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■  Elevated cell tissue temperature (hyperthermia) due to radio-frequency (RF)
energy absorption is known to produce an improved response for malignant
tumors in humans when applied in combination with other anticancer
modalities. However, clinical studies in thermotherapy have shown the difficulty
of localizing RF energy deposition in malignant tissue deep within the body
without damaging surrounding healthy tissue. The study presented in this
article involves a preclinical investigation of adaptive feedback and computer
control of amplitude and phase from coherent RF antenna arrays to provide
improved distribution of electromagnetic energy deposition in the body.
Measurements in a treatment-planning phantom irradiated with an adaptive
antenna-array applicator show that noninvasive adaptive nulling can reduce the
RF energy absorption in nearby healthy tissue while focusing energy into a
deep-seated tumor site.

O     , many clinical
studies have established that elevated cell
tissue temperature (hyperthermia), induced

by electromagnetic energy absorption in the radio-
frequency (RF) band, significantly enhances the effect
of chemotherapy and radiation therapy in the treat-
ment of malignant tumors in the human body [1–8].
Ideally, hyperthermia treatments with RF radiating
devices are administered in several treatment sessions,
in which the malignant tumor is heated to a tempera-
ture above approximately 42°C for thirty to sixty
minutes. Figure 1 illustrates how this hyperthermia
treatment (or thermotherapy, as it is also called) is
performed. During treatments with noninvasive RF
applicators, clinicians have had difficulty adequately
heating deep tumors while preventing surrounding
healthy tissue from incurring pain and damage due to
undesired hot spots greater than 44 to 45°C [9]. Two

previous articles in this journal have discussed the
topics of adaptive nulling and adaptive focusing [10,
11]. Since then we have significantly improved the
speed of the adaptive-nulling process and expanded
the scale of our experiments. This article describes a
preclinical investigation of adaptively controlled
phased-array transmitting antennas with multiple RF
feedback sensors to provide improved distribution of
electromagnetic energy deposition in malignant and
healthy tissues within the body.

The electromagnetic-energy absorption rate in tis-
sue, sometimes referred to in the literature as the SAR
(specific absorption rate, or absorbed power per unit
mass), has units of Joules/kg-sec (or W/kg) and may
be expressed as

SAR = 1
2

2σ
ρ

E , (1)
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where σ is the tissue electrical conductivity (S/m), ρ is
the tissue density (kg/m3), and E  is the magnitude
of the local electric field (V/m) [4]. In Equation 1, the
quantity

1
2

2
σ E

is the time-average RF power density converted to
heat energy, and is called the dissipated power. If we ig-
nore thermal-conduction and thermal-convection ef-
fects, which are not important until after a significant
temperature rise occurs, the initial temperature rise
∆T (°C) in tissue is related to the specific absorption
rate by

∆ ∆T
c

t= 1
SAR , (2)

where c is the specific heat of the tissue (in units of

Joules/kg-°C), and ∆t is the time period of exposure
(sec) [4]. Substituting Equation 1 in Equation 2
yields a relation between the induced temperature rise
in tissue and the applied electric field as

∆ ∆T
c

E t= 1
2

2σ
ρ . (3)

Thus by modifying the local electric-field ampli-
tude, we directly affect the local energy absorption
and induced temperature rise in tissue. For example,
in malignant tissue we would like to deposit an elec-
tric field of sufficient magnitude to heat the tumor
volume to a therapeutic temperature typically in the
range of 42 to 45°C. At the same time, we would like
to limit the SAR magnitude in nearby healthy tissue
to be less than that within the tumor in order to keep
the healthy tissue temperature below approximately
44°C. Multi-element incoherent or phase-coherent

FIGURE 1. Hyperthermia treatment with radio-frequency (RF) radiating devices. A noninvasive adaptive phased-
array applicator produces RF electromagnetic energy to heat deep-seated tumors in the human body. The
adaptively controlled phased-array transmitting antennas, along with RF receiver feedback probes located on
the skin and inside the tumor, provide improved distribution of electromagnetic-energy deposition in both ma-
lignant and healthy tissues within the body. The computer screen shows a cross section of  the patient’s torso
with the tumor in red. Current clinical hyperthermia systems, which do not utilize adaptive phased-array tech-
niques, produce undesired RF hot spots that can result in pain and damage to healthy tissue.
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array antenna systems can provide significant flexibil-
ity for shaping the SAR distribution [4, 12–16].

