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Superresolution Source Location
with Planar Arrays
Gary F. Hatke

■ The challenge of precision source location with a radio-frequency antenna
array has existed from the beginnings of radiometry and has continued in
modern applications with planar antenna arrays. Early work in this field was
limited to estimating single source directions in one dimension with systems
like crossed-loop radiometers. Currently, more advanced systems attempt to
estimate azimuth and elevation by using two-dimensional arrays. Monopulse
techniques have been extended to two-dimensional arrays to provide a
computationally efficient method for estimating the azimuth and elevation of a
single source from a planar array, but all monopulse techniques fail if there is
appreciable interference close to the source. In this situation, adaptive array
(superresolution) processing techniques are needed for direction estimation.

This article discusses the results of a study on the proper way to design an
adaptive planar array with a constrained antenna aperture. We consider the
segmentation of the antenna aperture, the polarization of the antenna segments,
and the algorithms used to process the signals received from the antenna. In
particular, we concentrate on interference that is within one Rayleigh
beamwidth of the source. The interference can be highly localized in space, as in
a single direct-path interferer, or diffuse in space (possibly due to multipath).
We present results of tests conducted with a segmented antenna array, along
with simulations and analytical bounds, that guide us in designing a source-
location system.

E    of a source in the
presence of interference is a complex chal-
lenge for a direction-finding system. Most tra-

ditional direction-finding systems are designed with a
monopulse antenna-array configuration that seg-
ments the antenna array into four symmetrical subap-
ertures, as shown in Figure 1. This array configura-
tion, or topology, allows estimating both azimuth and
elevation of the source.

In nonadaptive direction-finding systems, the an-
tenna patterns of the subapertures are designed to
suppress most interference from outside the main
beam of the array. When the interference is inside the
main beam of the array—by definition closer (in radi-
ans) to the source than the inverse (in wavelengths) of
the direction-finding antenna-array aperture—a non-

adaptive technique cannot suppress the interference.
Traditionally, radar designers have solved this prob-
lem by increasing the aperture of the antenna array
until the interference is no longer inside the main
beam. This solution can be impossible to implement,
however, if the array is physically constrained and the
wavelength of the radiation cannot be changed. In
this case, adaptive array (superresolution) processing
techniques must be employed to accurately estimate
the source location.

Two approaches for source-location estimates with
main-beam interference can be used, depending on
whether the interference is pointlike or diffuse. For
simplicity, we assume that there is only one interferer
in the main beam. If the main-beam interference is
caused by a pointlike interferer, conventional mono-
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pulse antenna topology and superresolution algo-
rithms may be applied to the data from the four
subapertures of the array to suppress the interference.
Problems arise when the main-beam interference is
diffuse as a result of incoherent multipath scattering
of the interference. In this case, applying adaptive
techniques to a conventional quadrant array may not
suppress the diffuse interference in the main beam of
the array. This limitation also applies if there are mul-
tiple main-beam interferers. Again, for simplicity, we
concentrate on the single interferer case.

To suppress diffuse main-beam interference effec-
tively, we can divide the array into more subapertures
than the conventional four. This additional segmen-
tation gives more channels of information, hence
more degrees of freedom, to the adaptive-array pro-
cessing algorithm, allowing improved interference
suppression. We can also increase the degrees of free-
dom by receiving two different polarizations from
some or all of the array subapertures. This strategy is
useful when the interference and source have differ-
ent polarization states. These approaches to suppress
main-beam interference come at a price—each addi-
tional channel from the array requires an additional
receiver, and the complexity of the adaptive-array
processing algorithms that process the multichannel
data increases in proportion to the cube (or higher) of
the number of data channels.

We conducted a two-part study to explore the best
combinations of array topologies and superresolution
algorithms that accurately estimate source location.

First, we studied the minimum required segmenta-
tion to allow an adaptive-array processing algorithm
to accurately estimate the direction of a source in the
presence of either diffuse or pointlike main-beam in-
terference. Results of this study indicate that for pla-
nar arrays, more than four subapertures are desirable
when diffuse main-beam interference is present. We
also found that using nonidentically polarized subap-
ertures can be beneficial when the interference has a
relatively pure polarization that differs from the
source.

We then developed computationally efficient algo-
rithms that could be coupled with a wide range of ar-
ray-segmentation topologies to give nearly optimal
estimates of source direction. The new algorithms are
called PRIME (polynomial root intersection for mul-
tidimensional estimation) and GAMMA (generalized
adaptive multidimensional monopulse algorithm).
These algorithms have been shown through simula-
tion and analytical derivations to have estimate vari-
ances that equal previous state-of-the-art algorithms
at a fraction of the computational cost. We use
GAMMA when we have an estimate of the spatial co-
variance matrix (the spatial power distribution) of the
interference signal in the absence of the desired source
signal. We use PRIME when we cannot get desired
source-free observations of the spatial power distribu-
tion. Both algorithms are multidimensional generali-
zations of previously proposed one-dimensional root-
ing algorithms that convert the direction-estimation
task to one of finding roots to a polynomial equation.

We verified the performance of the selected an-
tenna-array topology designs and the adaptive-array
processing algorithms by using a segmented antenna
array. Source directions were successfully estimated
by using both the PRIME and GAMMA algorithms
in the presence of either diffuse main-beam interfer-
ence or pointlike main-beam interference.

Planar-Array Primer

Because estimating the direction to a source is a two-
dimensional problem, two angles must be estimated
per source, which requires at least a two-dimensional
array. Figure 2 shows the simplest array topology that
meets this requirement—a three-subaperture planar
array. While this array topology allows the simulta-

FIGURE 1. Four-subaperture circular array. This configura-
tion allows estimation of  source azimuth and elevation.
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FIGURE 2. Three-subaperture circular array. This configura-
tion is the simplest array topology that allows estimation of
source elevation and azimuth angles.

neous estimation of elevation and azimuth angles, an
array topology with four subapertures arranged as in
Figure 1 can be transformed into a three-channel ar-
ray via a unitary beamforming matrix to provide esti-
mates of elevation and azimuth angles for a source
signal. The three-subaperture array has no such
simple method for producing source-angle estimates,
and therefore is rarely used. The three-channel (from
four subapertures) system is often called a monopulse
system, because it was originally designed to estimate
a desired source’s azimuth and elevation by using a
single pulse from a pulsed radar.

