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L    played a major role
in developing wideband radar systems. This
development was motivated by the successful

application of high-power instrumentation radars to
research in ballistic missile defense and satellite sur-
veillance. Today’s wideband imaging radars perform
real-time discrimination and target identification.
Advanced signal processing methods have improved
the resolution of processed radar return signals, fur-
ther improving wideband-radar technology.

Figure 1 illustrates a ballistic missile defense envi-
ronment that relies on accurate target identification
and size-shape estimation, two capabilities critical to
many areas of national defense. The primary goal of a
defensive radar system is to intercept and destroy a
threat target. This objective is complicated by the
presence of many objects in the radar field of view,
some purposefully designed to deceive radar discrimi-
nation algorithms. Decoys, for example, may have ra-
dar cross section (RCS) levels similar to those of the
warhead, which makes robust target selection based
solely on RCS levels difficult. Narrowband radars
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■ Lincoln Laboratory has developed an approach for estimating the ultra-
wideband radar signature of a target by using sparse-subband measurements.
First, we determine the parameters of an appropriate signal model that best fits
the measured data. Next, the fitted signal model is used to interpolate between
and extrapolate outside the measurement subbands. Standard pulse-compression
methods are then applied to provide superresolved range profiles of the target.
A superresolution algorithm automatically compensates for lack of mutual
coherence between the radar subbands, providing the potential for ultra-
wideband processing of real-world radar data collected by separate wideband
radars. Because the processing preserves the phase distribution across the
measured and estimated subbands, extended coherent processing can be applied
to the ultra-wideband compressed radar pulses to generate superresolved radar
images of the target. Applications of this approach to static test range and field
data show promising results.

usually lack sufficient range resolution to allow a di-
rect measurement of target length, although they are
generally useful for tracking and coarse motion esti-
mation. Unlike narrowband radars, wideband radars
allow a much larger suite of target discrimination al-
gorithms to be employed for real-time range-Doppler
imaging and phase-derived range estimation.

Figure 2 illustrates a typical narrowband-radar and
wideband-radar target response. The narrowband re-
sponse indicates the position of the target as a whole
with the peak RCS corresponding to the electromag-
netic size of the target. The wideband response pro-
vides resolution within the target’s range profile. Indi-
vidual scattering centers are isolated into small
range-resolution cells that provide a more direct mea-
surement of the target’s size and shape.

To achieve fine range resolution, wideband field
radars utilize coded waveforms with large time-band-
width products. Wideband chirp waveforms are com-
monly used because of their ease of generation and
processing in the radar receiver. Mixing the radar re-
turn signals with a replica of the transmitted signal
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FIGURE 1. A typical ballistic missile defense environment, which demands accurate target identification and size-shape estima-
tion. Shortly after launch, the warhead and decoy separate from the main body of the missile. Radar discrimination algorithms
attempt to find the threat target by exploiting differences in size, shape, and motion dynamics between the warhead and non-
threatening objects in the radar’s field of view.

FIGURE 2. Comparison of target response—radar cross section (RCS) levels versus relative range—for a typical
narrowband radar (left) and a wideband radar (right). The narrowband response can identify only the position of the tar-
get as a whole. The wideband response provides a direct measurement of individual scatterers within the target’s
length, permitting a much larger suite of target discrimination algorithms to be employed than with narrowband radars.
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produces a baseband signal with frequency compo-
nents that are proportional to the relative range be-
tween scattering centers on the target. The baseband
signal is sampled and Fourier-transformed to provide
a range-resolved profile of the target. This process is
called pulse compression. Properties of the com-
pressed pulse, such as resolution and sidelobe levels,
depend on the extent and shape of the window func-
tion applied to the baseband signal samples. The Fou-
rier-theory relations define resolution to be inversely
proportional to the total signal bandwidth. In accor-
dance with this inverse relationship, the resolution of
the radar improves as radar bandwidth increases.

Many wideband field radars operate on these basic
principles. Figure 3 shows an aerial view of the
Kiernan Reentry Measurement System (KREMS) fa-
cility located on Kwajalein Atoll in the central Pacific
Ocean. This facility has been the most sophisticated
and important wideband-radar research center in the
United States for over thirty years [1]. The photo-

graph depicts several wideband field radars, including
the ALCOR C-band radar developed in 1970 for
the purpose of wideband discrimination research.
ALCOR utilizes a wideband chirp waveform with a
bandwidth of 512 MHz to achieve a range-resolution
capability of about 53 cm. Kwajalein’s millimeter-
wave radar can operate at the Ka-band and W-band,
and is capable of a transmission bandwidth of 2000
MHz, providing an impressive 14-cm range-resolu-
tion capability. The United States also operates high-
resolution wideband radars on ship platforms, such as
COBRA JUDY. Figure 4 shows the COBRA JUDY
S-band phased-array radar and the X-band dish-
antenna radar.

