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T   automatic target recognition
(ATR) is to detect and recognize objects, such
as tanks, in images produced by a laser radar, a

synthetic-aperture radar (SAR), or an infrared or
video camera. Current ATR methods are not fully au-
tomatic, relying instead on a partnership between
computer processing and human analysis. Although
computer algorithms accomplish much preliminary
ATR work of sifting through millions of data pixels
per image to identify candidate targets, image analysts
play a crucial role in the recognition process by re-
viewing the ATR algorithm results. In a typical con-
flict situation, seven image analysts and one supervi-
sor perform image interpretation for about thirty
minutes to produce a target report that details the
presence of missile launchers and the ground order of
battle vehicles such as tanks, armored personnel carri-
ers, and trucks.

The advent of low-cost, wide-area sensor platforms
on unmanned air vehicles (UAV) will generate a pro-
fusion of data that dramatically increases the de-
mands on image analysts [1]. For example, Teledyne
Ryan Aeronautical’s Global Hawk UAV is designed to
provide sustained high-altitude surveillance and re-
connaissance at large standoff ranges. Its mission
goals include an operating range of 3000 nautical
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■ Lincoln Laboratory has developed a new automatic target recognition (ATR)
system that provides significantly improved target-recognition performance
compared with ATR systems that use conventional synthetic-aperture radar
(SAR) image-processing techniques. We achieve significant improvement in
target-recognition performance by using a new superresolution image-
processing technique that enhances SAR image resolution and image quality
prior to performing target recognition. A computationally efficient two-stage
template-based classifier is used to perform the target-recognition function.
This article quantifies the improvement in target-recognition performance
achieved by using superresolution image processing in the new ATR system.

miles and the ability to loiter over the target area for
24 hours at altitudes of 65,000 feet. In addition to
electro-optical and infrared sensors, this UAV will
carry a SAR sensor that is projected to collect in one
day enough data sampled at a resolution of 1.0 m ×
1.0 m to cover 140,000 km2 (roughly the size of
North Korea).

To analyze the growing quantities of image data,
the Defense Advanced Research Projects Agency
(DARPA) has been developing a project called Semi-
Automated IMINT (image intelligence) Processing,
or SAIP [2]. This system, which currently processes
SAR data, requires fewer image analysts to examine
data in near real time. With SAIP, two image analysts
and a supervisor can produce target reports within
five minutes of receiving the data.

The SAIP system combines advanced ATR algo-
rithms and robust false-alarm mitigation techniques
with commercial off-the-shelf computer hardware to
filter out natural and cultural clutter, and to recognize
and prioritize potential targets. It annotates image ar-
eas containing potential targets with target cues for
the image analysts, who use visualization tools pro-
vided by the SAIP human-computer interface to es-
tablish the true target types and produce a target re-
port to pass to the battlefield commander. The image
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analysts can also retask the SAR sensor for a high reso-
lution (0.3 m × 0.3 m) revisit. Figure 1 shows the de-
ployment of the SAIP system in a typical battlefield
situation and the flow of data in the image-gathering
process. The phase history data gathered by the SAR
sensor are sent to the SAIP ground station, where the
complex SAR image is formed and passed to the SAIP
ATR algorithms. The ATR algorithms cue the ana-
lysts to areas of the SAR image containing potential
targets and groups of targets.

Lincoln Laboratory has led the development of the
human-computer interface and ATR components of
the SAIP system. This article focuses on the classifica-
tion components of the ATR that consist of a super-
resolution processing technique known as high-defi-
nition vector imaging (HDVI) and mean squared
error (MSE) classifier stages [3, 4].

The basic SAIP design combines existing Lincoln
Laboratory ATR algorithms with robust false-alarm
mitigation techniques such as terrain delimitation,
object-level change detection, cultural-clutter identi-
fication, and spatial clustering, which includes force
structure analysis. Figure 2 illustrates the target-rec-

ognition process implemented in the SAIP system.
The Lincoln Laboratory ATR algorithms, highlighted
in blue, consist of a constant false-alarm rate (CFAR)
detector, a feature extractor, a discrimination-thresh-
olding module, and the HDVI-MSE template-based
classifier. Once the SAR image data have entered the
SAIP system, the CFAR detector locates objects
called candidate targets in the image having high ra-
dar contrast. A small area, called a chip, around each
target candidate is extracted from the large SAR im-
age. The candidate targets, consisting of true targets
and clutter false alarms, are analyzed in the feature ex-
tractor, which calculates a set of features such as
length, width, and diameter that characterize each
object.