To see how this transformation occurs, let us look
at the output of the four-subaperture array in the ab-
sence of noise, with a desired signal waveform s(t) at
an azimuth θ and an elevation φ. The array output
vector x(t) has the form
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Here we define an array constant k  as 2πd /λ, where d
is the distance from the center of the array to the ef-
fective phase center of one of the quadrants, and λ is
the wavelength of the center frequency of the radio-
frequency (RF) signal. The array constant k, which
varies inversely with the array beamwidth, can be

thought of as a scaled distance between the array
phase reference (here taken to be the center of the ar-
ray) and the phase center of a given subaperture. The
terms u1 and u2 are functions of the azimuth and el-
evation of the desired source:
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The monopulse beamforming network can be math-
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The output y(t), after applying the beamforming net-
work, is a vector of four beams with the form
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An estimate for u1 is the arctangent of the voltage
ratio of the second beam [ sin( ) cos( ) ( )ku ku s t1 2 ] to
the first beam [ cos( ) cos( ) ( )ku ku s t1 2 ] divided by the
array constant k , and an estimate of u2 is the similarly
scaled arctangent of the voltage ratio of the third
beam [ cos( ) sin( ) ( )ku ku s t1 2 ] to the first beam. The
array-response vector a after the monopulse transfor-
mation is real for all values of u1 and u2 because of
the centrosymmetric nature of the four-subaperture
square antenna array. A centrosymmetric array is one
with a phase center such that all subapertures in the
array appear in pairs around the phase center. Cen-
trosymmetric arrays are useful topologies because
there is always a beamforming matrix that produces
array-response vectors that are entirely real.

Three-channel systems do well in estimating single
source directions when the array receives no interfer-
ence. However, if one or more of the three beams
used for direction estimation in a monopulse system
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receive an interference signal, the resulting angle esti-
mates are corrupted. Because of the limited degrees of
freedom in a three-channel monopulse system, even if
the outputs are combined adaptively it is impossible
to eliminate the effects of the interference from the
desired source-angle estimates. For this reason, all
centrosymmetric adaptive planar-array processing
systems have four or more antennas with at least four
independent channels at the output of any
beamformer. When an interference environment
consists of more than a single point source in the
main beam, such as diffuse multipath or multiple
point-source interference, then even a four-channel
system is unable to cope with the interference envi-
ronment. This limitation implies that an antenna-
segmentation topology with more than four subaper-
tures will be beneficial.

Array-Topology Study

Lincoln Laboratory studied the benefits of alternate
antenna segmentation topologies while attempting to
track a source with diffuse interference within one ar-
ray beamwidth of the source. A multi-aperture array,
known as the sampled aperture sensor (SAS), was
constructed with fourteen dual-polarized subaper-
tures, giving twenty-eight possible outputs. The SAS
was designed with an eight-subaperture sixteen-chan-
nel large outer array, which gave us a larger array aper-

ture and allowed a larger number of array configura-
tions, and a smaller, six-subaperture twelve-channel
inner array, as shown in Figure 3. The outer eight-
subaperture array has an effective beamwidth of six
degrees; the inner six-subaperture array has an effec-
tive beamwidth of sixteen degrees. Because of limited
receiver resources, only eight subapertures could be
used simultaneously. Thus we constructed a switch-
ing system that allowed the array operator to choose
from five configurations of eight subapertures. Figure
4 shows the dual-polarized patch SAS array. Each
subaperture has roughly 25 to 30 dB of polarization
isolation between the vertical and horizontal outputs.

To achieve desired source-angle estimates in the
presence of main-beam interference, the SAS must be
well calibrated [1]. We performed a pattern response
equalization for spatial similarity (PRESS) array cali-

FIGURE 3. Sampled aperture sensor (SAS) subaperture
configurations. The SAS was designed with an eight-sub-
aperture sixteen-channel large outer array, which allows a
wide range of aperture and array configuration trade-offs,
and a smaller, six-subaperture twelve-channel inner array.

FIGURE 4. Sampled aperture sensor. The outer eight-aper-
ture array has an effective beamwidth of six degrees; the in-
ner six-aperture array has an effective beamwidth of sixteen
degrees. Both arrays are dual-polarized with patch-antenna
technology.
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bration of the SAS mounted with its receivers. The
calibration-error residual is defined as the average
length of the difference vector between the assumed
array response (normalized to length of one) and the
properly normalized array response from the PRESS
algorithm. The average calibration-error residual is
taken over all azimuths and elevations for which the
calibration is expected to be used. The SAS has an av-
erage calibration-error residual of –27 dB. At this
level, our experience indicates that a point-source in-
terferer cannot be tolerated within less than one-
eighth of a beamwidth from the desired source.

To simulate the effect of diffuse main-beam
multipath interference on direction-finding a source,
we conducted an experiment with two horn antennas
elevated above the earth. The first antenna was angled
downward such that its radiation pattern illuminated
the earth, but did not directly radiate toward the re-
ceive array. The second horn provided a direct-path
signal to simulate the source of interest. The signal
fed to the downward-pointing antenna had 30-dB
higher gain than that fed to the direct-path antenna,
creating a 20-dB interference-to-signal ratio at the
SAS. The SAS was positioned at varying distances
from the transmitting antenna complex to give a vari-
ety of desired source-interference separations.

To examine the effects of spatial antenna segmen-
tation, we initially connected eight receivers to the
eight copolarized outer-array subapertures on the
SAS. Because of antenna-pattern limitations, the
maximum angular separation between the hot spot of

the multipath interference and the desired source was
limited to less than one full-array beamwidth. With
the separation between the multipath interference
and the desired source solely in the vertical dimen-
sion, the important topology variable became the
number of different vertical subapertures (number of
distinct phase centers in the vertical direction) in use.

We analyzed the measured data by using different
subsets of the available eight channels to simulate ar-
rays with three, four, and five distinct vertical
subapertures, as shown in Figure 5. Figure 6 shows
the results of applying a rooting variant of the maxi-

FIGURE 5. Examples of SAS array configurations. Arrays of three, four, and five distinct vertical subapertures were simulated
by analyzing data from different subsets of the available eight channels.

FIGURE 6. Performance of  three, four, and five vertical (el-
evation) subapertures in distinguishing desired signal from
diffuse interference. A four- and five-subaperture array per-
forms well but the three-subaperture array fails to find the
desired signal.
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mum-likelihood method (MLM) algorithm [2] to the
three different SAS array configurations. The results
show that the estimates closest to the desired source of
the three-subaperture array tend to track the interfer-
ence signal rather than the source, while the four- and
five-subaperture arrays more or less track the desired
source. This behavior indicates that three subaper-
tures in elevation cannot resolve the desired source
from the interference, while four or five subapertures
in elevation can resolve and track the desired source.

In addition to resolution, another factor that af-
fects a direction-finding system is the variance of the
source-direction parameters produced by the estimat-
ing algorithm. Unlike resolution, which can be highly
dependent on the algorithm used, estimator variance
can be bounded from below by a number of algo-
rithm-independent expressions. One expression, the
Cramér-Rao bound, is commonly used to determine
limits on estimates generated by arrays [3]. The
bound is a function of the subaperture topology. To
compute the bound, we calculate the spatial covari-
ance of the interference source. For diffuse multipath
sources, the calculation requires knowledge of the re-
flection coefficients, in this case those of the earth’s
surface.

By using models such as the Beckmann-Spizzi-
chino model [4], we can calculate the spatial covari-
ance matrix for a diffuse multipath source and a
Cramér-Rao bound on the variance of the direction
parameters to the desired source. Figure 7 shows that
using a six-subaperture array instead of a four-
subaperture array decreases the bound on elevation-
angle noise for the geometries tested with the SAS by
over a factor of two. This improvement can be attrib-
uted to the additional vertical phase center in the six-
subaperture array. Figure 8 shows that the six-sub-
aperture array has four distinct phase centers in
elevation, while the four-subaperture array has only
three. This improvement further confirms our desire
to have at least four distinct phase centers in the
source-interference dimension.

