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Space-Time Adaptive Processing
on the Mesh Synchronous
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Janice Onanian McMahon

■  This article examines the suitability of the Mesh synchronous processor
(MeshSP) architecture for a class of radar signal processing algorithms known as
space-time adaptive processing (STAP), which is an important but
computationally demanding technique for mitigating clutter and jamming as
seen by an airborne radar. The high computational requirements of STAP
algorithms, combined with the need for programming flexibility, have
motivated Lincoln Laboratory to investigate the application of commercially
available massively parallel processors to the STAP problem. These processors
must be sufficiently flexible to accommodate different STAP architectures and
algorithms, and must be scalable over a wide parameter space to support the
requirements of different radar systems.

The MeshSP offers high peak-signal-processing performance in a small form
factor, which makes it attractive for airborne radar environments. An algorithm
implementation must be reasonably efficient to take advantage of this perform-
ance. The implementation efficiency depends on four factors: the computational
details of the algorithm, the chosen decomposition of the algorithm into
constituent parts capable of parallel execution, the subsequent mapping of these
parallel components onto the processor, and the underlying suitability of the
architecture of massively parallel processors. This article describes performance
models and methods of estimating MeshSP efficiency on representative STAP
algorithms in order to assess the potential use of MeshSP in airborne STAP
applications.

T   airborne surveillance ra-
dars can be severely degraded by environmen-
tal clutter, especially in overland or coastal re-

gions, and by hostile jamming sources. Faced with a
potentially formidable interference environment, ra-
dar engineers have developed advanced signal pro-
cessing techniques to improve radar performance.
One such technique, known as space-time adaptive
processing, or STAP, is based on the idea of designing
a two-dimensional (space and time) filter that maxi-
mizes the output signal-to-interference-plus-noise ra-
tio, thereby selectively nulling clutter and jamming

returns while at the same time retaining the target sig-
nal. The filter is formed by simultaneously combining
the signals received on multiple elements of an an-
tenna array and multiple pulse-repetition intervals of
a coherent processing interval. The antenna elements
provide the filter’s spatial dimension and the pulse-
repetition intervals provide the temporal dimension.
This combination can also be seen as a beamforming
operation, in which a beam is formed with chosen
spatial and frequency directions matched to the target
signal, and possessing nulls in the directions and fre-
quencies of adaptively sensed interferers. The beam-



• MCMAHON
Space-Time Adaptive Processing on the Mesh Synchronous Processor

132 THE LINCOLN LABORATORY JOURNAL    VOLUME 9, NUMBER 2, 1996

forming weights are computed from radar returns
containing information on the spatial and temporal
characteristics of the interference.

STAP offers the potential to improve airborne ra-
dar performance in several ways. It can increase detec-
tion of low-velocity targets by better suppression of
mainlobe clutter, improve detection of small cross-
section targets that might otherwise be obscured by
sidelobe clutter, and improve detection in combined
clutter and jamming environments. Moreover, STAP
is inherently robust to radar system errors, and pro-
vides a means to handle nonstationary interference.

The benefits of STAP, however, come with a high
computational cost. A STAP signal processor com-
putes a set of adaptive filter weights by solving in real
time a system of linear equations of size NM, where
N and M are the number of spatial and temporal de-
grees of freedom, respectively, in the filter. The solu-
tion for each set of weights requires on the order of
(NM)3 operations. For the fully adaptive approach,
in which a separate set of weights is applied to all the
Nc antenna elements and Nd pulse-repetition intervals
per coherent processing interval, values of Nc and Nd
in the range of ten to two hundred are typical. As the
airborne radar scans a volume of space and searches
for targets throughout a range of possible target ve-
locities, coherent processing intervals from fifty milli-
seconds to a full second in duration are common.
Given all these multiplicative factors, a STAP proces-
sor must be able to reformulate and solve the adaptive
weight computation problem an enormous number
of times. The net result of such high demand on the
processor can be a requirement for computational
throughputs on the order of hundreds of billions of
floating-point operations per second, with execution
speeds of fractions of a second.

Although the fundamentals of STAP were first pio-
neered by L.E. Brennan and I.S. Reed in the early
1970s [1], STAP has become practical as a real-time
technique only with the recent advent of high-perfor-
mance digital signal processors. Even so, fully adap-
tive STAP is still beyond the reach of state-of-the-art
processor technology. Consequently, much of the
current research work on STAP has focused on the
development of algorithms that decompose the fully
adaptive problem into reduced-dimension adaptive

problems capable of being implemented in real time
on reasonably sized processors.

A radar processor operating in real time must reli-
ably produce the correct output within a prescribed
time limit, or latency. Consequently, sustained perfor-
mance on key STAP kernel computations and com-
munication patterns is a primary consideration in as-
sessing processor suitability. We must also be able to
install and operate a STAP processor on an aircraft,
where the availability of space and other resources is
limited. Thus processing performance per unit size,
power, and weight are important metrics. In addition,
algorithm development for STAP systems is an active
area of research. To accommodate new algorithms
and modes of operations, STAP processors must be
programmable. Furthermore, STAP is applicable to a
wide range of radars, so scalability of processor per-
formance in terms of both machine size and problem
size is an important consideration.

The substantial computational requirements of
STAP, coupled with the need for future growth and
scalability, have led Lincoln Laboratory to investigate
the suitability of massively parallel processors (MPP)
for this application. An MPP is a computer system
with a large number of processing nodes (hundreds to
thousands) interconnected by a dedicated communi-
cation network. MPPs are based on high-perfor-
mance, low-cost commodity microprocessors; large
commodity memory chips; and high-bandwidth,
low-latency networks. They have supplanted vector
supercomputers as the best high-performance ma-
chines commercially available.

