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• Speech conveys several levels of information. On a primary level, speech
conveys the words or message being spoken, but on a secondary level, speech
also reveals information about the speaker. The Speech Systems Technology
group at Lincoln Laboratory has developed and experimented with approaches
for automatically recognizing the words being spoken, the language being
spoken, and the topic of a conversation. In this article we present an overview of
our research efforts in a fourth area-automatic speaker recognition. We base
our approach on a statistical speaker-modeling technique that represents the
underlying characteristic sounds of a person's voice. Using these models, we
build speaker recognizers that are computationally inexpensive and capable of
recognizing a speaker regardless ofwhat is being said. Performance of the
systems is evaluated for a wide range of speech quality; from clean speech to
telephone speech, by using several standard speech corpora.

T
ASKS THAT ARE EASIlY PERFORMED by humans,
such as face or speech recognition, prove diffi­
cult to emulate with computers. Speaker-rec­

ognition technology stands out as one application in
which the computer outperforms the humans.

For over six decades, scientists have studied the
ability of human listeners to recognize and discrimi­
nate voices [1]. By establishing the factors that convey
speaker-dependent information, researchers have
been able to improve the naturalness ofsynthetic and
vocoded speech [2] and assess the reliability of
speaker recognition for forensic science applications
[3]. Soon after the development of digital computers,
research on speaker recognition turned to developing
objective techniques for automatic speaker recogni­
tion, which quickly led to the discovery that simple
automatic systems could outperform human listeners
on a similar task [4].

Over the last three decades, researchers have devel­
oped increasingly sophisticated automatic speaker­
recognition algorithms, and the performance of these

algorithms in more realistic evaluation speech corpora
has improved. Today, task-specific speaker-recogni­
tion systems are being deployed in large telecommu­
nications applications. For example, in 1993 the
Sprint Corporation offered the Voice FoneCard call­
ing card, which uses speaker recognition to allow ac­
cess to its long-distance network.

The general task of automatic speaker recognition
is far from solved, however, and many challenging
problems and limitations remain to be overcome. In
this article we present an overview of the research,
developments, and evaluation of automatic spealcer­
recognition systems at Lincoln Laboratory.

Problem Definition and Applications

Speaker recognition involves two tasks: identification
and verification, as shown in Figure 1. In identifica­
tion, the goal is to determine which voice in a known
group ofvoices best matches the speaker. In verifica­
tion, the goal is to determine if the speaker is who he
or she claims to be.
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Speaker recog nition

FIGURE 1. The two fundamental tasks of speaker recognition: identification and verification. The goal of speaker recog­
nition is to recognize a person automatically from his or her voice. In identification, the incoming speech is compared
with a set of known voices. In verification, the incoming speech is compared with one known voice.

In speaker identification, the unknown voice is as­
sumed to be from the predefined set of known speak­
ers. For this type of classification problem-an N­
alternative, forced-choice task-errors are defined as
misrecognitions (i.e., the system identifies one
speaker's speech as coming from another speaker) and
the difficulty of identification generally increases as
the speaker set (or speaker population) increases.

Applications of pure identification are generally
unlikely in real situations because they involve only
speakers known to the system, called entolled speak­
ers. However, one indirect application of identifica­
tion is speaker-adaptive speech recognition, in which
speech from an unknown speaker is matched to the
most similar-sounding speaker already trained on the
speech recognizer [5]. Other potential identification
applications include intelligent answering machines
with personalized caller greetings [6] and automatic
speaker labeling of recorded meetings for speaker-de­
pendent audio indexing [7, 8].

Speaker verification requires distinguishing a
speaker's voice known to the system from a poten­
tially large group of voices unknown to the system.
Speakers known to the system who claim their true
identity are called claimants; speakers, either known
or unknown to the system, who pose as other speak­
ers are called impostors. There are two types of verifi­
cation errors: false acceptances-the system accepts
an impostor as a claimant; and false rejections-the
system rejects a claimant as an impostor.

Verification forms the basis for most speaker-rec­
ognition applications. Current applications such as
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computer log-in, telephone banking [9, 10], calling
cards, and cellular-telephone fraud prevention substi­
tute or supplement a memorized personal identifica­
tion code with speaker verification. Verification can
also be applied as an information retrieval tool for re­
trieving messages from a voice mailbox.

