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Nonconventional 3D Imaging
Using Wavelength-Dependent
Speckle
Lyle G. Shirley and Gregory R. Hallerman

■ We describe a technique known as speckle-pattern sampling for noncontact
measurement of an object’s surface contour. In this technique, the object is flood
illuminated by a tunable laser, and the wavelength and spatial dependence of the
resulting speckle pattern in the scattered light are Fourier analyzed to yield a 3D
image of the scattering surface. The theoretical analysis includes a treatment of
image aberrations and near-field effects. The technique is demonstrated with
laboratory measurements that show good agreement with results from standard
contact-based measurements. Range resolutions of better than 10 µm are
achieved. This technique has two principal advantages over many other
noncontact methods: the range resolution does not degrade as the distance to
the object increases, and the source and receiver lie in the same direction so that
the image is not affected by shadowing.

T   a nonconventional
3D imaging technique based on the wave-
length dependence of laser speckle. The tech-

nology grew out of work reported in an earlier article
in this journal on applications of laser speckle to tar-
get discrimination in ballistic missile defense [1].
Since that time, additional work in the area of 3D
imaging has been motivated by applications in ad-
vanced manufacturing and dimensional metrology.

In the 3D-imaging technique described here, the
object is flood illuminated by a laser beam and the
radiation pattern is sampled by a detector array. Be-
cause the illumination beam is coherent and the sur-
face of the scattering object has roughness on the
scale of a wavelength of light, phase irregularities oc-
cur in the scattered light coming from different scat-
tering regions on the surface. Interference among the
various contributions to the optical field produces a
speckle pattern of bright and dark regions of inten-
sity in the radiation pattern. As the laser is scanned in
frequency, this speckle pattern appears to boil, and

changes from the original pattern. We investigate
theoretically and experimentally how this speckle
pattern is related to the scattering object and describe
a technique for forming a 3D image of the scattering
surface based on Fourier analysis of the wavelength-
dependent speckle intensity. Atmospheric turbulence
effects are not treated.

Two features that distinguish the approach taken
here from the approach in the earlier article in this
journal are that the current work is nonstatistical in
nature and that a 3D image of the surface of the ob-
ject is produced. In the earlier statistical approach,
measurements of the wavelength dependence of
speckle were taken at multiple positions in space to
average out variations due to speckle in the estimate
of the object’s range-resolved laser radar cross section.
Although the range-resolved laser radar cross section
is rich in information about the scattering object’s
size and shape, it falls short of providing a full 3D
image of the surface of the object. In the current ar-
ticle, 3D images are produced by combining the
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range information obtained by tuning the laser and
the cross-range information available from the loca-
tion in space of individual speckle measurements. Be-
cause the current approach is nonstatistical, the
mathematical analysis is more straightforward. Con-
sequently, it is not necessary to read the theoretical
treatment in Reference 1 to understand the following
material on 3D imaging.

Researchers have recognized for many years that
the wavelength dependence of scattered electromag-
netic radiation carries information about the physical
properties of the scattering object. Crystallographers
realized early on that the 3D Fourier-transform space
of a crystal lattice can be accessed through X-ray dif-
fraction [2]. For a given direction of incidence and a
given wavelength, the region of Fourier space being
accessed lies on the surface of a sphere known as the
Ewald sphere of reflection (see the sidebar entitled
“The Ewald Sphere”) [3–5]. E. Wolf appears to have
been the first to recognize the connection between
the Ewald sphere and optical scattering, and he pro-
posed the use of holographic data to determine 3D

structure [6, 7]. This concept of sampling Fourier
space is now a well-known technique in the field of
inverse scattering [5–11].

With the advent of tunable lasers, the wavelength
dependence of speckle became readily observable.
N. George et al. carried out pioneering investigations
that related the wavelength-dependent speckle to the
scattering object [12–17]. More recently, various im-
aging techniques based on the wavelength depen-
dence of laser speckle and on tunable laser radars
have been proposed and demonstrated [18–39]. The
technique presented here, referred to as speckle-pat-
tern sampling (SPS), is based on the concept of sam-
pling the 3D Fourier space of the scattering object.
This technique is most similar to one described by
J.C. Marron et al. [33, 34].

Theory

We now develop the mathematical framework for the
speckle-pattern-sampling technique. Figure 1 shows
the basic measurement procedure to be analyzed. The
object is flood illuminated by a tunable laser and the

FIGURE 1. 3D imaging concept based on speckle-pattern sampling. A tunable laser flood-illuminates the object,
and the speckle pattern in the scattered light is sampled at a series of laser frequencies. The resulting speckle
frames are stacked to form a 3D array and Fourier transformed to produce a 3D image of the scattering object.

Stacked speckle frames
from CCD array

�
�

�
�
�
�

�
�
�
�
�

�
�
�

�
�

�
�

�
�
�

�
�

�
�
�
�

�
�
�
�
�

�
�
�

�

3D image

Frame number

3D fast Fourier transform

Speckle pattern

Frequency-
stepping

laser

CCD 

array

L
as

er
fr

eq
u

en
cy

∆

Reference point

ν

∆ν

ν



• SHIRLEY AND HALLERMAN
Nonconventional 3D Imaging Using Wavelength-Dependent Speckle

VOLUME 9, NUMBER 2, 1996    THE LINCOLN LABORATORY JOURNAL 155

T H E  E W A L D  S P H E R E

 - representa-
tion is a geometrical construction
for visualizing the region of 3D
Fourier space accessible through
scattering measurements [2–5].
Figure A shows the two types of
spheres to be considered. The
first—the Ewald sphere of reflec-
tion—has a radius of 1/λ in 3D
Fourier space with one point of
the surface of the sphere attached
to the origin of Fourier space and
the center of the sphere offset
away from the direction of illu-
mination. The surface of the
Ewald sphere of reflection defines
the region of Fourier space acces-
sible for a particular wavelength
and illumination direction. Each
point on the surface of this sphere
corresponds to a different obser-
vation direction for detecting the
scattered radiation.

The second type of sphere—
the limiting sphere—has a radius
of 2 /λ centered at the origin of
Fourier space. The interior of this
sphere represents the volume of
Fourier space that could be ac-
cessed by keeping the wavelength
fixed and combining the Ewald
spheres of reflection for all pos-
sible illumination directions. A
reconstructed 3D image is ob-
tained by sampling Fourier space
and performing an inverse 3D
Fourier transform. The larger the
volume of Fourier space sampled,
the better the resolution achiev-
able. Resolution cell sizes as small

FIGURE A. Ewald-sphere representation of  the region of  Fourier space
accessible through scattering measurements.

as λ /2 in each dimension can be
achieved by sampling the entire
volume within the limiting
sphere. Sampling of even a small
fraction of this volume can yield
micron-level resolutions.

There are several approaches
to sampling Fourier space, de-
pending on which of the three
parameters—wavelength, illumi-
nation direction, and observation
direction—are varied in a mea-
surement. In the applications we
consider in this article, the illumi-
nation direction is fixed and Fou-
rier space is sampled by changing
the radius of the Ewald sphere of
reflection through control of the
laser wavelength λ. Thus the
sampled region of Fourier space is
bounded by the Ewald spheres of

reflection for the minimum and
maximum wavelengths used in
the measurement. For a near-
monostatic measurement con-
figuration (in which the receiver
locations and source position are
in close proximity), the sampled
region of the Ewald sphere of re-
flection corresponds to the area of
the sphere farthest away from the
origin of Fourier space, as shown
in Figure A. Consequently, there
is an offset of 2/λ in sampling
Fourier space. This offset has a
minimal effect on image quality
for objects with diffusely scatter-
ing surfaces because the surface
roughness tends to scatter light in
all directions so that information
about the underlying shape is dis-
tributed in Fourier space.
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resulting speckle pattern is measured with a detector
array at equally spaced laser frequencies. Individual
speckle frames corresponding to successive frequen-
cies are stacked to form a 3D data array. The 3D
Fourier transform of this array is then calculated,
producing another 3D array representing the 3D
autocorrelation function of the 3D image of the ob-
ject. The reflective reference point located near the
scattering object causes bright voxels (volume ele-
ments) to appear in certain regions of the 3D array
that represent the location in space of scattering cells
on the surface of the object. The 3D image is formed
by recording the location of these bright voxels.

The preceding description of a speckle-pattern-
sampling measurement applies to low-resolution and
moderate-resolution 3D imaging. As the frequency-
scan length of the laser increases and the solid angle
subtended by the detector array increases, the resolu-
tion of the 3D image also increases, causing a mixing
of the wavelength dependence and the spatial depen-
dence of the speckle pattern. More sophisticated data
acquisition or signal processing is then required (see
the sidebars entitled “Speckle Size and Shape” for a
description of the spatial properties of speckle, and
“Wavelength Dependence of Speckle” for an over-
view of how wavelength dependence is modeled).
The following treatment of the speckle-pattern-sam-
pling technique covers these high-resolution effects
and summarizes near-field effects caused by noncol-
limated illumination and detector arrays located in
the near field of the object. Additional detail can be
found in Reference 39.

Scattering Model

The first step in analyzing speckle-pattern sampling
is to formulate a scattering model that adequately
predicts the wavelength dependence of speckle inten-
sity at a given point in the radiation pattern. Figure 2
illustrates the coordinate system for this analysis.
Here Ps represents a monochromatic point source of
wavelength λ located at coordinates (xs , ys , zs ) and Pr
represents a reflective reference point located near the
object at coordinates (xr, yr , zr ). To write an expres-
sion for the speckle intensity at the observation point
Pd located at (xd , yd , zd ), we must first calculate the
resultant complex amplitude V of the optical field at

Pd due to scattering from the object’s surface h. We
do this by first considering the contribution from an
individual scattering point Ph located at position (xh ,
yh , zh ) on the surface. Let us assume that single scat-
tering dominates so that light travels from Ps to Ph to
Pd without being scattered from Ph to other points
on the surface before reaching Pd . The phase delay at
Pd due to this propagation path length is obtained by
adding the distance Rsh from Ps to Ph and the distance
Rhd from Ph to Pd and multiplying the sum by the
wave number k = 2π/λ. The resulting contribution to
the complex amplitude at Pd is

V x y z

g x y z i R R

h d d d

h h h sh hd

( , , ; )

( , , ) exp ( ) .

λ

π
λ

= − +





2 (1)

In Equation 1, g(xh , yh , zh ) is a complex scattering
function whose magnitude represents the strength of
the contribution from Ph and whose phase accounts
for any phase change caused by scattering. The com-
plex amplitude resulting from the entire surface is
obtained by summing the individual contributions
from all scattering points. Because the scattering
function is zero valued at locations where there are
no scattering points, this summation can be written
as an integral over all space:

V x y z

g x y z

i R R dx dy dz

d d d

h h h

sh hd h h h

( , , ; )

( , , )

exp ( ) .