Lincoln Laboratory has conducted a performance
analysis of a representative STAP processing kernel on
a commercially available programmable parallel ar-
chitecture called the Mesh synchronous processor, or
MeshSP. The MeshSP provides state-of-the-art per-
formance, compact size, reduced weight, and low
power consumption, which makes it a potentially
suitable solution to our computational problem. It is
capable of 7.7-billion floating-point operations per
second (Gflops/sec) computational throughput on a
board 7 × 13 inches in size, while consuming only a
hundred watts of power. These excellent attributes
have motivated us to look closely at the MeshSP to
determine its potential as a real-time STAP processor.
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The approach we applied in the performance analysis
was to develop a parameterized model for estimating
latencies of computation and communication in
terms of problem complexity and machine size. If we
apply the model to various radar systems and proces-
sor configurations, we can determine a configuration
that meets real-time requirements, and also analyze
the scalability of the configuration for future changes
in algorithm development [2].

In this article we review the fundamentals of STAP
and describe a representative algorithm—the higher-
order post-Doppler (HOPD) STAP algorithm and its
key computational kernels. We follow with an over-
view of MPPs and a description of the MeshSP archi-
tecture. Then we present mappings onto the MeshSP
of the HOPD algorithm for two representative ra-
dars, and subsequently analyze the performance and
scalability of the MeshSP. We discuss the results and
show that the MeshSP has strong potential as an air-
borne STAP processor. We conclude by indicating fu-
ture directions for STAP research.

Space-Time Adaptive Processing

Figure 1 illustrates the elements of the airborne early-
warning (AEW) radar environment. The AEW sur-
veillance radar must detect increasingly smaller tar-
gets in a background of heavy interference. The two
main sources of interference are environmental clut-
ter and hostile jamming. The motion of the airborne
radar platform spreads the clutter in Doppler fre-
quency; clutter from a specific point on the ground
has a Doppler frequency that depends on the angle of
the clutter position relative to the heading of the plat-
form. Noise-like jamming (or barrage noise jamming)
from discrete sources (both in the air and on the
ground) is localized in angle but spread over all Dop-
pler frequencies. Detecting a target by enhancing ra-
dar performance in this environment of interference
is the ultimate problem we must solve.

The goal of STAP is straightforward—suppress the
interference and detect the target [3]. Figure 2 illus-
trates an example of the signal-to-noise ratio (SNR)

FIGURE 1. The airborne early-warning (AEW) radar environment. The airborne radar must be able to provide long-range
target detection in the presence of environmental clutter and hostile jamming.
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that results from clutter and a single jamming signal,
as a function of angle and Doppler frequency. Clutter
from all angles lies on the clutter ridge shown in the
figure, whereas the jamming signal from one angle
appears in all Doppler frequencies. To suppress the
interference and detect the target, the AEW surveil-
lance radar must have high gain at the target angle
and Doppler frequency, as well as deep nulls along the
clutter and jamming lines.

A space-time adaptive processor combines receive
beamforming in the spatial dimension and Doppler
filtering in the temporal dimension to achieve the
specific filter response shown in Figure 3 for a par-
ticular target angle and Doppler frequency. The
STAP processor applies many of these filters, each
covering a different target angle and velocity, to detect
targets within the range of interest.

The process of electronically steering the radar re-
ceiver in different directions is called phased-array
beamforming. Beamforming algorithms involve the

FIGURE 2. The AEW interference scenario. The problem is to detect the target by enhancing
radar performance in this environment of  interference. This plot shows the signal-to-noise
ratio (SNR) resulting from clutter and a single jamming signal, as a function of angle and Dop-
pler frequency. The plot also shows the view of the clutter characteristic from the perspective
of azimuth for a given Doppler frequency, and the view of the clutter from the perspective of
Doppler frequency for a given azimuth. These views indicate that the problem is two-dimen-
sional in nature because filtering must be performed in each dimension.

application of weights to samples in a signal process-
ing system. Weight application is computed as a dot
product between weight vectors and sample vectors,
where the vectors span the radar channels (these
channels are either independent antenna receivers or
elements within a single large antenna). In a conven-
tional nonadaptive beamforming algorithm the
weights are a fixed function of the look direction. In
an adaptive beamforming algorithm the weights are
computed from the input training data and the beam
steering vectors. Figure 4 shows the STAP processing
typically performed in one radar coherent processing
interval, which consists of L range gates, M pulse-rep-
etition intervals, and N antenna elements.

The optimal adaptive weight vector w for a given
steering vector s is related to the interference covari-
ance matrix R through the relationship Rw = s. The
covariance matrix R, which is unknown a priori, is
defined as R = E {xxH}, where x is the space-time
sample vector. We therefore perform the adaptation

–1

0

1 –0.5

0

0.50

20

40

Sin (Azimuth) Norm
aliz

ed D
oppler

Jamming

Target

Clutter

S
N

R
 (

d
B

)



• MCMAHON
Space-Time Adaptive Processing on the Mesh Synchronous Processor

VOLUME 9, NUMBER 2, 1996    THE LINCOLN LABORATORY JOURNAL 135

FIGURE 3. Space-time adaptive filter response. This filter combines beamforming in the
spatial dimension and Doppler filtering in the temporal dimension to achieve a response for
a particular target angle and Doppler frequency. These data show deep nulls along the clut-
ter ridge and jamming line shown in Figure 2, with a high response at the target location.

FIGURE 4. The space-time adaptive processing (STAP) typically performed in one radar
coherent processing interval, which consists of L range gates, M pulse-repetition intervals
(PRI), and N antenna elements. A subset of samples is chosen from the input data cube
according to a training strategy. The resulting training set is used to compute the weights
that are applied to the entire data cube. The final detection phase identifies the location of
the targets in the data cube.
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by forming an estimate of R from a set of radar data
called the training set. Specifically, the covariance ma-
trix R is estimated as R  = XHX, where the training-
set matrix X is a subset of the input data. The process
of computing the adaptive weight vector w from the
estimated covariance matrix R  is called sample matrix
inversion. These methods include direct matrix inver-
sion after explicitly forming R , as well as factoriza-
tion approaches that compute the Cholesky decom-
position of R  via QR decomposition of X [4]. For
reasons of numerical stability as well as computa-
tional complexity, the factorization approach is the
more viable.