Note that the bound on elevation-angle noise from
the four-subaperture array is a minimum for this par-
ticular orientation; if the array is rotated such that
there are four distinct phase centers in elevation, the
bounds on elevation-angle noise actually increase.

This increase in the elevation-angle noise bound im-
plies that the number of degrees of freedom is as im-
portant as the number of phase centers.

To understand why the elevation-angle noise
bounds from the four-subaperture array are so large,
we consider the maximum number of point sources
for which unambiguous direction estimates can be
found, given a planar array of N sensors. A well-
known result in the literature indicates that the maxi-
mum number of point sources should be N – 1 for an
arbitrary planar-array geometry [5]. However, when
the array is centrosymmetric, this result is no longer

FIGURE 7. Cramér-Rao bounds on elevation-angle noise for
four- and six-subaperture arrays. A four-subaperture array
does not have enough degrees of freedom to handle the dif-
fuse interference, and thus performs poorly. A six-subaper-
ture array decreases the bound on elevation-angle noise by
more than a factor of two for the geometries tested with the
SAS.

FIGURE 8. Six-subaperture and four-subaperture arrays.
The six-subaperture array has four phase centers in eleva-
tion, while the four-subaperture array has three.
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valid. The appendix entitled “A Maximum Number
of Sources Uniquely Localizable with a Centrosym-
metric Array” shows that, in this case, only N – 2
sources can be unambiguously located. Thus a four-
subaperture square array can handle at most two
pointlike sources. A diffuse interference source can be
thought of as two or more closely spaced point
sources. Thus, with respect to degrees of freedom, it
seems unlikely that a four-subaperture square array
would perform well against a diffuse interference
source.

Polarization Diversity

The previous results show that to mitigate diffuse
main-beam interference, an array should use a seg-
mentation with more than three subapertures in the
line defined by the source-interference pair, and more
than four channels. We can further eliminate main-
beam interference effects if there are polarization-
state differences between the desired signal and the
interference, and not all the subapertures of the array
have the same polarization response. This approach
acknowledges that the difficulty in estimating the di-
rection to a source with main-beam interference is a
function of the array-beamspace distance between the
desired source array-response vector and the interfer-
ence array-response vectors. This distance depends on
the inner product of the two normalized array-re-
sponse vectors [6].

For unipolar arrays experiencing main-beam inter-
ference, the desired source-interference array-beam-
space distance can be mapped monotonically to an-
gular separation between the desired source and
interference. With diversely polarized subapertures in
the array, such a mapping is not possible because the
distance between the desired source array-response
vectors and the interference array-response vectors is
now a function of not only the angular locations of
the desired source and interference, but also their po-
larization states. Note that just as any polarization-
state plane wave can be synthesized by some complex
combination of vertical and horizontal plane waves,
any array response from a polarization-diverse array
can be generated by a complex linear combination of
the array response to a purely vertically polarized
plane wave av and the array response to a purely hori-

zontally polarized plane wave ah . Thus the array-re-
sponse vector to a desired source from a direction u
with polarization state p can be written as

a u p a a p( , ) [ , ] ,= v h

where p is defined as a two-dimensional complex vec-
tor of unit magnitude.

The inner product of the normalized array-re-
sponse vectors from directions u1 and u2 with polar-
ization states p1 and p2 seen by a polarization-diverse
array is given by
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This equation shows that even if the directions u1 and
u2 are identical, the polarization states p1 and p2 can
have values such that the inner product of the two-ar-
ray-response vectors can range from zero to one. Thus
it may be much easier to estimate the direction to a
source with main-beam interference if the receiving
array has diversely polarized subapertures, rather than
all subapertures of the same polarization. This ar-
rangement, however, comes with a computational
cost. Because the array is now sensitive to polariza-
tion, the number of parameters that we must estimate
to determine the desired source direction includes the
polarization state of the source. Consequently, the
fast estimation algorithms require an additional de-
gree of freedom, as we discuss later. Thus, instead of
needing a four-channel array to estimate the direction
parameters to a source in the presence of one point-
like main-beam interferer, a diversely polarized array
would require five channels.

The above representation is valid when the polar-
ization states of the plane waves are constant with
time. When the polarization state changes during the
observation time, the energy that the array sees is not
contained in a one-dimensional subspace, as it is for a
source of constant polarization, but occupies a two-
dimensional subspace spanned by the vertical and
horizontal array-response vectors av(u) and ah(u). If
this condition occurs with the interference energy, it
will increase the number of degrees of freedom in the
array required to accurately estimate the desired
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source direction parameters because the energy from
the interference direction acts as if there were two
sources. In addition, the distance between the desired
source array-response vector and the interference ar-
ray-response subspace is measured as the closest ap-
proach between the interference subspace and the de-
sired source array-response vector. This definition of
distance implies that if the polarization state of the in-
terference varies during the observation time, the dif-
ficulty in estimating the desired source direction will
be determined by the inner product of the desired
source array-response vector and the array-response
vector from the interference direction with the worst
possible polarization state, even if that state is never
actually observed.

Data Examples of Polarization Diversity

We conducted an experiment to estimate the desired
source directions by using both singly polarized and
diversely polarized arrays in the presence of a point-
like interferer with a non-fluctuating polarization
state. For this experiment, two horns were placed on
the ground. The source horn transmitted a continu-
ous tone in a vertically polarized state, while the inter-
ference horn radiated a noise waveform, and the horn
was tilted so that the polarization was linear at a 45°
slant to vertical and had a 20-dB interference-to-sig-
nal ratio in the processing band of interest. The singly
polarized array was a standard quadrant monopulse
configuration. The diversely polarized array consisted
of all four vertical monopulse channels plus a hori-
zontally polarized sum and a horizontally polarized
azimuth difference beam. The results in Figure 9
show that the addition of the two cross-polarized
channels greatly decreases the variance of the source
direction estimates.

Estimation Algorithms

The results of our array-topology study indicate that
topologies more complicated than simple quadrant
arrays, with perhaps some diversely polarized subap-
ertures, are desirable to mitigate main-beam interfer-
ence. Because of the computational stress that adap-
tive-array processing entails, efficient algorithms for
producing desired source direction estimates are im-
perative. This section of the article discusses two new

algorithms designed to efficiently estimate source di-
rections from arbitrary multidimensional arrays. The
first algorithm, PRIME, estimates directions for not
only the desired source but also for all the interference
sources. This algorithm can be used on any type of
signal and interference waveform. The second algo-
rithm, GAMMA, provides estimates for only the de-
sired source direction. This algorithm requires that
the interference covariance matrix be estimated in the
absence of appreciable desired signal energy.

