can communicate by writing to and reading
from a shared database, or by explicitly passing mes-
sages via the SAIP-IPC module.

Such interprocess communication can be defined
and controlled on a case-by-case basis for each pair of
communicating processes. However, the SAIP system
standardizes interprocess communications by defin-
ing all data objects that can be stored in a database or
passed in a message in a single C++ class library. In

this library, the SAIP system also defines standard
member functions for all objects such as storage allo-
cation, message buffer packing and unpacking, and
printing.

The single C++ class library approach has several
advantages. First, standardization allows us to revise
or reuse old code quickly when process implementa-
tions are changed or when new processes are added to
the system. Second, experience gained from imple-
menting the communication between one pair of
processes readily transfers to the task of implementing
the communications between two other processes.
Third, standard methods for data classes speed the
development of application code. Fourth, configura-
tion control of class definitions is simplified by cen-
tralizing the definitions.

For the purposes of message passing, the SAIP C++
class library is layered on a C library for transferring
data buffers between processes. The SAIP C++ class
library hides much of the functionality of the IPC li-
brary to present application programmers with a
simple communications model. In that model, C++
objects are passed between processes. An object is sent
with one function call taking the object’s address, a
symbolic message type name, and a symbolic destina-
tion process name as arguments.

The SAIP-IPC Component

Each SAIP component application is composed of
one or more application threads and one communica-
tion thread, as illustrated in Figure 3. See the sidebar
entitled “System Terms and SAIP-IPC Design” for
definitions of some computer-science terms needed
to understand SAIP and a summary of SAIP-IPC de-
sign considerations. The communication thread es-
tablishes the socket connections to the other SAIP
components and maintains the receiver data queues.
All messages destined for a particular component are
received and queued by the communication thread,
which uses a separate queue for each source process.
All messages from a component are sent directly by
the component application thread. The separate re-
ceive communication thread implies the sends are
nonblocking unless system buffers are exceeded. The
application thread receives messages that have been
queued up by the receive thread. Thus receive opera-

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 181

tions are blocking only if there are no new incoming
messages on the queue to be processed.

The communication thread forms a data channel,
maintaining application-visible status and message-
queue information on the health of the connections
to other applications. Because queueing occurs at the
receiver, each application can monitor the growth of
its input queue and, if needed, take actions to process
data more rapidly, typically by incomplete processing
of each message until the backup is under control.
This arrangement allows the application to receive
data continuously until resource limits are exceeded.
The sender will therefore block only when the re-
ceiver has stopped receiving data and the operating
system buffers are filled. Thus the SAIP-IPC effec-
tively supports nonblocking sends.

The communication thread uses sockets to imple-

ment the underlying communication mechanism.
We chose sockets because they provide a generally
uniform communication interface across almost all
UNIX platforms. This design allows the application
thread to select which inputs it wishes to deal with at
any one time without blocking. In addition, it allows
incoming data to be received while the application
thread is processing previous message inputs.

The SAIP-IPC module is also responsible for
launching the application components throughout
the system, which is accomplished by a program
launcher utility. Once launched, each application
component invokes the initialization phase for the
SAIP-IPC. The communication threads for the appli-
cations are started and the interconnections between
the applications are established. The initialization al-
gorithm is distributed across all of the components in
the system that concurrently attempt to establish the
socket connections defined by the applications. The
SAIP-IPC module forms the connections indepen-
dently of the detailed execution sequence of the set of
applications forming the system. As a result the sys-
tem launches quickly.

The Data-Structures C++ Class Library

The SAIP C++ class library uses the SAIP-IPC library
to enqueue objects in each process as they arrive from
other processes. Such enqueuing can occur in parallel
with other computations because the communica-
tions thread handles it.

The library’s Message class pulls together the func-
tions layered on the SAIP-IPC library plus the global
variables needed to coordinate them. There are meth-
ods to send and receive as well as to enter and exit a
dispatching loop and the dispatch function. Objects
are dequeued by the application thread by using one
of two methods of the Message class. In the first
method, a conventional receive function takes as ar-
guments a symbolic message type name, a symbolic
source process name, and a variable for storing the ad-
dress of that type object arriving from that process. If
there are no objects from that process enqueued when
the function is called, it blocks until one arrives. In
the second method, a function causes the thread in
which it is called to enter a dispatching loop and to
remain in the loop until explicitly exited. If there are

FIGURE 3. SAIP interprocess communication (IPC) struc-
ture showing the multithreaded nature of the component
communication in SAIP. The communications thread forms
a message queue for all other components that send a mes-
sage to it. The communication thread also establishes the
socket connections to the other SAIP components and
maintains the receiver data queues.

UNIX
sockets

Message
queue

Message
queue

Send to multiple sockets

Receive from multiple sockets

Application
component

Application
thread

UNIX
sockets

Communication
thread

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

182 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

no objects enqueued when the function is called, the
thread blocks until one arrives. If one or more objects
are enqueued, the thread picks one fairly and then
calls a dispatch function. When the dispatch function
returns, it repeats the above procedure unless the dis-
patch function makes an explicit exit call.

The dispatch function’s declaration is part of the
SAIP C++ class library, but not its definition. For
each process, a dispatch function must be supplied
that is tailored to the purposes of the process. Typi-
cally, a dispatch function’s top level is a switch state-
ment on the symbolic message type name. The vari-

S Y S T E M T E R M S A N D S A I P - I P C D E S I G N

 some computer-
science terms used with SAIP and
then we summarize our design
considerations for the SAIP inter-
process communication (IPC).

Thread—A single sequence of
execution within an application.
All SAIP components have at least
two threads, one for the main ap-
plication and one that SAIP-IPC
creates for receiving data (the
communication thread).

Blocking—A thread will block,
that is, stop executing, when it
requires a resource that is unavail-
able. The typical resource that
causes a thread to block is either
data to be read that are unavail-
able, or data to be output when the
output method is unavailable.

Socket—A UNIX mechanism
for point-to-point data commu-
nication between two applica-
tions. If the applications are on the
same computer, local sockets can
be used. Generally, the applica-
tions are on different computers
connected by a network that re-
quires communication protocols
to control the data flow.

SAIP-IPC Design

We had two design strategies for

SAIP-IPC—use the emerging
standard message-passing inter-
face (MPI) [1] or use UNIX sock-
ets within our software. At the
start of this project it was impor-
tant to establish a working IPC
system so that applications could
be connected to one another as
soon as possible.

In 1995, we built a precursor
system to SAIP called Monitor
with MPI that had been devel-
oped by the University of Missis-
sippi [2], and supported by
Argonne National Laboratory [3].
In building Monitor, we uncov-
ered several characteristics of MPI
that made it unsuitable for devel-
oping a real-time system like SAIP.

First, although the implemen-
tation was based on UNIX sock-
ets, only network-based sockets
were used instead of local sockets
between processes within the
same multiprocessor system. This
arrangement meant that all pack-
ets sent and received encountered
all the additional overhead of net-
work sockets, which is time con-
suming, and limited the speed of
message transmission through the
system.

Second, the MPI application

interface assumed that all pro-
cesses connect to all other pro-
cesses in the system. In a network-
based system this assumption
increases system start-up time.
Third, the implementation of
MPI at the time was not thread-
safe, so that sending and receiving
messages would delay the applica-
tion. Fourth, MPI queued mes-
sages at the sender rather than the
receiver, so that a component
could not know how much work
was in its input queue.

Given these factors, we ulti-
mately felt that MPI was not ma-
ture enough for our system. In-
stead, we decided to implement
our socket-based approach to the
SAIP-IPC module, paying close
attention to the characteristics we
needed.

References
1. Message Passing Interface Forum,

“MPI: A Message-Passing Interface
Standard,” Int. J. Supercomputer Appl.
8 (3/4), 1994.

2. W. Gropp, E. Lusk, and A. Skjellum,
Using MPI: Portable Parallel Program-
ming with the Message-Passing Interface
(MIT Press, Cambridge, Mass.,
1994).

3. N. Doss, W. Gropp, E. Lusk, and A.
Skjellum, “A Model Implementation
of MPI,” Technical Report, Argonne
National Laboratory, 1993.

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 183

ous case clauses in the switch statement handle ob-
jects of corresponding types. In this way, the process-
ing of each object type becomes modular.

Most commonly, the first dequeuing function is
called when one process is started to wait for initial-
ization information from other processes. After all
initialization is completed, the second dequeuing
function is called and does not return until the system
is shut down.

Pointer Semantics. Most objects handled by SAIP
software components are composed of subobjects.
For example, a detection object includes distinct
subobjects holding the results of applying various al-
gorithms such as spatial clustering or MSE target clas-
sification. The SAIP C++ class library uniformly uses
pointer semantics to represent such inclusion. That is,
an object contains pointers to its subobjects rather
than explicitly containing those subobjects, and a
highly composed object is the root of a tree of sub-
objects, sub-subobjects, and so on.