Although the field radars mentioned above provide
a high degree of range resolution, important target
features are often much smaller than conventionally
processed range-resolution cells. To improve the
range resolution of a radar, we can increase the radar
bandwidth or process the received signals with

FIGURE 3. The Kiernan Reentry Measurement System (KREMS) facility located on Kwajalein
Atoll in the central Pacific Ocean. The ALCOR C-band radar is located under the white ra-
dome in the lower left of the photograph. The millimeter-wave radar is located under the
smaller white radome near the center.
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superresolution algorithms. Cost and design limita-
tions are major drawbacks to increasing radar band-
width. Because we want to obtain higher-resolution
radar data without incurring significant hardware
costs, we researched robust superresolution algo-
rithms that can be applied to a wide range of real-
world data sets.

In 1990, Lincoln Laboratory developed a superres-
olution algorithm that can significantly improve the
range resolution of processed radar return signals.
The algorithm, called bandwidth extrapolation
(BWE) [2, 3], increases the effective bandwidth of a
radar waveform by predicting the target’s response at
frequencies that lie outside the measurement bands.
For radar applications, BWE typically improves the
range resolution of compressed radar pulses by a fac-
tor of two to three. BWE often provides striking im-
provements in the quality of wideband-radar images.
As an example, Figure 5(a) shows a radar image of a
simulated three-point target without BWE processing
applied. The resolution is insufficient to resolve the
target points. Figure 5(b) shows the same target with
BWE processing applied to the compressed radar
pulses, first in the range dimension and then in cross-
range. The BWE processed image is better resolved,
allowing us to analyze and identify the target.

Although BWE improves resolution, the approach

has the following inherent limitations. The algorithm
is based on signal processing models that characterize
a complex target as a collection of point scatterers,
each having a frequency-independent scattering am-
plitude. BWE algorithms are often sufficient for typi-
cal wideband signal processing in which the wave-
forms have a small fractional bandwidth compared
with the center frequency. Over ultrawide frequency
bands in which the radar bandwidth is comparable to
the radar center frequency, however, the scattering
amplitude of the individual scattering centers can
vary significantly with frequency. Spheres, edges, and
surface joins are examples of realistic scattering cen-
ters that exhibit significant amplitude variations as a
function of frequency. Ultra-wideband (UWB) signal
models must be flexible enough to accurately charac-
terize these non-pointlike scattering centers.

The ability to measure or estimate a target’s UWB
radar signature is useful for many radar-discrimina-
tion and target-identification applications. Not only
is fine range resolution obtained, but the amplitude
variations of isolated scattering centers are useful for
identifying the type of scattering center. Many ca-
nonical scattering centers are known to exhibit f α-
type scattering behavior; e.g., the RCS of flat plates,
singly curved surfaces (cone sections), and doubly
curved surfaces (sphere) vary as f 2, f 1, and f 0, re-

FIGURE 4. The COBRA JUDY ship with a clear view of the S-band phased-array and
X-band dish-antenna radars.
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spectively. The RCS of a curved edge varies as f –1,
whereas a cone vertex varies as f –2. One goal of UWB
processing is to detect these frequency-dependent
terms in the measured data and to exploit them for
scattering-type identification.

Building a field model of a true UWB radar can be
expensive. A more practical approach is to use con-
ventional wideband radars to sample the target’s re-
sponse over a set of widely spaced subbands, as illus-
trated in Figure 6. In this figure, the COBRA JUDY
S-band and X-band radars are used to collect coher-
ent target measurements over their respective widely
spaced subbands. Coherently processing these sub-
bands together makes it possible in principle to accu-
rately estimate a target’s UWB radar signature. This

concept increases processing bandwidth and im-
proves range-resolution and target-characterization
capabilities.

To perform UWB processing, as illustrated in Fig-
ure 6, we must address a number of technical issues.
First, we need to develop a robust signal processing
method that compensates for the potential lack of
mutual coherence between the various radar sub-
bands. We must then fit an appropriate UWB signal
model to the sparse-subband measurements. The fit-
ted signal model must accurately characterize UWB
target scattering and provide for meaningful interpo-
lations or extrapolations outside the measurement
subbands. In this article, we discuss our approach to
UWB coherent processing, and then apply our UWB
coherent processing algorithms to static-range data.
We summarize the main results of this work and sug-
gest some research strategies for the future.