Speaker-recognition tasks are further distinguished
by the constraints placed on the text of the speech
used in the system [3]. In a text-dependent system, the
spoken text used to train and test the system is con­
strained to be the same word or phrase. For example,
in an access-control verification application a claim­
ant can always use the same personalized code. Thus a
speaker-verification system can take advantage of
knowing the text to be spoken. Such a verification
system can be fooled, however, by recording a
claimant's phrase and playing it back to gain access.
In a text-independent system, training and testing
speech is completely unconstrained. This type of sys­
tem is the most flexible and is required for applica­
tions such as voice mail retrieval, which lacks control
over what a person says.

Between the extremes of text dependence and text
independence falls the vocabulary-dependent system,

which constrains the speech to come from a limited
vocabulary, such as the digits (e.g., "zero," "one")
from which test words or phrases (e.g., "zero-one­
eight") are selected. This system provides more flex­
ibility than the text-dependent system because pass
phrases used by claimants can be changed regularly
without retraining to help thwart an impostor with a
tape recorder.
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Features for Speaker-Recognition Systems

To develop machines for speaker recognition, scien­
tists and engineers must first ask, "How do humans
recognize one another by voice alone?" We use many
perceptual cues, some nonverbal, when recognizing
speakers. These cues are not well understood, but
range from high-level cues, which are related to se­
mantic or linguistic aspects of speech, to low-level
cues, which are related to acoustic aspects of speech.

High-level cues include word usage, idiosyncrasies
in pronunciation, and other nonacoustic characteris­
tics that can be attributed to a particular speaker.
These cues describe a person's manner of speech and

are generally thought to arise from varied life experi­
ences, such as place of birth and level of education.
These cues are also termed learned traits. Low-level
cues, on the other hand, are more directly related to
the sound of a person's voice and include attributes
such as soft or loud, clear or rough, and slow or fast.

While human listeners use all levels of cues to rec­
ognize speakers, low-level cues have been found to be
the most effective for auromatic speaker-recognition
systems. Low-level cues can be related to acoustic
measurements that are easily extracted from the
speech signal. On the other hand, high-level cues are
not easily quantified, and can occur infrequently in
text-independent speech and not at all in text-depen­
dent speech. They are also difficult to extract from the
speech signal-looking for certain words would re­
quire a reliable speech recognizer or word spotter.

To find acoustic measurements from a speech sig­
nal that relate to physiological attribures of the
speaker, we consider the basic model of speech pro­
duction. In this model, speech sounds are the product
of an air stream passed through the glottis, producing
resonances in the vocal tract and nasal cavities. Dur­
ing voiced sounds, such as vowels, the glottis rhyth­
mically opens and closes to produce a pulsed excita­
tion to the vocal tract. During unvoiced sounds, such
as fricatives, the glottis remains partially open, creat­
ing a turbulent airflow excitation. To produce differ­
ent sounds, the vocal tract moves into different con­
figurations that change its resonance structure. Nasal
sounds are produced by shunting the glottal excita­
tion through the nasal cavities.

From this model we see that the glottis and vocal
tract impart the primary speaker-dependent charac­
teristics found in the speech signal. The periodicity,
or pitch, of the speech signal contains information
about the glottis. Major frequency components of the
speech spectrum contain information about the vocal
tract and nasal cavities. Speech spectral information
from the frequency components has proven to be the
most effective cue for automatic speaker-recognition
features. Although pitch conveys speaker-specific in­
formation and can be used in some controlled appli­
cations, it can be difficult to extract reliably, especially
from noise-corrupted speech, and it is more suscep­
tible to nonphysiological factors such as the speaker's
emotional state and level of speech effort.

Figure 2 shows examples of how vocal-tract con­
figurations produce different spectra for two steady­
state vowel sounds. The top part of the figure shows
the cross section of the vocal tract. Below is a plot of
the frequency spectrum (magnitude versus frequency)
for the vowel sound. The peaks in the spectrum are
resonances produced by the particular vocal-tract
configuration and are known as the speech formants.
For each vocal-tract configuration, we show the spec­
trum for two different speakers: a male and a female.

Note that for any particular sound, the relative lo­
cation of the formants within each speaker's spectrum
is similar, since the same sound is being produced. By
comparing the speaker's spectra, however, we see that
corresponding formants occur at different frequencies
and with different intensities-a direct result of the
different vocal-tract structures. Most automatic

speaker-recognition systems rely upon these spectral
differences to discriminate speakers.