Both algorithms achieve their computational effi-
ciency by posing the angle-estimation problem in
such a way that the estimates are generated from the

FIGURE 9. Azimuth errors as a function of source-interfer-
ence separation for a vertically polarized source in the pres-
ence of mixed-polarization interference. The improved per-
formance of the diversely polarized array, evidenced by less
scattering of data points, can be attributed to its ability to
differentiate signal and interference both polarimetrically
and spatially.
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roots of a data-derived polynomial. To understand
the benefits of this technique, we consider a general
direction-estimation algorithm. Most modern direc-
tion-finding algorithms applied to unipolar arrays
can be posed as

u
a u M a u

a u M a uu
* arg max

( ) ( )

( ) ( )
,=

H

H
1

2 (2)

where u * is the source direction estimate, and M1 and
M2 are arbitrary matrices whose exact values depend
on the test statistic used.

The difficulty of calculating this test statistic is in
finding the maximum over the direction parameters.
Attempts at differentiation of the test statistic with re-
spect to the parameters of the direction vector u typi-
cally do not yield simple equations. Thus the extremal
values of u are generally calculated by evaluating the
test statistic over a grid of potential values for u. This
approach is often referred to as searching over the ar-
ray manifold, because the set of array-response vec-
tors a(u) can be considered a submanifold in complex
N-dimensional space (if there are N subapertures)
with dimension equal to M, which is the number of
parameters in the vector u. The rough estimates for
local maxima are then refined, often by some local
gradient iteration algorithm.

When the number of parameters in the direction
vector u becomes larger than one, this manifold
search technique can become computationally inten-
sive. Much effort has gone into avoiding this search
technique for simple source and interference sce-
narios with simple array topologies. In the case in
which the spatial covariance of the interference is an
identity, Equation 2 simplifies to

u a u x
u

* arg max ( ) .= H 2

For a quadrant array topology that estimates azimuth
and elevation, this problem can be approximately
solved by using the monopulse technique. Unfortu-
nately, when main-beam interference is present, this
easy approximation does not work.

In the case of a special array topology—a uni-
formly spaced unipolar line array—another tech-
nique has been proposed to avoid the manifold

search. In this case, the array manifold is only a func-
tion of a single scalar u and has the form
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The phase center of the array is assumed to be the first
subaperture. The constant k is the scaled distance be-
tween subapertures, defined as in Equation 1, with d
the distance between adjacent subapertures. Refer-
ence 7 notes that if a new complex variable, defined as
z, is used to replace the term e jku in Equation 2, then
a(z) has the form
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Reference 7 further notes that when the magnitude
of the variable z is unity, then the conjugate of a(z) is
equal to a(z –1). By using these substitutions, we can
express Equation 2 as

arg max
( ) ( )

( ) ( )
.

–

–z

T

T

z z

z z=1

1
1

1
2

a M a

a M a

Finally, if the condition z = 1 is relaxed, then the
optimization statistic can be driven to infinity for val-
ues of z such that

z z z g zN T– –( ) ( ) ( ) .1 1
2 0a M a ≡ = (4)

The z N – 1 term is added to eliminate negative powers
of z , allowing g(z ) to be a common polynomial.

This conversion from performing a manifold
search required by Equation 2 to solving for a set of
homogeneous solutions of a complex polynomial
problem was applied to a number of superresolution
direction-estimation algorithms, which yielded root-
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ing variants of the multiple signal classification (MU-
SIC) [8] and maximum entropy method (MEM) al-
gorithms [2]. One benefit of the rooting techniques is
that they tend to have better resolution properties
than previous manifold-search techniques. Reference
2 discusses how the root-MUSIC algorithm resolves
two closely spaced sources with a 5-dB-lower signal-
to-noise ratio than the spectral (manifold search)
MUSIC algorithm. The rooting techniques have
been generalized to handle nonuniform linear arrays
[1], as well as polarization-diverse linear arrays [9].

By following the logic used to derive a polynomial
representation for uniform linear arrays, we can char-
acterize the array manifold for a planar array with
subapertures centered on a regular grid in terms of
two complex variables. To illustrate this concept, let
us assume a rectangular gridding for the subapertures
of the array. Consider the subaperture in the upper
left corner as the phase-reference element (the phase
reference can be arbitrarily chosen anywhere on the
array). The array-response vector element al ,p corre-
sponding to the subaperture displaced to the right by
l  subapertures and down by p subapertures has the
form

a e el p
jk u l jk u p

,
( ) ( ) .= 1 1 2 2

Here k1 is the scaled distance between subaperture
phase centers in the vertical direction, and k2 is the
scaled distance between subaperture phase centers in
the horizontal direction. By making the substitution

w e z ejk u jk u= =1 1 2 2and ,

we can represent the array-response vector a(u) as
a(z, w). By using this representation, we can develop
a two-variable polynomial equation for a planar array
similar to the univariate polynomial in Equation 4.
Using this representation does not give unique solu-
tions for either z or w, however, because we have only
one equation with two unknowns.

The PRIME algorithm was developed to solve this
problem. It is often possible to generate two indepen-
dent statistics that have local maxima corresponding
to true source directions. The system of equations

g z w

g z w
1

2

0

0

( , )

( , )

=
=

defines a finite set of (z, w) pairs that satisfy both
polynomials. Some of these solutions correspond to
true source locations. Take, for example, the PRIME
version of the MUSIC algorithm. As noted in Refer-
ence 8, the estimation test statistic in this case is

u
a u E E a uu

* arg max
( ) ˆ ˆ ( )

.= 1
H

n n
H (5)

Here Ên are estimates of the eigenvectors of the
sample covariance matrix (which is x xi i

H
i∑  by defi-

nition) that are orthogonal to all the source array-re-
sponse vectors, including interference. If the rank of
the matrix Ên, defined as q, is greater than or equal to
two, then we can construct two distinct subsets of the
eigenvectors in Ên, defined as Ên1 and Ên2, where
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By using these two new matrices, we define the poly-
nomials g z w1( , ) and g z w2( , ) as
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The scalars N1 and N2 are the number of phase cen-
ters in the elevation and azimuth planes of the array,
respectively. Note that in the absence of estimation
error and array-calibration errors, the expressions
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are zero for (z, w) pairs corresponding to true source
directions, just as the original term

a E E a( , ) ˆ ˆ ( , )–z w z wT
n n

H−1 1

is zero. Thus some joint solutions to these two equa-
tions correspond to directions having array-response
vectors orthogonal to Ên , maximizing Equation 5.

There are other methods for forming multiple in-
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dependent polynomials. One method is to form inde-
pendent statistics on two nonsimilar subarrays of the
entire array aperture. This method allows us to incor-
porate a larger number of subapertures into the direc-
tion-estimation problem than the number of available
receivers. Figure 10 provides an example of two dis-
similar subarrays from a segmented array. A third
method is to differentiate the original polynomial
g(z,w) with respect to both z and w. This approach
generates two new independent polynomials that re-
tain the homogeneous solution properties of the
original statistic.