We found two advantages to designing the library
with pointer semantics. First, pointer semantics per-
mit different instances of the same object type to use
different amounts of storage, either by pointing to
different numbers of subobjects or by pointing to
subobjects that use different amounts of storage. For
example, detection objects passed between software
components near the head of the SAIP algorithm
chain typically use less storage than those passed be-
tween components near the end of the chain because
the former contain null pointers, whereas the latter
contain pointers to filled-in instances of results from
later-applied algorithms such as the MSE classifier.
Also, imagery objects can contain pointers to arrays of
pixel attributes with contextually determined sizes.

Second, pointer semantics permit a clear indica-
tion of which object’s subobjects have been set. If a
pointer to a particular subobject is null (meaning
empty, or zero), then the associated subobject’s com-
ponents are not set. When containment semantics are
used instead of pointers, either subobjects must con-
tain flags to indicate whether their components are
set or reserved component values must be used as in-
dicators that components are set.

As with most design commitments, there are dis-
advantages as well as advantages to handling sub-

object inclusion via pointer semantics. The most ob-
vious disadvantage is the level or levels of indirection
introduced in accessing those fundamental objects
(e.g., integers, characters) which are the leaves of the
object-subobject-… trees. It is not, however, the most
significant disadvantage, as the following discussion
indicates. The data buffers transferred between pro-
cesses through the SAIP-IPC library are linear arrays
of bytes. But a highly composed object is not a linear
array; it has a number of characteristics for which the
library must allow. First, the storage allocated for the
object and its subobjects need not be contiguous; it
could be scattered all over the local heap. Second,
some storage holds pointers that are meaningful in
the sending process but not in the receiving process.
Third, the C++ compiler or run-time environment
may insert hidden elements into its representation of
an object (particularly pointers) that are not equiva-
lent from one process to the next.

Thus the transferring process must flatten or serial-
ize object-subobject-… trees into a linear form that
includes all leaf object values plus enough structural
information for the receiving process to unflatten the
tree. The manipulations required for flattening and
unflattening take computational time, particularly in
copying leaf object values to or from a data buffer and
in allocating storage for each subobject, subsubobject,
and so on in the receiving process.

Those familiar with pointer semantics may have
noticed something odd in the above discussion. It
mentions only object-subobject-… trees, but pointer
semantics allow for graphs of object-object pointers,
even cyclic ones. By convention, the SAIP C++ class
library restricts the use of pointer semantics in the li-
brary to constructing trees with leaf-ward pointers
only. This restriction keeps the flattening and unflat-
tening of objects relatively simple. For the informa-
tion being communicated between SAIP software
components, the restriction is not burdensome.

The C++ language allows us to associate functions
with objects and to use the same function name and
formal parameter list for a different function, de-
pending on the associated object’s type. The SAIP
C++ class library uses this capability to provide uni-
form calls for functions common in general purpose
to all object types but different in implementation

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

184 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

details. The generic print function is a good example.
Each object type defines a function with that name
and with the same formal parameters. It is used to
print the components of any object of that type and,
because objects of different types have different com-
ponents, the detailed implementations of the func-
tions differ for different object types.

The C++ language does not allow us to similarly
associate functions with fundamental types. It does,
however, allow us to define function templates appli-
cable to all types and to define specialized implemen-
tations (specializations) for particular types, including
the fundamental types. The SAIP C++ class library
uses this capability to provide uniform calls for func-
tions that are common in general purpose to all types
(not just all object types) but different in implemen-
tation detail. Again, the generic print function is a
good example. The SAIP C++ class library defines a
print-function template that provides uniform se-
mantics for printing any data item. If the data item is
an object, invoking the print-function template with
the data item as an argument simply invokes the
print-member function for that object’s type. If the
data item is a fundamental type, the appropriate spe-
cialization is invoked.

Such uniformity in commonly used function se-
mantics allows us to write code that is readily compre-
hended and modified. Of course, the number of
functions we would want applicable to all objects and
fundamental types is not large. In the SAIP C++ li-
brary, generic functions are supplied for printing,
heap and database storage allocation, logical and
arithmetic operators, flattening data items into buff-
ers and unflattening them out of buffers, and generat-
ing unique instances for testing.

Examples of Library Class Members

Most SAIP C++ class library members can be viewed
as parts of several hierarchical classes used to compose
the top-level objects passed between SAIP software
components. While distinct at the higher levels of the
hierarchy, they run together at lower levels. The high-
est levels of the hierarchies typically correspond to
messages passed from one SAIP software component
to another. This section describes some of these
classes to illustrate principles of their construction.

Frame Class. The Frame class represents chunks of
input-image data or collections of algorithmic results
derived from the same chunk of input-image data.
While a chunk of input data may correspond to an
entire SAR spotlight-mode image or one whole patch
of stripmap-mode imagery, nothing in the SAIP C++
class library requires such a correspondence. Data are
framed for the convenience of the SAIP algorithms,
although the framing is not completely arbitrary. The
SAIP C++ class library does require that all the input
image data associated with a frame be part of one
SAR spotlight-mode image or one sequence of SAR
stripmap-mode patches. Moreover, all input image
data or derived results for only one SAR spotlight-
mode image or one sequence of SAR stripmap-mode
patches must be contained in sequential frames. Such
a collection of frames is called a scene. The Frame
class contains bookkeeping data for the frame, geo-
metrical information about the location of the image
and the radar, a pointer to the image array, and a
pointer to a container class for the detections. This
container class is an adjustable length vector of point-
ers to each detection. The ability to expand the con-
tainer at will is convenient in the prescreening and
feature-extraction software component in which de-
tections are created and sorted geographically. The
ability to shrink the container is convenient in the
discrimination-thresholding component, which dis-
cards and sorts detections by discrimination score.

Detection. Detections are formed in the prescreen-
ing and feature-extraction software component,
which defines each detection by an image location
plus a number of characteristics that are used to ini-
tialize an instance of the Detection class. Later compo-
nents in the algorithm chain translate the image loca-
tion to the ground plane and add additional
characteristics. In this way, the results of most SAIP
algorithms are organized by detection. As mentioned
above, detections are grouped by frame and carried
down the algorithm chain by using Frame class in-
stances as messages.

Exploitation-Related Classes. Two classes are used
near the end of the algorithm chain to create data
structures that help manage exploitation. The Unit
class represents collections of detections presumed to
be elements of a single military unit. Instances thereof

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 185

are created by the force-structure-analysis software
component. The region of interest (ROI) is repre-
sented by the ROI class, which consists of associated
collections of detections with local imagery and other
display-oriented information added. Instances of this
ROI class are partially created by the force-structure-
analysis component and are completed by the exploit-
able-image former.

Each Unit class instance indicates which detections
compose the unit and which detections bind the unit
(i.e., form the vertices of the unit’s ground-plane con-
vex hull). Units and ROIs are closely related. In fact,
it is the presence of a unit that makes a region of im-
agery interesting. In that sense, each ROI contains a
unit plus the imagery in which the unit was recog-
nized. To support the efficient display of old and new
imagery for an ROI, each ROI also indicates which
old ROIs overlap significantly.

Algorithm Components

This section describes two of the Lincoln Laboratory
SAIP components and focuses on how sufficient
throughput is achieved, how data should be orga-
nized, and how the algorithm is organized for parallel
computation.

Detection and Feature Extraction

The constant false-alarm rate (CFAR) detector con-
sists of the CFAR algorithm and a feature extractor. It
locates those portions of the input SAR images which
are brighter than the surrounding background (i.e.,
they locate the man-made targets). Locating bright
spots is accomplished by applying a CFAR stencil re-
peatedly over the image and computing the CFAR
statistic for the pixel values, as described by the left-
hand side of the equation

()
,

x − >µ
σ

τ

where x is the value of the sample pixel, µ is the mean
of the pixel values, σ is the standard deviation of the
pixel values in the stencil, and τ is the detection
threshold. Figure 4 shows the CFAR stencil that is
applied to locate bright spots.

Bright spots above threshold are clustered into
blobs. Then a simple form of target-size discrimina-

tion eliminates blobs too small to be targets. The next
step is to determine features from the remaining
blobs. The resulting information is transmitted with
Detection classes in a Frame message to the next SAIP
component in the system. Clearly, clustering and fea-
ture extraction are dependent on the number of de-
tectable objects in the scene; feature extraction on a
frame of data can take longer than the CFAR algo-
rithm and clustering.

The CFAR algorithm must keep up with the pixel
rate of the input to the SAIP system. The approxi-
mate pixel rate needed in the baseline system is about
one million pixels per second. In an unoptimized and
unparallel form, the CFAR algorithm takes as much
as one minute to process a frame of four million pixels
on an SGI R8000 processor. After the optimization
and parallelization described below, this algorithm
takes about two seconds.

The largest improvement in CFAR processing
speed came from optimizing the computation of the
CFAR algorithm for the 64-bit shared-memory mul-
tiprocessor architecture of the SGI R8000 processor.
Each of these processors has an on-chip primary data
cache and a 4-MB off-chip secondary cache. The bulk

FIGURE 4. Constant false-alarm rate (CFAR) stencil applied
to every pixel in the image to locate man-made targets. The
targets are represented by those portions of the SAR image
which are brighter than the surrounding background.