Specifically, we compute X = QA, where A is upper
triangular. Since Q is an orthogonal, unitary matrix,
QHQ = I, where I is the identity matrix. Therefore,
R  = XHX is equivalent to R  = AHQHQA = AHA.
Since A is triangular, w is easily computed from the
two backsolve operations, AHu = s and Aw = u, where
s is the target response corresponding to a particular
hypothesized angle and Doppler frequency, and u is
an intermediate computation vector. A different s is
used for each member of the STAP filter bank. The
beamforming operation is a matrix-vector multiplica-
tion, z = wHy, where y is the input data for a specific
range gate and z is the output data in that beam.

In fully adaptive STAP algorithms, in which a
separate adaptive weight is applied to all pulse-repeti-
tion intervals as well as all channels, the covariance
matrix R has dimension NcNd × NcNd , where Nc is
the number of array elements and Nd is the number
of pulse-repetition intervals per coherent processing
interval. For typical radar systems, the product NcNd
can vary from several hundreds to tens of thousands.
For a variety of reasons, not the least of which is the
large amount of computational power required for
fully adaptive STAP, partially adaptive STAP is a
more attractive candidate for implementation in an
actual processing system.

In a partially adaptive STAP algorithm, the pro-
hibitively large problem of a fully adaptive STAP al-
gorithm is broken down into a number of indepen-
dent, smaller, and more computationally tractable
adaptive problems while achieving near-optimum
performance. Figure 5 shows the generic partially
adaptive STAP architecture. The first step in the par-

FIGURE 5. The generic partially adaptive STAP architec-
ture. By transforming the original data cube into
subarrays, we break down the prohibitively large prob-
lem of a fully adaptive STAP algorithm into a number of
smaller and more computationally tractable partially
adaptive problems.
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tially adaptive algorithm is nonadaptive filtering of
the input signal data to reduce the dimensionality of
the problem. The weight vector is computed by ap-
plying sample matrix inversion to the final reduced-
dimension data. Once the input data are trans-
formed, and bins and beams (or channels and
pulse-repetition intervals) are selected to span the tar-
get and interference subspaces, multiple separate
adaptive sample-matrix-inversion problems are
solved, one for each Doppler frequency bin or pulse-
repetition interval, across either antenna elements or
beams, depending on the domain of the adaptation.
Therefore, there is a natural inherent parallelism in
partially adaptive STAP algorithms, which forms the
first step in parallelizing the STAP problem.

The initial nonadaptive filtering can be either a
transformation into the frequency domain (for ex-
ample, by performing a fast Fourier transform, or
FFT, over pulses in each channel) or a transformation
into beam space (for example, by performing non-
adaptive beamforming in each pulse). We can per-
form both spatial and temporal transformations, if
desired, or we can eliminate nonadaptive filtering al-
together. The nonadaptive filtering determines the
domain (frequency or time, element or beam) in
which adaptive weight computation occurs, and
thereby serves as a convenient means of classifying
STAP algorithms, as shown in Figure 6. Each quad-
rant in this figure shows a box representing the data
domain for a single range gate after a different type of
nonadaptive transform. For example, the upper right
quadrant represents pulse-repetition-interval data
that have been transformed into Doppler space. Thus
each sample is a radar return for a specific Doppler
frequency and receiver element. The lower-left quad-
rant represents element data that have been trans-
formed into beam space. Thus each sample is a radar
return for a specific pulse-repetition interval and look
direction. Each quadrant has a variety of particular re-
duced-dimension algorithms based on filtering and
subspace selection.

The STAP kernel used in this analysis is adaptive
in the frequency domain, and therefore falls into the
element-space post-Doppler quadrant of the tax-
onomy. A Doppler filter-bank FFT is applied to sig-
nals from each element. Low-sidelobe Doppler filter-

ing effectively localizes competing clutter in angle, re-
ducing the extent of clutter that must be adaptively
canceled. The adaptivity occurs over all elements and
a number of Doppler bins. The number of Doppler
bins is a parameter of the element-space post-Doppler
algorithm. When the number of Doppler bins is two
or greater, the algorithm is in the class of HOPD vari-
ants of STAP. Factored post-Doppler algorithms per-
form spatial adaptation in a single bin and are there-
fore, in the strict sense, not adaptive in the temporal
dimension.

Figure 7 illustrates the STAP algorithm functional
flow. The input to the kernel is a three-dimensional
data cube consisting of sample data (range gates)
from some number of radar channels, for some num-
ber of Doppler bins. The range gates are divided into
range segments. A sample matrix, or training set, is
formed for each Doppler bin and range segment by
selecting a subset of the range gates from all channels
for that Doppler bin and the two adjacent Doppler
bins. The two-dimensional data from the three Dop-
pler bins are concatenated to form the two-dimen-
sional matrix used for sample matrix inversion. The
algorithm to upper-triangularize the sample matrix is
based on Householder transformations [5]. Figure 8

FIGURE 6. The four types of STAP algorithm transforma-
tions. Each quadrant represents a different domain in
which STAP can occur. Transitions from one domain to
another require the specific discrete Fourier transforms
(DFT) shown in blue.
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illustrates the partitioning of the input data cube and
the transformation of the input data into a two-di-
mensional sample matrix.

Performance of the adaptive beamforming algo-
rithm varies with the size of each training-set sample
matrix. Performance is particularly sensitive to the
number of adaptive weights (i.e., the number of col-
umns in the sample matrix). This parameter is called
the degrees of freedom. Performance is also sensitive to

the size of the training set (i.e., the number of samples
selected for training). Training-set size is quantified
via the sample ratio, which is the ratio of columns to
rows in the sample matrix. Typically, to achieve de-
cent algorithm performance, the sample ratio must be
two or greater to provide adequate target detection
and to null clutter and jamming. These parameters, as
well as radar-specific parameters, are used to define
the scalability of the algorithm mapping.