Polynomial Root Intersections

The heart of the PRIME algorithm is the formation
of polynomial root intersections. For the cases treated
here, root intersection means finding the common ze-
ros of two polynomials in two unknowns. Several pro-
cedures are relevant. First, numerical techniques can
be used if good initial guesses are available. A more so-
phisticated global approach utilizes root tracking and
homotopy (e.g., linear interpolation) of the polyno-
mial coefficients from a canonical, decoupled set of
equations to the equations of interest [10]. This ap-
proach is most appropriate when the polynomials
have high degree. For lower-degree polynomials, a
simpler procedure known as elimination theory pro-
vides all intersection points. We now present a math-
ematical explanation of elimination theory.

Consider two polynomials f (x) and g (x) of a single

variable with, for example, complex coefficients:

f x a x a x a

g x b x b x b

n
n

m
m
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( ) .

= + + +

= + + +

K
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1 0

1 0

Let {γi } and {δi } denote the roots of f and g , respec-
tively. The resultant R of the two polynomials f and g
is given by Reference 11:

R f g a bn
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i
ij

j( , ) ( ) .≡ −∏ γ δ

R( f , g ) can be shown to be a polynomial in the coeffi-
cients {ai } and {bj } of the polynomials f and g that
vanishes if and only if f (x) and g (x ) have a common
root, provided at least one of an and bm is nonzero.
There are several different but equivalent expressions
for the resultant. One of the simplest, from Sylvester
[12], expresses R( f , g ) as the determinant of the
(m + n) × (m + n) matrix
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FIGURE 10. Two dissimilar five-subaperture subarrays from a six-subaperture
array. These configurations allow us to incorporate a larger number of subaper-
tures into the direction-estimation problem than the number of available receivers.
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PRIME must find the root intersections of two-
variable polynomials g1(z, w) and g2(z, w). If we view
g1 and g2 as polynomials in w with coefficients that are
polynomials in z, the resultant, denoted Rw(z), is a
polynomial in z whose roots are the z-coordinates of
the common solutions of gi(z , w) = 0. Similarly, the
resultant Rz(w) is a polynomial in w expressing the w-
coordinates. For small degrees, we can determine the
roots of the resultants Rz and Rw and pair the resulting
z-w coordinates in all possible ways to form a list of
candidate intersections that we can substitute in the
original equations. Alternatively, we can calculate the
homogeneous solutions for Rz and substitute them in
the original polynomials g1 or g2.

Not all common roots of gi(z, w) correspond to
physical angles. We can select physically relevant
roots by evaluating a direction-finding statistic such
as spectral MUSIC for each common root or by uti-
lizing prior information about signal angles of arrival.
If Rw(z), or Rz(w), vanishes identically, the polynomi-
als gi(z , w) = 0 have a common nontrivial factor (as-
suming, for example, that the coefficient of the high-
est w-order term of g1(z , w) or g2(z, w) is a nonzero
polynomial in z). In this case, the solution sets inter-
sect along the curve defined by the common factor.
This case is not typically encountered in applications.
However, sometimes the gi(z, w) have a common
data-independent factor (typically of the form zLwN )
that can be eliminated from both polynomials.

The number of intersection points of the root loci
gi(z , w) depends on the polynomial degrees, the array
geometry, and any symmetries inherent in the poly-
nomial coefficients, which in turn depend on the
polynomial selection procedure. Let di denote the de-
grees of gi . A bound on the number of intersection
points can be based on Bezout’s theorem, which states
that after accounting for and including roots at infin-
ity, the number of common solutions of the homog-
enized polynomials, for i = 1 and 2, is d1 × d2. The
polynomials typically used for direction finding share
degenerate roots at infinity (i.e., common solutions
involving only the highest-order terms of each poly-
nomial). By accounting for the multiplicity of these
roots at infinity, we can formulate a bound on the
number of roots (including multiplicity) in the finite
z-w plane. Alternatively, we can apply a result of A.G.

Kouchnirenko [13] to count the number of common
roots of polynomials. For example, an m × n array ge-
nerically provides 2(m – 1)(n – 1) roots, with both z
and w nonzero.

While this discussion has concentrated on the case
of a unipolar planar array, note that elimination
theory can be extended to polynomials of more than
two variables. Hence, in the case of polarization-di-
verse planar arrays, where the array-response vectors
can be described as functions of three complex scalars
(z, w, and the polarization ratio ρ), the PRIME
method may still be applied. In this case, three poly-

FIGURE 11. The polynomial root intersection for multidi-
mensional estimation (PRIME) maximum entropy method
(MEM), top, versus spectral multiple signal classification
(MUSIC) direction estimation with diffuse interference, bot-
tom. The PRIME-MEM source-location estimates have fewer
points captured by the interference when the signal-interfer-
ence separation is small, and the source-location estimates
are not as biased when the separation is large.

Interference direction-finding estimates
Source direction-finding estimates
Filtered-source direction-finding estimate
Interference elevation 

0

1/3

1

–1/3

–2/3

–1

2/3

0

1/3

1

–1/3

–2/3

–1

2/3

El
ev

at
io

n 
er

ro
r (

be
am

w
id

th
s)

El
ev

at
io

n 
er

ro
r (

be
am

w
id

th
s)

1/31/22/31

Source-interference separation (beamwidths)

Spectral MUSIC

PRIME-MEM



• HATKE
Superresolution Source Location with Planar Arrays

VOLUME 10, NUMBER 2, 1997 THE LINCOLN LABORATORY JOURNAL 139

nomials must be generated instead of two, but other-
wise the technique is similar to that of the unipolar
planar-array case. In fact, the PRIME technique can
be extended to non-planar arrays, where the phase
centers of the subapertures now lie on a three-dimen-
sional lattice of points, by adding a third variable cor-
responding to the displacement in depth of the sen-
sors. The existence of these generalizations makes the
PRIME technique powerful.

We have analyzed the asymptotic (in data snap-
shots) accuracy of the PRIME versions of algorithms
such as MUSIC (see the appendix entitled “Asymp-
totic Mean-Squared Error for PRIME Direction Esti-
mates”), and we can prove that under mild con-
straints on array topology, the accuracy of the PRIME
versions of the algorithms can equal that of the spec-
tral versions.

Data Examples of Polynomial Root Intersections

Figure 11 shows an example of the performance of a
PRIME-based algorithm compared with a two-di-
mensional spectral-MUSIC algorithm, in which both
algorithms attempt to track a source in the presence
of diffuse main-beam interference. In this case, the re-
ceived interference-to-signal ratio was roughly 20 dB,
and as the range to the desired source decreased, the
angular separation between the source and the inter-
ference increased. We took the data with the SAS an-
tenna by using six subapertures of the vertically polar-
ized outer-array configuration. These six subapertures
are shown in the middle configuration in Figure 5.
Notice that the number of points where the desired
source is not resolved is much lower for the PRIME
algorithm than for the spectral-MUSIC algorithm.
Also notice that the spectral-MUSIC algorithm be-
gins to exhibit a large amount of bias as the angular
extent of the interference increases (as the angular
separation between the desired source and the inter-
ference increases), while the PRIME algorithm does
not suffer from this problem.