UWB Coherent Processing

Figure 7 illustrates an overview of our approach to
UWB coherent processing. An estimate of the target’s
UWB radar signature is obtained by coherently com-
bining sparse-subband measurements. While the fig-
ure illustrates UWB processing for only two sub-

FIGURE 5. Demonstration of bandwidth extrapolation (BWE) processing. (a) The three-point target image without BWE pro-
cessing is not resolved well enough to identify the target. (b) The three-point target image with BWE processing allows us to
identify and analyze the target.

FIGURE 6. Ultra-wideband (UWB) processing concept ap-
plied to COBRA JUDY S-band and X-band wideband signa-
ture data. S-band and X-band measurements are coherently
processed together to provide an interpolated estimate of a
target’s UWB radar signature.
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bands, it is straightforward to apply this concept to an
arbitrary number of subbands.

The illustrated process is divided into three steps:
1. Process multiband data samples from the in-

phase (I) and quadrature (Q) channels to make
the radar subbands mutually coherent.

2. Optimally fit an UWB all-pole signal model to
the mutually coherent subbands. The fitted
model is used to interpolate between and ex-
trapolate outside the measurement bands.

3. Apply standard pulse-compression methods to
the enlarged band of spectral data to provide a
superresolved range profile of the target.
Step 1 is important when applying UWB process-

ing to field data collected by separate wideband ra-
dars. Time delays and phase differences between the
radars can make them mutually incoherent. To cohere
the subbands, we fit an all-pole signal model to the
spectral data samples in each subband and adjust the
models until they optimally match. Corresponding
corrections are then applied to the underlying data
samples. This approach is based on the assumption
that the target can be accurately characterized by a
superposition of discrete scattering elements. This as-
sumption is often valid for targets that are large with
respect to radar wavelength [4–6].

In step 2, we fit a global UWB all-pole signal
model to the mutually coherent subbands. We then
use the model for interpolation and extrapolation
purposes. All-pole models are well suited for UWB
processing because they accurately characterize the
target by a superposition of discrete scattering cen-
ters, each with its own frequency-dependent term.
While all-pole models match best to signals that grow
or decay exponentially with frequency, they can also
accurately characterize f α scattering behavior over
finite bandwidth intervals.

In step 3, standard Fourier-based pulse-compres-
sion methods are used to generate a range-resolved
profile of the target. Because the UWB process is fully
coherent, superresolved radar images can also be gen-
erated by using standard techniques.

Mutual-Coherence Processing

UWB processing requires a consistent set of spectral
signals in each subband; i.e., the all-pole models for

FIGURE 7. UWB process flow to estimate the target’s UWB
radar signature. Sparse multiband data samples for the in-
phase (I) and quadrature (Q) channels are selected. Mutual-
coherence processing allows two or more independent
radar subbands to be used in the model fitting step that
follows. An all-pole signal model is fitted to the sparse-
subband data samples and used for interpolation and ex-
trapolation outside the measurement bands. Standard
pulse-compression methods are then applied to the UWB
target data.
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each subband must be consistent. This requirement is
not an issue in multiband radar systems specifically
designed to be mutually coherent. Mutual-coherence
problems will most likely occur, however, when the
subband measurements are collected by wideband ra-
dars operating independently. This section discusses a
straightforward signal processing approach that can
compensate for the lack of mutual coherence between
any number of radar subbands. The technique allows
us to apply UWB processing across a wider range of
radar platforms used in the field.

For illustration purposes, we simulate the radar re-
turns for a hypothetical target consisting of two dis-
crete scattering centers. The scattering center closer to
the radar has a scattering amplitude that decays with
frequency, whereas the scattering center away from
the radar has a scattering amplitude that grows with
frequency. The simulated spectral signal samples sn are
given by
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The frequency-sampled phase terms correspond to a
scattering-center separation of 15 cm. White Gauss-
ian noise is added to each signal sample and the sig-
nal-to-noise ratio is 20 dB.