The feature extractor produces a scored measure of
detection characterization, or target likeness, from
the calculated feature values. The false-alarm mitiga-
tion modules—for example, terrain delimitation and
object-level change detection—also provide target-
likeness scores. These various scores are weighted and
combined into an overall measure of target likeness,
in the discrimination-thresholding module. The can-

FIGURE 1. Process flow for phase history data gathered by an unmanned air vehicle. The phase history data gathered by the
synthetic-aperture radar (SAR) sensor are sent to the Semi-Automated IMINT (image intelligence) Processing (SAIP) ground
station, where the complex SAR image is formed and passed to the SAIP automatic target recognition (ATR) algorithms.
These SAIP ATR algorithms cue the analysts to areas of the SAR image containing potential targets and groups of targets.
SAIP integrates with existing image intelligence systems to provide improved wide-area surveillance and to reduce the work
load of the image analysts.
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FIGURE 2. Process flow of  SAIP system. The boxes highlighted in blue represent the Lincoln Labo-
ratory ATR algorithms, which consist of a constant false-alarm rate (CFAR) detector, a feature ex-
tractor, a discrimination-thresholding module, and the high-definition vector imaging (HDVI) mean
squared error (MSE) template-based classifier.

didate targets are then ranked according to their
scores and appropriately thresholded and prioritized
for further processing in the HDVI-MSE classifier.

Superresolution (HDVI) processing is applied to
the complex SAR images of the priority-ordered can-
didate targets to enhance the resolution of the SAR
data prior to performing classification. Each candi-
date target is compared to a set of stored reference
templates. Each template is an average representation
of a particular target type at a particular aspect angle.
The MSE between the candidate target and each of
the templates is calculated. For each target type, the
minimum MSE score over aspect angle is converted
to a confidence value for that target type. The tem-
plate-based target classification and confidence values
are reviewed by image analysts, who are also provided

the HDVI-processed image of the candidate target,
and the corresponding classifier templates that pro-
vided the best matches.

This article quantifies the improved target recogni-
tion that was achieved by using superresolution
HDVI image processing prior to performing target
recognition [5]. We introduce the two-stage HDVI-
MSE classifier implemented in the SAIP system and
show that this classifier implementation improves the
computational speed by a factor of thirty, while suf-
fering only a marginal decrease in performance com-
pared with the classifier implementation that uses
only HDVI-processed imagery. Finally, we present an
end-to-end ATR system performance evaluation by
using the SAIP detection, discrimination, and
HDVI-MSE classifier stages.
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Data Description

The SAR imagery used in these studies was provided
to Lincoln Laboratory by Wright Laboratories of
Wright Patterson Air Force Base in Dayton, Ohio.
These data were gathered in the fall of 1995 at the
Redstone Arsenal in Huntsville, Alabama, by the
Sandia X-band (9.6 GHz) HH-polarization SAR sen-
sor, in support of the DARPA-sponsored Moving and
Stationary Target Acquisition and Recognition
(MSTAR) program [6]. The data comprise military
targets imaged over 360° of aspect angle in spotlight
mode, and approximately 30 km2 of natural and cul-
tural clutter gathered in stripmap mode. Figure 3
shows a typical SAR spotlight image (0.3-m × 0.3-m
resolution) of the target array and a key that identifies
each target. Figure 4 shows photos of the eighteen-
target set, which includes three versions each of the
BMP2 armored personnel carrier, the M2 infantry
fighting vehicle, and the T72 main battle tank. The
T72 tanks differ noticeably from each other—T72 #2
has fuel drums mounted on the rear of the target,
while T72 #3 lacks skirts along the side of the target.
The BMP2 and M2 infantry fighting vehicle have
minor differences in target-to-target configuration.

We used images of ten targets to train the target
classifier and then evaluated the ability of the classi-
fier to recognize images of the eight remaining tar-
gets. Initially, we used non-HDVI-processed data in
our evaluations to establish a baseline for comparing
the classifier performance with HDVI-processed
data. Then we evaluated the classifier performance
with HDVI-processed data. Performance results are
presented in terms of classifier confusion matrices
that show the number of correct and incorrect classi-
fications achieved. We also summarize the perfor-
mance in terms of a probability of correct classifica-
tion (Pcc ), which is based on the total number of
targets entered into the system, and includes the
number of confuser vehicles correctly identified as
unknown.

We trained the MSE classifier by constructing clas-
sifier templates with SAR images of ten of the targets
shown in Figure 4: BMP2 #1, M2 #1, T72 #1,
BTR60, BTR70, M1, M109, M110, M113, and
M548. We constructed 72 templates per target that
covered 360° of aspect per target. Initially, we tested
the classifier on the training images to check the per-
formance of the algorithm code, which we expected
to be nearly perfect. The classifier was then tested

FIGURE 3. SAR image of the MSTAR target array (left) at Redstone Arsenal in Huntsville, Alabama, and with ground truth su-
perimposed (right). The radar illumination is from the top; therefore, radar shadows appear below tall objects. A road can be
seen in the lower right corner of the image. The plus signs represent corner reflectors used for image registration.