During clinical treatments, electromagnetic radiat-
ing-array applicators have often been used in an inco-
herent mode, in which the power delivered to each
radiating applicator is automatically adjusted on the
basis of temperature-sensor feedback measurements.
In many cases, incoherent 915-MHz microwave array
radiation has provided effective heating of superficial
tumors, but does not provide adequate heating of tu-
mors deeper than two centimeters. In propagating
through human tissue, the electric field produced by
radiowave antennas attenuates rapidly, with increas-
ing attenuation at the higher microwave frequencies.
Lowering the frequency into the RF region, to below
approximately 150 MHz, helps the electromagnetic
wave penetrate more deeply, but still does not pro-
duce a higher value of SAR at depth compared to the
value of SAR at the surface.

To increase the value of SAR at depth relative to
the surface SAR, we must geometrically focus energy
deposition from multiple electric fields. Because of
constructive interference of electric fields at the in-
tended focus and destructive interference of electric
fields away from the focus, multichannel coherent
phased-array applicators can theoretically provide
deeper tissue penetration and improved localization
of the absorbed energy in deep-seated tumor regions

compared to incoherent array applicators [4, 14]. Un-
fortunately, because of complex scattering within the
human body and instrumentation variations of hy-
perthermia phased-array system hardware [17], clini-
cians cannot always accurately predetermine or
manually adjust the optimum settings for output
power and phase of each antenna to focus heat reli-
ably into the deep-seated tumors.

Initial investigations of nonadaptive pretreatment
planning at Northwestern Memorial Hospital in Chi-
cago used a commercial deep-heating RF phased di-
pole ring-array hyperthermia system [18]. The com-
mercial ring array used for this experiment has a
60-cm diameter and normally surrounds a patient’s
torso. A temperature-controlled water bolus fills the
region between the patient’s torso and the ring array.
A light-emitting diode (LED) matrix phantom,
which simulates a cross section of the human torso,
was constructed to display the effects of manually ad-
justing the amplitude and phase of the array antennas
[19, 20]. Figure 2 shows the LED matrix phantom
[21], which consists of 137 LED sensors positioned
in an elliptically shaped Plexiglas plate with a square-
grid diode spacing of 2 cm. The LED matrix is posi-
tioned within an elliptical cylinder of homogeneous
saline solution contained within a 2-mm-thick hard
plastic shell. The electrical conductivity of the saline
is chosen to be similar to body tissues, which results

FIGURE 2. A light-emitting diode (LED) matrix phantom, which simulates a cross section of  a human torso, is used in
pretreatment planning for clinical hyperthermia treatments. The photographs show the LED dipole-sensor array re-
moved from the inside of the elliptical phantom shell. The LEDs glow with an intensity proportional to the local electro-
magnetic field generated by a hyperthermia phased-array applicator. For treatment planning, the LED sensor array is
placed inside the phantom shell and the phantom shell is filled with clear saline solution.
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in a 100-MHz RF power-density attenuation of ap-
proximately a factor of two for each 3.0-cm distance
that the RF waves propagate into the phantom. The
elliptical cylinder has a cross section of 24 cm by 36
cm, similar to the cross section of a human torso, and
has transparent ends for viewing the LEDs. The
length of the LED metallic leads forming the dipole
receive sensor is nominally 5 cm from tip to tip. The
light output from the LEDs is directly proportional
to the local electric-field strength generated by the RF
ring array.