Background
pixels

Sample pixel

Stencil size in x

S
te

nc
il

si
ze

 in
 y

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

186 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

dynamic RAM (where most of the memory is lo-
cated) is accessed off the processor boards via a 1-GB/
sec backplane on four-way interleaved memory
boards. Data must first be fetched from the bulk
DRAM into the secondary cache, then read into the
on-chip primary cache. Finally, the processor ma-
nipulates the data within its internal registers. All of
these transfers are handled automatically by the cache
control units. We access the memory space sequen-
tially in an orderly fashion to optimize data flow
within the memory subsystem, to allow the cache
control units to prefetch data from DRAM in bursts,
and to minimize cache flushing. In the context of

handling images, we call this type of memory access
rasterization.

Thus to optimize CFAR, we rasterize the data ac-
cesses and keep the repeated memory accesses as close
in proximity as possible. To do so, we must change
the image scan pattern for the CFAR stencil. First
note that the standard deviation σ is expressed by

σ µ µ2 2 2 2= − = −E x E x[] [] .

In the original relation

()
,

x − >µ
σ

τ

we note that σ is costly to compute because a square-
root operation is expensive in terms of cycle count.
Therefore, we rewrite the relation as follows:

()
.

x − >µ

σ
τ

2

2
2

This expression removes the square-root operation
until the very end and can in fact be eliminated as
long as the correct sign information is preserved (be-
cause there can be negative CFAR statistic values). It
brings all the operations back to just multiplication,
addition, and a single expensive division. When de-
tecting bright pixels, we can avoid the division alto-
gether. However, forming the CFAR image chips for
the feature extractor requires the division. We can
minimize the computation by not performing the di-
vision until the CFAR image chip is actually formed.
The final relation is then given by

()

([])
.

x

E x

−

−
>µ

µ
τ

2

2 2
2

The mean µ and the mean of the squares E [x2] can be
calculated for the background pixels by taking advan-
tage of the commutative property of addition and re-
ordering the way the sums are computed over the
stencil. Instead of summing around the stencil ring,
we can calculate the sums in x and y independently
(taking care not to sum the corner pixels more than
once). The sum in x can be calculated by using a run-
ning sum and difference, as illustrated in the lighter-
colored squares of Figure 5.

FIGURE 5. Scan pattern for the optimized CFAR stencil. The
partial sums that form the mean µ and variance σ2 are calcu-
lated for the original CFAR stencil legs in x and y. The order
of the partial sums is important when forming the sums be-
cause the output buffers that store these sums are reused
from previous frames of data. The output pixel labeled 1 is
set first as the stencil is passed over the input image. The
values in the pixels labeled 2, 3, and 4 are then added in se-
quence to the existing value in the output buffer to form the
complete sum. To avoid counting the corner pixels twice, we
make the x portion of the partial-sum scan two pixels
shorter than the original CFAR stencil.

–

–

+

2 3

Add pixel value to
partial sum in x
for pixel sampled
behind scan line

Add pixel value
to partial sum in x
for pixel sampled
below scan line

Set partial sum in y
for pixel sampled
ahead of scan line

Add pixel value
to partial sum in y
for pixel sampled
behind scan line

Subtract pixel value
behind scan from
partial sum in x

Add pixel value
at front of scan
to partial sum in x
and partial sum in y

Subtract pixel value
behind scan from
partial sum in y

4

1

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 187

A similar scan pattern can be applied for the partial
sums in y ; however, there is no advantage to scanning
the y-direction the same way as the x-direction be-
cause that would not result in a continuous sequential
access of the memory space. Instead, partial sums for
the y legs of the stencil are maintained as in Figure 5.

Note that in this revised scan pattern, partial sums
from each leg of the CFAR stencil are generated in the
numbered sequence from 1 to 4 in Figure 5. When
we deal with a single processor on a single image this
order of sums is relatively unimportant. When we
deal with adjacent search frames and a multiple pro-
cessor application of the CFAR algorithm this order
becomes important.

In addition to changing the CFAR scan pattern for
the revised CFAR stencil, we can operate in parallel
on a number of computers to optimize CFAR pro-
cessing. The goals of parallel operation are to keep up
with the overall data rate and to minimize the frame
latency, which delays the entire system. We found
that having multiple processors each process a por-
tion of the incoming frame simultaneously is the best
way to make the CFAR algorithm parallel. This ap-

proach is also used to cluster the bright spots.
The frames are divided along the range axis. The

CFAR stencil is then run over each subimage by a
separate processor and the results are merged. Figure
6 shows that running any stencil operator over an im-
age leaves the output image pixels a subset of the in-
put image pixels. Partial sums of pixel values at the
range edges of the output image are suppressed (un-
written) so that an image subdivided among different
processors does not interact at the boundaries be-
tween subimages.

Three processors handle this processing in the
baseline implementation of the CFAR algorithm.
Figure 7 shows that the input subimages are chosen
such that the output images abut each other but do
not overlap. Thus the separate processors can operate
independently without the overhead of applying syn-
chronization methods at the subimage boundaries.

We have less opportunity to optimize the cluster-
ing portion of the CFAR algorithm and the feature
extractor. The clustering algorithm, which does not
rasterize, can be thought of as a kernel-based opera-
tion on an image. Clustering assumes that a bright
pixel has been detected at the center of the kernel and
that other bright pixels within the kernel have already
been detected and assigned to a cluster. The bright
pixel at the center is assigned to one of the previously
clustered pixels within the kernel. The feature extrac-

FIGURE 6. Relationship between input and output images
associated with the CFAR stencil. The image that results
from applying either the original or revised CFAR stencil is
smaller than the original image. This reduction occurs be-
cause the stencil can examine only sample pixels that are at
least half a stencil width away from the edge of the image.

FIGURE 7. Subimage processing. Each subimage is pro-
cessed on a separate processor, and boundary regions must
be merged correctly. Because only the input subimages
overlap, the separate processors can operate independently
without the overhead of applying synchronization methods
at the subimage boundaries.

Center subimage,
input image range

boundaries

Center subimage,
output image range

boundaries

Range direction

Output image
boundary

Partially processed data
(output suppressed)

Input image
boundary

Stencil

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

188 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

FIGURE 8. CFAR detector and feature-extractor parallel architecture. Information from the CFAR algorithm, including
the clustering stage, is sent to queues in a round-robin fashion, one queue per feature extractor. All the feature extrac-
tors deliver their results to their output queues (not shown). These output queues are then read in a round-robin fash-
ion by a data collection module, which forwards the results for processing through the rest of the SAIP chain.

tor cuts out chips from both the original image and
CFAR image and calculates the features of the clusters
in them. Features calculated include mass (number of
pixels), peak and mean CFAR values, and diameter.

We make clustering parallel in a manner similar to
the CFAR algorithm. Unlike CFAR, however, this al-
gorithm cannot be allowed to look across the range
boundaries because pixels being clustered by one pro-
cessor might affect the results in another. Thus the
clustered output image is not complete for a range of
half a kernel from the range boundaries on the sub-
images. The regions on the subimage range bound-
aries must be processed in a separate pass to complete
the clustering for the frame.

We make the feature extractor parallel in a straight-
forward manner. Figure 8 shows the architecture for
the CFAR algorithm and feature extractor. Cluster in-
formation from the CFAR and clustering stage are
sent to a series of queues in a round-robin fashion,
one queue per feature-extraction module. All the fea-
ture extractors work independently on their respec-
tive input queues. Special markers are inserted into
each queue to indicate that there are no more clusters
for a particular frame. When all feature extractors
have processed all the inputs on their queue for a par-
ticular frame, CFAR recycles the data buffers. All the
feature extractors output their results to their output
queues. These output queues are then read in a

round-robin fashion by a data collection module that
constructs a Frame message with a detection vector
and sends it to the next stage in the SAIP system.

Target Recognition

Target recognition is accomplished by using a pat-
tern-matching algorithm. Detections that pass the
discrimination thresholding module are resolution
enhanced and compared to a library of SAR imagery
of known vehicles. The vehicle that provides the best
match is presented to the image analyst only if the
match surpasses a quality criterion; otherwise the im-
age is classified as unknown.

The target-recognition component makes exten-
sive use of the STL container classes defined in the
C++ standard. The dynamic memory handling and
easy extensibility of the STL classes and C++ class fea-
tures provide the flexibility needed to define a large
library of vehicle imagery that can be retrieved on the
basis of six independent variables for pattern match-
ing in real time over a network of multiple processors.