M1

HMMWV

M548

M35

T72

T72

T72

M2

M113

M110
M2

M2

BTR70

BTR60

BMP2

BMP2
BMP2

M109

 Corner reflectors



• NOVAK, OWIRKA, BROWER, AND WEAVER
The Automatic Target-Recognition System in SAIP

VOLUME 10, NUMBER 2, 1997 THE LINCOLN LABORATORY JOURNAL 191
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FIGURE 4. The eighteen-vehicle MSTAR tactical-target data set. There are three different vehicles for the BMP2, M2, and T72
targets, which allows for evaluation of serial-number variability. Note that T72 #2 has fuel barrels mounted on the rear. Ten ve-
hicles in the data set were used for training the classifier, and the other eight vehicles were used to test the classifier. Of the
eight test vehicles, the HMMWV and M35 were used as confuser vehicles. In our presentation of results, the confuser vehicles
should be classified as unknown.
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with the remaining eight targets that were not used in
training the classifier: BMP2 #2, BMP2 #3, M2 #2,
M2 #3, T72 #2, T72 #3, HMMWV, and M35. Of
these eight targets, the HMMWV and M35 were
used as confuser vehicles, not included in the ten-tar-
get training set, and should be classified as unknown.

Performance Results for
Non-HDVI-Processed Data

After training the MSE classifier, we evaluated its per-
formance with conventional SAR image-formation
processing and determined the SAR resolution re-
quired to achieve reliable Pcc for this target set. The
SAR data were conventionally processed by using
two-dimensional fast Fourier transform (FFT) pro-
cessing with Hamming weighting to produce three
nominal resolutions: 0.3 m × 0.3 m, 0.5 m × 0.5 m,
and 1.0 m × 1.0 m. At each resolution, we imple-
mented an MSE classifier by constructing 72 tem-
plates per target. We then tested each classifier by us-
ing target imagery at the appropriate resolution. The
results of these evaluations are summarized in Tables
1, 2, and 3.

Table 1 is the classifier confusion matrix for the
0.3-m × 0.3-m-resolution data. When we tested the
classifier by using independent test data, we achieved

nearly perfect classifier performance. The Pcc for Table
1 data, calculated by using the independent test ve-
hicles and the confuser vehicles, is 93.9%. Note, how-
ever, that the performance for T72 #2, which had fuel
drums mounted on the rear of the tank, resulted in
the classifier declaring 39 of the 255 images un-
known. The performance for T72 #3, which did not
have skirts along the sides of the target as did T72 #1
used in training, was nearly perfect: the classifier de-
clared only 4 of the 251 images unknown, with the
other 247 images classified as a T72 tank. The classi-
fier rejected a large number of confuser vehicles: 438
of the 499 images. At this resolution, 37 of the 244
HMMWV test images were misclassified as an M113
armored personnel carrier, and 4 of the 255 M35 test
images were misclassified as an M548 truck.

Table 2 is the classifier confusion matrix for the
0.5-m × 0.5-m-resolution data. The Pcc for these data,
calculated by using only the independent test vehicles
and the confuser vehicles, is 84.1%. At this resolu-
tion, the M35 truck was misclassified 13 out of 255
times. The HMMWV, however, was misclassified
most of the time: only 61 out of 244 HMMWV im-
ages were declared unknown.

Table 3 shows the classifier confusion matrix for
the 1.0-m × 1.0-m-resolution data. We observe at this

Table 1. Classifier Performance Results for
 Conventionally Processed 0.3-m × 0.3-m-Resolution Data

Target* Number of  Targets Classified As

BMP2 BTR60 BTR70 M109 M110 M113 M1 M2 M548 T72 Unknown

BMP2 #2 251 — — — — — — 1 — — 3

BMP2 #3 251 — — — — — — 1 — 2 2

M2 #2 — — — — — — — 251 — — 4

M2 #3 — — — — — — — 252 — — 3

T72 #2 — — — — — — — — — 216 39

T72 #3 — — — — — — — — — 247 4

HMMWV 12 6 — — — 37 — 2 — — 187

M35 — — — — — — — — 4 — 251

* Darker tone in table indicates independent test vehicles; HMMWV and M35 are confuser vehicles (not in training set).
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resolution a large degradation in classifier perfor-
mance. The probability of correct classification Pcc de-
grades to 45.4% with poor confuser rejection. From
these initial classifier studies, we concluded that SAR
resolution of 0.5 m × 0.5 m or better is needed to
achieve a reliable probability of correct classification
for this target set. The probability of correct classifica-

tion degrades rapidly for SAR resolutions coarser
than 0.5 m × 0.5 m.