This LED matrix phantom has been used for pre-
treatment planning of nonadaptive clinical hyper-
thermia trials in the following manner [19]. With the
matrix phantom load centered in the RF ring-array
aperture, the operator begins by manually adjusting
the RF power amplifiers and phase shifters until the
LED phantom visually demonstrates maximum elec-
tric-field strength in the planned tumor target with as
few hot spots as possible in healthy tissue, as shown in
Figure 3. These manual adjustments can take over
two hours to complete. Then the patient is substi-
tuted for the phantom and the clinical treatment is
conducted—with the assumption that the irradiation
pattern does not change substantially after the patient
is substituted for the phantom. Because pretreatment
planning with this manual trial-and-error adjustment
procedure often produces unacceptable RF hot spots
in healthy tissue for the required deep-tumor heating

[19], we are now experimentally investigating pre-
treatment planning using much faster computer-con-
trolled adaptive nulling [22, 23] for eliminating the
unwanted hot spots in the LED phantom.

For us to localize energy deposition for an appro-
priate temperature rise in a deep-seated tumor, Equa-
tion 3 indicates that we must first monitor the elec-
tric-field magnitude E  received at one or more
feedback probes [24] located within the tumor and
adjacent healthy tissue, and then adjust the amplitude
and phase of each transmitting antenna of the array
for maximum RF power deposition within the tumor
and minimum power deposition in nearby healthy
tissue. Figure 4 illustrates the equipment setup that
performs this process. A gradient-search computer al-
gorithm that modifies antenna-array input param-
eters (drive signals) on the basis of the rate of change
of system output parameters (power-deposition pat-
tern) can be used to adaptively determine the indi-
vidual antenna power and phase input signals to
maximize (focus) or minimize (null) the electromag-
netic radiation measured at one or more feedback
probe positions [22, 23].

The adaptive-nulling approach used in this article
is based on algorithms and testing techniques devel-
oped for adaptive phased-array radar and communi-
cations signal processing systems [25]. The resolution
width of an adaptive null is approximately equal to
the half-power radiation beamwidth of the adaptive-

FIGURE 3. Sample nonadaptive pretreatment planning session with the LED matrix phantom. (a) The computed-tomog-
raphy-scan data show the presence of a large rectal tumor. (b) After approximately two hours of manually adjusting the
phase and power settings of  the phased-array transmitter, the LED sensor array displays an electric-field pattern with
local heating of the tumor area but with other hot spots in healthy tissue.
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array antenna. This property allows an adaptive null
formed on the surface of the body to reduce the elec-
tric field in regions, such as healthy tissue, that extend
to some depth below the null. For hyperthermia ap-
plications, adaptive-array nulls that reduce the RF
power deposition by approximately 50% or more are
usually sufficient to eliminate undesired hot spots in
healthy tissue.

Experimental Setup

For the current experiments, a frequency of 100 MHz
was used for the ring-array system, and the sum of the
input power to all four channels was held constant at
860 W. An invasive catheter with a dipole electric-

field sensor one millimeter in diameter was posi-
tioned at a depth of approximately eight centimeters
in the lower half of the phantom and used to measure
the local electric field at the simulated deep-seated tu-
mor site. Three independent noninvasive RF feed-
back probes, spaced circumferentially at ten-centime-
ter intervals, were attached to the surface of the
phantom, as shown in Figure 5. These probes were
used to measure feedback signals for reducing local
power deposition on the upper surface [26].

