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® Since the early 1970s, Lincoln Laboratory has been working on algorithms to

enhance the resolution of imagery from wideband radars. This article describes

a class of algorithms that are based on the technique of bandwidth

extrapolation, which uses a model-based spectral-estimation technique for

generating synthetic radar data. The extrapolated radar data are combined with

the measured radar data in a Fourier transform to produce images with high

spectral resolution. The article describes the application of these algorithms to

measured radar data from a small commercial aircraft in flight.

NVERSE SYNTHETIC-APERTURE radar, or ISAR,

promises to provide a rich collection of features

for identifying targets such as satellites, aircraft,
and ground vehicles at very long ranges. To fulfill this
promise, the target imagery must have adequate reso-
lution to isolate distinct portions of the target. The
creation of high-resolution ISAR imagery requires
two important elements: wideband processing for
resolution in range and relatively long integration
times for resolution in cross-range.

Since 1979, the Radar Imaging Techniques group
at Lincoln Laboratory has used ISAR image process-
ing to perform space object identification in support
of the U.S. Space Command and the U.S. Air Force
Space Command. The radars used for this surveil-
lance have range resolutions varying from 50 c¢cm to
13 cm. Because the orbital motion of most satellites
can be well characterized, we can process the radar
data to achieve cross-range resolutions comparable to
or better than range resolutions.

In recent years there has been a trend to reduce the
number of functions a satellite performs and thereby
reduce its size, which in turn reduces launch costs.
This trend poses a challenge for the space-surveillance
mission. As satellites become smaller, the correspond-

ing need for higher image resolution to perform the
surveillance mission becomes greater. The enormous
cost of procuring a new wideband radar is a signifi-
cant incentive to combine modern signal processing
techniques with current radar equipment to yield
high-resolution imagery with equivalent bandwidth.

Another area of research is the use of wideband ra-
dars for noncooperative target identification in sup-
port of past and current research efforts at Wright
Laboratory [1]. The work for Wright Laboratory in-
volves applying bandwidth-extrapolation techniques
to solve some of the problems that occur in wideband
air-to-air combat identification techniques. Current
multifunction radars often have limited available
bandwidth and can have difficulty dedicating the
long uninterrupted integration periods required for
high-resolution processing. As a result, there are four
constraints on the collection of data used for ISAR
imagery: (1) only moderate bandwidths may be
achievable, (2) portions of the signal band may be
unusable because of signal interference even if ad-
equate bandwidths can be achieved, (3) data integra-
tion periods may be shorter than required, and (4)
pulses may be missing because of contention with
other critical radar activities such as search and target
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track. In addition, the amount of time the processor
requires to produce the required resolution may be
too long for the real-time tracker to produce a well-
focused image.

Since the early 1970s, Lincoln Laboratory has been
working on signal processing techniques for improv-
ing radar image formation [2, 3]. We have developed
robust processing techniques for enhancing range
resolution to support analysis of ISAR imagery of sat-
ellites, strategic targets, and aircraft. The original
work on bandwidth extrapolation was performed by
S.B. Bowling [4] in the late 1970s. More recently the
bandwidth-extrapolation technique was revived by
K.M. Cuomo [5]. The authors of this article have
been applying the technique to the imaging of satel-
lites and aircraft since 1991 [6, 7]. This article pro-
vides a concise summary of the results we achieved
and the lessons we learned during that period.

In the sections that follow, we present the theory of
bandwidth extrapolation, aperture extrapolation, and
bandwidth interpolation as developed for enhancing
ISAR image resolution in both range and cross-range.
We then present some specific examples of resolution
enhancement in both range and cross-range.

Theory

In using wideband-radar data for imaging, we require
sufficient resolution to distinguish prominent por-
tions of the target. Resolution is commonly obtained
through conventional Fourier processing and is lim-
ited in range by the bandwidth of the radar and in
cross-range by the temporal duration of radar pulse
integration. In the class of techniques referred to as
bandwidth extrapolation, aperture extrapolation, and
bandwidth interpolation, a mathematical model
based on the physics of high-frequency scattering of
the target is fitted to the radar data. The information
gained from this modeling is then used in bandwidth
extrapolation to enhance resolution, in aperture ex-
trapolation to enhance cross-range resolution and in-
crease image focusing, and in bandwidth interpola-
tion to repair spectral or pulse-collection gaps.

Background

At high frequencies, where the dimensions of the tar-
get are typically large compared to the radar wave-
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length, the radar cross sectlon o produced by a target
is given by o = ||V(f )” where the complete fre-
quency response V(f, 6) of the target is

ZAfB) %Lnﬂe(e)@ (1)

and where f'is the radar frequency, 6 is the nominal
aspect angle of the target, and ¢ is the speed of light.
The summation is over the apparent scattering cen-
ters on the target, which are located at reflection and
diffraction points as well as at virtual points associ-
ated with multiple reflections and second-order dif-
fraction. Each scattering center is characterized by its
amplitude A4; and its effective range R;. Table 1 shows
the frequency dependence of A, for some common
scattering mechanisms, such as those typically found
on the surfaces of satellites, reentry vehicles, and air-
craft. In typical wideband-radar applications, the
maximum bandwidth is approximately 10% of the
center frequency, and the frequency variation of the
scattering amplitude can be approximated by a low-
order polynomial (e.g., by a Taylor series) about the
center frequency.