Performance Results for HDVI-Processed Data

Next we studied the ATR performance achieved by
the MSE classifier with HDVI-processed SAR imag-
ery. In these studies, the target data that were conven-

Table 2. MSE Classifier Performance Results for
Conventionally Processed 0.5-m × 0.5-m-Resolution Data

Target* Number of  Targets Classified As

BMP2 BTR60 BTR70 M109 M110 M113 M1 M2 M548 T72 Unknown

BMP2 #2 235 1 — — — — — 8 — 7 3

BMP2 #3 237 1 — — — 1 — 11 — 4 3

M2 #2 — — — 4 5 — — 233 — 4 9

M2 #3 — — — 2 5 1 — 239 — 4 5

T72 #2 — — — — 3 — 8 3 — 217 24

T72 #3 — — — 1 — — 2 1 — 241 6

HMMWV 29 8 1 9 3 115 — 14 3 1 61

M35 1 — — 3 3 1 — — 5 — 242

* Darker tone in table indicates independent test vehicles; HMMWV and M35 are confuser vehicles (not in training set).

Table 3. Classifier Performance Results for
Conventionally Processed 1.0-m × 1.0-m-Resolution Data

Target* Number of  Targets Classified As

BMP2 BTR60 BTR70 M109 M110 M113 M1 M2 M548 T72 Unknown

BMP2 #2 129 15 21 8 1 39 3 15 — 18 6

BMP2 #3 135 7 10 5 2 43 — 25 — 18 11

M2 #2 14 3 2 37 14 36 5 121 — 16 7

M2 #3 21 6 — 18 6 47 9 118 — 27 4

T72 #2 7 12 3 19 9 23 17 32 1 94 38

T72 #3 19 8 6 23 5 12 14 19 — 127 18

HMMWV 48 7 4 4 — 145 — 13 1 — 22

M35 8 — — 12 9 29 4 4 13 1 175

* Darker tone in table indicates independent test vehicles; HMMWV and M35 are confuser vehicles (not in training set).
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tionally processed into 0.3-m × 0.3-m and 1.0-m ×
1.0-m-resolution SAR imagery were then reprocessed
with superresolution (HDVI) processing. The resolu-
tions achieved after HDVI processing were approxi-
mately 0.15 m × 0.15 m and 0.5 m × 0.5 m, respec-
tively. Figure 5 compares side-by-side 0.3-m ×
0.3-m-resolution images of an M35 truck, with and
without HDVI superresolution processing. Figure 6
shows a similar image comparison for the conven-
tionally processed 1.0-m × 1.0-m-resolution image
versus the HDVI-processed image.

With HDVI-processed training imagery, we con-
structed classifier templates and tested each classifier
by using the appropriate HDVI-processed test imag-
ery. Table 4 shows the classifier confusion matrix for
the HDVI-processed 0.3-m × 0.3-m-resolution data.
Comparing the results of Table 4 with those of Table
1 shows somewhat improved MSE-classifier perfor-
mance. The probability of correct classification with
HDVI-processed data increased to 96.4%, an im-
provement of 2.5% over the conventionally processed
data. With HDVI-processed 0.3-m × 0.3-m data, the

FIGURE 5. SAR images of  an M35 truck. The left image has been processed with conven-
tional two-dimensional fast Fourier transform (FFT) techniques and has 0.3-m × 0.3-m reso-
lution. The right image has been HDVI processed to an approximate 0.15-m × 0.15-m resolu-
tion. The bright return from the lower right corner of the M35 truck is caused by the trihedral
structure formed by the two walls and the floor of the truck bed. This bright return is sharper
in the HDVI-processed image.

FIGURE 6. SAR images of  an M35 truck. The left image has been processed with conven-
tional two-dimensional FFT techniques and has 1.0-m × 1.0-m resolution. The right image
has been HDVI processed to approximately 0.5-m × 0.5-m resolution.
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classifier rejected a larger number of confuser ve-
hicles—471 out of the 499 images.

Table 5 shows the classifier confusion matrix for
the HDVI-processed 1.0-m × 1.0-m-resolution data.
After HDVI processing, the data resolution is ap-
proximately 0.5 m × 0.5 m. Comparing the results of
Table 5 with the results of Table 3 shows a dramatic
improvement in MSE-classifier performance. The
probability of correct classification with HDVI-pro-
cessed data increases significantly over that achieved
with conventionally processed 1.0-m × 1.0-m-resolu-
tion data, from 45.4% to 73.4%. With HDVI-pro-
cessed 1.0-m × 1.0-m data, the number of rejected
confuser vehicles increases from 197 to 323 out of
499 images.