Waveform Exploitation

Sometimes we can estimate the spatial distribution of
the interference without the presence of the desired
source signal. One example of this scenario is a time-
gated signal (satisfied by most range-resolving radar

waveforms), in which the interference is a non-gated
broadband noise source. The received signals in be-
tween source pulse returns consist only of interfer-
ence and noise signals. As mentioned in Reference 6,
waveform knowledge can be a powerful tool in resolv-
ing source signals from interference. In the case in
which the interference has a high interference-to-
noise ratio, the maximum-likelihood-optimal esti-
mate for the source direction [14] can again be ex-
pressed as in Equation 1. The estimate is defined as

u
a u R R R a u

a u R a uu

* arg max
( ) ˆ ˆ ˆ ( )

( ) ˆ ( )
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− −

−

H
i x i
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where R̂i  is the sampled covariance matrix of the in-
terference plus noise, and R̂ x  is the sampled covari-
ance matrix of the desired source plus the interfer-
ence. In developing the PRIME technique, we noted
that by driving the denominator of the optimization
expression to zero, we maximized the overall expres-
sion. In this case, unfortunately, we cannot ignore the
numerator of the test statistic, since all of the desired
source information is contained in the numerator.

An alternate option is to rewrite Equation 6 in the
form
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The expression can now be viewed as taking the
induced inner product of a normalized whitened ar-
ray-response vector ˆ ( ) ( )/R a u a ui w

− ≡1 2  through the
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ˆ ˆ ˆ ˆ/ /R R R Ri x i w

− − ≡1 2 1 2 . These terms are referred to as
whitened because the covariance of the interference
component in the source-plus-interference covari-
ance matrix is an identity, or spatially white. Thus in
expectation, the test statistic (Equation 7) can be
written as
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FIGURE 13. GAMMA direction azimuth errors for pointlike
main-beam interference scenario. The desired signal direc-
tion can be estimated with strong interference less than one-
quarter of a beamwidth away.
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Here σ s
2 is the signal-to-noise ratio of the desired

source, and ew is the whitened array-response vector
of the desired source. An estimate of the vector ew can
be derived from the data by taking the principal
eigenvector êw  of the matrix R̂w . Using this deriva-
tion, we can approximate Equation 6 as
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This last form of the test statistic has eliminated all
functions of the direction parameters u from the de-
nominator by introducing a nuisance scale factor α.
This expression defines a test that finds the best whit-
ened array-response vector that minimizes the error
vector between the appropriately scaled whitened ar-
ray-response vector and the estimated whitened
source array-response vector.

The solution to the test statistic in Equation 9 is a
generalized monopulse solution. The monopulse
technique can be thought of as finding the u that
maximizes Equation 9 when the whitening matrix
ˆ /R i

−1 2 is the identity matrix, and thus aw(u) = a(u)
and, for a single pulse, ê xw = . The monopulse tech-

nique projects the error vector αa u ew w( ) – ˆ  onto the
subspace spanned by the steering vector of the
assumed source direction, and the partial derivative of
that vector with respect to the desired source param-
eters ui . This technique creates an (M + 1)-dimen-
sional subspace, where M is the number of source pa-
rameters desired. The projected error is then driven to
zero by choosing the correct α and u. In the case of no
interference and spatially white noise, the equations
giving the parameters u decouple into the familiar
monopulse ratio expressions for either linear or pla-
nar arrays.

When the array has subapertures with phase cen-
ters that lie on a grid, then just as in the PRIME algo-
rithm, the array-response vectors can be characterized
as polynomial functions of complex parameters.
Again, for a planar array this characterization requires
two parameters. If the monopulse projection is done
on the error vector when interference is present in the
environment, driving the projected error vector to
zero norm will generate M + 1 coupled nonlinear
polynomial equations (here, M + 1 equals 3) in the
variables α, z, and w. In this case the projection ma-
trix is spanned by the whitened assumed array-re-
sponse vector of the source, as well as the whitened
derivative vectors of the assumed source array-re-
sponse vector with respect to the desired parameters
to be estimated. This projection matrix can be shown

FIGURE 12. Computer simulation of GAMMA-estimate
root-mean-squared error (RMSE) compared to the RMSE of
the maximum-likelihood-optimal estimation algorithm. The
GAMMA estimate tracks the performance of the optimal es-
timator over a wide range of source signal-to-noise ratio
(SNR). The Cramér-Rao bound is included for reference.
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to be locally optimal for estimating the desired source
parameters.

We can solve the equations directly for α because
they are linear in α, leaving two polynomial equations
in z and w. Just as in the PRIME algorithm, we can
solve these equations by using resultant methods.
This new algorithm, GAMMA, has shown statistical
efficiencies virtually equaling that of the true maxi-
mum-likelihood estimator (Figure 12), while requir-
ing no computationally expensive manifold search.

We note that just as the PRIME algorithm can be
extended to polarization-diverse arrays and three di-
mensional arrays, so can the GAMMA algorithm. In
fact, we generated the polarization-diverse array re-
sults in Figure 9 by using the polarization-diverse ver-
sion of the GAMMA algorithm.

Data Example of Waveform Exploitation

We applied the GAMMA algorithm to real array
data. In this test, the desired source was a transmitting
horn placed on the ground, producing a continuous-
wave tone. The interference was another ground-
based horn, placed some distance from the first,
transmitting a noise waveform. We set the power of
the interference so that the signal-to-interference ra-
tio was –20 dB in the narrow frequency cell used to
process the desired tone. Then we derived the esti-
mate of the spatial covariance of the interference by
using frequency cells away from the desired tone cell.
Figure 13 shows how the desired signal track develops
while the interference is still well within the main
beam of the receive antenna.

Conclusion

In this article, we have put forth design concepts for
planar-array direction-finding systems that are in-
tended to be robust in the face of main-beam interfer-
ence. We presented results of an antenna-subaperture
configuration study that showed the desirability of
more complex subaperture configurations than the
standard monopulse configuration, specifically to
counter diffuse main-beam interference. Results from
both theoretical bounds and tests confirm the advan-
tage of using four subapertures in elevation with five
or more receiver channels. In addition, we showed
that further advantage may be gained by mixing the

polarization of the array subapertures. This gain
comes at a price, however, since processing data from
a diversely polarized array when it is faced with the
same interference scenario requires more channels
(and therefore more receivers) than unipolar arrays.

The second section of the article presented two
new algorithms for the efficient estimation of source-
direction parameters in the presence of main-
beam interference. The new algorithms, polynomial
root intersection for multidimensional estimation
(PRIME) and generalized adaptive multidimensional
monopulse algorithm (GAMMA), extend the con-
cept of polynomial rooting algorithms to the realm of
planar arrays. The PRIME family of algorithms al-
lows the higher resolution and lower computational
cost of a rooting algorithm when attempting to esti-
mate the directions of multiple main-beam sources.
The PRIME algorithm’s advantages are demonstrated
in the case of a source plus diffuse main-beam inter-
ference, in which a PRIME algorithm outperforms a
conventional two-dimensional spectral superresolu-
tion algorithm. In addition, we showed that the
asymptotic mean squared error for techniques such as
PRIME–MUSIC can be, under certain benign condi-
tions, equal to that of the spectral algorithms they
replace.