The objective of radar imaging is to resolve the lo-
cation of the scattering centers on the target. At a
given aspect angle 6 of the target with respect to the
radar line of sight, the scattering centers can be re-

Table 1. Frequency Dependence of Amplitude A;
for Some Common Scattering Mechanisms

Scattering Feature Dependence (f ")
n

Corner reflector 1

Flat-plate specular 1

Cylinder specular 1/2

Sphere or ellipsoid 0

Straight-edge specular 0

Cylinder base -1/2

Cone tip -1

Plate corner -1
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solved in range by measuring the radar cross section
of the target over a band of frequencies. For each set
of frequency measurements (i.e., each pulse), the fre-
quency response of the target is converted to a range
profile by the process of compressing the pulse (in
most cases this process is a Fourier transform). The
compressed pulse maps the scatterers on the target
onto a line, referred to as the radar line of sight. The
typical method used for digital pulse compression is
to take the Fourier transform of Equation 1 with re-
spect to f to produce the range profile s(7). This
method works because the different scattering centers
manifest themselves as sinusoids in the spectral do-
main. The frequency of the sinusoid is proportional
to the relative range of the scattering center.

The resulting range profile has a resolution (at
points 6 dB down from the peak response) of

&=,
26

where 4 is the bandwidth of the radar. Even though
we operate at the maximum achievable bandwidth of
the radar, the range signature contains sidelobes that
are only 13 dB down from the peak response. This
result is an undesirable consequence of artificially
truncating the frequency spectrum at the radar’s
bandwidth. The sidelobes can be reduced by weight-
ing the frequency spectrum prior to the Fourier trans-
form so that there is a smooth transition to zero at the
edge of the spectrum. For example, the range resolu-
tion is degraded to 1.81 X & with a Hamming
weight, while the peak-to-sidelobe ratio is increased
by 30 dB.

To form an image we also need to resolve the scat-
tering center in a direction orthogonal to the range
direction. The orthogonal direction to range is range
rate, or Doppler. Resolution in Doppler can be
achieved by collecting a series of pulses at different
angles. A matched filter is constructed to map the po-
sition of scatterers in range as a function of the aspect
angle 6 to a cross-range position [2, 3]. When the an-
gular change is small, the matched filter can be de-
rived by replacing each R;(6) in Equation 1 with a
two-term Taylor series. This substitution reduces the
matched filter to a Fourier transform, and is identical
to the range-resolution matched filter. As the aspect

angle 6 varies, sinusoids are formed in the measured
data. Again, the frequency of the sinusoids is propor-
tional to the Doppler displacement, or cross-range
position of the scattering center. The resolution in the
cross-range direction (at points 6 dB down from the
peak response) is given by

dx- = ;’
2,06

where f;, is the center frequency and A8 is the angular
change of the target observed by the radar.

In most cases the amplitude A; as a function of as-
pect angle is well represented by a low-order Taylor
series. In fact, most imaging algorithms are predicated
on the amplitude remaining constant during the in-
terval of image formation. In contrast to the range-
resolution problem, there are situations in the aspect-
angle direction in which a Taylor series is not a good
representation of the amplitude. For example, in the
special case when two scatterers interact in a flat-plate
specular response, the amplitude functions of both
scattering centers have the form

e =g ()
0

when the aspect angle 8is well away from the specular
at 6. Away from the specular, Equation 2 can be ap-
proximated by a low-order Taylor series. As the aspect
angle approaches the angle of the specular, the phases
from the two scatterers begin to cancel and a sinc
function is created.

Bandwidth Extrapolation

We can view the pulse-compression process as a spec-
tral-estimation problem, where the spectrum to be es-
timated is the range profile. The traditional approach
to spectral estimation is to use a nonparametric ap-
proach, such as the Fourier transform, to estimate the
spectrum. Research in advanced spectral-estimation
techniques, which has been ongoing since the late
1960s [8], has produced modern spectral-estimation
techniques that are based on parametric modeling of
the signal in the time, or range, domain. Typical para-
metric models include all-pole (or linear prediction),
all-zero, and pole-zero models. Each of these models
places different constraints on the data.
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A frequency response that is expressed by Equation
1 can be approximated by a linear-prediction, or all-
pole, model. The linear-prediction model for a uni-
formly sampled frequency spectrum, given by

vin] = V(ndf,6), 3)

states that the samples must meet the condition

0 »
U= 4lilvizn—i] forward
5 Zl ivin —i orwa
e @
E— Z a’lilvin +i] backward,
O =1

where dfis the frequency step between datum points,
a[7] are the model coefficients, and p is the model or-
der (which represents the number of scattering cen-
ters). This relationship holds when the number of
scattering centers is known and the model coefficients
are exact.