A Computationally Efficient
Two-Stage Classifier

We developed a computationally efficient implemen-
tation of the HDVI-MSE classifier for the SAIP sys-
tem to provide significantly increased speed in the
ATR function with only a marginal loss in ATR per-
formance. The HDVI-MSE classifier is preceded by a
preclassifier stage that performs a coarse MSE classifi-
cation on non-HDVI-processed 1.0-m × 1.0-m-reso-
lution data. This reduced-resolution MSE preclassi-

fier provides an estimate of the pose (aspect angle) of
the target and an estimate of the target’s true class.
This information is passed to the more computation-
ally intensive HDVI-MSE classifier and is used to
limit the search space over target aspect and target
type, which results in a more computationally effi-
cient ATR algorithm [7].

Figure 7 compares the single-stage HDVI-MSE
classifier with the computationally efficient two-stage
approach. The figure shows the probability of correct
classification results by using the 15° depression-
angle SAR target data to test both classifiers. The clas-
sifier templates were constructed from 17° depres-
sion-angle target data. The upper diagram in Figure 7
shows the performance results for the HDVI-MSE
classifier, which does a brute-force search over the
ten-target template set at all possible pose angles.
Also, x and y offsets of ±12 pixels are shifted over to
account for small alignment errors between the test
input chip and the templates. The probability of cor-
rect classification is 73.4% for the baseline single-
stage HDVI-MSE classifier.

The lower diagram in Figure 7 shows the first-
stage, ten-target MSE preclassifier that uses conven-
tionally processed 1.0-m × 1.0-m-resolution data.
This stage is used to determine the best five classifica-

Table 4. Classifier Performance Results for
HDVI-Processed 0.3-m × 0.3-m-Resolution Data

Target* Number of  Targets Classified As

BMP2 BTR60 BTR70 M109 M110 M113 M1 M2 M548 T72 Unknown

BMP2 #2 252 — — — — — — — — — 3

BMP2 #3 255 — — — — — — 1 — — —

M2 #2 — — — — — — — 251 2 — 2

M2 #3 — — — — — — — 248 3 — 3

T72 #2 — — — — — — — — — 232 23

T72 #3 — — — — — — — — — 245 6

HMMWV 4 1 — — — 13 — 3 — — 223

M35 — — — — — — — 1 6 — 248

* Darker tone in table indicates independent test vehicles; HMMWV and M35 are confuser vehicles (not in training set).
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tion scores, a pose estimate for the top five classes,
and a refinement of the x and y offsets for the top five
classes. This information is then used to reduce the
search space of the HDVI-MSE classification stage.
The final classification decision is made with HDVI-
processed data. The corresponding probability of cor-
rect classification is 70.0% for the two-stage classifier.
Using the non-HDVI-MSE classifier on 1.0-m × 1.0-
m-resolution data to prune the search space of the
HDVI-MSE classifier introduces some small errors
into the system that lead to a 3.4% loss in Pcc.

Figure 8 shows a cumulative error probability
curve of the MSE-classifier pose-estimation error in
degrees for 1.0-m × 1.0-m-resolution target data. Be-
cause each template represents 5° of aspect angle, a
pose error of 20° angle corresponds to ±4 templates.
The curve in Figure 8 indicates that approximately
95% of the time the correct pose is contained in the
±4 template search space. Note that a 180° ambiguity
is included in the pose estimates because these targets
are nearly symmetric when facing forward or back-
ward. Therefore, a ±4 template pose estimate with the

Table 5. Classifier Performance Results for
HDVI-Processed 1.0 m × 1.0 m-Resolution Data

Target* Number of  Targets Classified As

BMP2 BTR60 BTR70 M109 M110 M113 M1 M2 M548 T72 Unknown

BMP2 #2 202 4 2 — — 1 — 17 — 10 19

BMP2 #3 195 2 4 2 — 4 — 22 — 17 10

M2 #2 4 — 2 13 11 2 1 188 — 24 10

M2 #3 8 1 2 16 5 3 1 180 — 27 13

T72 #2 3 — — 5 — 1 7 10 — 190 39

T72 #3 5 1 — 3 4 — 3 10 — 211 14

HMMWV 25 8 8 1 — 101 — 8 — — 93

M35 1 — — 3 1 6 — — 14 — 230

* Darker tone in table indicates independent test vehicles; HMMWV and M35 are confuser vehicles (not in training set).

FIGURE 7. Two HDVI-MSE classifiers. The upper diagram shows the single-stage HDVI-MSE classi-
fier that performs a brute-force search of all SAR image data. The lower diagram shows the reduced
(1.0 m × 1.0 m) resolution MSE preclassifier that is used to prune the search space, followed by the
enhanced (0.5 m × 0.5 m) resolution HDVI-MSE classifier that makes the final classification decision.
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180° ambiguity yields a total of eighteen templates to
be searched at higher resolution. Thus the higher-
resolution MSE classifier does not have to search all
72 templates per target; rather, it searches a much
smaller subset of the HDVI template set.