Figure 9 shows the organization of the target-rec-
ognition component, which consists of the HDVI/
MSE classifier and template library components. All
detections associated with a given SAR image frame
are collected in a Frame message and arranged in or-
der of interest according to the criteria trained into
the discrimination-thresholding algorithm. Only the

Clustering
stage

Queue

Data
collection

module

Rest of
SAIP

CFAR
detector

CFAR
detector

CFAR
detector

Input
buffer

Feature
extractor

Clustering
stage

Clustering
stage

Queue

Queue

Feature
extractor

Feature
extractor

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 189

FIGURE 9. HDVI/MSE classifier algorithm consisting of HDVI/MSE threads and template library compo-
nents. All detections associated with a given SAR image frame are collected in a Frame message and ar-
ranged in order of interest by the discrimination thresholding module. The MSE manager receives these
messages and keeps track of processors, frames, and detections, and an arbitrary number of candidate pro-
cesses. Each candidate process can contain an arbitrary number of threads and has its own copy of the tem-
plate library. All detections, whether processed or not, are assembled into the Frame message and passed
on to the force-structure-analysis module, which determines military force structures.

most interesting detections will be processed when
time does not allow processing of all detections.

The results of the MSE classifier are placed in the
detection class along with a resolution-enhanced im-
age of the detection. All detections, whether pro-
cessed or not, are assembled into the Frame message
and passed on to the force-structure-analysis module.

The number of detections per frame that will pass
discrimination thresholding and be processed within
the time allotted to the classifier are not known until
run time. Since it is also not known whether a par-
ticular detection will be processed, the Frame message
is kept small by not storing the detection imagery
within the frame. Thus an additional interface re-

quirement of the classifier is that it must request de-
tection imagery from an image server when necessary.

The fundamental task of the classifier algorithm is
to find the vehicle template that, when compared
with the detection, gives the lowest MSE [9]. The
performance of this algorithm is improved by using
the HDVI algorithm for resolution enhancement. In
the SAIP baseline system the HDVI image of the de-
tection and the templates are oversampled by a factor
of three and compared to the original image. This ar-
rangement results in nine times as many computa-
tions for a given template comparison, due to the in-
creased number of pixels per image.

As a result, the HDVI/MSE classifier is two-stage

Candidate 2

. . .

Shared
array HDI –> MSECandidate 1

. . .

Shared
array HDI –> MSEMSE manager

F
ra

m
e

m
es

sa
ge

F
ra

m
e

m
es

sa
ge

Discrimination
thresholding

Image server

Force-structure
analysis

Newest frame

Candidate start

Candidate finish

Candidate 0

Oldest frame

. .
 .

Shared
array

HDVI/MSE
thread

HDVI/MSE
thread

HDVI/MSE
thread

Template
library

Template
library

Template
library

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

190 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

multiresolution to reduce computation. In the first
stage the classifier is run over the entire space of pos-
sible template matches at the unenhanced image reso-
lution. The results of this classification are the starting
point for classification with the HDVI enhanced im-
agery and templates. The second-stage search space is
reduced to a volume around the answer found in the
first stage, which significantly reduces the computa-
tion needed compared to searching the whole space
with enhanced imagery.

The MSE classifier, which is designed to use any
allocated hardware, works in parallel on any number
of processors distributed on any number of net-
worked servers. The various servers used do not even
need to be running the same operating system.

Because the classification of each detection is inde-
pendent of the other detections, each detection is as-
signed to an independent process. This level of algo-
rithm segmentation results in efficient use of the
processors: the number of detections available for
processing will in general be larger than the number
of processors available.

Two components in a dispatcher/worker model
implement the classifier algorithm. The dispatcher
module, called the MSE manager, handles the com-
munications with other SAIP components shown in
Figure 9, and a worker module candidate accepts
work from the MSE manager and dispatches it a de-
tection at a time to individual processing threads.
Each candidate can run on a separate server with its
own copy of the templates.

The MSE manager is a single threaded module
that receives the frame of detections and distributes
them to the candidate processes. As the processed de-
tections are returned to the MSE manager, it places
the results in the appropriate frame and sends the
frames off to the force-structure-analysis module in
the order in which they were received. The MSE
manager keeps track of three main categories: proces-
sors available for classifying detections, frames from
which detections are retrieved and stored, and detec-
tions that have been sent off for processing.

The MSE manager has no a priori knowledge of
what process handles detections. When a process
wants to work on detections it sends a candidateDone
message to the MSE manager with no results in it.

The MSE manager adds the detection process to its
list. When the MSE manager receives a completed de-
tection (a candidateDone message) the process that
sent the message is available for processing another
detection. The MSE manager then adds the process
to its list of available processes. This technique makes
it easy to add detection processes.

Because the candidate processes can be multi-
threaded, many instances of a candidate process can
exist in the available processes list. To handle this dy-
namic data the STL class multiset stores the available
processes. When a detection is sent off for processing,
the process to which it is sent is removed from the
available processes list. When the processed detection
is received, its process becomes available again on the
MSE manager list. This scheme allows a variety of
processor configurations. If one of the detection pro-
cesses should fail, then that process would simply not
return its results, and all the other processes would be
unaffected.

A FrameAccount class keeps track of each Frame
message encountered to free the candidate processes
of any order or time constraint, to minimize code
complexity, and to allow for maximum flexibility in
allocating CPU resources. The bookkeeping of the
detections for a particular frame is done with the two
STL set classes: notSent and notDone. When a frame is
first encountered, an index for each detection to be
processed is placed in both the notDone and notSent
set. The notSent list is the place from which the MSE
manager picks detections to send. When a detection
is sent, its index is removed from this list. If a
candidateDone message is received, its index is re-
moved from the notDone list. If the notDone list is
empty, then the frame is sent off to the force-struc-
ture-analysis module.

The MSE manager queues the incoming frames so
that new frames can be received while older frames
are being processed. The frames must be sent off in
the order they are received for the benefit of other
SAIP modules that depend on this order. No limit is
placed on the number of frames that can be in the
queue. The STL list class is used to keep track of the
frames. The classifier algorithm is designed to process
as many detections as possible within a fixed amount
of time and to pass on the results even if all of the de-

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 191

The classifier makes no assumptions about the scope
of the templates; it determines which templates exist
by reading the library. This determination allows for
efficient disk usage and maximum flexibility in main-
taining the library.

Table 3 also indicates that the total library planned
for SAIP will have 349,920 templates (9 × 3 × 3 × 2 ×
30 × 72). At approximately 6 kB/template, the tem-
plates represent over 2 GB of data. This amount does
not present a disk storage problem, but it can exceed
the amount of memory dedicated to the classifier.
Consequently, we adopted the strategy of reading in
only templates that have a possibility of being used.
Of the templates read, we group them in memory by
aspect angle and class type so that all of the templates
used in a particular search reside in the same region of
memory. Thus even if the in-memory template li-
brary is larger then the physical memory available, the
memory region in use for any particular frame will be
small enough to avoid reading templates in from
swap space.

Figure 10(a) shows that templates are stored as
sparse matrices. The imagery is stored in array x ; the
coordinates of the pixel values are stored in arrays i
and j. The sparse matrix storage is a fast way to do the
comparison of the template with the detection image
while excluding non-vehicle clutter pixels that do not
contain any information about the vehicle. Other-
wise, a clutter mask would need to be stored with the
template and a test done on every template pixel be-
fore comparing that pixel to the detection image.

tections have not been processed. This feature is es-
sential in a real-time system with a greatly varying
processing load to prevent the backup of data during
times of high detection density. Two parameters limit
the number of detections that get processed. One pa-
rameter limits the number of detections to be placed
into the notSent and notDone lists; another parameter
specifies the maximum number of seconds a frame is
held for processing.

Template Library

A key design issue for the MSE classifier was the use
and storage of the templates. Individual templates
must be easily retrieved by the software and the per-
sonnel maintaining the template library. In addition,
the template library must grow and evolve as new
templates are collected. Table 3 lists the six indepen-
dent parameters that uniquely distinguish one tem-
plate from another.

The template parameters used to distinguish the
template—radar mode, squint angle, and depression
angle—are compared to the respective values of the
frame of detections being processed. Those templates
which give the best match are used as the set to
search. The parameter oversampling divides the tem-
plates into first-stage and second-stage templates.
Two other parameters—class type and aspect angle—
define the search space. The result of the search will
be the class type and aspect angle that best matches
the detection.

Because each template is described in a six-dimen-
sional space, both disk and memory storage use a six-
dimensional storage system. In both storage schemes
each template is independently specified with all six
dimensions.

The UNIX file system is used to create a six-di-
mensional database of template files. The templates
are stored in a file path in which the parameter values
are the directory names. Thus all of the templates for
radar mode Globalhawk_spot with a squint angle of
7.3° are in the directory Globalhawk_spot/7.3/. Table
3 shows the order of the parameter directories. At the
bottom of the directory tree is the actual template file
whose name is the aspect angle of the template.

This system allows easy insertion and removal of
the templates with standard UNIX file system tools.