While numerous techniques exist for estimating
coefficients of the linear-prediction model from mea-
sured data, this article considers only Burg’s algo-
rithm [8]. We have applied the other spectral-estima-
tion techniques to radar data, but with limited
success.

Burg’s algorithm is an iterative procedure for deter-
mining coefficients that minimize the sum of the for-
ward and backward prediction error over the entire
data set. The prediction error is defined as the differ-
ence between the signal predicted by Equation 4 and
the measured signal, given in the forward direction by

4
e =+ N adivin -1,
2

and in the backward direction by

b

e” =vn-pl+ a*[z']v[n—p+z'].

M-

i=1

The Burg algorithm is computationally efficient and
yields a linear-prediction filter that is stable; i.e., the
linear-prediction filter will not admit any exponen-
tially growing signals. The stability of the filter is

important. Other methods for estimating the coeffi-
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cients, such as Prony’s method and modified covari-
ance, do not guarantee a stable filter. In our experi-
ence these other methods often fail with measured
data, although they may perform better with ideal
data.

Traditional parametric spectral-estimation tech-
niques generate spectra analytically by using the mag-
nitudes of the transforms of signal models derived
from measured data. Given the model coefficients,
the range profile is represented as

1
1+ ‘llf_jr + ..o+ dpe_]?” 5)

s(r)y O

where 7 = ¢1/2. From the above expression, we can
clearly see why Equation 4 is referred to as an all-pole
model (see the appendix entitled “Spurious Scatterer
Rejection in Bandwidth Extrapolation”). The loca-
tion of the scattering centers is given by the zeros of
the polynomial in the denominator.

A range profile produced in this way contains no
phase information, and it has large variations of scat-
tering-center locations and scattering amplitudes. In
addition, the accuracy of the range profile depends
completely on the accuracy of the signal model and

Target return
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<
3
I
I
M

Frequency

FIGURE 1. Bandwidth extrapolation. A linear-prediction
model of the signal is combined with the measured radar
data (in blue) to synthesize extrapolated data (in red) out-
side the measured bandwidth. The extrapolation for the
higher frequencies is identical to the extrapolation for the
lower frequencies, except for conjugated model coefficients.
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FIGURE 2. Comparison of spectral-estimation techniques, showing the conventional fast Fourier transform (FFT)
processing method for pulse compression, the pure model-based spectral-estimation technique, and the band-
width-extrapolation technique. The model-based technique provides the most information on scatterer position,
while the bandwidth-extrapolation technique provides both scatterer-model data and stable amplitude data.

the estimation procedure. In the mid-1970s, how-
ever, Bowling proposed a technique that combined
traditional parametric spectral estimation with the
linear prediction of existing data [4], and formed the
basis of bandwidth extrapolation.

The bandwidth-extrapolation algorithm proceeds
as follows. Given frequency samples v[7], Burg’s algo-
rithm is applied to the measured data to estimate the
linear-prediction model coefficients (7] by using an
estimate of the model order p. The linear-prediction
model is then used to extend the data outside the
measured spectrum. The expansion is accomplished
by using the signal model in Equation 3 and the mea-
sured signal data as initial conditions, as shown in
Figure 1. The expanded pulse signal spectrum is then
weighted and compressed via the Fourier transform.

Figure 2 illustrates the differences between conven-

tional Fourier spectral processing, parametric spec-
tral-estimation techniques, and bandwidth extrapola-
tion. The top row in the figure illustrates the limited
range information available from conventional Fou-
rier processing. The middle row depicts how the con-
ventional model-based approach primarily yields
scatterer position information. In contrast, the bot-
tom row shows how a more conventional range pro-
file is constructed by using an extrapolation approach
and conventional Fourier processing.

Important features that contribute to the success of
bandwidth extrapolation are the retention of mea-
sured data and the phase coherency of the resulting
range signature. Another important feature is the use
of conventional pulse compression after data expan-
sion. The weighting process used in pulse compres-
sion reduces the influence of the extrapolated data on
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FIGURE 3. Energy in the extrapolated region. This curve rep-
resents the amount of energy in the synthetic extrapolated
data, relative to the total energy in the range profile. For
higher expansion factors (i.e., more synthetic data), the syn-
thetic data contribute more to the range profile. Typically,
expansion factors less than three lead to useful results.

the final range signature. Therefore, any errors in the
extrapolated data are mitigated. This influence can be
quantified in terms of the amount of energy that ex-
trapolated data contribute to the range signature after
the spectrum has been windowed. This contribution
is estimated by calculating the amount of energy in
the portion of the weighting window containing the
extrapolated data. Figure 3 shows the energy content
in the expanded portion of the data as a function of
the ratio of the amount of extrapolated data to mea-
sured data when a Hamming weight is used for
sidelobe reduction. This figure suggests that band-
width expansions of more than three are significantly
dependent on the accuracy of the expansion coeffi-
cient estimation.