FIGURE 8. Transformation of a selected subset of data from the input data cube into a 2D training-set matrix
used for sample matrix inversion. The 2D training-set matrix for each Doppler bin and range segment is formed
by concatenating all the channels from adjacent Doppler bins and selecting a subset of the range gates.

FIGURE 7. Functional flow for the higher-order post-Doppler (HOPD) algorithm. The fast Fourier
transform (FFT) is performed over channels and PRIs in each range gate to set frequency-domain
data for each Doppler bin. The adaptive beamforming in each Doppler bin requires post-FFT data
from the two adjacent Doppler bins for all range gates.
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MeshSP Architecture

The MeshSP is a single-instruction multiple-data
(SIMD) architecture originally developed at Lincoln
Laboratory and now marketed by Integrated Com-
puting Engines, Inc., of Waltham, Massachusetts. It is
comprised of an array of processors connected via a
two-dimensional or three-dimensional nearest-neigh-
bor mesh [6]. Its current realization incorporates a
single monolithic processor element, the Analog De-
vices ADSP-21060 SHARC integrated circuit, which
was developed jointly by Analog Devices and Lincoln
Laboratory. The 21060 is based on a 21000 core but
adds communication and memory to form a mono-
lithic processor element that offers significant advan-
tages in processing density per unit of size, weight,
and power, if available data memory is sufficient.
Each processor element permits 120 Mflops/sec peak
performance and has 512 KB of internal memory
(SRAM), six interprocessor communication ports,
each capable of 40 MB/sec peak throughput, and two

input/output ports, each capable of 5 MB/sec peak
throughput. The 21060 does not have a cache; the
on-chip internal memory contains the data for critical
computations and is managed by the application pro-
grammer. This solution provides maximum perfor-
mance in a deterministic manner. The 21060 is not
an instrinsically SIMD processor in the strict sense,
since it contains its own instruction-execution en-
gine, and can be utilized in multiple-instruction mul-
tiple-data (MIMD) parallel processors as well.

The MeshSP includes an array of processor ele-
ments, a master processor, an input/output module,
and a host computer. The program is executed by the
master processor and the instructions are broadcast to
the processor-element array, or slaves, for parallel ex-
ecution. The hardware can support limited MIMD
operation when code segments are loaded into the
processor-element on-chip internal memory. Figure 9
illustrates the MeshSP architecture.

The MeshSP processing array has two-dimensional
toroidal connectivity via its interprocessor communi-

FIGURE 9. MeshSP architecture. Most of the processing power is in the array of processor elements, or slaves, which is
a two-dimensional mesh of  SHARC processors with four-way nearest-neighbor toroidal communication links. Each
processor executes the same program, which is downloaded by the master SHARC processor from program memory.
The host processor is a personal computer or workstation that controls the MeshSP and provides external communica-
tion for operators. Data input/output (I/O) for the array of  slaves is achieved by the serial I/O module.
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cation links. Each processor has six input ports and
six output ports. In the current configuration, four
input ports and four output ports are devoted to four-
way nearest-neighbor interconnections. The extra
two ports are used for fault tolerance by connecting
them to the next nearest neighbor to the right and
left. Interprocessor communication in the MeshSP is
asynchronous to computation and can occur in paral-
lel as long as no data conflicts occur.

Latency of a data transfer between processors is
proportional to the sum of the vertical and horizontal
distances between them in processor coordinates. In
mapping an algorithm, or equivalently, a dataset,
onto the processor array, data locality is of primary
importance. Locality in the context of massively par-
allel processing means that data used in a computa-
tion are mapped to the same or physically close pro-
cessors in order to reduce the cost of interprocessor
communication.

Figure 10 shows a MeshSP processing board,
which is 7 × 13 inches in size and dissipates approxi-
mately one hundred watts of power. The board con-
tains sixty-four SHARC chips (thirty-two per side)
and is capable of 7.7-Gflops/sec peak performance.
The MeshSP architecture is scalable and can therefore
reside on a multiple number of processing boards.
The high processing density per unit of size, power,
and weight of the MeshSP architecture is highly desir-
able in an airborne platform, provided acceptable lev-
els of efficiency can be sustained. This high density is
more readily achievable in SIMD processors than in
MIMD processors because only one global program
memory is needed, from which instructions are
broadcast to each processor.

Algorithm Mapping

The first step in algorithm design is to map the prob-
lem topologically onto the processor architecture.
The mapping problem involves assigning data and
computations in the algorithm to one or more spe-
cific processors in the processor array. Computations
assigned to multiple nodes in a parallel processor ben-
efit from increased computational bandwidth. How-
ever, a price is often paid in the lower efficiencies that
result from necessary communication between nodes.
The exact trade-off between computational power

FIGURE 10. MeshSP processing board. Each processor
element is an Analog Devices SHARC integrated circuit
developed jointly by Analog Devices and Lincoln Labo-
ratory. Each processing board is two sided, and contains
thirty-two SHARC processor elements per side; this
board is capable of  7.7-Gflops/sec peak performance
while dissipating only one hundred watts of  power.

and parallel efficiency depends on the balance of
computation and communication that results from a
particular mapping on a particular architecture. The
end-to-end latency, or execution time, of the algo-
rithm must meet real-time requirements of the radar;
this fact establishes a minimum number of nodes on
which the algorithm must be mapped. To maximize
efficiency, the assignment of data to processors must
take into account the advantages of data locality so
that overall communication is minimized. In addi-
tion, assignment of computations to processors must
insure that there is adequate load balancing; i.e., the
computational load is evenly distributed between in-
dividual processors so that overall processor utiliza-
tion is maximized.

In addition to algorithm execution time, three
metrics are used in benchmarking parallel-processor
performance in this study. These metrics—execution
speedup, parallel efficiency, and ratio of communica-
tion-to-computation latency—each quantify the per-
formance of a parallel algorithm. The metrics are used
to evaluate the suitability of the MeshSP architecture
for the HOPD algorithm, and are described in the
section entitled “Analytical Results.”