Table 3. Template Parameterization Space

Parameter Number of expected values

(determined by data, not software)

Radar mode 9

Squint angle 3

Depression angle 3

Oversampling 2

Class type 30

Aspect angle 72

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

192 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

Figure 10(b) shows that the in-memory templates
are stored in a six-dimensional class that is inherited
from the Sparse2Darray class. The template image in-
tensities are stored as floats and the pixel coordinates
as shorts. This format was found to give the best per-
formance in the smallest memory space. The tem-
plate class definition of Sparse2Darray makes it easy
to change the data format should this ever be neces-
sary. Plates1 is a collection of Plate classes arranged by
aspect angle. Plates2 is a collection of Plates1 classes
arrange by class type or, equivalently, a two-dimen-
sional collection of Plate classes arranged by class type
and aspect angle. In this manner, the six-dimensional
Plates6 class defines the entire template library.

The IndexVector class, a special version of the STL
vector class, is a vector of pairs. The first component
of the pair specifies an index and the second compo-
nent specifies the object associated with the index.
The IndexVector.operator(index) function returns the
object that most closely matches the index. Thus a
call Plates1(53.2) returns the Plate class that has an as-
pect angle closest to 53.2°. The ExactIndexVector is
the same but returns only an object that matches ex-
actly. Thus the call Plates2(bmp2)(53.2) returns the
Plate class that has an aspect angle closest to 53.2°
from the bmp2 class. If there is no bmp2 class then it
returns an empty Plate.

The IndexVector class is an enhanced version of the
STL map class but is based on the STL vector because
the STL vector guarantees that the items will be
stored in contiguous memory. This is how templates
for a particular search are kept together in memory.

The candidate component is a multithreaded pro-
cess that receives detections for processing, distributes
the detections to processing threads, and returns the
processing results to the process that requested the
processing. The candidate component does not know
about the process that requests work. It knows only to
send the results back to the process that requested
them. This design leaves much flexibility to add both
detection dispatchers and candidate processors as de-
sired. Adding the site monitoring facility, which uses
HDVI, is simply a matter of launching an additional
candidate process that gets its messages only from the
site monitoring dispatcher. No code changes are nec-
essary. Also, the image analyst can request classifica-
tion interactively by sending a message to a candidate
process.

The candidate process is designed to be a per-
server process. Each candidate process has a copy of
the template library in memory to avoid reading tem-
plates over the network. The candidate component
launches one thread per processor on its host server.
The read-only templates are in shared memory and

FIGURE 10. C++ code for storing templates as sparse matrices according to (a) class
type and (b) storing in-memory templates in a six-dimensional class that is inherited
from the Sparse2Darray class.

Template<class Type, class IndexType> class Sparse2Darray {
Public:
 Type *x ; // values
 IndexType *i ; // ith coordinate of values
 IndexType *j ; // jth coordinate of values
 Unsigned int N ; // size of x, i, and j arrays
}

Class Plates6 : public IndexVector<RadarMode, Plates5> {} ;
Class Plates5 : public IndexVector<SquintAngle, Plates4> {} ;
Class Plates4 : public IndexVector<DepressionAngle, Plates3> {} ;
Class Plates3 : public IndexVector<Oversampling, Plates2> {} ;
Class Plates2 : public ExactIndexVector<ClassType, Plates1> {} ;
Class Plates1 : public IndexVector<AspectAngle, Plate> {} ;
Class Plate : public Sparse2Darray<float, unsigned short> {} ;

(b)

(a)

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 193

visible to all the threads. Figure 11 shows the candi-
date algorithm.

The Work class accomplishes the bookkeeping for
the candidate component. Each thread launched has
a version of the Work class. All the Work classes are
collected together in an STL vector class, WorkVector,
which resides in shared memory. Each thread exam-
ines WorkVector, selects a work area for its own use,
and sets a flag so that no other thread will use this

area. A semaphore protects this procedure so that
only one thread is selecting a work area at a time. Af-
ter this start-up procedure all of the threads have their
own section of shared memory, which the other
threads will not attempt to use.

The candidateStart message is received by the main
thread, which retrieves the detection image from the
image server. Since all the detection threads share the
same network connection, there is no advantage to

FIGURE 11. Candidate algorithm, a multithreaded process that receives detections for processing, distributes
the detections to processing threads, and returns the processing results to the process that requested the
processing. One detection thread is launched for each processor available on the server. The main thread
handles communication with the image server and places work in the shared-memory area called WorkVector.
Each detection thread owns a piece of the shared memory and completes the work placed there. When fin-
ished the detection thread returns the results to the process that originated the request.

Main thread

Look for work

Shared memory
WorkVector

Work n

Work 1

Work i

Image server

Candidate

Detection thread i

MSE manager

Read parameters
and templates

Launch threads

Receive work

First-stage
classifier

HDVI

Second-stage
classifier

Send results

Request image

Put work in
WorkVector

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

194 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

having the individual detection threads request the
imagery. The main thread decides which Work to put
the candidateStart class in by looking for a Work that
is idle.

The rest of the processing is up to the individual
detection threads. They continually monitor their
Work class until they find new work pending. The
new work starts the cascade of processing that eventu-
ally fills out the fields in the candidateDone class.
Once completed the thread sends the candidateDone
message back to the process that originated the
candidateStart message.

We assess the quality of the classifier dispatching
algorithm by determining the processor efficiency:
the time spent in calculation divided by the time
needed per calculation. This parameter measures how
well the available processors are utilized. Any unac-
counted time is spent in message passing and system
overhead of running multiple threads. Table 4 shows
the execution times for each processing stage. Each
candidate process has a 96% efficiency and the MSE
manager has a 94% efficiency. The product of these
two, 90%, is the overall efficiency.

Exploitation Management

At this point in processing, all algorithmic results
have been calculated and all corresponding imagery is
available at several resolutions in an image database.
The results from these two sources must be merged
for presentation to several image analysts. The soft-
ware that performs this merging and distribution
function is called the exploitation manager.

Exploitation-Manager Requirements

At one time, we considered organizing the software
components of the SAIP human-computer interface
around the ROI concept. Each ROI, a package of
contiguous imagery and related algorithm informa-
tion, would be presented as a separate exploitation
task to an image analyst. The ROI concept, however,
is not without drawbacks. For example, a general
problem is how to handle imagery that is not part of
any ROI. Should it be entirely unavailable to image
analysts? Should it be accessible only by exploring
outward from an ROI? Should it be available only on
demand? Should image analysts be expected to ex-

ploit non-ROI imagery at low priority? Or should all
contiguous imagery be presented to an image analyst
as it arrives, with the ROI simply serving as cue?

We eventually decided that the SAIP baseline sys-
tem should task image analysts with exploiting blocks
of contiguous imagery by using ROIs as cues and pri-
oritize the tasking of each block by using any second-
ary information in the ROI.

Each block of contiguous imagery is called an ex-
ploitable image. For spotlight-mode imagery, one
whole spotlight-mode image represents an exploitable
image. For search-mode imagery, one sequence of
search-mode image patches is organized into a se-
quence of exploitable images, called screens, each of
full range extent and with an equal (in pixel count)
cross-range extent. The typical ground-plane extent
of such an exploitable image would be around 10 km2

for Global Hawk search mode. These considerations
resulted in our defining the following requirements
for the exploitation-manager design.
1. Those scenes determined by the algorithms to

contain high-priority targets must be shown to
an image analyst as soon as possible.

2. Each image analyst must be given sufficient vi-
sual context to make informed decisions about
targets.

3. The module must keep up with the real-time
data flow of incoming data.

4. All incoming imagery must be examined, at
least at low resolution, by an image analyst.

Table 4. HDVI and MSE Processing Times

Processing Stage Execution Time (sec)

HDVI 1.61

First-stage classifier 0.34

Second-stage classifier 0.13

Total for candidate process 2.08

Total time spent in thread 2.16

Amount of time per detection 2.3
processor, measured by the
MSE manager

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 195

5. If image analysts fall behind the incoming data
rate, the system must buffer imagery and algo-
rithmic results until the analysts are ready.

6. High-resolution imagery for all targets found ei-
ther algorithmically or by image analysts must
be saved for mission review and for later real-
time retrieval.

7. Scheduling of imagery screens, subject to above
considerations, is round-robin.

Data-Driven and Image-Analyst-Driven
Portions of the Architecture

From these seven requirements for exploitation-man-
ager design we see that while imagery comes in at a
rate governed by the sensor, it is consumed by the im-
age analysts at various rates based on factors such as
interest of the target and expertise of the image ana-
lyst. We therefore decided to divide the system into
the data-driven part and the image-analyst-driven
part, as shown in Figure 12. On the left side of the
figure is the data-driven part of the system, referred to
as the exploitable-image former. It is image-analyst

independent, and must keep up with the real-time in-
put rate of the sensor as well as the number and size of
unit detections. This data-driven portion of the sys-
tem performs the following tasks: it cuts the search-
mode image stream into screens according to the im-
age boundary algorithm described below, assigns
priority to each screen, stores algorithmic results with
its associated context imagery in a database for post-
mission and subsequent mission retrieval, and
enqueues screens of imagery for the image analysts.