Figure 9 presents a plot of the probability that the
correct target class is contained in the top N MSE
scores for 1.0-m × 1.0-m-resolution imagery. For this
study, the top score gave the correct class only 47.8%
of the time. The correct class, however, was contained
in the top five scores approximately 95.4% of the
time.

The curves in Figures 8 and 9 show why the 20°
pose error angle and the top five scores from the
preclassifier can be used to prune the HDVI-MSE
classification space with only a small degradation in
performance. From these evaluations, we also deter-
mined that by using the refinement of the x and y
offsets from the preclassifier, we could reduce the
shifting—moving the test input relative to the tem-
plate to find the best match—in the HDVI-MSE
classifier from ±12 to ±4 pixels without degrading
performance

Table 6 shows the classifier confusion matrix for
the two-stage classifier. For this study, the probability
of correct classification is 70.0% for all eight targets,
including the HMMWV and M35 confuser vehicles.

Computational Efficiency

The previous section compared the performance of
an HDVI classification system and a two-stage
HDVI-MSE classification system that uses the con-
ventional imagery for preclassification, then applies
HDVI processing followed by MSE on a reduced
data set. The results showed that the two-stage classi-
fication system provided performance that was only
slightly degraded (from 73.4% to 70%). We now
quantify the benefits of the two-stage classification
system from a standpoint of computational efficiency.

HDVI processing enhances image resolution by
approximately a factor of two or more, depending on
the quality of the initial imagery [5]. To exploit this
resolution enhancement, we must sample the HDVI-
processed imagery at a higher pixel rate than the
original imagery. Our studies show that a factor of
three in both range and cross-range pixel sample spac-
ing provides good results. A conventional test-image
chip of size N × N produces an HDVI image of size
3N × 3N (each pixel in a conventional image is re-
placed with nine HDVI pixels). This factor of nine is
present in both HDVI-processed test images and
HDVI-MSE reference templates. Another factor of
nine comes from the amount of spatial shifting re-
quired to properly align the test and template image.

FIGURE 8. Cumulative error probability versus pose error
with 1.0-m × 1.0-m-resolution target data. Because each tem-
plate represents 5° of aspect, a pose error used by SAIP of
20° corresponds to ± 4 templates. The correct pose is con-
tained in the ± 4 template search space approximately 95% of
the time.

FIGURE 9. The probability that the correct target class is
contained in the top N MSE scores with 1.0-m × 1.0-m-reso-
lution target data. For this study, the correct target class was
found in the top five SAIP-generated scores approximately
95.4% of the time.
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Consequently, the HDVI-MSE classifier requires
eighty-one times more computations than the con-
ventional 1.0-m × 1.0-m-resolution MSE classifier.
Therefore, if T seconds are needed to classify an
HDVI-processed test image, T /81 seconds are needed
for preclassification with conventional imagery.

In the two-stage system, the final classification
decision is made with the HDVI-MSE classifier, in a
reduced search space. The computations required to
perform the reduced-search-space HDVI-MSE classi-
fier must be calculated and added to the preclassi-
fication computations to obtain the overall system
computations. Again, we can calculate the computa-
tions required for the reduced-search-space HDVI-
MSE classifier relative to the HDVI-MSE classifier
alone. For the reduced-search-space classifier, the
number of computations is 7290 (5 classes times 18
poses times 81 shifts). For the HDVI-MSE classifier,
the number of classifications is 450,000 (10 classes
times 72 poses times 625 shifts). Therefore, if T sec-
onds are required to classify an HDVI-processed im-
age with just the HDVI-MSE classifier, only about
T /50 seconds are required to classify a reduced-
search-space HDVI test input (450,000 divided by
7290 approximately equals 50).

By adding the computations required by the pre-
classifier and the reduced-search-space HDVI-MSE
classifier, we find that this two-stage approach is ap-
proximately thirty times faster than the full-search-
space HDVI-MSE classifier alone. This result is sig-
nificant from a standpoint of real-time system
implementation. We also note that the two-stage clas-
sification templates require only 11% more memory
than the HDVI-MSE templates.

End-to-End Performance

Our system implementation consisted of a two-
parameter CFAR detector, a discrimination stage
with discrimination thresholding, and the two-stage
template-based classifier. These ATR modules are
highlighted in blue in the SAIP-system process dia-
gram illustrated in Figure 2. The performance results
are presented in the form of receiver operating charac-
teristic (ROC) curves showing probability of detec-
tion versus false-alarm density (false alarms/km2).
The data sets used for these performance evaluations
consisted of the 30-km2 clutter set and the 1528 inde-
pendent test target images. These data were processed
to have 1.0-m × 1.0-m resolution as the input to the
ATR system.