Because each Doppler bin and range segment has
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its own sample-matrix-inversion subproblem, the glo-
bal mapping approach for the HOPD algorithm is to
map each sample-matrix-inversion subproblem to a
subarray of the full MeshSP processor-element array,
where the size of the subarray is Px by Py processors.
Figure 11 illustrates the global mapping approach.
Because each subproblem after the initial data sharing
is independent, scalability and performance of the
HOPD algorithm as a whole are equivalent to those
of an individual subproblem. For the remainder of
this article we examine only subproblem perfor-
mance; the number of subproblems affects only the
total number of processors required.

Two mappings of training-set matrices to subarrays
of the full MeshSP processor-element array were
simulated: block and cyclic [7]. Each training set is an
M × N matrix; therefore, each processor has R = M /Py
rows and C = N /Px columns. In the block mapping,
adjacent processors in the two-dimensional mesh
contain adjacent blocks of multiple data elements in

the two-dimensional matrix. In the cyclic mapping,
each processor is assigned every Px-th element on the
x dimension and every Py-th element on the y dimen-
sion. Adjacent processors in the two-dimensional
mesh contain adjacent single data elements in the
two-dimensional matrix, with wraparound at the pro-
cessor boundaries. Figure 12 illustrates the differences
between block mapping and cyclic mapping. In gen-
eral, the cyclic mapping yields better load balancing
between processors because the data are spread over
more processors. For the same reason, the block map-
ping generally yields better (i.e., lower) communica-
tion-to-computation ratios.

Distributed Algorithm Operation

In the section on space-time adaptive processing we
stated that the computation of the adaptive weight
vector w from the estimated covariance matrix R
could be done most effectively through QR decom-
position of the training-set matrix. In the HOPD al-
gorithm, the method for computing A = QR is based
on the technique of Householder reflections [4]. A
two-by-two orthogonal matrix Q is a reflection if it
has the form

Q =
−











cos sin

sin cos
.

θ θ

θ θ

If y Q x Qx= =T , then y is obtained by reflecting
the vector x across the line defined by

S =


















span
cos( / )

sin( / )
.

θ

θ

2

2

Reflections can be used to introduce zeros in a vector
by properly choosing the reflection plane. A House-
holder reflection is an n-by-n matrix P of the form

P I v v v v= − 2 T T/( ) ,

where v ∈ ℜn is called the Householder vector.
When a vector x is multiplied by P, it is reflected in
the hyperplane span{ }v ⊥. Householder reflections are
symmetric and orthogonal, and can be used to set se-
lected components of a vector to zero. A succession of
Householder reflections applied to the columns of
matrix A can introduce zeros below the main diago-

FIGURE 11. The global mapping approach. The two-di-
mensional training-set matrix for each Doppler bin m is
mapped to a region of multiple processors in the full
two-dimensional processor array. By increasing the
number of processors allocated to each Doppler bin, we
can improve overall execution time.
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FIGURE 12. Block mapping and cyclic mapping. Each M × N matrix of training-set data is mapped onto a Px × Py array of
processors such that each processor is assigned R = M /Py rows and C = N/Px columns of  the matrix. (a) In the block
mapping, adjacent processors in the two-dimensional mesh contain adjacent blocks of multiple data elements in the
two-dimensional matrix. (b) In the cyclic mapping, each processor is assigned every Px-th element on the x dimension
and every Py-th element on the y dimension. Adjacent processors in the two-dimensional mesh contain adjacent single
data elements in the two-dimensional matrix, with wraparound at the processor boundaries. In general, the block map-
ping yields better communication-to-computation ratios, while the cyclic mapping yields better load balancing between
processors.
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nal, yielding an upper-triangular matrix R. A House-
holder update of a matrix A involves a matrix-vector
multiplication followed by an outer-product update,
and therefore never entails the explicit formulation of
the Householder matrix. The algorithm for the kth
Householder update of the sample matrix is

Q I
v v

v v

Q A I
v v

v v
A A v w

k

H

H
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H

H
H

= − ⇒

= −

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2
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where, if ak is a column vector of data below the di-
agonal of matrix A, then

v a a a e

w A v

v v

= +

=

= −

k k k

k
H

H

sgn[ ( )]

.

1

2

1

β

β

In this algorithm the matrix Ak is the submatrix of A

for the kth iteration. Table 1 lists the steps in the dis-
tributed Householder decomposition of the matrix A.
Table 2 outlines the steps in the distributed backsolve
and weight-application operation.

As the Householder algorithm iterates over col-
umns in the input matrix, the active part (i.e., the ele-
ments of the matrix that are involved in the current
update) consists of the elements below and to the
right of the main diagonal. Since only part of the ma-
trix is active in each iteration, load balancing is an is-
sue. Figure 13 illustrates the different load-balancing
characteristics of the Householder algorithm for the
two different mappings. In the block mapping some
processors become inactive earlier in the sequence of
iterations, whereas in the cyclic mapping all proces-
sors remain active until the final iteration. Because of
this characteristic of the mappings, cyclic mapping
has better load balancing.

Performance Model

Table 3 shows the equations for estimating the com-
putation and communication costs for each step in
the HOPD algorithm. A reduction operation over P



• MCMAHON
Space-Time Adaptive Processing on the Mesh Synchronous Processor

VOLUME 9, NUMBER 2, 1996    THE LINCOLN LABORATORY JOURNAL 143

Table 1.  Distributed Householder Decomposition

Given a complex matrix A, apply a sequence of  Householder transformation matrices Qk to upper-triangularize A.

Each Householder matrix Qk zeros a column of  A below the diagonal.

For each column ak of A ( k = 1 to N), compute the update of
A that represents QkA :

Square the elements in that column, then perform a reduc-
tion (addition) over the appropriate column of processors,
and take the square root to compute |a k|.

Update the appropriate value in the appropriate processor
to compute v(1) = ak(1) + sgn[a(1)] |a|.

Multiply the elements in that column by their complex conju-
gates, then perform a reduction (addition), division, and
multiplication to compute β = –2 /(v Hv).

Broadcast β from the appropriate processor to the right in
the processor array.