The data-driven segment is set into motion by re-
ceiving one of two kinds of messages from the algo-
rithmic chain. The first type of message informs the
exploitation manager that the boundary of processed
imagery has moved. The second type of message de-
livers unit detections. The data-driven portion blocks
waiting for messages from the algorithmic chain.

The image-analyst-driven portion of the system,
shown on the right side of Figure 12, apportions
screens of imagery to image analysts on request. They
are always given higher-priority imagery before lower-
priority imagery.

FIGURE 12. Exploitation-manager architecture. The exploitation manager is a collection of processes (exploit-
able-image former, router, image controller, and user-interface resource manager [UIRM]) that organize the algo-
rithm results and imagery for display to the image analyst. The processes on the left side of the diagram must run
in near real time; those on the right side respond to the needs of the image analyst.

Exploitation database

Shared
memory

Driven by
image analyst

Driven by
data

Algorithms

Request for
ROI imagery

ROI structures
 without imagery

ROI structures with imagery

Data ready message

Full-resolution and
downsampled imagery

Raw data

ROI imagery

Exploitable-image
former

Image server Image controller

Exploitable-image
references

User-
interface
resource
manager
(UIRM)

Analysts

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

196 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

FIGURE 13. Messages received by the exploitable-image
former. The sequence of messages allows the exploitable-
image former to define the exploitable images and assign
their priority. The completion messages guarantee that there
will be no more regions of interest in frames arriving before
the completion message. The ROI messages indicate that a
unit has been found.

Search-mode imagery as it comes in from the sen-
sor is continuous. We have to divide imagery among
multiple image analysts. Requirement 2 prevents us
from simply dividing the input stream into single
abutting screens of data that we could enqueue on a
master queue for each image analyst to pull off as
needed. The force-structure-analysis portion of the
algorithmic chain groups targets into units; it is con-
sidered unacceptable to cut a unit at a screen bound-
ary, since doing so deprives the analyst of context.
Thus, even if some imagery is duplicated in more
than one screen of data, presenting entire units to an
analyst at least once is essential. The general principal
is that a unit is considered exploitable in the first
screen that contains it entirely.

The above considerations determine the bound-
aries of screens of imagery, but not the order in which
they are enqueued for review by the analyst. That or-
der is determined by a queuing algorithm based on
target priority. Each target type as well as each unit
type can be categorized as high, medium, or low pri-
ority. For a given screen of data, all exploitable targets
and units are checked for priority, and the highest pri-
ority of any target or unit establishes the priority for
the entire screen. These priorities are used to deter-

mine the queue placement of a given screen while bal-
ancing several design criteria that include immediate
presentation of high-priority imagery, reasonable load
balancing among several “equivalent” image analysts,
and the need to present related sequences of images to
the same image analyst.

High-resolution target imagery must be stored in a
database to satisfy Requirement 6. This imagery in-
cludes the entire unit as defined by the force-struc-
ture-analysis algorithm plus enough surrounding im-
agery (typically 0.5 km) to provide context. This
requirement, however, frequently leads to a practical
problem. In imagery where enough units in close
proximity are present, the “padding” for the units fre-
quently overlap. When we use a naive approach that
stores all imagery for each unit and padding contigu-
ously, overlap can cause us to store several times the
total size of an exploitable image in the database. A
solution to this problem is described below.

The Exploitable-Image Former

Although current systems cause whole search scenes
to stream by image analysts in a continuous fashion,
our system divides the imagery into manageable
screens. This division allows the analyst to determine
the rate at which he or she reviews the imagery, as well
as allowing some critical imagery (imagery with high-
priority targets) to jump the queue.

The exploitable-image former blocks until it re-
ceives one of four messages from the ATR chain. Two
messages are critical for driving the system. First, the
completion message contains only the frame number.
It indicates that all units in the mentioned frame or
before it have already been sent to the exploitable-im-
age former—i.e., that all processing up to and includ-
ing that frame has been completed and the results
have already been sent so that the algorithmic results
and the imagery may be released to the image analyst.
Second, the ROI message indicates that a unit has
been found and it contains the algorithmic results in-
cluding individual targets, their classification, and the
classification of the units.

Figure 13 shows a typical sequence of messages.
ROI messages are emitted only when the force-struc-
ture-analysis module is certain that all targets in a
unit have been seen. This event triggers two actions.

1Time

Image
frame

boundaries
Completion messages

2 3 4

ROI messages

5

21

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 197

First, the necessary high-resolution imagery associ-
ated with the ROI is retrieved to be placed in the ROI
database. Second, the ROI is placed into an exploit-
able-image structure. The message that triggers the
largest amount of activity is the Completion message.
Because it tells us that there are no new data to the left
of our current position in the strip, we can emit an ex-
ploitable image whose width is equivalent to that of
an image-analyst screen.

What drives the design is our earlier requirement
that an image analyst should see each unit once in its
entirety on a single screen. This necessitates readjust-
ing boundaries so that a unit only partially revealed in
an initial screen is guaranteed to be seen completely
in a later screen.

Consider the strip illustrated in Figure 14. We
draw an imaginary left boundary for the exploitable
image at one screen width to the left of our current
screen position. If that line cuts a unit or its padding,
then we move the left boundary back to the first
blank region to the left of our initial guess and place
the right boundary at one screen width away from the
left boundary. This repositioned exploitable image is
then emitted, when possible, to the same image ana-
lyst who saw it in partial form in the previous screen.
Now the unit, seen entirely, is deemed exploitable.

The story does not end there. If a right boundary

cuts an ROI, the ROI is labeled unexploitable and the
partial unit is shown to the image analyst for context
purposes but cannot be altered. The image analyst
can view the entire ROI in the next exploitable image.

Now that the boundaries of the exploitable image
have been determined, the exploitable-image priority
must be set. All the units that are labeled exploitable
within the image are checked. Each target type is
checked to see if it is low, medium, or high priority.
Then the unit types are also checked. The aggregate
priority for the exploitable image is determined by
taking the maximum priority for all the targets and
units. Finally, the strip is divided into exploitable im-
ages that are stored in a database and then sent to a
queue managing process.

Once an exploitable image is formed, it includes
both image boundaries and a list of force units that
are enclosed within the boundary. Some force units
within an exploitable image are totally enclosed
within the boundaries of the image, and some
straddle boundaries. High-resolution imagery, in-
cluding padding to provide context, must be saved for
each unit as well as for the algorithmic results. The is-
sue of providing context padding for each chunk of
ROI imagery leads to a complication. Certain ex-
ploitable images are rich in units. The padding of
each unit to include 0.5 km on each side can lead to
significant overlap in imagery, as shown in Figure 15.

Our solution involves the use of tiles. A tile size,
typically 256 × 256 pixels, is chosen and an exploit-
able image is divided into a grid of tiles, as in Figure
15. The first ROI is stored with all its tiles in the data-
base and the ROI is given a list of pointers to its tiles.
For each successive ROI that is stored, the database is
checked on a tile-by-tile basis to see if that tile has al-
ready been stored and cached. If it has, the new ROI
is given a pointer to the existing tile for its list. Other-
wise, a new tile is stored and a pointer to it is saved
with the ROI. This arrangement guarantees that the
amount of high-resolution imagery stored cannot ex-
ceed the size of the exploitable images.

The database stores (1) the frame objects for every
frame completed by the force-structure-analysis mod-
ule; (2) tile objects for imagery covering a unit; (3)
ROI objects containing algorithmic results for a unit;
and (4) exploitable images that contain the bound-

FIGURE 14. Boundary readjustment for exploitable image. A
unit must always be presented entirely within an exploitable
image. Boundaries are adjusted to include the entire exploit-
able image, even at the expense of displaying some imagery
twice.

Screen width

Units

Exploitable

Unexploitable

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

198 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

aries of the exploitable image and pointers to all the
ROIs contained by it.

The data needed to construct the above objects are
emitted asynchronously from the force-structure-
analysis module. While frame objects come in at a
relatively steady rate, depending only on the radar
mode, the remaining objects are completely data de-
pendent, and form a size-based hierarchy—several
tiles are needed to make up a unit and from zero to
many units will be contained within an exploitable
image. Resource utilization becomes an issue. We can
wait until the end of an exploitable image before we
store anything in the database, but doing so causes re-
sources like data channels to imagery and access to
the database to go fallow until the end of an exploit-
able image, at which time large amounts of data will
have to be transported from the image feed and to the
database on disk. Therefore, a scheme was devised to
put objects into a database as soon as they can be
formed, and to put container objects into a database
with references to objects already in a database.

An in-memory cache of pointers for already seen
tiles is kept for quickly retrieving references for tiles
for new incoming ROIs. Each frame is added to the
database as it comes in. As an ROI is emitted, the tile
cache is checked to see if any new tiles need to be re-
trieved and put into the database and added to the

cache table. The ROI itself, including the algorithmic
results, is then added to the database and placed on a
list of ROIs to be added to the exploitable image,
which is then formed when a frame completion mes-
sage indicates that we have reached the required right-
hand boundary.