The goal of the experiment was to irradiate only
the lower portion of the phantom, which contained
the simulated tumor, while minimizing irradiation of
the upper portion, which contained simulated

FIGURE 4. A minimally invasive system of four coherent electromagnetic radiating antennas used to heat a deep-seated
malignant tumor. The RF input power and phase of each radiating antenna are computer controlled with power-deposi-
tion feedback measurements from RF feedback probes attached to the body’s surface and inside the tumor. The power
and phase delivered to the radiating antennas can be adjusted so that the electromagnetic radiation is simultaneously
increased at the tumor and decreased at the surface sensors. At RF frequencies around 100 MHz, the nulls formed on
the surface of the body are sufficiently broad (as indicated by the gray shaded regions) that nearby regions of healthy
tissue within the body are protected from RF irradiation.
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healthy tissue. At 100 MHz, the RF wavelength in
the saline phantom is approximately thirty centime-
ters. The half-power beamwidth (or null width) of an
adaptive ring array is approximately equal to one-half
the wavelength, or fifteen centimeters. Thus an in-
tense null formed on the surface of the phantom
should reduce the electric field by about 50% at a
depth of fifteen centimeters. Less intense surface nulls
would have less effect on reducing the electric-field
intensity at depth.

The input power and phase delivered to each of the
four RF radiating dipole pairs of the ring array were
manually set to equal initial values of 215 W and 90°,
respectively. The computer, as illustrated in Figure 4,
started the adaptive-array algorithm by automatically
adjusting, via digital-to-analog converters, the power
amplifiers and phase shifters in each of the four chan-
nels of the phased array. The computer software per-
formed calculations of the rate of change of the mea-
sured RF power at the surface sensors (simulated
healthy tissue regions) after each adjustment of RF
power and phase to the array transmit channels. For
this experiment we used a modified method-of-steep-
est-descent algorithm to determine the input power
and phase commands that minimize the summation
of the local power deposition measured by each sur-
face RF feedback sensor. All adjustments were com-

pleted and the adaptive nulls were formed in approxi-
mately two minutes, which is an appropriate speed
for real-time use in optimizing clinical treatments.

Before adaptive nulling, both the RF feedback sen-
sors and the LED phantom indicated multiple hot
spots. The light-toned bars in Figure 6 indicate the
measured RF feedback data before adaptive nulling,
and the light-intensity pattern in the photograph in
Figure 7(a) indicates the associated deposition of RF
energy, including hot spots. Then the adaptive-null-
ing algorithm was executed for three iterations to re-
duce the RF feedback signal at each surface-nulling
sensor by at least a factor of two. The RF feedback
sensors and the LED phantom then displayed the
electric-field distributions after adaptive nulling, as
shown by the dark-toned bars in Figure 6 and the
light-intensity pattern in Figure 7(b). The simulated
tumor position in the lower half of the phantom is
fully irradiated while the upper half of the phantom,
containing the region of simulated healthy tissue, has
a substantially reduced electric-field intensity.

We then ran a second experiment to attempt to
null the electric field noninvasively over the right half
of the phantom, rather than the upper half. Figure 8
shows the measured RF feedback data before and af-
ter nulling. As in the first experiment, adaptive null-
ing significantly increases the RF power deposited in

FIGURE 5. Test configuration for adaptive-nulling hyperthermia phased-array experiments. (a) LED matrix phantom with
RF feedback probes mounted on the surface of the phantom. (b) The LED phantom is placed within the RF ring array
and the water bolus is filled. The adaptive-nulling phased array consists of four active transmit channels, each con-
nected to a pair of RF radiating dipoles.
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the tumor site while significantly decreasing the
power delivered to the healthy tissue sites. Figure 9
shows photographs of the phantom before nulling
and after the nulling algorithm has converged. These
data clearly show that it is possible to restrict the heat-
ing to the left side of the target body.