For most cases the choice of model order p is not
critical to the success of the technique. The model or-
der is typically chosen to be one-third the number of
data points present. This choice of model order leads
to the largest number of coefficients that can be accu-
rately estimated by the Burg algorithm. If these coef-
ficients are used directly to produce a range signature,
by using the analytic approach of Equation 5, a large
number of spurious scatterers will be present. The
spurious scatterers occur because the model order is
determined from the number of data samples, and
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not the physical properties of the target. The band-
width-extrapolation algorithm naturally limits the
spurious scatterers, as described in the appendix
entitled “Spurious Scatterer Rejection in Bandwidth
Extrapolation.”

Aperture Extrapolation

In contrast to bandwidth extrapolation, aperture
extrapolation fixes the frequency and lets the aspect
angle 6 vary. From the earlier discussion, the increase
in the range of aspect angles leads to better resolution
in the cross-range direction. From Equation 1 the
sampled data are of the form

vir] = V(f,nd0) = Aﬁxp% @ﬁ, (6)

where R, = R(nd6), A, = A(f,nd6), and 00 is the
aspect-angle increment between samples. The loca-
tion of the scatterer in cross-range can be estimated
by taking a Fourier transform of Equation 6 and scal-
ing Doppler to cross-range. The primary difference
between aperture extrapolation and bandwidth ex-
trapolation is that phase may not be linear in 7 be-
cause of the scatterers’ complex range dependence on
angle. For example, a simple rotating target causes R,
to have a sinusoidal dependence on 7. When the
phase dependence is linear in 7, then the analysis pro-
ceeds exactly as in the range-resolution case. This is
the case when the angle changes are small, and is as-
sumed for the standard linear imaging [2].

Aperture extrapolation departs from bandwidth
extrapolation in one other way. As we discussed previ-
ously, when the data to be extrapolated contain two
scattering centers that cancel to form a specular re-
sponse, the data are in the form of a sinc function.
The sinc function does not meet the linear-prediction
model. The Burg algorithm doesn’t fail in this case; it
approximates the specular response by many point-
scatterer responses. This approximation degrades the
specular response in the image. The larger the ex-
trapolated region, the more degradation is evident.

Figure 4 illustrates the result of applying aperture
extrapolation to a typical specular response. The
graphs on the left side of the figure show data and the
correct Doppler response for a specular. The graphs
on the right are the aperture-extrapolation results. In
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FIGURE 4. Aperture extrapolation of a specular response. The figure demonstrates what happens to a specular response when
aperture extrapolation is used. Graphs on the left side of the figure show the original data, while graphs on the right side show
the results of reducing the original data by four and applying aperture extrapolation. The red curve indicates the synthetic data.
The degradation of the radar cross section, as shown in the graph in the lower right, is typical of what is seen in real images.

this example, the processing interval is chosen to be
one-quarter the data collection interval, and therefore
produces an expansion factor of four. The level of
degradation of the radar cross section, as shown in the
image on the lower right, is typical of what is seen in
real images. The degradation increases if the initial in-
terval does not contain the main lobe of the specular
response. As a practical matter, the degradation of
specular responses does not pose a serious problem
because the occurrence of these phenomena is limited
and the degradation typically does not affect image
analysis.

Another difference from the range profile case is
that the phase of a scatterer might not be linear with
respect to 7. It is typically the job of the imaging algo-
rithm to interpret the nonlinear phase as the scatter-
ers position. If the linear imaging algorithm is used

(i.e., a Fourier transform), the nonlinear components
will cause the image to appear blurred.

Within the limitations discussed in the above sec-
tions, aperture extrapolation can be used to produce a
focused image from a blurred image while still using a
linear image base algorithm. The procedure is first to
reduce the data interval by a factor of two to four.
This results in a more focused image, because the
amount of contribution of the nonlinear phase is re-
duced, but the cross-range resolution is also reduced
(recall that cross-range resolution is proportional to
the total angular change). Then we apply aperture
extrapolation to regain the lost resolution by using
the previously described procedure.

Several issues must be understood before aperture
extrapolation can be successfully applied to data with
nonlinear phase. First, what form of phase depen-
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dency will this method generate in the extrapolated
data? And what will Burg’s algorithm return for the
coefficients in the linear-prediction model? In the
remainder of this section we answer each of these
questions.

The extrapolation of the data uses the linear-pre-
diction model of Equation 4, with the measured data
as the initial condition. The functional form of the
model defines the types of signals that can be extrapo-
lated. From the appendix entitled “Spurious Scatterer
Rejection in Bandwidth Extrapolation” we know the
class of functions that can be extrapolated are given

by
plnlz”,

where p[n] is a polynomial in 7, and z is a complex
exponential function of the relative position of the
scatterer. Because z is independent of 7, any expan-
sion that is performed generates data that have at
most a linear phase variation, which is a necessary
condition to produce a focused image.