We assume that only two subbands are available
for coherent processing of the noisy sn signal samples
illustrated in Figure 8(a). The sn signal samples in the
lower subband have been modulated by the function
e i n− π / 9 to simulate the effects of mutual incoherence;
i.e., the signal poles for the lower subband have been
rotated 20° clockwise relative to the upper-subband
signal poles. Figure 8(b) shows the corresponding
compressed pulses, which do not line up because the
subbands are not mutually coherent. In effect, mutual
coherence is seen as a consequence of uncertainty in

FIGURE 8. (a) Sparse multiband measurements of a target consisting of  two closely spaced scat-
tering centers. The amplitude of one scatterer (blue) decays with frequency, while the amplitude of
the other scatterer (red) grows with frequency. The two subbands illustrated are not mutually co-
herent. For clarity, signals from only the I channel are shown. (b) The corresponding compressed
pulses do not line up in range because the subbands are mutually incoherent.
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position and time sequencing of the separate radars.
We begin the mutual-cohering process by model-

ing the spectral signals in each subband with a super-
position of complex exponential functions. An all-
pole signal model of the form

M f a pn k
k

P

k
n( ) =

=
∑

1

is used for this purpose. As illustrated in Figure 8(a),
the lower subband contains N1 data samples, while
the upper subband contains N2 data samples. Thus
the sample index n ranges from n = 0 , … , N1  – 1 for
the lower subband and from n = N – N2 , … , N – 1
for the upper subband. The all-pole model param-
eters are physically meaningful. The number of scat-
tering centers and their complex amplitudes are de-
noted by P and ak , respectively. The poles pk
characterize the relative ranges and frequency decay
of the individual scattering centers; the f α frequency
decay model indicated earlier is approximated by an
exponential variation over the band of interest. The
subbands can be mutually cohered by fitting a sepa-
rate all-pole model to each subband and adjusting the
models until they are consistent.

Our approach to all-pole modeling utilizes the sin-
gular-value decomposition of the forward-prediction
matrix. Specifically, the forward-prediction matrix for
the lower subband is given by
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where L denotes the correlation window length and
the sn denote the frequency-domain radar measure-
ments. The special form of matrix H1 is called a
Hankel matrix, which is associated with the transient
response of a linear-time-invariant system. Subspace
decomposition methods exploit the eigenstructure of
Hankel matrices to estimate the parameters of linear-
time-invariant signal models [7]. Using a correlation
window length L = N1/ 3 generally provides for robust
parameter estimates. Larger values of L can provide

better resolution, but the estimates may not be as ro-
bust to noise. The forward-prediction matrix H2 for
the upper subband, constructed in a similar way, is
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To estimate the all-pole model parameters for the
lower and upper subbands, we apply the singular-
value decomposition to H1 and H2, respectively,
which decomposes H1 and H2 into the product of
three matrices:

H U S V1 1 1 1= ′

and

H U S V2 2 2 2= ′ ,

where the prime symbol denotes the Hermitian op-
erator. The S matrices contain the singular values for
the two subbands. The U and V matrices contain the
corresponding eigenvectors. In particular, the col-
umns of the V matrices correspond to the eigenvec-
tors of the respective subband covariance matrices. By
decomposing H1 and H2 in this way, we can estimate
the all-pole model parameters for each subband with
the following four-step process:
1. The singular-value matrices S1 and S2 are used

to estimate the model orders P1 and P2 for the
two subbands.

2. P1 and P2 are used to partition V1 and V2 into
orthogonal subspaces: a signal-plus-noise sub-
space and a noise subspace. A modified root-
MUSIC (multiple signal classification) algo-
rithm described below is applied to estimate
the signal poles for each subband.

3. The all-pole model amplitude coefficients ak  are
determined by using a linear least-squares fit to
the measured data.

4. The resulting subband signal models are ad-
justed to optimally match.
In step 1, the singular values in S are used to esti-

mate appropriate model orders for the two subbands.
The relatively large singular values in S correspond to
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strong signal components, while the small singular
values generally correspond to noise. For low noise
levels, there is a sharp transition between the large
and small singular values. The transition point can be
used as an estimate of the model order. At higher
noise levels the transition from large to small singular
values is smooth, making accurate model-order
estimation more difficult. The Akaike Information
Criterion (AIC) [8, 9] and Minimum Description
Length (MDL) [10, 11] are two model-order estima-
tion methods that work well in these cases. Figure 9
shows the singular-value spectra for the two-subband
data set in Figure 8. The AIC and MDL model-order
estimates are both correctly equal to two.

Once the model orders P1 and P2 have been esti-
mated, we proceed to step 2, in which the subspace
decomposition properties of V1 and V2 are used to es-
timate the dominant signal poles for each subband.
The matrices V1 and V2 are partitioned into orthogo-
nal signal-plus-noise and noise subspaces,

V V V1 1 1= [ ]sn n

and

V V V2 2 2= [ ]sn n .

The partitioning is performed so that V1
sn and V2

sn

have P1 and P2 columns, respectively. The noise sub-
space matrices V1

n  and V2
n  have L – P1 and L – P2

columns, respectively. Pole estimates for each
subband are obtained by employing a modified root-
MUSIC algorithm. Matrices A1 and A2 are defined
from the noise subspace vectors for each subband as

A V V

A V V

1 1 1

2 2 2

= ′

= ′

n n

n n .