The GAMMA technique is a computationally effi-
cient method for calculating a nearly maximum-like-
lihood-optimal solution to the direction-estimation
problem in the case of estimatable interference spatial
distribution. We showed that GAMMA is the logical
extension of monopulse-like algorithms to cases in
which the interference background is no longer
uncorrelated sensor to sensor. Finally, we presented
experimental data that showed the ability to estimate
source-direction parameters in the presence of
pointlike main-beam interference.



• HATKE
Superresolution Source Location with Planar Arrays

142 THE LINCOLN LABORATORY JOURNAL VOLUME 10, NUMBER 2, 1997

R E F E R E N C E S
1. L.L. Horowitz, “Airborne Signal Intercept for Wide-Area

Battlefield Surveillance,” Linc. Lab. J., in this issue.
2. A.J. Barabell, J. Capon, D.F. DeLong, J.R. Johnson, and K.D.

Senne, “Performance Comparison of Superresolution Array
Processing Algorithms,” Project Report TST-72, Lincoln Labo-
ratory (9 May 1984, rev. 15 June 1998).

3. H.L. Van Trees, Detection, Estimation, and Modulation Theory,
Pt. I (Wiley, New York, 1968).

4. P. Beckman and A. Spizzichino, The Scattering of Electromag-
netic Waves from Rough Surfaces (Pergamon Press, New York,
1963).

5. M. Wax and I. Ziskind, “On Unique Localization of Multiple
Sources by Passive Sensor Arrays,” IEEE Trans. Acoust. Speech
Signal Process. 37 (7), 1989, pp. 996–1000.

6. K.W. Forsythe, “Utilizing Waveform Features for Adaptive
Beamforming and Direction Finding with Narrowband Sig-
nals,” Linc. Lab. J., in this issue.

7. J.E. Evans, J.R. Johnson, and D.F. Sun, “Applications of Ad-
vanced Signal Processing Techniques to Angle of Arrival Esti-
mation in ATC Navigation and Surveillance Systems,” Techni-
cal Report 582, Lincoln Laboratory (23 June 1982), DTIC
#ADA-118306.

8. R. Schmidt, “Multiple Emitter Location and Signal Parameter
Estimation,” Proc. RADC Spectrum Estimation Workshop,
Rome, N.Y., 3–5 Oct. 1979, pp. 243–258.

9. A.J. Weiss and B. Friedlander, “Direction Finding for Di-
versely Polarized Signals Using Polynomial Rooting,” IEEE
Trans. Signal Process. 41 (5), 1993, pp. 1893–1905.

10. T.-Y. Li, T. Sauer, and J.A. York, “The Cheater’s Homotopy: An
Efficient Procedure for Solving Systems of Polynomial Equa-
tions,” SIAM J. Numer. Anal. 26 (5), 1989, pp. 1241–1251.

11. B.L. van der Waerden, Modern Algebra, Vols. 1 and 2 (Ungar,
New York, 1953).

12. Discriminants, Resultants, and Multidimensional Determinants,
I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky,
(Birkhauser, Boston, 1994).

13. A.G. Kouchnirenko, “Polyèdres de Newton et Nombres de
Milnor,” Invent. Math. 32, 1976, pp. 1–31.

14. E.J. Kelley and K.W. Forsythe, “Adaptive Detection and Pa-
rameter Estimation for Multidimensional Signal Models,”
Technical Report 848, Lincoln Laboratory (19 Apr. 1989),
DTIC #ADA-208971.

15. G.F. Hatke, “Conditions for Unambiguous Source Location
Using Polarization Diverse Arrays,” 27th Asilomar Conf. on Sig-
nals, Systems & Computers 2, Pacific Grove, Calif., 1–3 Nov.
1993, pp. 1365–1369.

16. C.P. Mathews and M.D. Zoltowski, “Eigenstructure Tech-
niques for 2-D Angle Estimation with Uniform Linear Ar-
rays,” IEEE Trans. Signal Process. 42 (9), 1994, pp. 2395–2407.



• HATKE
Superresolution Source Location with Planar Arrays

VOLUME 10, NUMBER 2, 1997 THE LINCOLN LABORATORY JOURNAL 143

   array of N elements.
There exists a beamformer that transforms the array-
response vector a(u) for any value of u into a
beamspace array-response vector ar(u), where all
components of ar(u) are strictly real and independent
of u. Consider the spatial covariance matrix Rxx of the
beamformed outputs from the array due to K-plane
wave signals plus spatially white noise. This matrix
will have the form

R A U R A U Ixx r ss r
H

n= +( ) ( ) ,σ 2 (1)

where σn
2  is the noise power, Rss is the K × K

source covariance matrix, and

A U a u a ur r r K( ) ( ), , ( )≡ [ ]1 K

is the collection of K array-response vectors for the K
sources. The matrix Ar(U) is real, since ar(ui ) is real
for all i. Now consider the case in which the source
covariance matrix is real (an example of this is if the
sources are independent). In this case, the matrix Rxx
is real and symmetric.

Because the sample covariance matrix is a sufficient
statistic for estimating the direction parameters U for
Gaussian signals [6], it is sufficient to study the infor-
mation in the spatial covariance matrix in order to
determine whether K Gaussian sources can be
uniquely localized. One method of determining a
necessary condition on the number of signals K is to
simply count the number of real parameters that
must be estimated to determine U, and compare that
to the number of real scalars available in estimating
the covariance matrix Rxx . Reference 15 shows that if
there is any chance of ambiguity in estimating any of
the parameters (source directions or source correla-
tions), then there must be ambiguity in estimating
the source directions. In the case of a real Rss , the
number of parameters available in Rxx is (N

2 + N)/2.
The number of real parameters involved in the model

of the spatial covariance matrix as stated in Equation
1 is 2K + (K 2 + K)/2 + 1, with 2K parameters corre-
sponding to the directions U, (K 2 + K )/2 correspond-
ing to the elements of the unknown (but real sym-
metric) source covariance matrix, and one parameter
for the noise power.

In order for the parameters to be estimated
uniquely, their number must be less than or equal to
the number of scalars uniquely determined in esti-
mating Rxx from the data, which we have determined
to be (N 2 + N )/2. Thus a necessary condition is

N N
K

K K2 2

2
2

2
1

+ ≥ + + + .  (2)

Now consider K = N – 1. Then Equation 2 requires
that 2 ≥ 2N, which will not hold true for the mini-
mum number of antennas needed to estimate the
direction of one signal. Now consider K = N – 2. In
this case, Equation 2 holds for all values of N. Hence
a necessary condition for unique localization is that
the number of sources must be less than or equal to
N – 2.