A final question needs to be addressed. What coef-
ficients will Burg’s method generate for input data
with a nonlinear phase? As an example, data with a
quadratic phase are used. It is a straightforward proce-
dure to substitute Equation 6 into Burg’s algorithm
and determine what the resulting model is for a single
scatterer with a quadratic phase. Given that one scat-
terer is present and the model order p is chosen to be
one, we can show that the coefficient produced by
Burg’s algorithm places the apparent location of the
scatterer in the middle of the imaging interval. That
is, the location of the scatterer is its average position
during the imaging interval; we can also think of this
process as linearizing the nonlinear function about
the average angle.

Bandwidth Interpolation

Signal interference is a major concern in processing
radar imaging data collected over large bandwidths.
Interfering signals often dominate the skin return of a
target, and those portions of the signal bandwidth
containing interference—even entire pulses—are
blanked out. The resulting image is degraded because
of frequency gaps in the range dimension or missing
pulses in the cross-range dimension. The techniques
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of bandwidth extrapolation, however, can be modi-
fied to reconstruct the notched-out (i.e., missing) sig-
nal components in a process we refer to as bandwidth
interpolation.

For the purposes of explanation, we consider a sig-
nal with frequency notches, as shown in Figure 5.
Here v[7] represents frequency samples of a target re-
turn, as shown in Equation 3, where n=1,2, ..., V.
(This technique works equally well with aperture
extrapolation.) We assume that the signal has a single
frequency notch; i.e., the data are missing from 7 = B
to 7 = E, so that low-frequency data v;[#] and high-
frequency data vy[7] are defined as

[n] forl1<n<BAB
vi[n] =0
00 elsewhere

On] forE<n< N
vglnl =0

00  elsewhere.
Bandwidth-extrapolation algorithms could be ap-
plied directly to bandwidth interpolation where coef-
ficients would be derived independently for the high-
frequency and low-frequency data. In this case, two
sets of data would be extrapolated (i.e., grown) into
the notch,

v,[n] = _Z a;lilv[n - i)
i=1 7)

PH N
vyln] = —ZaH[i]vH[n+z']
i=1 (8)
forn=E,E-1,...,B.

The a;; coefficients and the #; coefficients are Burg
coefficients for high- and low-frequency data, respec-
tively, and the constants p;;and p; are Burg model or-
ders for high- and low-frequency data, respectively.
This representation leads immediately to an inconsis-
tency. The number of scatterers in the extrapolated
data will be different when the algorithm uses the co-
efficient derived from the high and low data, even
though physically they should be the same. Data are
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reconstructed in the notch by using a weighted sum
of the extrapolated data,

o 4 UE—n0 O —B0O
= [n] +

= e )

where V[n] are reconstructed dataand B< n < E.

In addition to the previously mentioned model in-
consistency, the direct application of bandwidth-ex-
trapolation algorithms to bandwidth interpolation
becomes less effective as notch widths increase and
fewer data are available for calculating (i.e., estimat-
ing) the Burg coefficients. The resulting interpolated
data are poorer approximations to the actual data in
the frequency notch. These effects can be mitigated
by combining high- and low-frequency data when we
calculate the Burg coefficients, which is accomplished
with minor modifications to the Burg algorithm.

As previously discussed, the Burg algorithm is an
iterative procedure for calculating linear-prediction
coefficients of a sampled signal. At each iteration, for-
ward and backward prediction errors are used to cal-
culate a reflection coefficient, which is then used to
update prediction coefficients and prediction errors
in subsequent iterations. At the /th iteration, the pre-
diction errors used in these calculations are com-
monly given by

/-1
el aln) = vl + @ lilvin =)

i=1

/-1
el n=11=vln-1+ Z aj_ivln = | + 1],

i=1

where e{_l[n] is the forward prediction error,
elb_l[n — /] is the backward prediction error, and 7 =
[+1,[+2,..., N. Equivalently, we can view e{_l[n]
and elb_l[n — /] at each iteration as coming from a
computation window that extends from 7 — / to .
The Burg algorithm can be modified to omit those
prediction error calculations when any portion of the
computation window falls within the frequency
notch. The result is a single set of Burg coefficients
al] that are derived from data at all frequencies. The
notch is then filled by extrapolating the signal from
both sides, similar to Equations 7 to 9 above.
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FIGURE 5. Bandwidth interpolation. The technique of band-
width extrapolation can be modified to reconstruct missing
signal components. Bandwidth extrapolation is used in the
frequency notch to generate synthetic data (in red) from the
low-frequency data and the high-frequency data (in blue).
The interpolated synthetic data (in green) are then produced
from a weighted sum of the extrapolated data.

Examples

This section of the article applies the techniques of
bandwidth extrapolation, aperture extrapolation, and
bandwidth interpolation to measured wideband data
on aircraft. Because the performance of the algorithm
can be better observed by looking at individual signa-
tures, we begin by looking at range signatures. We
then apply the data to ISAR imagery of a small com-

mercial aircraft.