We denote a1i as the elements of the first row of A1
and b1i as the elements of the first row of A2. These
elements are used to form the polynomials A1(z) and
A2(z) given by

FIGURE 9. Singular-value spectra for the two-subband data
set in Figure 8. The Akaike Information Criterion (AIC) and
Minimum Description Length (MDL) model-order estimates
are equal to two. The signal-to-noise ratio is 20 dB.

FIGURE 10. Pole estimates for the two-subband data set illustrated in Figure 8. The dominant signal poles in
the lower and upper subbands are shown in blue and red, respectively.
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The roots of A1(z) and A2(z) correspond to pole esti-
mates for bands 1 and 2, respectively.

This approach can be viewed as a variant of the tra-
ditional root-MUSIC algorithm described in Refer-
ence 12. Our approach has the important advantage
of providing high-resolution pole estimates while
eliminating the symmetric pole ambiguities that re-
sult from the traditional root-MUSIC approach.

Pole estimates can also be obtained by applying the
spectral-estimation techniques described in Refer-
ences 13 through 19. In our algorithm, the pole esti-
mates are obtained for each subband by applying the
modified root-MUSIC algorithm to V1

n  and V2
n . The

root-MUSIC algorithm finds poles corresponding to
the signal vectors that are most orthogonal to the

noise-subspace vectors. In general, the f α variation of
the signal model leads to poles that are displaced from
the unit circle in the complex z-plane. Over each
subband, however, the variation of f α is small, so the
dominant signals correspond to poles that lie close to
the unit circle. After estimating model orders in step
1, we use the P1 poles closest to the unit circle in step
2 to characterize the dominant lower-subband signals
and the P2 poles closest to the unit circle to character-
ize the dominant upper-subband signals.

Figure 10 shows the resulting pole estimates for the
two-subband data set illustrated in Figure 8. The
poles shown in blue and red are considered the domi-
nant signal poles for the lower and upper subbands,
respectively. Notice that a lack of mutual coherence
prevents the signal poles in the lower subband from
lining up with the signal poles in the upper subband.

In step 3, we estimate the all-pole amplitude coef-
ficients ak  for the lower and upper subbands. An op-
timal set of amplitude coefficients can be found by
solving a standard linear least-squares problem. Step 3

FIGURE 11. Mutual-coherence processing applied to the sparse-subband data set illustrated in
Figure 8. Lower- and upper-subband signal models are shown before (a) and after (b) mutual-
coherence processing. The mutually cohered signal models are consistent over much of the UWB
processing interval.
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completes the all-pole modeling process for each
subband. The lower- and upper-subband signal mod-
els are denoted by M1( fn ) and M2( fn ), respectively.

In step 4, the subband signal models M1( fn) and
M2( fn ) are adjusted until they optimally match.
There are many ways to accomplish the match. A
straightforward method involves modulating and
phase-aligning the lower-subband signal model until
it closely matches the upper-subband signal model.
For example, the coherence function

C AM f e M fn
i n

n
n

N

= ( ) − ( )
=

−

∑ 1 2

2

0

1
∆θ

can be minimized with respect to the pole rotation
angle ∆θ and complex amplitude coefficient A. An-
other approach for matching the subband signal
models is to find an appropriate rotation matrix that
best aligns the signal subspace vectors contained in V1
and V2 . Whichever method is employed, the subband
model-alignment process tends to promote a strong
sense of mutual coherence between the two subbands.

In Figure 11(a), we show the mutually incoherent
subband signal models. In Figure 11(b), an optimal
pole rotation angle ∆θ* and complex amplitude coef-
ficient A* were applied to the lower-subband signal
model and corresponding data samples; i.e., the
lower-subband data samples were replaced by mutu-
ally coherent data samples given by

˜ , , , .[ * arg( *)]s s e n Nn n
i n A= = −+∆θ 0 11K

Although the two signal models in Figure 11(b)
may not entirely agree, it is important to recognize
that they have approximately the same signal poles.
The corresponding all-pole model coefficients ak ,
however, significantly differ. The lower subband fa-
vors the decaying signal component, whereas the up-
per subband favors the growing signal component.

UWB Parameter Estimation and Prediction

Once the radar subbands have been mutually co-
hered, a global all-pole signal model is optimally fit-
ted to the measured data. Our approach determines
the all-pole model parameters that minimize the cost
function J given by

J q s M fn n n
n

= − ( )∑
2

.