Broadcast v from all processors in the appropriate column
to the right in the processor array.

In all processors to the right and down from the selected
processor, compute w = βakv, then perform a reduction over
those columns of processors to compute w = βa k

Hv.

Update by setting a k = a k + v w* for all elements of A.

Broadcast β and v

Reduction network to compute v, β, w

Processing blocks to update matrix A

Zeroed elements of  matrix A

Active processors in current iteration

processors in which K numbers are added over the P
processors involves an initial step to add the elements
within each processor, then log2P stages to add partial
sums between processors. The ith stage involves an
addition and a communication of distance 2i–1. On
the MeshSP, the result is repeated in each of the P
processors.

The number of steps to broadcast K numbers over
P processors is proportional to KP. If pipelining can
be used, then the number of steps is proportional to
K + P. On the MeshSP there is a three-cycle overhead
penalty for pipelined broadcasts; therefore, the num-
ber of steps is proportional to K + 3P. The values Rj
and Cj are the number of rows and columns, respec-
tively, per processor during iteration j. The values Pj

x

and Pj
y are the respective number of processors active

during iteration j in the x and y dimensions. These
four values vary with different mappings for the ma-
trix decomposition. Table 4 lists the values for the two
mappings in this study, and Table 5 lists the commu-
nication costs for the backsolve operations, where

Py′ = N /R is the number of processors in the y dimen-
sion active in the backsolve operations, and R ′ = N /Py
is the number of backsolve rows per processor.

Analytical Results

Two different sets of parameter values based on two
different radar systems were used in this study. Table
6 lists the parameters and their values for each case.

The resource requirements for memory and input/
output are defined for a given application by using a
data cube of size Nd × Nr × Ndof , where Nd is the
number of Doppler bins, Nr is the number of range
gates, and Ndof  is the number of degrees of freedom,
to allow for sharing of adjacent Doppler bins. The
number of processors required for the entire processor
array is Nd × Ns × Px × Py , where Ns is the number of
range segments, since each Doppler bin and range
segment has its own training set. The number of data
elements per processor element is the data cube size
divided by the total number of processors; the
memory required per processor element is twice that
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FIGURE 13. Householder-algorithm load-balancing char-
acteristics for block mapping and cyclic mapping. (a)
Block mapping produces better communication-to-com-
putation ratios, while (b) cyclic mapping produces better
load balancing between processors because the data are
spread over more processors.

Block Cyclic

(a) (b)

Table 2.  Distributed Backsolve and Weight Application

Distributed backsolve.

value to reflect double buffering of the data cube
(scaled by eight for eight-byte complex data). Input/
output throughput required per processor element is
the number of data elements per processor element
(times eight) divided by the length of a coherent pro-
cessing interval.

Table 7 lists the performance metrics that were de-
rived in this study. The peak values for MeshSP com-
putational throughput and communication band-
width are inserted in the equations with an estimated
efficiency of 25% in both processor-element perfor-
mance and processor-element intercommunication.
The single processor-element efficiency has a signifi-
cant effect on overall processor efficiency and there-
fore must be measured on actual MeshSP hardware.

Architecture Performance Analysis

The performance model described in the previous
section was exercised by using two different radar

Broadcast result for LHS update

Pass new LHS for next iteration

Processing blocks to compute weights

Zeroed elements of  matrix A

Active processors in current iteration

First backsolve, for ( j = 1 to N), to solve AHu = s for vector u:

Divide to get u( j ); broadcast u( j ) right along the proces-
sor row.

Multiply u( j ) by a( j, j ) and subtract from v( j ) for all values
in all processors in rest of  current row.

Send updated v( j ) down to next row.

Second backsolve, for ( j = N to 1), to solve Aw = u for the
weight vector w:

Divide to get w( j ); broadcast w( j ) up along the processor
column.

Multiply w( j ) by a( j, j) and subtract from u( j ) for all val-
ues in all processors in rest of  current column.

Send updated u( j ) left to next column.

Distributed weight application.

For each range gate per processor (I = 1 to Nr/Py ):

Multiply and add all elements within each processor.

Perform reduction (addition) over rows of processors.
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Table 3.  Total Computation and Communication Costs*

Function Computation Communication

Householder decomposition:

Compute v 4Rj + log2Pj
y + 1 4(Pj

y – 1)

Compute β 4Rj + log2Pj
y + 1 4(Pj

y – 1)

Compute w Cj(8Rj + 2 log2Pj
y + 2) 8(Pj

y – 1)

Compute a 8Rj Cj 8Rj + 12Pj
y

Backsolve Nv(22 + 8Cj + 8Rj′) NvZ

Weight application NvNr(8C + 2 log2Px )/(PyNs ) Nv × Nr × 8(Px – 1)/PyNs)

* Rj is number of rows per processor, Cj is number of columns per processor, Pj
x is number of x processors

active, and Pj
y is number of y processors active during iteration j of  the Householder algorithm. See Tables

4 through 6 for the mapping-specific parameters ( ′Rj , Z) and radar parameters (Nv, Nr, Ns).

Table 4.  Mapping-Specific Parameters

Value * Block Cyclic

Rj if j < M – R  then R  else M – j R – floor ( j /Py )

Cj if j < N – C  then C  else N – j C – floor( j/Px )

Pj
x Px – ceiling(( j + 1)/ C) if j < N – Px  then Px – 1  else  N – j – 1

Pj
y Py Py

′Rj if j < N – R  then R  else N – j R – floor ( j /Py )

Pj
y ′

Py – ceiling(( j + 1)/R ) if j < N – Py  then Py – 1  else  N – j – 1

* ′Rj  is the number of rows per processor during iteration j of the backsolve algorithm; Pj
y ′ is the number of

y processors active during iteration j of  the backsolve algorithm.