Range Signatures

We begin by illustrating the performance of band-
width extrapolation on a complex target. A signature
was selected from a database of measured aircraft sig-
natures and reduced in bandwidth by factors of two
and four, with the resulting signatures shown in Fig-
ure 6. In the first case the signature with the quarter
bandwidth was enhanced back to half the original
bandwidth. The second case extrapolated the quarter-
bandwidth signature back to the original bandwidth.
In each case the number of coefficients in the model
was chosen to be one-third the number of data points
after the bandwidth reduction. Because the full-reso-
lution signature has 390 points, the half-bandwidth
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FIGURE 6. High-resolution range profiles of an aircraft at
three different bandwidths: (a) one quarter, (b) one half, and
(c) full.

signature has 195 points, and the quarter-resolution
signature has 97 points. As mentioned earlier, the
one-third rule represents a balance between the accu-
racy of the coefficient estimation and having as large a
model as possible.

Figures 7 and 8 compare two-to-one and four-to-
one extrapolated signatures to the original signature.
The result of extrapolation by a factor of two, shown
in Figure 7, demonstrates the similarity of the ex-
trapolated-bandwidth signature to the original signa-
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FIGURE 7. Comparison between a two-to-one extrapolated
signature (red dashed line) and the measured half-band-
width signature shown in Figure 6(b). The extrapolated half-
bandwidth signature was formed from the measured quar-
ter-bandwidth signature in Figure 6(a).
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FIGURE 8. Comparison between a four-to-one extrapolated
signature (red dashed line) and the measured full-band-
width signature in Figure 6(c). The extrapolated full-band-
width signature was formed from the measured quarter-
bandwidth signature in Figure 6(a).

ture. Note that although the model order was chosen
to be thirty-two there are fewer than thirty-two scat-
ters present in the signature. Figure 8 shows that a
four-to-one extrapolation does not provide as good a
quality of match. This reduced performance has sev-
eral sources. Not only do the extrapolated data have a
greater relative influence compared to the measured
data for larger expansion factors, but we expect the
accuracy of the extrapolated data at the ends to de-
grade as the expansion factor increases. In addition,
the accuracy of the coefficients is degraded because
there are fewer data points to estimate the coeffi-
cients. Perhaps more importantly, we must use a
lower model order that may not be large enough to
capture the complexity of the signature.

The previous example used only one signature. To
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Table 2. Correlation Coefficients for
Various Extrapolations

Extrapolation Mean Median Standard
Deviation

x 2 0.972 0.973 0.00951

x 3 0.896 0.898 0.0266

x4 0.803 0.807 0.0501

better quantify performance we examined a set of six
hundred signatures whose resolutions were degraded
and then improved by using the bandwidth-extrapo-
lation technique. In order to assess the performance
of the bandwidth-extrapolation algorithm, we corre-
lated the original signature with the extrapolated sig-
nature, and recorded the peak correlation response.
Table 2 gives the results of this numerical experiment.
The data in this table clearly indicate that the
larger the extrapolated region, the more the extrapo-
lated range profile differs from the original. This re-
sult does not indicate that larger extrapolations are
not useful. The same signatures were also fed into an
identification algorithm, which is designed to iden-
tify the type of aircraft from the wideband range pro-
file. When the bandwidth-extrapolated data were fed
into the identification algorithm, which had been
trained on measured data, there was a significant loss
in performance. In contrast, when the identification
algorithm was trained to expect extrapolated data, the
measured data needed only one-fourth the band-
width to achieve the same level of correct identifica-
tion. In addition, there was no increase in the number
of false alarms detected with the bandwidth-extrapo-
lated data over the measured data. This result clearly
indicates that the usefulness of any algorithm is de-
pendent on the individual application involved.

Aircraft Imaging Examples

In May 1995, the Navy NRaD X-band radar [9] col-
lected image data on a small commercial aircraft. The
radar used an LFM waveform with an instantaneous
bandwidth of 500 MHz and a pulse repetition fre-
quency of 150 Hz. The target aircraft flew in a circu-

Wingtip

Wingtip

FIGURE 9. Range-Doppler image of a small commercial air-
craft at full-bandwidth resolution and integration time. The
strongest radar scatterers are along the length of the fuse-
lage, with weaker scatterers across the wing span and in the
tail.

FIGURE 10. Range-Doppler image of a small commercial air-
craft, reduced in bandwidth and integration time by a factor
of three. The lower resolution degrades the image in both
range and cross-range, which increases the uncertainty in
locating the scatterers along the aircraft fuselage and across
the wing span.

FIGURE 11. Restored range-Doppler image of a small com-
mercial aircraft, produced by applying bandwidth extrapola-
tion and aperture extrapolation to the reduced-resolution
image in Figure 10. This enhanced image is comparable to
the image in Figure 9 in both resolution and in the position
of the strong scatterers.
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Wingtip

Wingtip

FIGURE 12. Degraded image of a commercial aircraft with
40% of the pulses missing in the data. The missing pulses
increase the Doppler sidelobe levels, creating an image with
broad cross-range response and degraded cross-range
resolution.