Table 6. Multiresolution Classifier Performance for
1.0 m × 1.0 m-Resolution Data*

Target** Number of  Targets Classified As

BMP2 BTR60 BTR70 M109 M110 M113 M1 M2 M548 T72 Unknown

BMP2 #2 131 2 8 — — 4 — 16 — 21 14

BMP2 #3 122 3 3 1 1 2 — 25 — 22 17

M2 #2 — — — 13 10 2 1 133 — 16 21

M2 #3 4 1 — 9 6 2 — 145 — 15 14

T72 #2 3 1 — 1 1 1 5 7 — 133 43

T72 #3 — 1 1 2 2 — 1 9 — 152 23

HMMWV 15 9 7 3 — 71 — 5 — — 84

M35 — — — 1 — 2 — — 8 — 185

*17° depression angle for training data and 15° depression angle for test data.
** Darker tone in table indicates independent test vehicles; HMMWV and M35 are confuser vehicles (not in training set).
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Detector

We used a two-parameter CFAR detector as a
prescreener to eliminate large areas of clutter and to
select objects that produce high-radar-contrast SAR
returns. CFAR detections (bright pixels) that are spa-
tially close were clustered into target-sized objects and
centroided (the location of the target center was esti-
mated by using a SAIP algorithm). Then a region of
interest (ROI) chip was extracted around each candi-
date target. Figure 10 shows the ROC curve charac-
terizing the CFAR detector (black curve). This curve
characterizes the detection probability versus false-
alarm density as the CFAR threshold is varied. We se-
lected a CFAR threshold of 3.5, which resulted in a
0.95 detection probability and 30 false alarms/km2

(905 false objects detected in the 30-km2 clutter).
This point on the CFAR ROC curve corresponding
to the CFAR threshold of 3.5 was the operating point
for the detector. All the detected ROI chips, includ-
ing targets and false alarms, that exceed this threshold
were then passed to the discrimination stage.

Discrimination

To study discrimination performance, we imple-
mented two SAIP discrimination algorithms that
measure different target characteristics. The target-
likeness scores from these two discrimination algo-
rithms were appropriately combined and thresholded
in a simplified discrimination-thresholding stage.

One discrimination algorithm, denoted as the qua-
dratic distance (QD) discriminator, calculates a set of
features for each ROI chip entering the discrimina-
tion stage. Four features are calculated—object diam-
eter, inertia, percent-bright CFAR, and fractal dimen-
sion [4]—and are placed into a four-dimensional
feature vector. The distance between the feature vec-
tor and the target training data is the QD score,
which provides a measure of target likeness. Figure 11
shows distributions of the QD score for the 905 false
alarms and the 1451 detected targets out of 1528 test
targets. If we select the QD threshold to be 13.1, the
discrimination algorithm provides a 0.95 detection
probability and the false-alarm density is reduced to
21.4 false alarms/km2 (263 out of 905 false alarms
were rejected).

The second discrimination algorithm is known as
the quadratic polynomial discriminator (QPD) [8].
The QPD uses circularly symmetric kernels con-
structed from one-dimensional gamma functions to
estimate local statistics in concentric bands around
the center pixel of the ROI chip. First, the ROI chip is
normalized by removing the local clutter mean. Next,

FIGURE 10. Receiver operating characteristic (ROC) perfor-
mance curves for each element of the end-to-end ATR sys-
tem. The HDVI-MSE classifier provided a probability of de-
tection of greater than 0.8 with 0.1 false alarms/km2.

FIGURE 11. Distribution of quadratic distance (QD) scores
for targets and clutter false alarms. The target distribution is
to the left of the clutter distribution because the QD metric
represents the distance measured to the target training set.
A lower score indicates a target. A QD threshold of 13.1 pro-
vides a 0.95 detection probability with a false-alarm density
of 21 false alarms/km2. There is good separability between
the two distributions, although some overlap remains.

0.01 0.10 1 10 100 1000

1.0

0.8

0.6

0.4

0.2

0.0

False alarms/km2

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n HDVI-MSE 

classification

Discrimination

CFAR detector

20

25

15

10

5

0
0 20 6040

QD score

P
er

ce
nt

Targets

Clutter



• NOVAK, OWIRKA, BROWER, AND WEAVER
The Automatic Target-Recognition System in SAIP

200 THE LINCOLN LABORATORY JOURNAL VOLUME 10, NUMBER 2, 1997

FIGURE 13. Two-dimensional scatter plots of the QD versus
QPD scores for targets and clutter false alarms. This figure
shows that a nonlinear threshold function can be used to
provide better separability than either the QD score or the
QPD score.