The index n ranges over all of the available data
samples. The coefficients qn are used to weight the
measurements appropriately. The function J measures
the total weighted error between the model given by

M f a pn k k
n

k

P

( ) =
=

∑
1

and the mutually coherent data samples in each
subband.

Minimizing J with respect to the all-pole model
parameters is a difficult nonlinear problem with no
closed-form solution. Brute-force numerical solu-
tions are not feasible because of the potentially large
number of signal parameters that must be estimated.
Figure 12 illustrates an alternative approach to solv-
ing this dilemma. Initial estimates of the all-pole
model parameters are obtained by using the tech-
nique based on singular-value decomposition. These
initial estimates are then iteratively optimized by us-
ing a standard nonlinear least-squares algorithm, such
as the Newton-Raphson algorithm. (Detailed infor-
mation about the Newton-Raphson algorithm can be
found in many standard texts on numerical analysis
[20].) If the initial parameter estimates are close to
optimal, the standard nonlinear least-squares algo-
rithm rapidly converges to the all-pole model param-
eters that minimize J.

Many methods will give an initial estimate of the
global all-pole model parameters. One method is to
construct the multiband prediction matrix given by

H
H

H
=











1

2

.

The submatrices H1 and H2 correspond to the for-
ward-prediction matrices for the lower and upper
subbands, respectively. We call this approach sub-
aperture processing because it combines the data
samples from both subbands, providing the potential
for robust parameter estimates from noisy data.

It is also possible to obtain multiband parameter
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estimates by allowing for cross-correlation between
the subbands, i.e., by defining H as

H H H= [ ]1 2 .

We refer to this method as extended-aperture pro-
cessing, which provides the potential for true UWB
resolution. However, the resulting pole estimates are
typically more sensitive to noise than those from
subaperture processing. In principle, the two meth-
ods—subaperture processing and extended-aperture

processing—can be combined to provide robust
high-resolution estimates of the dominant signal
poles. In both cases, multiband parameter estimates
are obtained by decomposing H into the product of
three matrices:

H USV= ′ .

An estimate P̂  of the model order is obtained by
applying the AIC or MDL techniques to the spec-
trum of singular values contained in S. For the sparse-
subband data set illustrated in Figure 11(b), both the
AIC and MDL model-order estimates are correctly
equal to two. The model-order estimate is used to
partition V into orthogonal signal-plus-noise and
noise subspaces. Initial pole estimates are obtained by
using the methods of a previous section, “Mutual-
Coherence Processing,” or any other superresolution
spectral-estimation technique.

Figure 13 shows a plot of initial pole estimates for
the sparse-subband data set illustrated in Figure
11(b). Including both H1 and H2 into the Hankel
matrix correctly identifies both signal poles and asso-
ciates them as f +1  and f –1  pole behavior. The two
dominant signal poles are used to initialize the New-
ton-Raphson algorithm.

This algorithm uses the initial parameter estimates

FIGURE 13. Multiband pole estimates for the mutually coher-
ent subbands illustrated in Figure 11(b). The dominant sig-
nal pole inside the unit circle corresponds to the f –1 scatter-
ing center. The dominant signal pole outside the unit circle
corresponds to the f +1 scattering center.

FIGURE 12. UWB parameter estimation. Initial parameter es-
timates are obtained by using a singular-value decomposi-
tion technique. These initial parameter estimates are itera-
tively optimized with a standard nonlinear least-squares
algorithm.
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to find the global all-pole model parameters ak and pk
that locally minimize the cost function J. The model
order P remains fixed during this iterative process and
the algorithm typically converges to a local minimum
of J in only a few iterations. We test the approach by
optimally fitting a global all-pole signal model to the
two subbands illustrated in Figure 11(b).

Figure 14(a) shows a comparison between the glo-
bal all-pole signal model and the actual signal; the all-
pole model agrees with the actual signal over the
entire UWB frequency range. The corresponding
compressed pulses are shown in Figure 14(b). The
sparse-subband compressed pulse uses the mutually
coherent radar measurements within the two sub-
bands and the global all-pole model in the vacant
band. With this approach, the two target points are
well resolved and the estimated UWB response
closely matches the actual signal.