Implicit in the description above is the idea that
sometimes an object resides in local memory (referred
to as transient memory), in database storage (referred
to as persistent memory), or in both. Typical classes
contain C-style pointers that work only with memory
references. We find it useful to have algorithms work
in such a way that an object in memory is accessed
directly and an object in the database is retrieved.
Furthermore, if a copy is made, necessary reference
counts to both the memory and database versions
should be added independently. This encapsulation
of the data-referencing function and the copying
function is achieved through the use of specially de-
signed smart pointers that keep references to both the
transient and/or persistent copies of data. Issues such
as accessing database data only within transactions are
also hidden within these smart pointers, which form a
uniform interface to the database.

Exploitable images are queued for the analysts.
The design of the queuing manager was based on the
following assumptions. First, exploitable images exist
in three priorities (high, medium, and low). High-
priority images are always handled before medium-
priority images, which are always handled before low
priority images. Second, all image analysts are equally
capable of handling any imagery, and all other things
being equal, the system will attempt to distribute the
load among the analysts. Third, we give each image
analyst analyzing a sequence of nearby targets as
much context as possible.

If we had only one priority for exploitable images,
the solution would be well known. We would have a
single queue from which all three analysts would re-
move nodes. Provided that a semaphore protects the
end of the queue against a software component mo-
nopolizing the system, we could satisfy all three of the
above assumptions. Priorities could be added by
maintaining three separate queues, and each con-
sumer could consume from the highest-priority
queue with elements. This arrangement violates the

FIGURE 15. Tile storage and caching scheme for ROI imag-
ery. All image tiles surrounding the ROIs at the left and right
are stored and cached. By the time the center ROI is pro-
cessed, many image tiles have already been stored.

No imagery stored

Imagery stored, but no cache hits

Cache hits

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 199

third assumption involving context. If an image ana-
lyst first sees only part of a unit and it is deemed
unexploitable, we want to send the entire unit to the
same image analyst as part of the next exploitable im-
age. If we simply place the entire unit on a common
queue, there is no guarantee that it will go to the same
image analyst. We could have linked the subunit and
unit, but we did not want to complicate the queue
data structures. Therefore, each image analyst was
given a triplet of queues, and exploitable images were
placed on each queue in a round-robin fashion. It
should be noted that the nodes themselves contain
only image boundaries and database references to al-
gorithmic results, but not imagery. Therefore, the
queues can grow quite long without exhausting
resources.

User-Interface Resource Manager

The user-interface resource manager (UIRM) acts as
an interface between an X-Windows-based compo-

nent called the human-computer interface (HCI) and
the rest of the SAIP system. The HCI presents results
to the user and responds to user requests. To service
these requests, the HCI must obtain data from vari-
ous external processes with minimal interference and
delay for the user. The HCI and the UIRM are
threads within the same process; they communicate
via shared memory and pipes. These mechanisms are
similar to those used in algorithm components, so
that the different threads operate as independently as
possible to minimize any delays in user interactions
with the screen. Figure 16 shows the UIRM with its
many external interfaces.

The UIRM uses four types of ObjectStore [10] da-
tabases: map, signal intelligence report (SIGINT),
initial phase interpretation report (IPIR), and ROI.
The SIGINT database maintains tactical signal intel-
ligence reports, and the IPIR database maintains
IPIRs. The database that the UIRM interfaces with
most frequently is the ROI database. It contains ex-

FIGURE 16. The user-interface resource manager (UIRM) external interfaces. The UIRM must coordi-
nate many kinds of data for display to the image analyst, and store the analysts’ results. The UIRM uses
four types of ObjectStore databases: map, signal intelligence report (SIGINT), initial phase interpreta-
tion report (IPIR), and ROI. The SIGINT database maintains signal intelligence reports, and the IPIR
database maintains initial phase interpretation reports.

Image
receiver

Image
controller

Image
server

Object-level
change

detection

ObjectStore
databases

HCI

Parameter
manager

Next requests,
IPIR requests

Exploitable
images, maps,

IPIRs, SIGINTs

Confirmation
messages

Imagery

Exploitable-
image

references

Thumbnail
imagery

Mission
parameters

Exploitable
images,
maps,

IPIRs, SIGINTs,
thumbnail

imagery

UIRM

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

200 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

ploitable images and their associated ROIs.
Figure 17 shows how the UIRM process is com-

posed of four threads—HCI, IPC, UIRM input, and
UIRM output—that communicate via shared
memory and pipes. The HCI thread is an X-Win-
dows-based task that responds to image-analyst in-
puts. The IPC thread, which is created automatically
when the SAIP-IPC library is initialized, is respon-
sible for the transfer of data between the UIRM pro-
cess and its external processes. Because the major
function of the UIRM is to service HCI requests for
external data, the UIRM input and output threads
form the greater part of the UIRM process.

The input thread is responsible for processing mes-
sages received, via SAIP IPC, from external processes.
It is activated by the IPC thread when a message is re-
ceived for thumbnail imagery (highly downsampled
imagery), a reference to an exploitable image, down-
sampled imagery, or full-resolution imagery. Once
the message is deciphered, the input thread notifies
either the output thread or the HCI thread, via a
pipe, that data have been received.

The output thread is responsible for servicing re-

quests from the HCI thread. It sends requests for data
to external processes, and when notified by the input
thread that data has been received, it notifies the HCI
thread. The output thread is also responsible for all
database access for the UIRM process. The output
thread is activated by receipt of a message on the pipe
from the HCI or input threads. The primary message
that it receives from the HCI thread is the Next re-
quest, which is discussed below. The other two types
of requests that the UIRM can receive from the HCI
are related to IPIRs.

With the exception of the image receiver, commu-
nication between the UIRM and the rest of its exter-
nal processes is triggered by requests from the HCI
component. The UIRM receives unsolicited thumb-
nail imagery from the image receiver at regular inter-
vals. This section describes the requests that the
UIRM can receive from the HCI, and explains the
communication that results between the UIRM and
its external processes in order to service these requests.

The UIRM receives HCI requests for data via a
pipe. A pipe is used because the requests are only a
few bytes and the pipe allows multiple requests to be

FIGURE 17. UIRM architecture diagram. The UIRM process has four threads to coordi-
nate movement of data between databases and the human-computer interface (HCI).
The UIRM input thread is responsible for processing messages received, via SAIP IPC,
from external processes. The output thread is responsible for servicing requests from
the HCI thread, primarily the Next request, and maintaining all database access for the
UIRM process. The HCI thread is an X-Windows-based task that responds to image-
analyst inputs. The IPC thread, which is created automatically when the SAIP IPC
library is initialized, is responsible for the transfer of data between the UIRM process
and its external processes.

Output
thread

Input
thread

HCI
thread

IPC
thread

Imagery requests,
exploitable-image
requests

ExpIoitable images,
maps, imagery,
SIGINTs

Thumbnail imageryThumbnail imagery,
exploitable-image
references, imagery

Exploitable-image
references, imageryInbound

messages

Next, IPIR
requests

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 201

queued correctly. The UIRM obtains the necessary
data either from external processes or from
ObjectStore databases. The UIRM stores the ob-
tained data in shared memory and notifies the HCI,
via the pipe, that it is available. The UIRM can re-
ceive three requests from the HCI via a pipe:
1. Next request—the image analyst presses a but-

ton on the HCI screen to view the next exploit-
able image. This action triggers the UIRM to
perform a series of events that ultimately result
in a delivery of information to the HCI in an ef-
ficient manner.

2. A request to submit an IPIR—this request is is-
sued by the HCI whenever the image analyst
generates an IPIR. In response to this request,
the UIRM obtains the IPIR from shared
memory, and inserts it into the IPIR database.

3. A request for a default IPIR—in response to this
request, the UIRM retrieves the default IPIR
from the database, stores it in shared memory,
and notifies the HCI, via the pipe, that the de-
fault IPIR is available.
The UIRM can be characterized as a complex data

router. Its actions, in response to the press of the Next
button, are summarized below.
1. Any modifications, additions, or deletions made

by the image analyst to existing ROIs within an
exploitable image are incorporated into the ROI
database. A message to the object-level change-
detection process confirming the nature of the
detections in the exploitable image is generated.

2. The UIRM sends a request for an exploitable
image from the ROI database to the image-con-
troller process. Some data are double buffered
(i.e., loaded before they are needed) in the
shared-memory region to improve response
time to the image analyst. The imagery associ-
ated with each ROI in an exploitable image is
not extracted from the database because the
UIRM obtains the complete image from the
image server. This arrangement improves la-
tency. Each ROI contains a list of previously
seen ROIs that overlap this one so that the
UIRM cycles through the array of ROIs associ-
ated with the exploitable image and extracts the
most recent old ROI associated with each. The

UIRM also requests downsampled imagery
(about 1 MB) from the image-server process.

3. The UIRM also sends a message to the HCI to
indicate that the double-buffered data (i.e., the
exploitable image and the downsampled imag-
ery) are available to allow the image analyst to
begin exploitation. Meanwhile, there are more
data to be loaded.