FIGURE 13. Restored image of a commercial aircraft with the
missing pulses filled by bandwidth interpolation. The cross-
range resolution of the strong scatterers is clearly improved.

lar flight path at a turn rate of approximately three
degrees per second. Figure 9 shows a full-resolution
image formed by using a one-second integration
time. The Lincoln Laboratory range-Doppler
smoothing algorithm was used for motion compensa-
tion (see the appendix entitled “Imaging Algorithm
for Aircraft in Flight”). In Figure 9, the nose of the
aircraft is pointed toward the upper left, while the
wing tips are pointed toward the upper right and
lower left. The image shows the strongest radar scat-
terers along the length of the fuselage, with weaker
scatterers across the wing span and in the tail.
Existing multifunction radars have been consid-
ered for producing images of tactical aircraft in flight.
Typically, these radars have limited bandwidths and
do not support long uninterrupted integration times
for imaging. Figure 10 shows the identical image data
of Figure 9, but with bandwidth and integration time
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reduced by a factor of three. The image is degraded in
both range and cross-range, which increases the un-
certainty in locating the scatterers along the aircraft
fuselage and wing span. Both bandwidth extrapola-
tion and aperture extrapolation were applied to the
low-resolution data of Figure 10 to enhance the im-
age back to the original resolution. Figure 11 shows
the results of the resolution enhancement. The origi-
nal image in Figure 9 and the enhanced image in Fig-
ure 11 are comparable in resolution as well as in the
position of the strong scatterers.

Another approach to imaging with short integra-
tion times is to coherently combine and processes
data from separate processing intervals, or dwells.
This technique produces an image dwell with missing
pulses. Figure 12 shows an image from a dwell with
missing data, where the middle 40% of the pulses in
the imaging interval are missing. The missing data in-
crease the Doppler sidelobe levels, creating an image

Wingtip

Wingtip

FIGURE 14. Defocused image of a commercial aircraft be-
cause of insufficient motion compensation. The lack of mo-
tion compensation produces the Doppler streaks in the right
side of the image.

FIGURE 15. Improved focused image because of aperture
extrapolation. The Doppler streaks shown in Figure 14 are
eliminated.
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with broad cross-range response and degraded cross-
range resolution. Bandwidth interpolation can be
used to interpolate the missing data and restore image
resolution. Figure 13 shows the result of applying
bandwidth interpolation to the degraded data of Fig-
ure 12. The cross-range resolution of the strong scat-
terers is clearly improved in the restored image.
Aircraft maneuvers or rapid acceleration may lead
to instances in which the range-Doppler smoothing
algorithm cannot model the motion of the target.
Figure 14 shows a blurred image from the pass of the
commercial aircraft. Motion compensation did not
properly account for aircraft motion, giving rise to
the Doppler streaks shown on the right side of the
image. In this case, aperture extrapolation can be used
to produce a focused image. The imaging interval is
cut down by a factor of three, producing a low-resolu-
tion image, and aperture extrapolation is used to
restore the original resolution. Figure 15 shows the re-
sults of this process, in which image focusing is im-
proved and the Doppler streaks are eliminated.

Summary

In this article we have described a powerful set of ro-
bust, model-based techniques that can be used in a
variety of ways to improve the quality of ISAR im-
ages. Resolution can routinely be improved in both
range and cross-range by a factor of two or more, and
data that might otherwise be of little use for imaging
can be repaired to yield high-quality images.

The key theoretical foundation for this approach is
the introduction of a general underlying model for
target scattering. This model is consistent with high-
frequency scattering from complex targets. In this ar-
ticle several distinct applications of this approach
have been demonstrated. The general concept is to
use the model, together with the measured data, to
estimate values for the target return in which valid
measurements are not available. This estimation can
extend the measurement region (extrapolation) or it
can fill in where data are missing (interpolation).

For extrapolation we have discussed how band-
width extrapolation can be used to increase the effec-
tive resolution of individual pulses, thus improving
the resolution in the range domain as well as increas-
ing noncooperative target identification. A similar ap-

proach was used to extend the effective integration
time (aspect-angle change), thus improving the reso-
lution in Doppler (cross-range).

We have applied extensions of these extrapolation
methods for interpolation. They have been used to
estimate the target return over a band of frequencies
that were missing from within the overall bandwidth
of the waveform (perhaps caused by in-band interfer-
ence), and they have been used to reconstruct pulses
that were missing within a data collection interval.
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APPENDIX A:
SPURIOUS SCATTERER REJECTION IN
BANDWIDTH EXTRAPOLATION

ONE OF THE PRACTICAL features of bandwidth ex-
trapolation is the reduction in the number of spuri-
ous scatterers from estimated model coefficients in
the extrapolated data. The reduction of the spurious
scatterers can be understood by casting the extrapola-
tion part of the algorithm as a difference equation.