This example also demonstrates the potential for
using all-pole signal models to accurately characterize
f α-type scattering behavior over ultrawide processing

bandwidths. In fact, the UWB pole estimates can be
transformed into equivalent estimates of the α expo-
nents for f α-type signal models. We can always find
an f α function that best matches the exponential be-
havior of an UWB signal pole over a given frequency
range. We can also derive an approximate analytical
relationship between the pole magnitudes and the
corresponding α exponents by matching the func-
tions f kα  and pk

n
at the lowest and highest UWB

frequencies. This relationship is given by

αk
kN p

N
df

f

=
− ( )
+ −











( ) log

log ( )

,
1

1 1
1

(1)

where df and f1 denote the spectral sample spacing
and lowest UWB frequency, respectively. The con-
stant N denotes the total number of UWB frequency
samples. In the two-scattering-center example dis-
cussed previously, the two dominant signal poles p1
and p2 are given by

FIGURE 14. (a) Comparison between the fitted UWB signal model (brown curve) and truth (black
curve). (b) Corresponding compressed pulses. The two scattering centers are well resolved with
the UWB model closely matching truth.
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By substituting these poles into Equation 1, we ob-
tain an accurate estimate of the true α exponents used
in the simulation. Thus the UWB pole locations pro-
vide information on scattering type. This information
is useful for analyzing the details of targets with the
viewpoint of constructing an accurate measurement-
based model.

Static-Range Experiments

In the previous section, we presented the basic con-
cepts behind our UWB processing algorithms. In this
section, we utilize static-range data to demonstrate
the applied aspects of UWB processing.

Figure 15 shows our target for the UWB process-
ing demonstration—a monoconic model of a reentry
vehicle with length of 1.6 m. The spherical nose tip of
the reentry vehicle has a radius of 0.22 cm; the nose
section is made from a solid piece of machined alumi-
num with two grooves and one seam. The first
groove—approximately 3 mm deep and 6 mm
wide—is located 22 cm from the reentry-vehicle nose
tip. The second groove is approximately 2 mm deep
and 4 mm wide, and is located 44 cm from the reen-
try-vehicle nose tip. The midbody of the reentry ve-
hicle is made from a single sheet of rolled aluminum
with one groove, one slip-on ring, and three seams.
The aluminum slip-on ring (not shown in the photo)
is approximately 5 mm thick and 10 mm wide, and is
placed 1.4 m from the reentry-vehicle nose tip.

FIGURE 16. Moment-method RCS calculations for the three
major grooves on the target, which was at a 20° aspect angle.
All three grooves exhibit the expected f 3 scattering behavior
at low frequencies, with break points that depend on the size
of the groove.

FIGURE 15. Test target for UWB processing experiments.
This monoconic model of a reentry vehicle is 1.6 m long. The
spherical nose tip has a radius of 0.22 cm. The nose section
is made from a solid piece of machined aluminum with three
grooves, two near the front of the model and one at midbody.

The reentry vehicle shown in Figure 15 is ideal for
UWB processing experiments because it has several
scattering centers that exhibit significant RCS varia-
tions as a function of frequency. Figure 16 shows a
moment-method RCS calculation for the three major
grooves on the reentry vehicle. The grooves exhibit
the expected f 3 scattering behavior at the low-fre-
quency end of the spectrum, with break points that
depend on the size of the groove.

The Lincoln Laboratory static-range radar facility
was used to collect coherent radar measurements over
a wide range of frequencies and viewing aspects of the
target. Measurements were taken from 4.64 to 18
GHz in 40-MHz increments. The target viewing
angles, relative to nose-on, ranged from –5° to 95° in
0.25° increments.

To demonstrate UWB processing, we focused on a
segment of data collected in the 12-to-18-GHz re-
gion shown in Figure 16. Figure 17(a) shows an
uncompressed radar pulse corresponding to an aspect
angle of 20°. To test our UWB processing algorithms,
we reduced the bandwidth of the uncompressed radar
pulses to two 1.0-GHz-wide subbands, as illustrated
in Figure 17(b). Figure 17(c) shows the compressed
pulses for the two subbands and for the fullband data
set. The bandwidth of the two subbands is insuffi-
cient to resolve many scattering centers on the target,
while the fullband compressed pulse resolves all the
significant scattering centers on the target. The pur-
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pose of this experiment was to use UWB processing
to obtain a result highly consistent with the fullband
result. We then demonstrated the ability to coher-
ently process the subband measurements so that we
can accurately estimate the target’s UWB response.

Figure 18 shows the UWB pole estimates obtained
by applying the sparse-subband spectral-estimation
technique discussed earlier in the section entitled
“UWB Coherent Processing.” The pole locations are
consistent with the physical scattering centers on the
target. The pole corresponding to the nose-tip re-
sponse is close to the unit circle, indicating it has a
nearly constant RCS as a function of frequency. The
grooves and slip-on ring have non-constant RCSs as a
function of frequency; the corresponding poles are ei-

FIGURE 17. (a) Uncompressed radar pulse of  the test target shown in Figure 15 with
viewing aspect 20° from nose-on. (b) Sparse-subband measurements used to predict
the target’s response over the fullband from 12 to 18 GHz. (c) Compressed pulses for
the sparse subbands and fullband data sets. The fullband compressed pulse (black)
resolves all of the significant scattering centers on the target.