4. The UIRM requests full-resolution imagery
from the image server. This request takes a long
time to be fulfilled. The UIRM does not wait
for it to be completed, but begins to obtain ad-
ditional data required by the HCI. It obtains the
geographic boundary from the exploitable im-
age, and uses this information to extract appro-
priate SIGINT reports from the SIGINT data-
base and maps from the map databases.

5. When the full-resolution imagery is finally re-
ceived from the image-server process, the
UIRM notifies the HCI that the Next-request
processing is complete. The image analyst now
has a new exploitable image to interpret.

Initial Field Experiences

The complete SAIP hardware and software system
was assembled by the contractor team at Lincoln
Laboratory and then transferred by Northrop
Grumman to a militarized van similar to the one used
for the Enhanced Tactical Radar Correlation
(ETRAC). In March 1997 the complete system was
used to observe the Task Force XXI exercise [11] at
the National Training Center, Fort Irwin, California.
It was also used the following month to observe the
Roving Sands exercise in New Mexico [12]. Both tests
used the Advanced Synthetic Aperture Radar System-
2 (ASARS-2) sensor on the U2 aircraft. Table 5 sum-
marizes the test experience in New Mexico from the
system-reliability point of view.

The system operated reliably for all of the missions
and well within its throughput capabilities. The gen-
eral architecture of the system seemed well suited to
the task, and the image analysts seemed pleased with
the general capabilities of this prototype system.
Northrop Grumman continued development with
support of all the contractors to produce enhanced
versions of the system.

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

202 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

Acknowledgments

The image-registration components of SAIP are sup-
plied by Harris Corporation. The terrain delimita-
tion, cultural-clutter identification, spatial cluster,
and force-structure-analysis components are supplied
by Oasis Research Center. The object-level change-
detection component is supplied by Atlantic Aero-
space Electronics Corporation.

We would like to acknowledge the many contribu-
tors to the design and development of SAIP here at
Lincoln Laboratory and other companies. Of special
mention are Sandra Crocker, who led the design of
the baseline SAIP human-computer interface, the
destination of all the results for the software described
in the article; Michael Pagels of Oasis Research Cen-
ter; Paul Baim and Theodore Bially of Atlantic Aero-
space Electronics; and Thomas Kerr and Jay Hackett
of Harris Corporation for detailed design discussions.

Table 5. SAIP System Flight Test Experience
in New Mexico

Flight Date Collection Time Total Image

in 1997 (hr) Batches

14 March 4 244

26 March 3 287

26 March 3 317

27 March 3.75 196

27 March 3 151

21 April 3.5 142

22 April 3.5 192

Total 23.75 1529

R E F E R E N C E S
1. “HAE UAV Concept of Operations,” DARPA, 1995.
2. M.T. Fennell, B.B. Gragg, and J.E. McCarthy, “Analysis of

Advanced Surveillance Architectures,” Toyon Research Cor-
poration, Dec. 1994.

3. C. Lam, “Exploitation Considerations for the High Altitude
Endurance Unmanned Aerial Vehicle (HAE UAV) System,”
DARPA, Aug. 1994.

4. R. Bates-Marsett, “CONOPS Outline for Imagery Analysis
Function,” working document from MRJ Corp., Jan. 1995.

5. R.J. Vetter, “ATM Concepts, Architectures, and Protocols,”
Commun. ACM 38 (2), 1995, pp. 30–38, 109.

6. S.C. Crocker, D.E. Kreithen, L.M. Novak, and L.K. Sisterson,
“A Comparative Analysis of ATR Operating Parameters and
Processing Techniques,” MIT Lincoln Laboratory Report MS-
10323, published in 39th Annual Tri-Service Radar Sympo-
sium, June 1993.

7. A.A. Stepanov and M. Lee, “The Standard Template Library,”
Technical Report HPL-94-34, Apr. 1994, revised 7 July 1995.

8. M. Nelson, C++ Programmer’s Guide to the Standard Template
Library (IDG Books, Foster, Calif., 1995).

9. L.M. Novak, G.J. Owirka, W.S. Brower, and A.L. Weaver,
“The Automatic Target-Recognition System in SAIP,” Linc.
Lab. J. 10 (2), 1997, pp. 187–203.

10. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The
ObjectStore Database System,” Commun. ACM 34 (10),
1991, pp. 50–63.

11. See the Internet web page http://call.army.mil/call/exfor/ted/
toc.htm

12. See the Internet web page http://www.forscom.army.mil/
Rsands/overview.htm

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

VOLUME 11, NUMBER 2, 1998 LINCOLN LABORATORY JOURNAL 203

.
investigates and develops
systems for synthetic aperture
radar (SAR) and moving target
indicator (MTI) data acquisi-
tion, processing, and exploita-
tion as a staff member of the
Surveillance Systems group.
He joined Lincoln Laboratory
in 1989, after managing teams
in the private sector to build
software for microprocessor
development, materials testing,
and real-time hospital infor-
mation systems. Before that,
he researched experimental
high-energy nuclear physics at
Harvard University. Keith
holds an M.A. degree in natu-
ral sciences from the Univer-
sity of Cambridge in England,
and a Ph.D. in high-energy
nuclear physics from Imperial
College of Science and Tech-
nology in London. He belongs
to the American Physical
Society and the Association for
Computing Machinery.

 .
is a staff member of the Sys-
tems Analysis group. He
performs systems analysis and
designs software for under-
ground facilities. John has also
worked in systems analysis and
software design for Alphatech
in Burlington, Massachusetts.
He holds B.S., M.S., and
Ph.D. degrees in electrical
engineering from Stanford
University in California.

 .
is a staff member in the
Surveillance Systems group,
developing real-time image-
exploitation algorithms and
software. Before joining Lin-
coln Laboratory in 1996, Sam
was a research consultant with
the Department of Radiology
Research at Beth Israel Hospi-
tal, Harvard Medical School,
where he conducted structural
and chemical magnetic reso-
nance imaging (MRI) studies
of cartilage degradation in
osteoarthritis. From 1990 to
1995 he worked as an applica-
tions scientist at Bruker In-
struments, a scientific instru-
ments manufacturer. There he
developed software, hardware,
and research techniques for use
in a wide variety of problems
including microscopic MRI,
high-resolution imaging of
solid materials, real-time image
acquisition in dynamic bio-
logical and physical systems,
imaging of human cognitive
functioning, and multidimen-
sional image analysis and
display. From 1988 to 1990,
Sam worked as a postdoctoral
research associate at Rensselaer
Polytechnic Institute, studying
the magnetic and electrical
properties of novel high-
temperature superconductors.
Sam holds a B.S. degree in
physics from Rensselaer Poly-
technic Institute in Troy, New
York, and M.S. and Ph.D.
degrees in physics from Brown
University in Providence,
Rhode Island. He is a member
of the American Physical
Society.

 .
is a staff member in the Sensor
Exploitation group. His work
in software engineering focuses
on parallel software systems
design and implementation.
He joined the Laboratory in
1985, after working with
network system software for
the Canadian Educational
Microcomputer Corporation
(CEMCORP). He holds
B.A.Sc. and M.A.Sc. degrees
in electrical engineering from
the University of Toronto in
Ontario, Canada.

• SISTERSON, DELANEY, GRAVINA, HARMON, HIETT, AND WYSCHOGROD
An Architecture for Semi-Automated Radar Image Exploitation

204 LINCOLN LABORATORY JOURNAL VOLUME 11, NUMBER 2, 1998

is an associate member of the
Radar Imaging Techniques
group. She joined the Labora-
tory in 1993, and her current
research work involves analyz-
ing satellite images. From
1986 to 1992 she held a
technical staff position at
Raytheon, where she was
involved in the implementa-
tion of large-scale real-time
hardware and software systems
for detection and discrimina-
tion of infrared (IR) targets.
From 1992 to 1993 she
worked at Textron, where she
continued her work analyzing
real-time algorithms for detec-
tion of moving IR targets.
Margarita received a B.S.
degree in electrical engineering
from the University of Massa-
chusetts at Amherst.

is a former associate staff
member of the Information
Systems Technology group. He
now designs a risk manage-
ment database system for
BankBoston’s Treasury Systems
division. Dan worked at the
Laboratory from 1989 to
1998. He also worked in the
Air Traffic Surveillance group,
designing and implementing a
detection and tracking algo-
rithm for an airport surface
surveillance system that was
subsequently licensed to the
Raytheon Corp. and incorpo-
rated into a surveillance system
provided to the government of
India. Dan also developed a
Perl-based system for detecting
illegal transitions to root from
recorded session transcripts.
Before coming to the Labora-
tory, he worked on optics and
image-processing projects at
Sparta Systems, and on vision-
guided robotics projects at
Draper Laboratories. He holds
a B.A. degree in physics from
Columbia University in New
York; an M.A. degree in phys-
ics from the State University of
New York (SUNY) at Stony
Brook; and an M.S. degree in
computer science from the
Courant Institute of New York
University.