FIGURE 12. Distributions of quadratic polynomial discrimi-
nator (QPD) scores for targets and clutter false alarms.
There is good separability between the two distributions,
but some overlap remains. A QPD threshold of 0.26 would
provide a 0.95 detection probability with a false-alarm den-
sity of 12 false alarms/km2.

eight features are extracted by taking inner products
of the image and the image squared with the kernels.
Finally, the inner product of the feature vector and
the QPD weight vector (calculated a priori by using
training data of representative targets and clutter false
alarms) is used to calculate the QPD score. Figure 12
shows distributions of the QPD score for the 905
false alarms and the 1451 detected targets. If we select
the QPD threshold to have the value 0.26, this algo-
rithm provides a 0.95 detection probability and the
false-alarm density is reduced to 12 false alarms/km2

(537 out of 905 false alarms were rejected).
The SAIP discrimination-thresholding module

combines information from the other SAIP modules
(including scores from the QD and QPD discrimina-
tors, terrain delimitation, and object-level change de-
tection). In these studies we implemented a simpli-
fied discrimination-thresholding algorithm by using
the QD and QPD scores only. The two-dimensional
distributions of the QD and QPD scores were exam-
ined. Figure 13 shows these distributions for the de-
tected targets and clutter false alarms, which demon-
strate that the QD and QPD scores are essentially
uncorrelated and therefore should provide improved
discrimination performance when appropriately
combined and thresholded. A simple quadratic classi-

fier combined the QD and QPD scores into an over-
all discrimination statistic.

Figure 10 shows the resulting discrimination ROC
curve (blue curve) with the combined QD and QPD
scores. The selected operating point for the output of
the simplified discrimination-thresholding stage is at
the detection probability of 0.9, where the false-alarm
density is reduced to approximately 1␣ false alarm/km2

(875 out of 905 false alarms were rejected).

Classification

The two-stage template-based MSE classifier de-
scribed previously was implemented as the final stage
of the ATR system. This computationally efficient
version of the HDVI-MSE classifier was shown to
achieve a probability of correct classification of
70.0% against the eight targets, including the two
confuser vehicles (HMMWV and M35). In these
studies, we input the detected targets and clutter false
alarms from the discrimination-thresholding stage
and evaluated the overall end-to-end detection per-
formance for the ATR system. The corresponding
HDVI-MSE classifier ROC curve is shown in Figure
10 (red curve). At the detection probability of 0.8,
the two-stage classifier rejected all but three clutter
false alarms (resulting in a false-alarm density of ap-
proximately 0.1 false alarms/km2).
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Summary

This article examines the performance of a new ATR
system developed at Lincoln Laboratory. The SAIP
ATR system provides significantly improved target-
recognition performance by using a new superresolu-
tion imaging technique known as HDVI processing
prior to performing a template-based MSE classifica-
tion. Our study was extensive, including a data set
that covered approximately 30 km2 of clutter and a
significant number of tactical military targets (1528
images) to evaluate the performance of the system.

We first examined the performance of a ten-target
template-based MSE classifier as a function of SAR
image resolution. These initial studies used conven-
tional two-dimensional FFT-processed SAR imagery.
Performance of the classifier was evaluated by using
0.3-m × 0.3-m, 0.5-m × 0.5-m, and 1.0-m × 1.0-m-
resolution imagery. These studies showed that a SAR
image resolution of 0.5 m × 0.5 m or better is re-
quired to achieve reliable ATR performance (for the
ten-target classifier we implemented). The Pcc de-
graded significantly at 1.0-m × 1.0-m resolution. For
these three resolutions, the observed Pcc were 93.9%,
84.1%, and 45.4%, respectively.

We then demonstrated that when we applied
HDVI superresolution processing to the 0.3-m × 0.3-
m-resolution and 1.0-m × 1.0-m-resolution complex
imagery, the observed Pcc were 96.4% and 73.4%, re-
spectively. Also, the resolutions achieved after HDVI
processing were approximately 0.15 m × 0.15 m and
0.5 m × 0.5 m, respectively. These initial studies es-
tablished that 1.0-m × 1.0-m-resolution complex
SAR imagery could be reliably superresolved to a
resolution of 0.5 m × 0.5 m and that ATR perfor-
mance was improved significantly.

In addition, a two-stage implementation of the
template-based classifier was developed for the SAIP
system. We showed that a lower-resolution 1.0-m ×
1.0-m classifier can be used as an initial preclassifier
stage, followed by an HDVI-MSE classifier. This
implementation was shown to be computationally ef-
ficient, providing a significant increase in speed in
performing the ATR function with only a marginal
loss in performance. The correct classification perfor-
mance for the ten-target classifier was reduced from

73.4% to 70.0% when the two-stage classifier was
tested. The speed, however, was increased by a factor
of thirty.

Finally, the end-to-end performance of the ATR
system was evaluated by using a 1.0-m × 1.0-m-reso-
lution data set including 30 km2 clutter and 1528 test
target images. The system implementation included
only the CFAR detector, discriminator, and two-stage
template-based classifier stages. We observed that at a
false-alarm density of 0.1 false alarms/km2, the sys-
tem detection probability was better than 80%
against the tactical military targets in the target set.
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