In order to protect large volumes of healthy tissue
while focusing RF energy deep within the body, we
must have the essential ability to produce multiple
electric-field minima. Fortunately, these minima can
be easily generated by using noninvasive RF feedback
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FIGURE 6. Measured electric-field probe data in a pre-
treatment-planning phantom. These data demonstrate
the effect of  adaptive nulling at three independent sur-
face sites. The adaptive nulling protects regions of
healthy tissue while an 8-cm-deep tumor site is irradi-
ated with a coherent four-channel ring phased-array sys-
tem operating at a radio frequency of  100 MHz. The light-
toned bars indicate the normalized RF power deposition
at each electric-field sensor before adaptive nulling. The
RF power deposition in healthy tissue, prior to adaptive
nulling, is greater than the RF power deposition in the tu-
mor. The RF power deposition after adaptive nulling, in-
dicated by the dark-toned bars, measured at the simu-
lated deep-seated tumor site increases by 19%, while the
RF power deposition measured by the three electric-field
feedback probes on the surface of the phantom is re-
duced by 91%, 57%, and 87%, respectively. The measure-
ments demonstrate that the adaptive-nulling process re-
sults in a stronger irradiation of  the tumor compared to
the irradiation of the superficial healthy tissue.

FIGURE 7. Pretreatment-planning LED matrix phantom
irradiated by an adaptively controlled coherent RF ring
array operating at 100 MHz. (a) Before adaptive nulling
the light-intensity pattern of the two-dimensional LED
display reveals hot spots along the top, bottom, and left
and right surfaces of the phantom as well as in the cen-
tral region. (b) After adaptive nulling at three positions
on the upper-half surface of the phantom, the RF irradia-
tion is concentrated over the lower portion of the phan-
tom (the position of the simulated tumor), while irradia-
tion of the upper portion of the phantom (the position of
healthy tissue) is significantly reduced. The experiment
shows that the effect of the noninvasive adaptive-nulling
process is to shift the RF irradiation away from the
healthy tissue areas and toward the tumor.
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can adaptively control the transmit power and phase
distributions in an electromagnetic hyperthermia
phased-array system, and thus optimize the RF
power-deposition distribution prior to treatment by
using a treatment-planning phantom. In addition to
the control of power-deposition distributions by
adaptive-array phase and power adjustments with RF
feedback as reported here, subsequent minor adjust-
ments of temperature in a perfused tumor can be
made during the clinical treatments by using local
temperature feedback measurements to adaptively
control the total power delivered to the hyperthermia
applicator as a function of time [27, 28].

Conclusion

An adaptive power-deposition feedback and control
technique has been investigated experimentally in
two dimensions with an LED matrix phantom and an
electromagnetic four-channel dipole-array hyperther-
mia system with adjustable amplitude and phase. The
measured data demonstrate that the distribution of
electromagnetic-energy absorption generated by a

FIGURE 9. Pretreatment-planning LED matrix phantom
irradiated by an adaptively controlled coherent RF ring
array operating at 100 MHz. (a) Before adaptive nulling,
the light-intensity pattern of the two-dimensional diode
display reveals hot spots along the top, bottom, and left
and right surfaces of the phantom as well as in the cen-
tral region. (b) After adaptive nulling at three positions
on the right-half surface of the phantom, the RF irradia-
tion is concentrated over the left portion of the phantom
(site of  the simulated tumor position), while irradiation
of the right portion (simulating healthy tissue) is signifi-
cantly reduced. As in Figure 7, the experiment shows
that the effect of the noninvasive adaptive-nulling pro-
cess is to shift the RF irradiation away from the areas of
healthy tissue and toward the tumor.
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hyperthermia phased-array applicator can be im-
proved by an adaptive-nulling feedback and control
algorithm with multiple independent RF feedback
probes. Further investigation of this adaptive phased-
array control procedure should be initiated for im-
proving the localization of heating in deep-seated tu-
mors by providing real-time compensation for
variable blood flow.

FIGURE 8. Measured RF feedback data before and after
nulling (second experiment). The normalized RF power
deposition after adaptive nulling, indicated by the dark
bars, measured at the simulated deep-seated tumor site
increases by 106%, while the RF power deposition mea-
sured by the three feedback probes on the surface of the
phantom is reduced by 77%, 45%, and 78%, respectively.
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