λ

π
λ

=

× − +





∫∫∫
−∞

∞

2
(2)

The distances Rsh and Rhd in Equation 2 are given by

 R x x y y z zsh s h s h s h= − + − + −( ) ( ) ( )2 2 2 (3)

and

R x x y y z zhd h d h d h d= − + − + −( ) ( ) ( ) .2 2 2 (4)

If the height profile of the scatterer is represented by
h(x , y), then we can write the scattering function as
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g x y z a x y z h x y( , , ) ( , ) [ ( , )],= −δ (5)

where a(x , y) is the complex amplitude of the given
contribution to V. Our primary objective in 3D im-
aging is to recover the functional form of h(x, y); the
recovery of a(x, y ) is a more difficult problem that is
of less interest, and is not considered here.

The total complex amplitude at the observation
point Pd is the sum of contributions from the surface,
as given by Equation 2, and the contribution Vr from
the reference point. If gr is a complex amplitude rep-
resenting the strength of the reference point and any
phase shift associated with it, then this contribution
from the reference point can be written in a manner
similar to Equation 1 as

 V x y z g i R Rr d d d r sr rd( , , ; ) exp ( ) .λ
π

λ
= − +





2
(6)

The distances Rsr and Rrd in Equation 6 are given by
Equations 3 and 4, respectively, with the subscript h
replaced by the subscript r in each case. Finally, the
quantity measured at the observation point is the
magnitude squared of the total complex amplitude:

I x y z V V

I I I I

d d d r( , , ; )

.

λ = +

= + + +

2

1 2 3 4
(7)

The individual intensity terms in Equation 7 are

I gr1
2= , (8)

I V x y zd d d2
2= ( , , ; ) ,λ (9)

I g i R R

V x y z

r sr rd

d d d

3
2= − +





×

* exp ( )

( , , ; ) ,

π
λ

λ
(10)

and

I I4 3= * . (11)

Equation 7 and the corresponding expressions for the
four terms I1 through I4 in Equations 8–11 serve as
our model for describing the spatial and wavelength
dependence of laser speckle.

3D-Image Formation

We now explore the meaning of the four intensity
terms in Equation 7 and show how they relate to the
desired 3D image of the scattering object. To facili-
tate this analysis, we must approximate the distances
Rsh and Rhd defined by Equations 3 and 4. The basis
for approximating these quantities is the assumption
that the distance Rh between the origin and a scatter-
ing point on the surface in Figure 2 is small com-
pared with Rs and Rd (which are defined as the dis-
tances from the origin to the points Ps and Pd,
respectively). The most basic approximation is the
far-field, or Fraunhofer, approximation, which re-
tains only those terms in a series expansion of Rsh or
Rhd (in terms of Rh ) that are linear in Rh . This ap-
proximation restricts the object size for practical ob-
servation distances. Larger objects can be handled by
using the Fresnel approximation, which retains terms
up to second order in Rh.

We consider both the far-field and Fresnel ap-
proximations in this article. Although the far-field
approximation may limit the object size, it does pro-
vide the framework for introducing the basic prin-
ciples of 3D imaging. Consequently, most of the fol-
lowing results are based on this approximation. (Size
restrictions inherent in the far-field approximation
can be overcome in practice by illuminating the ob-

FIGURE 2. The coordinate system for the analysis of  3D
imaging, showing the source point Ps, scattering point
Ph , reference point Pr, and observation point Pd.
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S P E C K L E  S I Z E  A N D  S H A P E

d|| = 5.1 mm. This relatively slow
variation of the speckle pattern
with R may allow the methods
described in the main text to be
applied to objects with longitudi-
nal motion components.

To illustrate further the spatial
properties of speckle, we show a
3D measured speckle pattern in
Figure B. This pattern was ob-
tained by back-illuminating a
ground-glass diffuser with a fo-
cused laser beam from a HeNe la-
ser and sampling the resulting
speckle pattern with a CCD ar-
ray. The CCD array was trans-
lated in the longitudinal direction
between frames and the frames
were combined into a 3D array
representing the speckle intensity
as a function of position. The
conical region containing the
speckle pattern is 300 µm in
length and its diameter increases
from 25 µm to 100 µm. In ac-
quiring the data, we had to use a
microscope objective to magnify
the speckle and to image the
plane of interest onto the CCD
array. The intensity was normal-

   imaging tech-
nique described in the main text
is based on observing variations
of speckle intensity in the radia-
tion pattern of a scattering object,
it is beneficial to summarize the
basic size and shape dependence
of speckle. First, we need to know
the transverse speckle size along
the detector plane to ensure that
the detector elements are small
enough to sample individual
speckle lobes. Second, we must
understand how quickly the
speckle pattern varies longitudi-
nally with changes of distance
from the scatterer.

Figure A illustrates how the av-
erage transverse and longitudinal
size of a speckle lobe grow with
distance. In this figure, d⊥ is the
average transverse speckle size
that would be observed on the in-
terior surface of a sphere of radius
R centered around the scattering
object. If D represents the pro-
jected linear size extent of the il-
luminated portion of the scatter-
ing object for a given observation
angle, then the average speckle
size d⊥ in the direction along
which D is measured is

d
R
D⊥ = λ . (A)

Equation A shows that speckle
size is proportional to the wave-
length λ and the range R but in-
versely proportional to the size D.

In Figure A, the average longi-

tudinal speckle size that would be
observed in the radial direction at
the distance R is denoted by d||.
An expression for d|| in the
Fresnel zone is given in the litera-
ture (see References 17 and 40) as

d
R

D
|| .= 4

2

2
λ (B)

Thus the longitudinal speckle size
grows as the square of the dis-
tance R rather than linearly with
R, so there is a rapid elongation of
the speckle lobes with distance.
Once the observation point is in
the far field, the intensity of the
speckle pattern does not change
in the radial direction, except for
falling off as 1/R2.

In a typical laboratory setup,
with D = 50 mm, R = 2 m, and
λ = 0.8 µm, the average transverse
speckle size at the receiver plane is
d⊥ = 32 µm, which matches well
with the pixel size of a typical
CCD detector. Since this range is
not yet in the far field, the speckle
intensity is still fluctuating in the
radial direction. The longitudinal
speckle size, from Equation B, is

FIGURE A. Average transverse and longitudinal speckle size. The speckle
lobes elongate with increasing distance from the scattering surface.
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d

D
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λ
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ized (by dividing by R2) and ren-
dered as an isosurface to visualize
the speckle pattern more easily in
three dimensions.

Figure C shows the relation
between speckle shape and trans-
verse object shape for three differ-
ent objects. For the triconic, the

FIGURE B. Measured 3D speckle pattern from a ground-glass diffuser
back illuminated by a 25-µm-diameter 0.633-µm-wavelength HeNe laser
spot. The image was formed by stacking a series of 150 CCD images of the
speckle pattern, with a longitudinal displacement of  2 µm between frames.

FIGURE C. Effect of  object shape on speckle patterns. Three different geometric objects were laser illuminated:
(1) a 25-mm-long triconic, (2) a 25-mm-diameter sphere, and (3) a ring with an outer diameter of 25 mm and an
inner diameter of 20 mm. The corresponding speckle patterns are shown in (4), (5), and (6), respectively.

individual speckle lobes are elon-
gated in the direction perpen-
dicular to the axis of the triconic.
For the sphere, the speckle lobes
appear to wrap around one an-
other like worms in a bucket. No
direction is preferred, and the
speckle shape is symmetric on av-
erage. For the ring, the borders of
the individual speckle lobes ap-
pear to be better defined. From
these measurements, the trans-
verse structure of the speckle pat-
tern clearly not only provides a
measure of the size of the object
but also carries information
about its orientation and trans-
verse shape. The main text of the
article describes how to extract
this information by using Fourier
analysis.

(1) (2) (3)

(4) (5) (6)

Triconic Sphere Ring
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W A V E L E N G T H  D E P E N D E N C E  O F  S P E C K L E

   is illuminated
by a tunable laser, the speckle pat-
tern present in the scattered light
changes as the laser frequency
varies. This sidebar explains why
this variation occurs, and shows
how the rate at which it occurs is
related to the range extent of the
object.

We use Figure A to develop a
basic understanding of the wave-
length dependence of speckle. In
Figure A(1), a seven-level step tar-
get is flood illuminated with a
collimated laser beam propagat-
ing along the positive z-axis. The
frequency dependence of the
speckle intensity at a distant
point P lying on the negative z-
axis can be determined by adding
the complex amplitude of the op-
tical field of the contributions
from each of the seven levels.
These contributions are repre-
sented by the phasors (in blue)
located below each level (a har-
monic time dependence is sup-
pressed). The magnitude of these
phasors represents the strength of
the return, and the orientation
represents the relative phase of
each contribution. The relative
phase is a combination of the
phase due to wave propagation
between scattering planes and a
random component that ac-
counts for the surface roughness.
Figure A(2) shows the resultant
phasor obtained by placing the
components end to end in the

complex plane (blue lines). The
optical intensity, or irradiance, is
proportional to the magnitude
squared of the resultant, shown
by the blue dot in Figure A(3).
The phase of the resultant is given
by the blue dot in Figure A(4).

Now consider the effect that
changing the laser frequency ν
has on the resultant complex am-
plitude at point P. Let φ represent
the component of the phase for a
given height level that arises from
wave propagation. If φ is mea-
sured with respect to the z = 0
plane (defined by the first height
level on the left), the phase delay
for propagation from this plane
to a plane with range z is

φ π
λ

π
ν= =2 2

z z
c

,

where λ is the wavelength and c is
the speed of light. Therefore, at a
given range z, a change in fre-
quency of ∆ν introduces a phase
shift, or phasor rotation, of

∆ ∆φ π ν= 2
2z
c

(A)

for round-trip propagation be-
tween the two planes. Equation A
can now be used to determine
how much a given frequency
change ∆ν rotates each phasor in
Figure A(1). The red phasors cor-
respond to a frequency shift of
∆ν = c /(8L), which is the fre-
quency shift required to rotate
the phasor at the z = L plane by

∆φ = 90°. Because of the linear re-
lation between phase shift and
distance, the phasor at the L/2
plane is rotated by 45° and the
phasor at the L = 0 plane is sta-
tionary. The red dot in Figure
A(2) shows the new resultant. Be-
cause the magnitude increases, so
does the intensity in Figure A(3).
The phase in Figure A(4) also in-
creases because the resultant in
Figure A(2) happens to rotate in
the counterclockwise direction.
Observe that a phasor rotation of
90° at the z = L plane is insuffi-
cient to decorrelate the speckle
intensity. The curved path in Fig-
ure A(2) represents the trajectory
that the resultant complex ampli-
tude takes as the frequency varies.
As illustrated by the green dots in
Figures A(2)–A(4), a rotation of
360° is adequate for decorre-
lation. For this value, the phasor
at z = L /2 is 180° out of phase
(even though the phasor at z = L
is back in phase), producing a dif-
ferent resultant. If a 360° rotation
is used as the basis for defining
the decorrelation frequency ∆νD,
then

∆νD
c
L

=
2

. (B)

As an illustration of Equation B,
the decorrelation frequency for
an object with a range extent of
100 mm is 1.5 GHz.