After the Burg algorithm has been performed we
are left with a equation of the form

»
v[n] + Z alilvln =i =0, (1)
=1

which is a constant-coefficient difference equation.
The class of solutions admitted by Equation 1 are of
the form

vinl =y CiPlal] )

where C, is a constant, P[#] is a polynomial in 7, and
z; is the solution to the characteristic equation

V4
1+ Z a[i]zi =0. (3)

The summation in Equation 2 is over the number of
distinct roots of Equation 3. The order of the polyno-
mial P[n] is governed by the number of duplicate
roots of the characteristic polynomial. In practice the
roots correspond to scatterer location; i.e.,

zi - ej(4r[f0 Rle)of

where f; is the radar center frequency, R; is the scat-
terer location, and the constants C; in Equation 2 cor-
respond to the scatterers’ amplitude.

If we continue the analogy of the difference equa-
tion, the next step is to find the unknown coefficients
C,. This is done by using the measured data as initial
conditions, which leads to a set of linear equations for
the unknowns. If the measured data have fewer scat-
terers present than the model order p, the initial con-
ditions will throw out extraneous solutions and the
extrapolation process will generate a signal only for
the scatterers that are present.

APPENDIX B:
IMAGING ALGORITHM FOR AIRCRAFT IN FLIGHT

UNCOMPENSATED TRANSLATIONAL motion is one of
the principal limitations in our ability to focus radar
images of aircraft. The range-Doppler smoothing
(RDS) technique was developed from autofocusing of
satellite imagery; it compensates high-order transla-
tional motion of aircraft to yield well-focused images.
Because RDS does not explicitly address rotational
motion of the target, the cross-range scaling of the re-
sulting imagery is uncalibrated. However, close cou-
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pling between rotational and translational motion for
coordinated aircraft flight allows cross-range scaling
to be derived by extending RDS processing to azi-
muth and elevation data. The principal assumption of
RDS is that airborne target position is a smooth func-
tion of time.

The ideal first step in compensating the transla-
tional motion of a target aircraft is to determine the
range to the same scatterer on the target at every
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pulse. Generally, this range determination is not
possible because aircraft motion prevents the same
scatterer from being visible at every pulse. Also, low
signal-to-noise levels at long ranges as well as interfer-
ence between scatterers can obscure individual scat-
terers on a given pulse.

Instead, RDS finds the range to the same area on
the target at every pulse. This is done by median-pro-
cessing each pulse to estimate the range to the center
of the target. The center of the target is used because
it is relatively free of scattering from moving parts of
the aircraft. For example, scattering from rotating en-
gine blades often occurs toward the rear of the air-
craft, while scattering from scanning antennas occurs
toward the front of the aircraft. The output of median
processing can vary by a range gate or more from
pulse to pulse and produce jitter in the range esti-
mates. Because of the smooth motion of the target,
these range estimates are improved by using a least-
squares fit to a smooth function of time. Typically, the
functions are high-order polynomials.

These range polynomials are evaluated at the trans-
mit time of each pulse to form a smoothed estimate of
the range to the target center for each pulse. Such
smooth range estimates are used to align each pulse in
range. Once these aligned pulses are processed into
images, the target image will be centered in range but
may drift in cross-range and may not be consistently
focused. The drifting occurs because of small differ-
ences between the actual range and the estimated
range to the target; these differences can be on the or-
der of a few wavelengths. Doppler processing is re-
quired to compensate this fine residual motion.

Fine motion compensation is performed by using
the signal at the center range gate of each pulse. In the
ideal case, this range gate is dominated by a single
scatterer, so the signal amplitude represents the
strength of the scatterer and the signal phase repre-
sents its range. This suggests it is possible to compen-
sate the fine motion of the target by using this signal
phase directly, but not without difficulty. There may
be more than one scatterer at the center range gate, or
a strong scatterer may walk out of the center range
gate. Alternatively, the change in phase as a function
of time (i.e., the Doppler frequency) of the center
range gate can be integrated to yield the signal phase

necessary to compensate the fine motion of the target.

In RDS Doppler processing, the complex signal is
recorded at the center range gate of each pulse. With a
constant pulse repetition frequency, these signal val-
ues are Fourier transformed to yield the Doppler dis-
tribution of the scatterers in this range gate within an
integration interval. The integration interval is suffi-
ciently short so that the same scatterers are present
throughout the interval; i.e., the scattering is coherent
over the integration interval. The integration interval
is updated with each pulse to give Doppler distribu-
tions as a function of time.

These distributions tend to be well centered, and a
centroid is used to estimate the center Doppler fre-
quency of each distribution. Occurrences of broad
Doppler responses, such as specular flashes, and the
effects of noise can create jumps in the Doppler esti-
mate. Thus target Doppler is tracked and smoothed
as a function of time by using a polynomial fit to the
Doppler estimates, which is similar to the process
used for range alignment. A smooth estimate of Dop-
pler is formed by evaluating the polynomial at the
transmit time of each pulse. Integrating the Doppler
polynomial over time yields the phase of the target
return.

Once the range and Doppler polynomials have
been determined, focused images are produced by (1)
aligning each pulse in range by using the smoothed
range estimates from range processing, (2) phase-
shifting each data pulse by the combined phase from
range and Doppler processing, and (3) using the fast

Fourier transform to form linear images.
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