Table 5.  Backsolve Costs for Block Mapping and Cyclic Mapping*

Block Z P P P Pj
x

j

j
y

j

y x= + + ′ − + −










∑ ∑ ′8 1 1( ) ( )

Cyclic Z P P P R P Cj
x

j

j
y

j

y x= + + − ′ − + − −










∑ ∑8 1 2 1 1 2 1( )( ) ( )( )

* ′Py  = N/R is the number of y processors active in the backsolve; ′R = N/Py is the
number of rows per processor.
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Table 7.  Performance Metrics

Definition Value

Processing latency Tp = Nops /(120 × 0.25)

Communication latency Tc = Nbytes /(40 × 0.25)

Total latency T = Tp + Tc

Communication-to-computation ratio R = Tc /Tp

Speedup S = T1 /TN

Efficiency E = T1 /(N × TN )

Table 6.  Radar Application Definition

Parameter Symbol Radar 1 Radar 2

Number of channels Nc 48 18

Number of Doppler bins Nd 128 16

Number of range gates Nr 1250 16,384

Number of segments Ns 2 4

Degrees of  freedom Ndof 144 54

Training sample ratio (M/N ) k 2 3

Number of beams Nv 2 3

Length of coherent processing interval (sec) Tcpi 0.5 0.06

applications (Radar 1 and Radar 2) and two different
mappings (block and cyclic). Radar 1 and Radar 2 pa-
rameter sets are based on actual radar systems with
low and high instantaneous bandwidths, respectively.
For each case, we derived performance measures for a
variety of processor configurations. By plotting pro-
cessor configuration on one axis and performance
metric on the other axis, we can show scalability of
the algorithm mapping to the MeshSP.

Radar 1 Performance Results

Figure 14 shows the variation in estimated total la-
tency for each mapping of the HOPD algorithm with
the Radar 1 radar parameters. These graphs show that
real-time requirements can be met with four proces-
sors per sample-matrix-inversion problem with each

mapping. For 128 Doppler bins and two range seg-
ments, a total of 1024 processors for all Doppler bins
and range segments is required. The cyclic mapping
gives greater flexibility in mapping choice to meet
real-time requirements for latency, since two points in
processor space that do not meet real-time require-
ments for block mapping do meet real-time require-
ments for cyclic mapping. This fact occurs because of
the better load balancing of the cyclic mapping.

Figure 15 shows a breakdown of latency for each of
the three operations in the algorithm. Algorithm ex-
ecution time is clearly dominated by the Householder
QR decomposition. Execution time for the cyclic
mapping is approximately half that of the block map-
ping because of the better load balancing of the cyclic
mapping. In the Householder QR decomposition,
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algorithm activity progresses to the lower right corner
of the matrix. Thus, with the block mapping, proces-
sors in the upper left corner of each processor
subarray become inactive in the beginning stages of
the algorithm. With the cyclic mapping, all proces-
sors stay active for more iterations of the algorithm.

Figure 16 shows speedup and efficiency of the en-
tire Radar 1 application. Speedup is defined as the ra-
tio of execution time with one processor (T1) to ex-
ecution time with N processors (TN ). Once again we
see that the cyclic mapping is more efficient because
of better load balancing between processors. We also
determined that parallel efficiency, as defined in Table

7, is high for lower numbers of processors, i.e., four or
eight processor elements per problem.

Figure 17 shows the communication-to-computa-
tion ratio for the entire Radar 1 application. These
graphs show that the cyclic algorithm, although it has
a better execution time because of better load balanc-
ing, has a worse communication-to-computation ra-
tio than the block mapping. This result matches ex-
pectations, since better load balancing means
spreading data over a higher average number of pro-
cessors per iteration. The increased number of proces-
sors lowers latency, but increases the communication
burden in the distributed algorithm.

FIGURE 15. Radar 1 mapping analysis. The majority of al-
gorithm execution time is spent in the Householder QR
decomposition. Execution time with the cyclic mapping
is lower because of better load balancing.

FIGURE 16. Radar 1 speedup. Speedup is better with the
cyclic mapping because of the better load balancing
among processors.

QR Apply
Backsolve

QR Apply
Backsolve

Block Cyclic

0.2

0.3

0.4

E
xe

cu
ti

o
n

 ti
m

e 
(s

ec
)

0.1

0

Py = 8

0.2

0.3

0.4

2 4 62 4 6 8
Processors in x dimension (Px)

T
o

ta
l c

o
m

m
/c

o
m

p
 (

T
 /T

 )
 (

se
c/

se
c)

Block Cyclic

Py = 8

8

0.1

0

c
p

4

2
1

FIGURE 17. Radar 1 communication-to-computation ra-
tio. This ratio is higher with the cyclic mapping because
data computation is distributed over more processors,
which requires greater interprocessor communication.
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quirements can be met with a minimum of four proces-
sors for either mapping.
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Figure 18 shows the effect of adding processors in
the x dimension versus adding processors in the y di-
mension. In each graph, as we move to the right along
the x-axis, the aspect ratio of y processors to x proces-
sors increases; if the ratio is greater than one, then
there are more y processors than x processors. Execu-
tion time decreases slightly as we increase y processors
relative to x processors, slightly favoring y-rectangular
processor arrays. Because reduction versus broadcast
operations vary in execution time in proportion to
log(N ) versus N, this result again meets expectations.

Figure 19 shows memory and input/output re-
quirements for different processor configurations. We

can see that the required memory just fits into that
provided by the four processors per matrix decompo-
sition. Input/output requirements are well within the
capabilities of the MeshSP.

The performance results for Radar 1, on the basis
of the performance model, indicate that we can meet
real-time requirements for Radar 1 with approxi-
mately sixteen MeshSP processor boards. The results
show that the Radar 1 application scales reasonably
on the MeshSP architecture, and suggest a preference
for cyclic mapping and y-rectangular processor aspect
ratio.

Radar 2 Performance Results

Figure 20 shows the variation in estimated latency for
each mapping of the HOPD algorithm with the Ra-
dar 2 radar parameters. As shown in Table 6, the
“shape” of the Radar 2 radar application is different
from that of the Radar 1 problem; Radar 2 has many
range gates and smaller degrees of freedom, whereas
Radar 1 has fewer range gates and larger degrees of
freedom.