As the length of the laser-fre-
quency scan increases beyond the
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value of the decorrelation fre-
quency ∆νD , more and more
oscillations occur in the speckle
intensity. As the number of oscil-
lations increases, so does our abil-
ity to resolve the object in range.
It turns out that the number of
raw range-resolution cells along
the range extent L of the object is
equal to the number of speckle
oscillations. In terms of the tun-
ing range B, the raw range resolu-
tion ∆z is given (see Equation 41
in the main text) by

∆z
c
B

=
2

. (C)

As an example of Equation C, a
range resolution of 1 mm can be

achieved by scanning the laser
over a bandwidth of 150 GHz—a
small frequency excursion for a
typical tunable laser.

Another important observa-
tion about the wavelength depen-
dence of speckle is that the fluctu-
ating speckle intensity produced
by scanning the laser frequency is
band limited, or has a highest fre-
quency of oscillation, so that the
speckle intensity cannot change
any faster than this highest-fre-
quency component. Because
large oscillation frequencies cor-
respond to large range offsets be-
tween scattering cells, the cutoff
frequency that band-limits the
speckle-intensity sequence is just

the decorrelation frequency ∆νD
corresponding to the total range
extent L in Equation B. By the
Nyquist sampling theorem, we
must sample the speckle-intensity
sequence at least twice during
each of these highest-frequency
oscillations. This sampling condi-
tion leads to the conclusion that
the laser-frequency step size be-
tween samples must obey the ex-
pression

∆νstep .≤ c
L4

(D)

For example, an object with a
range extent of 100 mm would
require a laser-frequency step size
of 750 MHz or less.

FIGURE A. Frequency dependence of  the on-axis speckle intensity from a step target: (1) step target with
phasors indicating contributions from each step for two frequencies; (2) path of resultant complex ampli-
tude in the complex plane; (3) frequency dependence of intensity; (4) frequency dependence of phase.
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ject with collimated light and placing a Fourier-
transform lens in front of the detector array to simu-
late far-field observation.) The section on near-field
effects is based on the Fresnel approximation. This
section shows that good images can be obtained
much farther into the near field than would be ex-
pected on the basis of the validity conditions for the
far-field approximation.

Let us consider the distance Rhd . Its far-field ap-
proximation is given by

R R
x x y y z z

Rhd d
h d h d h d

d
≈ − + +

. (12)

(A similar expression holds for Rsh , with the subscript
d replaced by the subscript s.) A validity condition

for Equation 12, obtained by requiring that second-
order terms in Rh introduce phase errors of less than
π/2 for any direction of observation and any offset
direction of Rh from the origin, is given by

R
R

d
h> 2 2

λ
. (13)

Rather large observation distances are required to sat-
isfy Equation 13. For example, an observation dis-
tance Rd of at least 250 m is necessary for an object
size Rh of 10 mm and a wavelength λ of 0.8 µm. The
corresponding validity condition for the Fresnel ap-
proximation is

R
R

d
h3
4

2
>

λ
. (14)

This approximation is valid for the same object at an
observation distance Rd of only 185 mm.

For now, we continue the analysis using the far-
field approximation. To find the speckle intensity, we
must first evaluate Equation 2 for the complex am-
plitude V. Substitution of the approximation for Rhd
given in Equation 12 and the corresponding expres-
sion for Rsh into Equation 2 yields

  

V x y z

i R R g x y z

i x
x

R

x

R

y
y

R

y

R
z

z

R

z
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d d d

s d h h h

h
s

s

d

d

h
s

s

d

d
h

s

s

d

d

( , , ; )

exp ( ) ( , , )

exp

λ

π
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π
λ

= − +





× − +


















+ +






+ +








∫∫∫
−∞

∞
2

2













dx dy dzh h h .

(15)

Note that the integral in Equation 15 is the 3D Fou-
rier transform of g (x , y , z), defined as

˜( , , ) ( , , )

exp ( ) ,

g f f f g x y z

i f x f y f z dxdydz

x y z

x y z

=

× − + +[ ]
∫∫∫

−∞

∞

2π

which allows us to rewrite Equation 15 as

FIGURE 3. Interpretation of the 3D Fourier transform of a
speckle-pattern-sampling data set: (a) object scene; (b)
components in image space representing the 3D Fourier
transform of  the four terms in Equation 24. These com-
ponents are (1) a 3D delta function, (2) a 3D autocorrela-
tion function of  the scattering function, (3) the desired
image, and (4) the inverted image.
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V x y z

i R R g f f f

d d d

s d x y z

( , , ; )

exp ( ) ˜( , , ) .

λ

π
λ

= − +





2 (16)

In Equation 16, the spatial frequencies f x , f y , and f z
are given by

f
l l

x
s d= − +

λ
, (17)

f
m m

y
s d= − +

λ
, (18)

and

f
n n

z
s d= − +

λ
, (19)

where l x Rs s s= / , m y Rs s s= / , and n z Rs s s= /  are
direction cosines corresponding to the source point
( , , )x y zs s s ; and l x Rd d d= / , m y Rd d d= / , and
n z Rd d d= /  are direction cosines corresponding to
the observation point ( , , )x y zd d d . Note that any
two of the three direction cosines determine the
third direction cosine (to within a sign) through the
relations

l m ns s s
2 2 2 1+ + = (20)

and

l m nd d d
2 2 2 1+ + = . (21)

Now that the Fourier-transform relation has been
established and the spatial frequencies have been de-
fined, we can substitute Equation 16 into Equations
9 and 10 to obtain

I g f f fx y z2
2

= ˜( , , ) (22)

and

I g g f f fr x y z3 = * ˜( , , ) . (23)

(In writing Equation 23, we have assumed, without
loss of generality, that the reference point Pr is lo-
cated at the origin so that Rsr and Rrd can be replaced
by Rs and Rd in Equation 6 for the reference term.)
Equation 7 now takes the form

      
I x y z g g f f f

g g f f f g g f f f

d d d r x y z

r x y z r x y z

( , , ; ) ˜( , , )

˜( , , ) ˜ ( , , ) .* *

λ = +

+ +

2 2

(24)

The significance of the four terms I1 through I4 in
Equation 24 becomes evident by performing an in-
verse 3D Fourier transform to convert from Fourier
space to object space. Figure 3 illustrates the inverse
Fourier transforms of the individual terms. The scat-
tering surface, shown in Figure 3(a), is located below
and to the right of the reference point. Because I1 is a
constant, its inverse Fourier transform is a 3D δ-
function located at the origin of object space in Fig-
ure 3(b). By the autocorrelation theorem, the inverse
Fourier transform of I2 is the 3D autocorrelation
function of g x y z( , , ). The support of this auto-
correlation function is shown in the region surround-
ing the origin in Figure 3(b). Note that the I2 term
occurs with or without the use of a reference point
(see the sidebar entitled “Remote Orientation Sens-
ing” for a description of a technique for remote ori-
entation sensing that utilizes this term).

The inverse 3D Fourier transform of I3 yields the
scattering function g x y z( , , ), multiplied by the com-
plex conjugate of the strength of the reference point:

I f f f

i f x f y f z df df df

g g x y z

x y z

x y z x y z

r

3

2

( , , )

exp ( )

( , , ) .*

∫∫∫
−∞

∞

× + +[ ]
=

π

This term corresponds to the desired image and oc-
curs in the lower right quadrant of Figure 3(b). By
Equation 5, g x y z( , , ) is localized in space to the sur-
face of the scattering object. Thus bright regions in
the magnitude of the Fourier transform of I3 occur at
values of x, y, and z such that

z h x y= ( , ) , (25)

defining the surface profile, or 3D image, of the scat-
tering object. Because I4 is the complex conjugate of
I3, its inverse Fourier transform is g g x y zr

* ( , , )− − − .
This term corresponds to the inverted image shown
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R E M O T E  O R I E N T A T I O N  S E N S I N G

   in robot-
ics and machine vision, it is desir-
able to remotely measure the ori-
entation of an object or a surface
of an object. This sidebar de-
scribes a technique based on the
wavelength dependence of laser
speckle for accomplishing this
task. The technique can be imple-
mented with a minimal system
and does not require a reference
point or multiple frames of data.
Its basis is the fact that, for a flat
surface, a change in laser fre-
quency produces a global transla-
tion of the speckle pattern at the
detector plane. Knowledge of the
direction and rate of speckle shift
allows us to determine the nor-
mal vector to the surface.

Figure A illustrates the mea-
surement geometry. The beam
propagates along the negative z
direction. We wish to determine
the angle of incidence θh and the
azimuthal angle φh of the normal
vector to the surface. We proceed
by writing the height profile
h x y( , ) of a tilted flat plate as

     

h x y h

x

y
h h

h h

( , )

cos tan

sin tan ,

=
−
−

0

φ θ

φ θ
(A)

where h0 is the height of the plate
at x = y = 0. Equation 5, which is
repeated here for convenience,

  
g x y z

a x y z h x y

( , , )

( , ) ( , ) ,

=

−[ ]δ (B)

can now be used to express the
scattering function g x y z( , , ) for
the tilted plate in terms of its
complex amplitude a x y( , ) and a
δ-function limiting the scattering
function to the planar surface.

To predict the effect that tun-
ing the laser frequency has on the
speckle pattern, we first note that
the speckle intensity at a point in
the far field of a scattering object
is essentially the magnitude
squared of the Fourier transform
of the object’s scattering function,
as given by Equation 22:

I x y z

g f f f

d d d

x y z

( , , ; )

˜( , , ) .

λ =
2 (C)

In Equation C, the tilde repre-
sents a Fourier transform, and f x ,
f y , and f z are spatial-frequency
variables. For observation points

near the z-axis and for small
variations ∆ν in laser frequency,
the spatial-frequency variables
take the form

f
x

zx
d

d

= −
λ0

, (D)

f
y

zy
d

d

= −
λ0

, (E)

and

f
cz = − +







2

1

0λ

ν∆
, (F)

where λ0 is the nominal wave-
length (see Equations 29, 30, and
38 in the main text).

We next evaluate the 3D Fou-
rier transform of the scattering
function obtained from Equa-
tions A and B, and substitute this
Fourier transform into Equation
C to determine the speckle inten-
sity at the detector plane in terms
of spatial-frequency coordinates:

˜( , , )

˜( tan cos ,

tan sin )

g f f f

a f f

f f

x y z

x z h h

y z h h

2

2

=

−

−

θ φ

θ φ
.