FIGURE 18. UWB pole estimates obtained by using the
sparse-subband data set shown in Figure 17(b).
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ther inside or outside the unit circle, as predicted by
the moment-method RCS calculations in Figure 16.

Estimating the corresponding α exponents for
these major scattering centers is straightforward—the
magnitude of the signal poles is related to the α expo-
nents via Equation 1. A more accurate relationship
can be obtained by solving for the α exponents that
produce the best match between the functions f kα

and pk
n

 over the frequency range of interest, i.e.,
from 12 to 18 GHz. Using this approach, we esti-
mated the α exponents for the first, second, and mid-
body grooves, respectively, on the reentry vehicle to
be α1 = –1.1, α2 = 2.3, and α3 = 2.9. These estimates
are consistent with the moment-method RCS calcu-
lations shown in Figure 16.

Figures 19(a) and 19(b) show comparisons be-
tween the estimated UWB target response and the
true UWB radar measurements. The model and the
measurements are in excellent agreement.

Because radar measurements were taken over a

FIGURE 19. Comparisons between the estimated UWB target response and the true
UWB radar measurements. (a) Uncompressed radar pulse for the prediction model
(brown line) and the actual radar measurements (black line). (b) The corresponding
compressed pulses that resolve the scattering centers on the target.

wide range of viewing aspects, we could generate two-
dimensional radar images of the target. Figures 20(a)
and 20(b) show the lower- and upper-subband im-
ages, respectively. The resolution is insufficient to re-
solve many of the scattering centers on the target. Fig-
ures 20(c) and 20(d) show the true and estimated
UWB target images, respectively. All four images
were generated by applying extended coherent pro-
cessing [3] to the corresponding compressed pulses
over the full range of available viewing aspects. We
used target symmetry to process the data as if we had
sampled a range of viewing aspects from –95° to 95°.
The UWB images provide a clear picture of the target
and show considerable detail. The sparse-subband
image closely matches the fullband image and pro-
vides an accurate estimate of the locations and α ex-
ponents of the many realistic scattering centers on the
target.

These experimental results suggest that UWB pro-
cessing of sparse-subband measurements can signifi-
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cantly improve range resolution and provide accurate
characterizations of targets over ultrawide band-
widths. We are currently investigating fundamental
limitations and practical payoffs of UWB processing.

Summary

This article presents an approach for accurately esti-
mating a target’s UWB radar signature from sparse-

subband measurements. To apply this technology to
field data, we developed an algorithm that could
compensate for the potential lack of mutual coher-
ence between the various radar subbands. Robust
mutual-coherence processing was performed by opti-
mally matching the all-pole signal models for each
subband. With the radar subbands mutually cohered,
a single UWB all-pole signal model was optimally fit-

FIGURE 20. Comparison of two-dimensional radar images. The upper left and right images show the lower-
and upper-subband images, respectively. The fullband image in the lower left uses actual radar measure-
ments over the full 12-to-18-Ghz frequency range. The sparse-subband image in the lower right uses the
sparse-subband measurements with UWB prediction.
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ted to the available data. The fitted model was used to
interpolate between and extrapolate outside the mea-
surement bands. Standard pulse-compression meth-
ods were applied to the enlarged band of spectral data
to provide a superresolved range profile of the target.

These UWB processing concepts were demon-
strated by using simulations and static-range data. We
showed that it was possible to accurately estimate a
target’s UWB response when the radar measurements
fill only a small fraction of the total processing band-
width. The practical payoff of this technology is that
radar measurements need not be taken over the full
UWB processing interval; signal processing can be
used to a certain extent to compensate for any missing
data. Another important benefit of UWB processing
is that the α exponents of individual scattering centers
can be more accurately estimated. This accuracy helps
us to better identify the scattering centers that make
up a target, which significantly improves our analysis
and understanding of the target.

Suggestions for Future Research

Many unresolved issues in UWB processing of sparse-
subband measurements remain. The uniqueness of

our nonlinear optimization process, the accuracy of
the initial pole estimates, and the performance versus
band fill ratio (ratio of measured data to total process-
ing interval) are important UWB processing con-
cerns. While the nonlinear optimization process
cross-correlates the subbands, it may be possible to
obtain more resolved UWB signal models by better
exploiting the cross-band correlation information
during the initial pole estimation stage. We are cur-
rently investigating these issues and considering some
potential real-time applications of this technology.
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