Figure 21 shows a breakdown of latency for each
operation in the algorithm. Because the Radar 2 case
has many more range gates, algorithm execution time
is dominated by the weight application (the applica-
tion of weights to the entire data cube). Although the
cyclic mapping still outperforms block mapping for
the Householder matrix decomposition, it is equiva-

FIGURE 19. (a) Radar 1 required memory per processor and (b) required
input/output per processor. Radar 1 processing fits into available mem-
ory limits with a minimum of four processors, and within input/output
limits for all processor sizes.
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lent to the block mapping for the weight application.
This result meets expectation, since reduction opera-
tions as used in the weight application simply add N
numbers distributed over P processors, irrespective of
the mapping.

Figure 22 shows speedup and efficiency of the en-
tire Radar 2 application. In this case, the cyclic map-
ping is only slightly more efficient than the block
mapping, since weight application dominates execu-
tion time and is mapping-insensitive. Again, we see
higher efficiency for lower numbers of processors.

Figure 23 shows the communication-to-computa-
tion ratio for the entire Radar 2 application. Again,

the cyclic algorithm has a communication burden
that is only slightly higher because of the distribution
over more processors, since weight application domi-
nates. We can also see that adding y processors does
not increase communication significantly. This result
also meets expectation, because the weight applica-
tion communicates only in the x direction. We would
therefore also expect that this algorithm would
strongly favor distribution over processors in the y di-
mension over distribution over processors in the x di-
mension. This result can be seen in Figure 24. Lastly,
Figure 25 shows the memory and input/output re-
quirements for different processor configurations. We
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FIGURE 22. Radar 2 speedup. The total speedup, which is
approximately the same for both mappings, increases
only marginally for values of  Px greater than four.

FIGURE 23. Radar 2 communication-to-computation ra-
tio. This ratio is higher with the cyclic mapping; it varies
only slightly with changes in Py because the weight appli-
cation communicates only in the x dimension.

FIGURE 20. Radar 2 real-time processing. Real-time re-
quirements can be met with a minimum of eight proces-
sors for either mapping.
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can see that the required memory just fits into that
provided by the eight processors per matrix decompo-
sition, but the fit is very tight. For the Radar 2 case, as
with the Radar 1 case, input/output requirements are
also within capabilities of the MeshSP.

These graphs show that real-time requirements can
be met with eight processors per sample-matrix-in-
version problem with each mapping, for a total of
512 processors for all sixteen Doppler bins and four
range segments. The cyclic mapping gives slightly
more flexibility in mapping choice, but not as much
as with the Radar 1 radar parameters. These graphs
also show that adding processors in the x dimension
after a certain point does not increase performance
significantly, whereas adding processors in the y

dimension does increase performance significantly.
From the performance results for Radar 2 based on

the performance model, we can meet real-time re-
quirements for Radar 2 with eight MeshSP processor
boards. The results show that the Radar 2 application
scales reasonably on the MeshSP architecture, and
suggest a preference for cyclic mapping and y-rectan-
gular processor aspect ratio.

Future Work

With this analysis as a basis, the next step is to imple-
ment and optimize the algorithm in order to verify
the performance model here and to derive the exact
measured efficiency of a representative STAP algo-
rithm on the MeshSP architecture. Another area for

FIGURE 25. (a) Radar 2 required memory per processor and (b) required
input/output per processor. Radar 2 processing fits into available memory
and input/output limits with a minimum of eight processors.

FIGURE 24. Radar 2 aspect ratio. Execution time is always lower when Py

is greater than Px for both the block mapping and the cyclic mapping.
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future work is that of algorithm optimization, which
was not addressed here. Other issues that must be
solved for a feasible system solution are the input/out-
put and radar-interface issues.

In actuality, the overall processor efficiency is the
product of the parallel efficiency and the single-pro-
cessor efficiency, which was assumed in this study to
be 25%. More accurate estimates of overall processor
efficiency must utilize single-processor efficiencies de-
rived from measurements of execution times on ac-
tual processors. These estimated measurements must
be made in order to derive actual efficiencies.

Other STAP processing stages, such as channel
equalization, pulse compression, Doppler filtering,
and detection, must be included in the processing
stream for analysis. In these stages, the parallelism is
usually on a different dimension from that of the par-
allelism in the HOPD algorithm presented here.
Since the optimal mapping for each stage is poten-
tially different, an analysis must be done of the addi-
tional communication costs caused by interstage
remappings. There is a trade-off between optimal
mappings for each stage with interstage remappings
and suboptimal mappings for each stage with lower
interstage remapping costs. The remapping step often
involves a major rearrangement of the input data,
commonly referred to as corner turn. Corner-turn op-
erations involve all nodes in the parallel processor and
therefore require high levels of sustained inter-
processor communication bandwidth. The ability of
an architecture to implement remappings must be
analyzed and understood in the context of STAP al-
gorithms and their associated implementation trade-
offs. Future versions of the performance model pre-
sented here will be enlarged to include this concept.

Conclusion

This article has demonstrated an approach to measur-
ing performance and scalability of a demanding ker-
nel in STAP algorithms on a commercially available
massively parallel processor called the MeshSP. For
each radar system evaluated, we can meet real-time
requirements with 1024 processors or fewer (eight or
sixteen individual processor boards), with available
on-chip memory, and in a form factor that is not un-
reasonable for an airborne platform. The algorithms

scale well on the architecture, and we have been able
to compare different mappings of data to processors
in order to determine which provides the best perfor-
mance. We have also been able to suggest processor
aspect ratios that best suit the algorithm.

On the basis of the parallel efficiencies attained in
this study, SIMD seems to be a good architectural
match for the single STAP computational kernel pre-
sented here, both in scalability and in delivered pro-
cessing power per unit size, weight, and power. Fol-
low-on work that must be performed in order to fully
understand the match between the SIMD architec-
ture and STAP algorithms includes enlarging the
model to include the other stages of STAP computa-
tions as well as obtaining measured efficiencies on ac-
tual MeshSP hardware.
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