(G)

We use Equation G to determine
the effect that tuning the laser fre-
quency has on individual speckle
lobes. Mathematically, we can
track the motion of a speckle
lobe, as the laser frequency varies,
by keeping the arguments of ã
constant in Equation G. Thus for
the first argument

FIGURE A. Coordinate system for
surface-orientation measurement.
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   ∆ ∆f fx z h h= tan cos ,θ φ (H)

and for the second argument

   ∆ ∆f fy z h h= tan sin .θ φ (I)

In Equations H and I, ∆f x and ∆f y
are the changes in f x and f y re-
quired, respectively, to track the
motion of a speckle lobe, and ∆f z
is the corresponding change in f z
resulting from tuning the laser
frequency. Since Equations D
through F are linear in xd , yd , and
∆ν, every speckle lobe in the
speckle pattern shifts by the same
amount and in the same direction
in the detector plane.

The orientation of the scatter-
ing surface can be determined by
solving Equations H and I for θh

and φh . In doing so, we can write
the spatial-frequency changes in
terms of the laser-frequency shift
∆ν and the magnitude ∆rd and
direction φd of the speckle shift in
the detector plane to obtain

tan ,θ
ν

νh
d

d

r

z
= − ∆

∆2
0

(J)

where ν λ0 0= c/ , and

φ φh d= . (K)

Thus the angle of incidence θh

and the plane of incidence φh can
be determined remotely by mea-
suring the magnitude and direc-
tion, respectively, of the speckle
shift caused by tuning the laser
frequency.

To apply Equation J to the de-
termination of θh in practice, we
must know the detector distance
zd . This requirement can be cir-
cumvented, however, by placing a

positive lens one focal length f  in
front of the detector array. Then
zd is replaced by f in Equation J
and the measurement is insensi-
tive to object distance.

To illustrate the technique for
remotely sensing surface orienta-
tion, we performed laboratory
measurements by using the opti-
cal system shown in Figure 8. In
these measurements, a flat plate
was mounted on a system of ro-
tary stages that enabled control of
the angle of incidence θh and the
plane of incidence φh , and the
plate was spot illuminated with a
beam from a Ti:sapphire laser.
The laser frequency was stepped
by a known amount and the
CCD frames were compared at
the two frequencies by calculat-
ing a 2D cross correlation of the
speckle frames. The magnitude
and the direction of offset from
the origin of the cross-correlation

peak provided a measurement of
∆rd and φd . Figure B is a family of
plots of the magnitude of the
speckle shift (in units of pixels ρ)
versus laser-frequency shift ∆ν for
angles of incidence θh ranging be-
tween 10° and 70°. In this figure,
the ρ versus ∆ν curves are straight
lines whose slope is proportional
to tan θh , as predicted by Equa-
tion J. We also performed a series
of measurements with constant θh

and variable φh  that confirm the
linear relation between φd and φh
predicted by Equation K.

The surface-orientation infor-
mation available from this tech-
nique is valuable in the interpre-
tation of object scenes. It is not
necessary for the illuminated sur-
face to be perfectly flat. A by-
product of the technique is a
means for estimating the flatness
from the strength of the cross-
correlation peak.

FIGURE B. Remote angle-of-incidence measurements for a flat plate illu-
minated by a tunable laser at various angles. As the laser-frequency offset
∆ν increases, the speckle pattern shifts from the original position. The
magnitude ρ of the shift increases with angle of incidence.
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in the upper left quadrant of Figure 3(b).
Figure 3 indicates that the desired image will be

separated from the central autocorrelation function
and from the inverted image if the object is far
enough away from the reference point. Given that
this condition is satisfied, the image can be isolated
by selecting the appropriate region of the inverse
Fourier transform. It is sufficient for the object to be
removed from the reference point by either the
object’s illuminated range extent or by its cross-range
extent in any cross-range direction. Another ap-
proach is to use a strong reference point just outside
of the object that produces I3 and I4 terms that
swamp out the autocorrelation term I2. Yet another
technique for isolating the image term is to incorpo-
rate a phase shift φ in the reference beam [33] and to
measure the speckle pattern by using two different
phase-shift values, φ = 0 and π. By subtracting these
two frames for each value of λ, we get the I1 and I2
terms to cancel, leaving terms I3 and I4. The advan-
tage of this approach is that the reference point can
be located more closely to the object so that Fourier
space can be sampled at a lower sampling rate while
achieving the same resolution. Still more sparse sam-
pling of Fourier space is possible if the reference
point can be located inside the object or can be made
to appear so. Then by using the additional phase-
shift values of φ = π/2 and 3π /2, we can also elimi-
nate the I4 term.

Sampling of 3D-Fourier Space

Having shown that we can eliminate the undesired
terms in Equation 7, we ignore terms other than I3
from now on. Our next objective is to develop a
strategy for sampling the Fourier space of I3 at the
desired array of spatial frequencies.

According to Equations 17 through 19, different
points in Fourier space can be accessed by varying the
illumination direction, the observation direction,
and the wavelength. The sidebar entitled “Ewald
Sphere” gives a geometrical description of the region
of 3D Fourier space that can be covered for a given
wavelength and a given illumination direction. To
find the governing equation for this geometrical con-
struction, we ask ourselves if there is a wavelength λ,
for a given illumination direction, that will allow a

given set of spatial frequencies fx , fy , and fz to be
sampled. The required value of λ is obtained by using
Equations 20–21 to rearrange Equations 17–19:

λ = −
+ +

+ +
2

2 2 2

l f m f n f

f f f

s x s y s z

x y z

. (26)

For given values of ls , ms , ns , and λ , Equation 26
maps out the surface of a sphere of radius 1/λ in Fou-
rier space, as described in the Ewald-sphere sidebar.

Given the functional dependence of λ from Equa-
tion 26, we can now rewrite Equations 17 and 18 as

l l fd s x= − + λ (27)

and

m m fd s y= − + λ , (28)

and substitute λ from Equation 26 into these equa-
tions to express all three measurement variables ld ,
md , and λ in terms of the desired spatial frequencies
f x , f y , and f z . Thus Equations 26–28 provide a
means for determining the wavelength and the direc-
tion in space of an observation point required for
sampling a particular value of spatial frequency.

In Equations 26–28, the illumination direction ei-
ther can be fixed or can vary during the sampling of
Fourier space. It is fixed in the approach taken in this
article. If we place the source on the positive z-axis,
then ls = ms = 0 and ns = 1, and Equations 17–19 re-
duce to

f
l x

Rx
d d

d
= − = −

λ λ
, (29)

f
m y

Ry
d d

d
= − = −

λ λ
, (30)

and

f
n x y

R
z

d d d

d

= − + = − + − +









1 1
1 1

2 2

2λ λ
.

In addition, Equation 26 simplifies to

λ = −
+ +

2
2 2 2

f

f f f
z

x y z

. (31)
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In principle, the wavelength can be varied according
to Equation 31 and the observation point varied ac-
cording to

x f Rd x d= −λ (32)

and

y f Rd y d= −λ (33)

(obtained by rearranging Equations 29 and 30) to
sample Fourier space at any desired location.

We can gain more insight into the sampling of
Fourier space by investigating Equation 31 and its
Ewald-sphere representation in greater detail. With
the source on the positive z-axis, the center of the
Ewald sphere of reflection for a particular value of λ
is located on the f z-axis at –1/λ, as illustrated in Fig-
ure 4. The surface of the sphere touches the f z-axis at
the origin and at –2/λ . Let us consider the sampling
of Fourier space for small changes in the laser wave-
length λ and for small values of f x and f y (correspond-
ing to those observation points xd and yd which are
close to the z-axis). If λ0 is the nominal wavelength
about which λ is varied, the sampled region of Fou-
rier space lies near the left-most point, f z0

2 0= − /λ ,
of the Ewald sphere. Thus there is a Fourier-space-
sampling offset f z0

 in the negative f z direction of
twice the radius of the Ewald sphere.

To produce uniform sampling along the f z-axis,
we need to vary the radius of the Ewald sphere in a
linear manner. Consequently, we step the laser fre-
quency ν = c /λ , which is proportional to the sphere
radius, in equal increments rather than step the
wavelength λ, which is inversely proportional to the
sphere radius. In practice, it is more convenient to
monitor the frequency shift ∆ν from the nominal fre-
quency ν0 = c/λ 0 than it is to monitor the absolute
frequency ν = ν0 + ∆ν. Given this preference, the
radius of the Ewald sphere of reflection is written as

1 1

0λ λ
ν= + ∆

c
.

Equation 31 can now be recast in the form

∆ ∆
∆

ν = − +
+
+











c
f

f f

f fz
x y

z z2

2 2

0

, (34)

where

∆f f fz z z= −
0

(35)

is the spatial-frequency offset from f z0
. Equation 34

gives the frequency shift ∆ν required for sampling a
given point in Fourier space.

Ideally, we would like to sample Fourier space on a
rectangular grid to facilitate calculation of the inverse
Fourier transform. Although Equation 34 could be
used to determine the frequency shift required for in-
dividual points on the grid, data acquisition would
be tedious and time consuming; Equations 32–34
show that there is a mixing between the effects of the
measurement parameters xd , yd , and ∆ν on the spa-
tial frequency variables f x , f y , and f z . Consequently,
these parameters would have to be set separately for
each point on the grid. For low-resolution to moder-
ate-resolution 3D images, which have range and
cross-range resolution lengths that are large com-

FIGURE 4. Ewald-sphere representation for the sampling
of the 3D Fourier space of a scattering object. The illumi-
nation direction is fixed along the fz direction. Constant λ
contours lie on the surface of  the Ewald sphere of reflec-
tion. The radius of the Ewald sphere of reflection is var-
ied by changing the wavelength of the source of illumi-
nation. The shaded region represents the sampled
region of Fourier space for a near-monostatic measure-
ment configuration.
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pared with the wavelength, the accessible region of
Fourier space for a given frequency is approximated
by a plane, allowing Equations 32–34 to be linear-
ized as

x f zd x d= −λ0 , (36)

y f zd y d= −λ0 , (37)

and

∆ ∆ν = − c
f z2

, (38)

respectively. Then the variables are decoupled, and it
is possible to sample in parallel by making simulta-
neous measurements with a fixed detector array and
stepping the laser frequency between data frames.
Later in this article, in the section on aberrations, we
investigate the effects of assuming that Equations
36–38 continue to apply as the resolution of the
measurement increases. Techniques for compensating
for the resulting aberrations are also described.

Resolution

We have shown theoretically how 3D images can be
formed by measuring the speckle pattern over the
surface of a detector array while stepping the laser
frequency. The larger the scan length and detector-
array size, the larger the volume of Fourier space
sampled and the better the achievable resolution. We
now write expressions for the resolution-cell size by
calculating the width of the 3D point-spread func-
tion corresponding to the size of the sampled region
of Fourier space.