A P P E N D I X  A :
M A X I M U M  N U M B E R  O F  S O U R C E S
U N I Q U E L Y  L O C A L I Z A B L E  W I T H  A

C E N T R O S Y M M E T R I C  A R R A Y
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 a(α, β) denote the array response of a planar array
as a function of the angles v = (α, β). For applications,
we can think of α = 2πuxdx/λ and b = 2πuydy /λ,
where (ux , uy , uz) are the direction cosines for a signal
arriving with wavelength λ at a planar x-y array whose
elements lie on a rectangular grid with x-spacing dx
and y-spacing dy . We can write the spectral-MUSIC
function as

a v a v

a v P a v

H

H
N

( ) ( )

( ) ˆ ( )
,

where P̂N  denotes the noise-space projector based on
the sample covariance matrix. The v-coordinates of
local maxima provide angle estimates. We let R =
[ESEN]Λ[ESEN]H express the eigenanalyzed true co-
variance matrix with ordered eigenvalues in the di-
agonal matrix Λ and associated normalized eigenvec-
tors in the columns of the signal-subspace matrix ES
and the noise-subspace matrix EN .

We approximate the noise-subspace projector
asymptotically in the number of samples L as

ˆ ,P P E B E B EN N S N
H

N
H

S
H≈ + +

where B is an M × (M – S ) array with independent,
mean-zero, complex circular Gaussian entries of
covariance

E B Ljk
j

j

2 1
2







= –

( – )

λ λ

λ λ

for 1 ≤ j ≤ S and 1 ≤ k ≤ M – S, and where

λ λ λ λ λ1 1≥ ≥ > = = ≡+L LS S M

are the ordered eigenvalues of the spatial covariance
and S is the signal-subspace dimension. Let
v v v∆ ≡ – 0 express the estimation error, where v0 is
the true direction of arrival. We then define the
matrix

D ≡








L S–

( ) ( )–
, ,

–
.1

2 2
diag 1

1 S

λ λ

λ λ

λ λ

λ λ
L

Let aα and aβ be α and β partial derivatives of a(α, β ).
Also let ℜ ⋅( )  denote the real part of its argument. We
use the asymptotic approximation of the noise-space
projector given above and the notation just intro-
duced to write the asymptotic variance of the estima-
tion error as [16]

E

P P

P P

T H
S S

H

H
N

H
N

H
N

H
N

v v a E DE a

a a a a

a a a a

∆ ∆[ ] ≈ ×

ℜ






















1

2
1

( )

.

–

α α α β

β α β β

Let z equal eiα  and w equal to eiβ  be the unit circle el-
ements corresponding to the angles v equal to
(α, β ). Henceforth, z and w are allowed to take values
off the unit circle, in which case their phases corre-
spond to angle estimates. The true angles of a signal
are denoted v0 equal to (α0, β 0), and (z0, w0) =
( , ) .e ei iα β0 0

PRIME utilizes arrays whose elements lie on a pla-
nar grid. The elements can be indexed by integer
pairs. Let the (j, k)th element have response γjkz jwk,
where

–( – )
,

( – )
.

N
j k

N1

2

1

2
≤ ≤

The γjk are not assumed to have any pattern varia-
tions. The array-response vector has apparent size N2,
for example, when N is even. Some of the γjk, how-
ever, are allowed to vanish. This concession is taken
into account by dropping these elements from the ar-
ray-response vector so that its actual length is denoted
M, as above. The array response can then be written

A P P E N D I X  B :
A S Y M P T O T I C  M E A N – S Q U A R E D  E R R O R  F O R

P R I M E  D I R E C T I O N  E S T I M A T E S
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as a vector a(z, w) with monomial entries satisfying

a a( , ) ( , )e e e ei iNz iNwα β α β α β≡

for appropriately chosen Nz and Nw. To rephrase two-
dimensional spectral-MUSIC accuracy results in
terms of the monomial vector a(z, w) and its deriva-
tives, we define

G

a E DE a

a E DE a

G a a a a G

≡

=

≡











≡

e
e

z w z w

C P

i

i

H
S S

H

H
S S

H

N z w
H

N z w
H

α

β

δ α β α β

0

0

0
0

0 0 0 0

0 0 0 0

( ) ( )

( ) ( )

[ , ] [ , ] .

, ,

, ,

Then the asymptotic accuracy of two-dimensional
MUSIC can be written as

E CT
Nv v∆ ∆[ ] ≈ ℜδ

2
1( ) .–

This expression can be simplified slightly when the
array is centrosymmetric. Centrosymmetry holds
when γ γjk j k= – – . For example, if the γjk are all ei-
ther one or zero, then the elements are paired about a
common phase center, with each element of a pair at
opposite ends of a diameter through the phase center.
Of course there can be an element at the phase center
that can be considered paired with itself. For cen-
trosymmetric arrays and signals that are not fully cor-
related, CN is real.

One version of PRIME is based on a polynomial
built from the denominator of the MUSIC function.
We let

F z w z w z w P z wJ K T
N( , ) ( , ) ˆ ( , )– –≡ a a1 1 ,

where J and K are chosen to make F (z, w) a polyno-
mial. With infinite samples (i.e., P̂ PN N= ), F(z, w)
has double roots in z at z = z0 for fixed w = w0. Simi-
larly, F (z, w) has double roots in w for fixed z = z0.
Thus the partials Fz and Fw have a common root at
(z0, w0). The method of intersecting these partials is
called the partial-derivative method. Angle estimates
(α, β) are obtained from the angular components of
(z, w). The estimates have the same asymptotic accu-

racy as those of two-dimensional spectral MUSIC as
described above.

Another implementation of PRIME is based on
choosing noise-subspace probes (a special case of sub-
space division PRIME-MUSIC). This method pro-
vides polynomials of smaller degree than those ob-
tained from partial derivatives. For two M-vectors, qi,
we define two polynomials

g z w P z w ii i
H

N( , ) ˆ ( , ) , .≡ q a for = 1, 2

The common roots provide estimates of (z0, w0).
Let ρδ ≡ − −( , )z z w w0 0  represent the estimation er-
ror. Let PE denote the projector onto the two-
dimensional subspace of the (true) noise subspace
spanned by PNqi. Also, let

C PE
H

z w
H

E z w≡G a a a a G[ , ] [ , ] .

Then, asymptotically, the estimation error is complex
circular Gaussian with variance

E H
E

HC[ .] –v v G Gδ δ δ≈ 1

Note that CE ≤ CN (hence C CN E
– –1 1≤ ) because PE ≤

PN as positive semi-definite Hermitian matrices.
Equality is achieved if the span of q and the span of
az(z0, w0), aw(z0, w0) project onto the same two-di-
mensional subspace of the noise space.

The variance of the angle estimates is expressed by
the 2 × 2 real matrix δ / ( )–2 1ℜ CE . Now,

δ δ δ
2 2 2

1 1 1( ) ( ) ,– – –ℜ ≤ ℜ ≤ ℜC C CN N E

where the left-hand and right-hand expressions repre-
sent the asymptotic error variances of two-dimen-
sional spectral MUSIC and PRIME based on
noise-space probes, respectively. It follows that the
asymptotic accuracy of two-dimensional MUSIC is
generally better. However, for the proper choice of
noise-space probes and centrosymmetric planar ar-
rays, the accuracies are identical. In particular, when
the array is centrosymmetric and the noise subspace is
two-dimensional, the accuracies are identical.
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