Let Fx , Fy , and Fz represent the size of the sampled
range of Fourier space in the f x , f y , and f z directions.
These ranges correspond to total detector-array
lengths of wx and wy in the x and y directions, and
frequency-scan length of B , respectively. The corre-
sponding resolutions (obtained by Fourier-trans-
forming a 3D rect function having these widths in
the three dimensions and selecting values of the argu-
ments of the resulting sinc functions that correspond
to the first null) are

∆x
F

z
wx

d

x
= =1 0λ

, (39)

∆y
F

z
wy

d

y
= =1 0λ

, (40)

and

∆z
F

c
Bz

= =1
2

. (41)

In Equations 39 and 40, zd is the distance between
the reference point and the observation plane. The
resolutions given by Equations 39–41 also corre-
spond to the spacing between planes in image space
that result from using the fast Fourier transform
(FFT) algorithm to calculate the 3D Fourier trans-
form. Note that Equation 41 is also given as Equa-
tion C in the sidebar entitled “Wavelength Depen-
dence of Speckle.” As an example of Equations
39–41, the cross-range resolution is ∆x = ∆y = 80 µm
for a detector array of size wx = wy = 10 mm, a detec-
tor distance zd = 1 m, and a wavelength λ0 = 0.8 µm;
the range resolution is ∆z = 30 µm for a frequency
scan of B = 5 THz. As described in the sidebar on the
Ewald sphere, the ultimate resolution, which corre-
sponds to sampling the entire limiting sphere, is
∆x = ∆y = ∆z = λ /2.

For comparison of the transverse resolution given
by Equations 39 and 40 with conventional imaging,
we rewrite Equation 39 in terms of the half-angle θd
of light received by the detector array as

∆x
d

= λ
θ

0

2 sin
. (42)

If θd is interpreted as the cone half-angle of light re-
ceived by a microscope objective, then Equation 42 is
the standard expression relating image resolution to
the numerical aperture (equal to sin θd ) of a micro-
scope. Thus conventional imaging and speckle-pat-
tern sampling have similar resolution capabilities for
general images.

Speckle-pattern sampling, however, actually pro-
vides the capability for enhanced resolution of ob-
jects consisting of a small number of separated
points. For example, the distance between a reference
point and an object point can be measured to a reso-
lution better than the grid spacing given by Equa-
tions 39–41 by taking advantage of the phase infor-
mation inherent in the interference pattern. One
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approach to extracting this information is to subdi-
vide the voxel representing the image of the point by
calculating a discrete Fourier transform (DFT) at
points inside this voxel, and to search for the location
where the maximum value of the DFT occurs, thus
determining the location of the scattering point. A
similar procedure can be employed to enhance range
resolution for the opaque diffuse scattering objects
being considered in this article.

Aliasing

As described in the sidebar entitled “Wavelength De-
pendence of Speckle,” the larger the range extent of
an object, the smaller the frequency step required to
avoid aliasing. Equation D from this sidebar quanti-
fies the maximum frequency-step size allowed for an
object of range extent L (including the reference
point) and is repeated here for convenience:

∆νstep ≤ c
L4

. (43)

Corresponding expressions for the maximum pixel
dimensions px and py of the detector array in the x
and y directions (assuming no decimation of pixels in
a frame) are given in terms of the cross-range extents
Dx and Dy of the object (including the reference
point) as

p
R
Dx

d

x
≤ λ0

2 (44)

and

p
R
Dy

d

y
≤ λ0

2
. (45)

If the approximate range and cross-range extents of
the object are known, then Equations 43–45 can be
used to set up the measurement to minimize the
number of data points. For example, if the range ex-
tent L of the object is 100 mm (including the refer-
ence point), then the laser frequency step size ∆νstep
must be less than 750 MHz. Likewise, if the cross-
range extent of the object is ∆x = ∆y = 25 mm (in-
cluding the reference point), then the pixel size re-
quired for a detector distance of Rd = 1 m and a
wavelength of λ0 = 0.8 µm must be px = py ≤ 16 µm.

Aberrations

We now summarize the effects, analyzed in Reference
39, of continuing to sample on a rectangular grid in
measurement space as resolution increases. We also
describe techniques for correcting the resulting aber-
rations in the 3D image. These aberrations are di-
vided into three types, referred to as wavelength aber-
ration, detector-plane distortion, and depth-of-field
aberration.

Wavelength Aberration

Both wavelength aberration and detector-plane dis-
tortion are tied to the λRd scaling factor in Equations
32 and 33 that relates position (xd , yd ) in the detec-
tor plane to spatial frequencies ( fx , fy ) in Fourier
space. Any variation of this scaling factor during the
process of sampling Fourier space causes image deg-
radation. Wavelength aberration is image degrada-
tion caused by varying λ during a measurement to
achieve range resolution. This variation is minimal
for the short frequency scans used for low-range-reso-
lution measurements but becomes problematic as the
range resolution increases. In terms of the measured
speckle pattern, wavelength aberration manifests it-
self as a wavelength-dependent speckle size. As λ in-
creases, the entire speckle pattern expands about the
z-axis. This expansion causes speckle lobes to shift
outward at a rate proportional to the radial distance r
from the z-axis.

We can gain a better understanding of wavelength
aberration by considering its effect on an isolated
scattering point located at (xh , yh, zh ). Consider first
the 2D cross-range image formed by Fourier-trans-
forming a single speckle frame. For a speckle frame
acquired at the nominal frequency ν λ0 0= c/ , the
scaling factor that places this image point at the cor-
rect position (xh , yh ) in the transverse plane is λ0Rd.
The application of this same scaling factor to frames
acquired at a different wavelength λ, however, pro-
duces the erroneous position coordinates

′ = = +






x x xh h h
λ
λ

ν
ν

0

0
1

∆

and
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′ = = +






y y yh h h
λ
λ

ν
ν

0

0
1

∆
.

Thus scanning the laser frequency causes the 2D im-
age point to blur out along a radial line in the trans-
verse plane, as illustrated in Figure 5. The total blur
length for a frequency scan of bandwidth B is

r r
B

r
zh hblur = =

ν
λ

0

0

2∆
, (46)

where

r x yh h h= +2 2

is the transverse distance between the scattering point
and the reference point.

Equation 46 shows that the size of the blur caused
by wavelength aberration is proportional to the
transverse distance of the scattering point from the
reference point. Therefore, the location of the refer-
ence point in the transverse plane plays a role in de-
termining the severity of wavelength-aberration ef-
fects, which are reduced if the reference point is near
the center of the object. The second form of Equa-
tion 46 shows explicitly that the degradation in cross-
range resolution caused by wavelength aberration be-
comes more severe as the range resolution increases.
Consequently, we must correct for wavelength aber-
ration to achieve high range resolution and high
cross-range resolution simultaneously for an object
with large cross-range extent.

We can write a condition for determining when
image degradation due to wavelength aberration be-
gins to become significant by deciding on an accept-
able blur and solving Equation 46 for rh . If we as-
sume that a blur of one-quarter of a transverse
resolution cell is acceptable, then the resulting condi-
tion is

r
r z

h < ∆ ∆
2 0λ

. (47)

In Equation 47, ∆r denotes the nominal transverse
resolution ∆x or ∆y . (An alternative derivation of
Equation 47 is to calculate the value of rh at which
the maximum phase error caused by wavelength ab-
erration is equal to π/2.) As an example of the use of

Equation 47, there can be rh /∆r = 62.5 transverse
resolution cells between the scattering point and the
reference point for a range resolution ∆z of 100 µm
and a wavelength λ0 of 0.8 µm before wavelength-ab-
erration effects begin to become significant.

There are two general techniques for achieving
wavelength-aberration compensation: digital com-
pensation of speckle-size changes, and optical com-
pensation by varying the size of the speckle pattern at
the detector plane. The second technique can be
implemented by using a lens to adjust the speckle
size, or by varying the distance to the detector plane
such that λRd  is fixed. For example, a range resolu-
tion ∆z of 100 µm at λ0 = 0.8 µm corresponds to a
change in wavelength of 0.4% of the nominal wave-
length. Thus wavelength-aberration correction could
be accomplished by changing the distance Rd from
the reference point to the detector plane by 0.4%
during the frequency scan.

Detector-Plane Distortion

Detector-plane distortion is also governed by Equa-
tions 32 and 33. This aberration corresponds to a

FIGURE 5. Radial blurring of image points caused by
wavelength aberration. The black points represent the
locations of the unaberrated images of  a rectangular ar-
ray of scattering points. The radial blurring due to wave-
length aberration, indicated by the red lines, increases
with distance from the central reference point.

y

x

blurr
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nonconstant value of Rd , typically as a result of sam-
pling on a flat detector plane with constant zd value,
rather than on the interior surface of a sphere of ra-
dius Rd . Another way of describing this difference, il-
lustrated in Figure 6, is that the radial position rd of
pixels varies as tan /θd d dr z=  for flat detector arrays,
rather than as sin /θd d dr R= , as required by Equa-
tions 32 and 33. Detector-plane distortion is insig-
nificant for measurements with low cross-range reso-
lution because the maximum value of θd  is so small
that the difference between the value of sin θd  and
tan θd  is negligible.

The condition for negligible degradation due to
detector-plane distortion, obtained by allowing a
maximum phase error of π/2, is

r
r

h
d

< ≈∆ 3

0
2

0
38λ

λ

θsin
. (48)

Equation 48 indicates that the effects of detector-
plane distortion are more pronounced for object
points that are farther away from the reference point
and that these effects are very small unless high reso-

lution is required over large fields of view. For ex-
ample, with λ0 = 0.8 µm and ∆r = 40 µm, a field of
view rh of 100 mm is achievable without deleterious
effects from detector-plane distortion. The corre-
sponding number of resolution cells possible without
distortion is given by the ratio rh /∆r = 2500, which is
higher than the number of pixels per side available in
typical detector arrays. Consequently, detector-plane
distortion does not pose a problem for this situation;
it becomes a problem, however, for microscopic ap-
plications with high cross-range resolutions. For ex-
ample, with ∆r = 4 µm, the maximum field of view
without distortion effects is rh  = 100 µm so that the
ratio rh /∆r is 25, which severely limits the number of
resolution cells in the transverse direction.

Correction of detector-plane distortion can be ac-
complished digitally, or optically, or through the use
of specialized detector arrays. A well-designed 3D
imaging system would simultaneously correct for
wavelength aberration and detector-plane distortion.
In many practical situations, a Fourier-transform lens
could be used to simulate far-field detection. This ap-
proach provides the opportunity to correct for detec-

FIGURE 6. Detector-plane distortion: (a) pixel locations in the detector plane; (b) mapping to sample-point locations in
the fx - fy plane of  Fourier space. The green dots correspond to pixels on a square detector grid. The distance zd between
the detector plane and the laser reference point is twice the width of the detector array. Each successive color repre-
sents pixels on the perimeter of a larger detector array. The total width of  the array doubles with each successive color.
For small values of fx and fy (represented by the green dots), Fourier space is sampled on an essentially uniform grid,
and detector-plane distortion is negligible.
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tor-plane distortion in the design of the Fourier-
transform lens and to address wavelength aberration.
One approach is to design a zoom Fourier-transform
lens with variable focal length f that is varied during
the frequency scan such that λf  is constant. Another
approach is to design a Fourier-transform lens that is
achromatic in the sense that λ f  is constant [41, 42].

Depth-of-Field Aberration

Depth-of-field aberration is a result of the fact that
the region of Fourier space sampled by a single
speckle frame lies on a curved surface—the Ewald
sphere of reflection—in Fourier space. For a small
enough range of spatial frequencies f x and f y , the
sampled region approximates a plane, and depth-of-
field aberration is negligible. The result of depth-of-
field aberration is to degrade image points having
large range offsets zh from the reference point, hence
the term depth-of-field aberration.

The maximum range offset that can be achieved
without significant degradation from depth-of-field
aberration is given by

z
r

h
d

< ≈∆ 2

0

0
24λ

λ

θsin
 . (49)

Note the similarity between Equation 49 and Equa-
tion 48. Because Equation 49 goes as sin−2 θd  rather
than sin−3 θd , depth-of-field aberration is more sen-
sitive to the value of cross-range resolution than is
detector-plane distortion.

Equation 49 places stringent requirements on the
maximum range extent allowable without degrada-
tion. For example, with λ0 = 0.8 µm, a cross-range
resolution of ∆r = 4 µm yields a maximum range ex-
tent from the reference point of |zh| = 20 µm. With
∆r = 40 µm, the maximum range extent increases to
|zh| = 2 mm. Relaxing the cross-range resolution to
∆r = 400 µm achieves a range extent of |zh| = 200
mm without depth-of-field aberration compensa-
tion. This depth-of-field behavior is no different
from that of conventional imaging, where the lateral
resolution determines the depth of field, or from ras-
ter scanning with a laser spot, where a tight laser fo-
cus at one plane implies a large spread in the spot size
at other planes. An advantage of forming 3D images

by speckle-pattern sampling is that this aberration
can be corrected in the data processing to yield high-
resolution images over large volumes in image space.

To compensate for depth-of-field aberration, we
must know the deviation ∆νoffset in laser frequency
that would be required at each pixel on the detector
array to sample 3D Fourier space on a plane rather
than on the surface of the Ewald sphere. By inspec-
tion of Equation 34, we can write this deviation in
terms of the spatial frequencies f x and f y (correspond-
ing to each pixel) and the spatial-frequency incre-
ment ∆f z (defined by Equation 35 and correspond-
ing to a particular speckle frame) as

∆
∆

νoffset = −
+
+











c f f

f f
x y

z z2

2 2

0
 . (50)

Equation 50 provides the key for correcting depth-
of-field aberration. The compensation technique is to
build up the information required for each flat plane
in Fourier space from previous speckle frames, as il-
lustrated in Figure 7. The correct frequency-offset
value for each pixel is calculated by Equation 50,
from which the corresponding frame-offset number
is determined. An interpolation filter is used because
previous frames generally do not provide the exact
frequency offset that is required for each pixel.

Near-Field Effects

In developing the basic principles of 3D imaging, we
have assumed that the observation point Pd and the
source point Ps are located in the far field of the scat-
tering object. Good images are then obtained as long
as any aberrations that may arise from nonuniform
sampling of Fourier space can be neglected. An addi-
tional source of image degradation is the near-field
effects that occur when the observation point or
source point is too close to the scattering object for
the far-field approximation to hold. Fortunately,
however, the dominant aberration that occurs for
typical near-field measurements is a distortion of the
surface shape rather than a blurring of image points.
In this section we summarize results, derived in Ref-
erence 39, that can be used to correct this distortion
to produce accurate high-quality images well into the
near field of the scattering object. An important ben-
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efit of near-field imaging is that noncollimated illu-
mination and near-field observation can be used for
large objects when it is difficult or expensive to simu-
late far-field conditions by using a large collimating
optic.

We begin by listing validity conditions for the re-
sults from Reference 39 that follow. First, we assume
that Equation 14 for the Fresnel approximation of
the distance Rhd and the corresponding condition for
Rsh , obtained by substituting the subscript s for d in
Equation 14, are satisfied. Two additional constraints
are

z
r
rd

h> 





λ0
2

2 ∆
, (51)

and the corresponding condition for zs obtained by
substituting zs for zd in Equation 51. The effect of

Equation 51 is to limit the Fresnel approximation to
the paraxial region surrounding the z-axis. This is
done by restricting the transverse resolution ∆r (and
hence the overall size of the detector array) that is al-
lowed for a given transverse object size rh . An addi-
tional constraint on the detector distance,

z
z

rd
h> 





λ0

2

∆
, (52)

limits the range extent of the object for a given trans-
verse resolution. There is no requirement corre-
sponding to Equation 52 for the position zs of the
source point, as there is for Equations 14 and 51.

Equation 51 is written in terms of the ratio rh /∆r ,
which goes as the number of transverse resolution
cells, or pixels, along a line in the image. Conse-
quently, the value of rh /∆r  in Equation 51 does not
need to be larger than the number of pixels along an
edge of the detector array. For example, even small
source-point and observation distances zs and zd of
100 mm yield an rh /∆r  ratio of 500 for a wavelength
λ0 of 0.8 µm. Thus there can be hundreds of trans-
verse resolution cells, and Equation 51 places rela-
tively minor restrictions on practical imaging sys-
tems. If the range extent of the object is comparable
to its transverse extent, restrictions imposed by Equa-
tion 52 will be similar to those from Equation 51.

The main result of the near-field analysis of 3D
imaging in Reference 39 is that the dominant near-
field effect is image distortion. This distortion is gov-
erned by the equation

z h x x y y z= − −( ) +shift shift shift, , (53)

where the shifts in the three coordinates are given by

x x
z z

zd
shift

shift= −
, (54)

y y
z z

zd
shift

shift= −
, (55)

and

z
x y

z zs d
shift = − + +





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2 2

4
1 1

. (56)

FIGURE 7. Technique for correcting depth-of-field aber-
ration. The curved lines represent sampled regions of
Fourier space in the fx -fz plane corresponding to succes-
sive speckle frames. Compensation is achieved by calcu-
lating the frequency offset ∆νoffset required by Equation
50 for each (fx , fy ) position and each frame and by using
previous speckle frames to build up a synthesized
speckle frame corresponding to a flat region in Fourier
space.
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Because this distortion can be removed computation-
ally, high-quality 3D images can be achieved much
farther into the near field than the far-field condition
given by Equation 13 would lead us to believe.

Equation 53 is a general result that encompasses
both noncollimated illumination (by varying zs) and
near-field observation (by varying zd ). As zd and zs
approach infinity, Equation 53 reduces to the far-
field result given by Equation 25. For far-field obser-
vation with noncollimated illumination, Equation
53 takes a particularly simple form:

z h x y
x y

zs
= + +

( , ) .
2 2

4
(57)

Here the error consists simply of an additive curva-
ture term.

The derivation of Equations 53–57 assumes that
the distances zs and zd are held constant during a fre-
quency scan. There is actually an advantage to hold-
ing the products zs λ and zd λ constant during the
measurement. Besides compensating for wavelength
aberration, keeping these quantities fixed turns out

to be an optical means for eliminating zshift from
Equations 54–56. The resulting image then takes the
simplified form

z h x
xz
z

y
yz
zd d

= − −






, . (58)

Although nonlinearities in the distortion have been
removed, Equation 58 shows that the magnification
still varies with range. This remaining distortion can
readily be corrected in the data processing to produce
accurate high-resolution images in the near field of
an object.

Measurements

We now demonstrate the basic concepts of the
speckle-pattern-sampling (SPS) technique. These
concepts are demonstrated through laboratory mea-
surements obtained with the optical system depicted
in Figure 8. Measurements are then compared with
those from a well-known industrial standard. Finally,
we present measurement results of an object that re-
quired very high range resolution.

FIGURE 8. Schematic diagram of optical system used for speckle-pattern-sampling measurements. The
pair of  off-axis parabolic mirrors expand the laser beam from the tunable laser and flood-illuminate the
object. The pick-off  mirror directs the backscattered light into the CCD array in the detector leg. This sys-
tem satisfies the requirements for far-field illumination and observation.

Tunable laser
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Large off-axis
parabolic mirror
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Optical Configuration

The illumination source for the majority of the mea-
surements presented here was a Coherent, Inc., 899-
29 Ti:sapphire ring laser pumped by a Coherent,
Inc., Innova 200 argon-ion laser. The Ti:sapphire is
an actively stabilized single-frequency ring laser that
can produce a coherence length greater than 100 m.
This coherence length is more than adequate because
it is large compared to the range extent of targets of
interest. The laser was typically used at a nominal
wavelength of λ0 = 0.78 µm and tuned over band-
widths of up to 15 THz. Although the Ti:sapphire
has a single-frequency output power of greater than
2 W, only a few milliwatts were needed for the mea-
surements presented here.

The optical system in Figure 8 was designed to
simulate far-field illumination and observation so
that near-field effects are entirely eliminated for ob-
jects up to 225 mm in diameter (diameter of large
off-axis parabola). The output from the laser is di-
rected to a set of off-axis parabolas that act as a beam-
expanding telescope. The beam strikes the small pa-
rabola, goes through focus, expands by a factor of
twenty-five, and is collimated by the large off-axis pa-
rabola. The collimated beam then flood-illuminates
the object. The back-scattered light follows the oppo-
site path. It strikes the large parabola, which is now
acting as a collector, and is directed to a pick-off mir-
ror located at the focal point of the telescope. Since it
is impractical to place a detector at the focal point of
the telescope, the pick-off mirror is used to direct the
light away from the telescope and onto a CCD array.
The array was a 512 × 512-pixel, 14-bit, scientific-
grade research CCD from Photometrics Ltd. A lens
is inserted between the pick-off mirror and the CCD
array so that the number of pixels per speckle lobe
can be adjusted.

Demonstration of Concepts

In this section we demonstrate experimentally that
the wavelength-dependent speckle pattern provides
range information about the scattering object, and
we show that this range information can be com-
bined with the cross-range information available
from the spatial dependence of the speckle pattern to

produce high-quality 3D images. We also discuss the
measurement parameters that are required to obtain
images that are free of aberrations.

Figure 9(a) is a photograph of a target used for
demonstrating range-resolved measurements. This
target has nine levels with a ratio of 1.4 between suc-
cessive step heights. The individual step sizes range
between 0.5 and 8.5 mm, with a total range span of
24.6 mm. Figure 9(b) shows a range-resolved mea-
surement for a scan length B of 2 THz, taken from
Reference 1. The associated theoretical range resolu-
tion given by Equation 41 is 0.075 mm. All nine lev-

FIGURE 9. Laboratory demonstration of  submillimeter
range resolution from the wavelength dependence of
speckle: (a) nine-step range-resolution target mounted
in front of a range-reference ring, and (b) range-resolved
measurement for a laser-frequency scan length of 2 THz.
The smallest step size of 0.5 mm is well resolved in the
measurement.
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els in the target are accounted for, and even the 0.5-
mm step is well resolved, which clearly demonstrates
submillimeter range resolution. In this particular
measurement, a reference ring was used in place of a
reference point.

Figure 10 illustrates that cross-range information
can also be obtained from speckle by Fourier-trans-
forming a speckle frame acquired at a single wave-
length [43, 44]. The object scene, depicted in Figure
10(a), consists of the nine-step target from Figure 9
and a specular reference point that are illuminated
along the axis of the step target. Three of the steps
have been masked to make a more interesting object.
The reference point is produced by a concave spheri-
cal mirror with a 75-mm radius of curvature located
25 mm to the right and 12.5 mm above the top right
corner of the target. Figure 10(b) is the magnitude of
the Fourier transform of a 512 × 512-pixel speckle
frame from this object scene. The four components
of Equation 24 are evident in this figure. Because the
reference point is separated from the step target in
the transverse direction by more than its cross-range
extent of Dx = Dy = 19 mm, the desired image (lower
left) is isolated from the autocorrelation function
(center) and the polar-symmetric image (upper
right).

Let us now consider cross-range resolution. Be-
cause of the long focal length (f  = 2 m) of the pri-
mary mirror, and the small collecting area (wx = wy =
16 mm) of the pick-off mirror, the cross-range reso-
lution at λ0 = 0.8 µm for this optical system is limited
to ∆x = ∆y = 100 µm by Equations 39 and 40 (with
zd replaced by the focal length f of the collimating
optic). The image in Figure 10(b) actually has a
transverse resolution of ∆x = ∆y = 280 µm, which
corresponds to a speckle magnification by the lens in
Figure 8 of M = 2.4 and a detector size of the CCD
array of wx = wy = 13.8 mm (here zd in Equations 39
and 40 is replaced by Mf ). This transverse resolution
also corresponds to 68 pixels along the width of the
target.

Now that we have demonstrated how cross-range
resolution is obtained from the speckle pattern, we
demonstrate 3D imaging by combining range infor-
mation with cross-range information to produce the
full 3D image of the nine-step target shown in Figure
11. For this measurement the 75-mm-radius concave
mirror was placed 30 mm behind the bottom step
and 10 mm to the side of the target. The desired im-
age component can be isolated in the 3D Fourier
transform because the surface of the mirror is offset
in range from the target by more than its range ex-

FIGURE 10. Cross-range-resolved image of nine-step target with three masked steps: (a) object scene con-
sisting of target and reference point being illuminated into the page, and (b) image obtained from 2D Fou-
rier transform of single speckle frame.

(b)(a)
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tent. A 256 × 256-pixel region of the CCD array was
selected, and the speckle magnification was set at M
= 2.5, yielding a transverse resolution of ∆x = ∆y =
575 µm. The total frequency span of the measure-
ment was B = 320 GHz, which produced a range
resolution of ∆z = 470 µm, by Equation 41.

By Equation 43, the maximum frequency-step size
allowed for nonaliased imaging of an object with to-
tal range extent L = 55 mm (25-mm object depth
and 30-mm range offset of reference point) is ∆νstep =
1.4 GHz. An actual value of ∆νstep = 1.25 GHz was
used in this measurement so that the given scan
bandwidth of 320 GHz was achieved with a 256-
frame measurement. The height values displayed in
Figure 11 were obtained from the magnitude of the
3D Fourier transform by selecting the voxel having
the highest value in each column. The step heights in
the image agree with the step heights of the target to
within the resolution of the measurement.

None of the three aberrations associated with er-
rors in the sampling of Fourier space needs to be cor-
rected in Figure 11. From Equation 47 we find that
wavelength aberration is not an issue; the maximum
transverse offset of an object point from the reference

point for the given range and cross-range resolutions
is rh = 173 mm, which is larger than the maximum
value, rh = 30 mm, of the object scene. Detector-
plane distortion can be entirely ignored for any im-
age made with this optical system because it is negli-
gible by Equation 48 for even the best cross-range
resolution and the largest object diameter allowed.
By Equation 49, depth-of-field aberration for the
transverse resolution of ∆x = ∆y = 575 µm begins to
be a problem for points that are offset from the refer-
ence point in range by more than |zh| = 400 mm.
This condition is easily satisfied because the range ex-
tent of the nine-step target is only 24.6 mm.

If the image in Figure 11 had been formed with
the system’s maximum transverse resolution of ∆x =
∆y = 100 µm, the maximum allowable range offset
from the reference point would have been reduced to
|zh| = 12 mm and the image would have been
aberrated. The effect of depth-of-field aberration is
to blur the 2D image of each object point by an
amount that increases with the range offset zh of that
object point from the reference point. Thus, without
correction of depth-of-field aberration, the only
plane in perfect focus is the plane cutting through
the reference point. In this regard, depth-of-field ab-
erration is analogous to the limited depth of field en-
countered in conventional imaging. The higher the
resolution, the more rapidly the image degrades in
range.

Quantitative Comparison with Industry Standard

Before the SPS technology can be incorporated into a
practical system, we must validate measurement re-
sults and compare the system’s performance with ac-
cepted methods. In this section we compare measure-
ments obtained with the noncontact laser-based SPS
technique to those acquired by using a more conven-
tional mechanical method, the coordinate measuring
machine (CMM). The CMM is a high-precision
contact device that provides measurements of objects
in three dimensions and is the industry standard for
dimensional metrology. Our intent here is not to
demonstrate measurements with the best possible
resolutions. Instead, we choose to concentrate on the
comparison of the two techniques at some easily
achievable resolutions.

FIGURE 11. 3D image of  nine-step target obtained by
speckle-pattern-sampling technique. Range resolution
and cross-range resolution are obtained from the wave-
length dependence and the spatial dependence of the
speckle pattern, respectively.
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The object selected for an initial comparison was a
steel sheet-metal sample that was stamped with a dis-
crete die at the MIT Laboratory for Manufacturing
and Productivity [45]. This object presents a chal-

FIGURE 12. Stamped sheet-metal test object. The region
of interest (painted white) has dimensions of approxi-
mately 100 x 100 x 20 mm. A curved reference mirror is
mounted in the center of the object.

FIGURE 13. Coordinate-measuring-machine (CMM) measurement of surface contour of
stamped sheet-metal test object. Measurements were taken at a 1-mm spacing and cover a
100 x 100-mm region of  the object.

lenge for most contouring techniques because it con-
tains steep surfaces with slopes ranging between 45°
and 68°. Figure 12 shows a photograph of the object.
When this object is viewed from the back, it bears a
notable resemblance to an ashtray. Consequently, we
refer to it as such throughout this section. The region
of interest was painted white, and is approximately
100 × 100 × 20 mm in size. Registration holes with
diameters of 1 mm were drilled in the ashtray to aid
in the alignment of data sets; the distance between
nearest neighboring holes is 15 mm. A 125-mm-fo-
cal-length concave mirror is mounted in the center
of the object to provide a reference point for the
speckle-based measurements.

Contact measurements of the ashtray were con-
ducted by using a Giddings and Lewis RS-50 Apollo
II Series Cordax coordinate measurement system.
The manufacturer’s specifications indicate that this
system has a volumetric accuracy of 10 µm and a
repeatability of 2 µm. CMM measurements, taken at
1-mm spacings, cover a 100 × 100-mm grid. The
resulting surface contour shown in Figure 13 is quite
good; however, we needed approximately ten hours
to acquire the 10,000 data points in this measure-
ment. This length of time clearly demonstrates why
CMMs are not practical for applications that require
high-density surface maps.
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For the SPS measurements of the ashtray shown in
Figure 14, we used reasonably conservative param-
eters so that aberration compensation was not re-
quired. The range extent from the face of the refer-
ence mirror to the lowest point on the ashtray is
approximately L = 40 mm, which requires a ∆νstep of
less than 1.88 GHz for nonaliased imaging. An ac-
tual frequency-step size of 1.8 GHz was chosen for
these measurements. Because of its ease of use and
increased tuning rate, we used a Nufocus external-
cavity tunable diode laser in lieu of the Ti:sapphire.
The Nufocus laser, which has an output power of 5
to 10 mW, was operated at a nominal wavelength of
λ0 = 0.78 µm. A total of 256 images, each 256 × 256
pixels in size, were acquired at 1.8 GHz intervals,
yielding a total laser scan length of B = 460 GHz and
a range resolution of ∆z = 325 µm. For a CCD detec-
tor size wx = wy = 6.9 mm, a primary-mirror focal
length ƒ = 2 m, and a magnification M = 2.3, a trans-
verse resolution of ∆x = ∆y = 520 µm was obtained.

The time for acquiring the 256 images was ap-
proximately thirty minutes. The feedback for this ac-
quisition, however, involved a person verifying that
the laser had been tuned to the appropriate wave-
length for each frame. Once the wavelength verifica-
tion is incorporated into the data-acquisition system,
acquisition times of well under one minute for a
256 × 256 × 256 data set should be achievable. The

FIGURE 14. Speckle-pattern-sampling (SPS) measurement of surface contour of  stamped
sheet-metal test object. The raw data consisted of  two-hundred-fifty-six 256 × 256-pixel
speckle frames with a laser-frequency step of 1.8 GHz between frames.

3D Fourier transforms were computed by using the
FFT algorithm on a Sun Microsystems SPARC-20
workstation running Visual Numerics Inc. PV-
WAVE software. It took approximately thirty min-
utes to calculate the 256 × 256 × 256-point 3D
FFTs with this configuration; a parallel-processing
computer could be used to reduce this time to the or-
der of one second.

To compare the measurements shown in Figures
13 and 14, we first had to scale and align the data
sets. The CMM data set consisted of 100 × 100
points, while the region of interest in the SPS height
function contained 190 × 190 points. The CMM
data were interpolated by using standard techniques
to obtain a 190 × 190-point CMM data set. To align
the two surfaces, we minimized the distance between
corresponding alignment points in each data set by
scaling, translating, and rotating the SPS height
function. A detailed discussion of the speckle pro-
cessing and data alignment is given elsewhere [46].

Figure 15(a) is a representative slice through the
CMM and SPS surface contours; the two plots are
virtually indistinguishable on this scale. Figure 15(b)
shows the difference between the two curves. The
maximum peak-to-peak difference is on the order of
one ∆z unit. The curves are in excellent agreement
throughout most of the plot, with a slight deviation
near the edges. These deviations correspond to areas
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of the ashtray that have steeply sloped surfaces. Fig-
ure 16(a) shows a difference map of the two surface
contours. The central region of this plot, where the
reference mirror was mounted, was not included in
the statistical calculations. The standard deviation of
the differences over the surface is σ = 0.19 ∆z, which
corresponds to approximately 60 µm for this mea-
surement. Again we see that the steeply sloped re-
gions of the ashtray appear to give rise to the greatest
difference between the two measurements. Figure
16(b), which is the histogram of the differences be-
tween the two contours, shows that the vast majority
are within ± 0.5 ∆z. By excluding the steeply sloped
regions, we lower the standard deviation of the differ-
ences to σ = 0.13 ∆z , or approximately 40 µm. We
recall from Equation 41 that larger frequency-scan
lengths result in higher range resolutions. Conse-
quently, if the differences scale in the same manner as
the resolutions, we believe that agreement to within a
few microns is achievable.

High-Range-Resolution Measurement

To demonstrate the high range resolutions that are
achievable with the SPS technique, we fabricated a
second range-resolution target by milling five steps of

FIGURE 15. Comparison of  CMM and SPS results for a
single slice: (a) x-z slice through CMM and SPS surface
profiles; (b) difference between surface profiles.

FIGURE 16. Comparison of CMM and SPS surface con-
tours: (a) difference map for entire surface; (b) histo-
gram of  differences.

various heights in an aluminum plate. The distance
between successive levels varies from 25 µm to
125 µm in 25-µm increments, giving a total target
range extent of 375 µm. The transverse dimensions
of the individual steps are 15 × 50 mm. Note that
even the 25-µm step is well resolved in range in the
3D image displayed in Figure 17.

The reference point used for this measurement
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FIGURE 17. 3D image of five-step range-resolution target
demonstrating a range resolution of better than 10 µm.
The step sizes vary from 25 µm for the top step to 125 µm
for the bottom step.

was a concave 75-mm-radius spherical mirror located
8 mm to the side of the middle step and recessed into
the metal so that the surface of the mirror is 395 µm
below the bottom level of the target. The measure-
ment consisted of 256 speckle frames with laser-fre-
quency steps of ∆νstep = 60 GHz between frames,
yielding a total frequency span of B = 15.3 THz and
a range resolution of ∆z = 9.8 µm. The target was
tilted slightly with respect to the illumination beam
so that the raw image contained several discrete range
steps of value ∆z along the length of each step. The
DFT technique for subdividing voxels mentioned
earlier was applied to enhance range resolution in
Figure 17.

The speckle frames used in producing Figure 17
were taken from a 256 × 256-pixel region of the
CCD array and subdivided for averaging into four
128 × 128 subarrays. The height values in Figure 17
are the weighted average from these measurements.
The cross-range resolution from the individual arrays
is ∆x = ∆y = 700 µm.

The minimum radius of curvature that yielded a
sufficient reference-beam strength relative to the high
return from the bare metal steps was 75 mm. The fo-
cal point of this mirror occurs at a distance of half of
the radius of curvature in front of the mirror and is
the position of the reference point when calculating
the effects of depth-of-field aberration. Thus the
value of zh that should be used in Equation 49 for
calculating whether depth-of-field aberration is sig-
nificant is approximately half of this value, zh = 37.5
mm. Because of the large transverse resolution for
this measurement, the allowable range offset zh from
Equation 49 is many times this value so that depth-
of-field aberration can be ignored for this measure-
ment in spite of the relatively large value of zh.

Wavelength aberration, on the other hand, is a sig-
nificant aberration for this measurement; by Equa-
tion 47, it degrades the image for object points with
transverse offsets from the reference point of only
4␣ mm. Therefore, wavelength aberration had to be
corrected. This correction was accomplished by vary-
ing the speckle magnification during the frequency
scan through changing the lens and detector spacings
in Figure 8 such that Mλ remained constant.

Although Figure 17 demonstrates the capability of

the SPS technique to produce images with high
range resolutions, the range extent of the test object
is rather small. To maintain the same range resolu-
tion as the range extent increases requires a smaller
laser-frequency step size to avoid aliasing. This, in
turn, increases the total number of speckle frames re-
quired. The problem is compounded if the same
cross-range resolution is maintained as the cross-
range extent increases. This increase in the number of
cross-range-resolution cells calls for more densely
populated detector arrays and increased processing
and memory requirements. These factors currently
limit the voxel density of the raw 3D image to the or-
der of one thousand cubed.

Conclusions

In this article we analyze and demonstrate a speckle-
pattern-sampling technique for 3D imaging based on
the wavelength dependence of laser speckle. Range
resolutions of better than 10 µm were achieved. Sur-
face contours obtained from laboratory measure-
ments were compared with those obtained from an
accepted contact method—the coordinate measuring
machine. Although speckle-pattern sampling com-
pares well with this industry standard, and we dem-
onstrated a significant speed increase over contact-
based techniques, there are still some drawbacks to
the technique that limit the variety and number of its
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I M A G E – S P E C K L E – B A S E D  3 D  I M A G I N G

   technique de-
scribed in the main text is based
on the wavelength dependence of
speckle in the radiation pattern of
the scattering object. In this
sidebar we describe an alternative
3D-imaging technique based on
image speckle—speckle present
in the conventional image of a co-
herently illuminated object. In
this alternative technique, we
obtain range information from
the wavelength dependence of
speckle, as before, but we obtain
transverse information through
conventional imaging. The main
advantages of this technique are
that the reference beam is sup-
plied automatically and that cal-
culating a 2D Fourier transform
of each frame of data is unneces-
sary. (The imaging property of
the lens already produces a one-
to-one correspondence between
points in the detector array and
points in object space.)

Figure A shows the measure-
ment configuration. The beam
from a tunable laser is split into
two parts and produces two mu-
tually coherent source points P1
and P2 separated by the distance a
and located at coordinates
( , , )x y z1 1 1  and ( , , )− − −x y z1 1 1 .
The expanding beams from these
source points simultaneously
flood-illuminate the object, and a
lens images the object onto a
CCD array. Consider the point P
lying on the surface of the object

at position ( , , )x y z . The coordi-
nates x and y of this point are
known by the location of its im-
age on the detector array. If the z
value corresponding to each value
of x and y could be determined,
then the desired 3D image would
be obtained.

We determine the z value by
observing the effect that tuning
the laser frequency has on the im-
age speckle. We define R1 and R2

to be the distances from the
points P1 and P2 to the point P,
respectively, and we define s to be
the pathlength difference be-
tween these two distances; that is,
s = R2 – R1. (Assume the optical
path lengths from the split in the
optical fiber to the ends of the
two fibers are equal.) On average,
approximately half of the light
reaching a given point on the de-
tector comes from each of the two

FIGURE A. Coordinate system for image-speckle-based 3D imaging.
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source points. If s is nonzero, tun-
ing the laser produces relative
phase shifts between the contri-
butions from these two points.
These phase shifts cause the con-
tributions to alternate between
destructive and constructive in-
terference, resulting in a periodic
modulation of the speckle inten-
sity. The rate of modulation is
proportional to the pathlength
difference s ; the frequency change
required to induce one complete
oscillation of the speckle intensity
is c /s . Thus s can be measured at
each pixel location by measuring
the rate or period of oscillation.

The final step in forming a 3D
image is to relate the measured
values of s to the desired quantity
z. This can be done by writing s in
terms of z and the known quanti-
ties (x , y) and ( , , )x y z1 1 1  and
then solving for z, as shown in
Table A. All quantities on the
right side of Equation A are

known so that z is determined for
each pixel in the conventional
image. For the situation indicated
by Figure A, the negative sign in
the numerator is the correct
choice of signs.

The ratio of the resolution ∆s
of the pathlength-difference mea-
surement to the range resolution
∆z in the 3D image is given by
the partial derivative of s with re-
spect to z :

∆
∆

s
z

s
z

= ∂
∂

. (B)

The magnitude of this ratio varies
between 0 and 2 and generally
increases as the bistatic angle θ in
Figure A approaches 90°. The op-
timal value of 2 is normally
unachievable in practice. A typi-
cal value of the ratio for measure-
ment parameters suggested by
Figure A is ∂ ∂s z  = 0.2.

To estimate range resolution
with Equation B, we must first

determine ∆s. For a frequency
scan of length B, the resolution in
s obtained by counting whole in-
tensity oscillations is c /B . There-
fore, the resolution in s for a frac-
tional resolution ∆N in the
number of cycles N is

∆ ∆s
c
B

N= . (C)

For a frequency scan of B = 15
THz and for ∆N = 1 (counting
only whole-number cycles),
Equation C predicts that ∆s = 20
µm. Substituting this value into
Equation B and using ∂ ∂s z  =
0.2 yields a range resolution of
∆z = 100 µm.

Figure B is a 3D image of a 50-
mm-long triconic obtained by us-
ing the image-speckle technique.
The discrete range steps corre-
spond to counting whole number
cycles (∆N = 1). The resolution
can be improved by various tech-
niques for reducing ∆N, for ex-
ample, by using a discrete Fourier
transform to subdivide cycles.

The image-speckle technique
is well suited to the measurement
of large contoured parts such as
airframe and autobody panels.
Here the whole surface can be il-
luminated from a fairly low angle,
providing good range resolution.
Drawbacks of the technique are
that the depth of field of the 3D
image is limited to the depth of
field of a conventional imaging
system and that certain regions of
an object may be shadowed be-
cause the angle θ between illumi-
nation and observation directions
is nonzero.

FIGURE B. Triconic 3D measurement obtained by using image speckle.
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practical applications. One drawback is that it re-
quires a reference point to be located in the vicinity
of the object being imaged. We have developed, how-
ever, a wavelength-dependent-speckle technique that
does not require a reference point (see the sidebar en-
titled “Image-Speckle-Based 3D Imaging”). In addi-
tion, obtaining 3D images from the 3D autocor-
relation function of an object, which also does not
require a reference point, is an active area of research
[39, 48–50]. Another drawback is the high cost of
components such as tunable lasers and parallel-pro-
cessing computers, which makes a system based on
speckle-pattern sampling uneconomical at this time.

Many methods for 3D imaging described in the
literature have been incorporated into practical sys-
tems [47]. In general, these methods are based on
one or more of the following principles: physical
contact, time of flight, carrier modulation, interfer-
ence, or triangulation. The speckle-pattern-sampling
technique has several advantages over techniques
based on these principles. It is noncontact based and
can rapidly image an entire object without the need
for raster scanning; it can measure complex and ir-
regular shapes having discontinuities and steep-
sloped surfaces; it does not require a bistatic angle be-
tween the source and detector, thereby eliminating
shadowing; and its range resolution does not degrade
with distance from the object, making it attractive
for applications involving long-range imaging.
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