Natural speech is not simply a concatenation of
sounds. Instead, it is a blending of different sounds,
often with no distinct boundaries between transi­
tions. Figure 3 shows the digitally sampled speech
waveform of a continuously spoken sentence and the
corresponding spectra. The spectra are presented as a
three-dimensional time-frequency spectrogram with
frequency on the y-axis, time on the x-axis, and darker
regions representing higher spectral energy. The spec­
trogram illustrates the dynamic nature of the for­
mants (seen as dark bands in the spectrogram) and
hence the vocal tract.
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FIGURE 2. Examples of vocal-tract config urations and the corresponding freq uency spectra from two steady-state vow­
els spoken by two different speakers: a male and a female. The peaks, or formants, in the spectra are resonances pro­
duced by the particular vocal-tract configuration.

FIGURE 3. Digitally sampled speech waveform of a spoken sentence (above) and corresponding spectrogram
(below) showing the dynamic nature of the formants as the vocal tract continuously changes shape. The sen­
tence spoken was "Don't ask me to carry an oily rag like that."
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To obtain steady-state measurements of the spectra
from continuous speech, we perform short-time spec­
tral analysis, which involves several processing steps,
as shown in Figure 4. First, the speech is segmented
into frames by a 20-msec window progressing at a 10­
msec frame rate. A speech activity detector is then
used to discard silence and noise frames [11, 12]. For
text-independent speaker recognition, removing si­
lence and noise frames from the training and testing
signals is important in order to avoid modeling and
detecting the environment rather than the speaker.

Next, spectral features are extracted from the
speech frames. A reduced spectral representation is
produced by passing the speech frame through a
pseudo filter bank designed to match the frequency
sensitivity of the ear. This type of ftlter bank is called a
mel-scale filter bank and is used extensively for
speech-recognition tasks [13]. Passing the speech
frame through a pseudo filter produces a spectral rep­
resentation consisting of log magnitude values from
the speech spectrum sampled at a linear 100-Hz spac­
ing below 1000 Hz and sampled at a logarithmic
spacing above 1000 Hz.

For 4-kHz bandwidth speech (e.g., telephone­
quality speech), this reduced spectral representation
has twenty-four log magnitude spectrum samples.
The log magnitude spectral representation is then in­
verse Fourier transformed to produce the final repre­
sentation, called cepstral coefficients. The last trans­
form is used to decorrelate the log magnitude
spectrum samples. We base the decision to use mel­
scale cepstral coefficients on good performance in
other speech-recognition tasks and a study that com-

20-msec window

•

pares several standard spectral features for speaker
identification [14].

The sequence of spectral feature vectors extracted
from the speech signal is denoted {x]>"" xt' ... , xT},

where the set of cepstral coefficients extracted from
a speech frame are collectively represented as a D­
dimensional feature vector Xt' and where t is the se­
quence index and Tis the number of feature vectors.

Finally, the spectral feature vectors undergo chan­
nel compensation to remove the effects of transmis­
sion degradation. Caused by noise and spectral dis­
tortion, this degradation is introduced when speech
travels through communication channels like tele­
phone or cellular phone networks.

The resulting spectral sequence representation is
the starting point for almost all speech-related tasks,
including speech recognition [15] and language iden­
tification [16]. Unfortunately, this representation is
not a particularly efficient representation for speaker
recognition. Much of a spectral sequence represents
the linguistic content of the speech, which contains
large redundancies and is mostly not needed for
speaker representation.

Statistical Speaker Model

Specific speaker-recognition tasks are accomplished
by employing models that extract and represent the
desired information from the spectral sequence. Since
the primary speaker-dependent information con­
veyed by the spectrum is about vocal-tract shapes, we
wish to use a speaker model that in some sense cap­
tures the characteristic vocal-tract shapes of a person's
voice as manifested in the spectral features. Because of

Feature vectors

Speech activity
'I¥.P~----~ detector

t
Digitized speech signal

Spectral
analysis

Channel
compensation .---..... xl x2 ... xr

One feature vector
every 10 msec

FIGURE 4. Front-end signal processing used to produce feature vectors from the speech signal. Twenty-msec seg­
ments, or frames, of speech are passed through a speech activity detector, which discards silence and noise frames that
reflect the environment rather than the speaker. Spectral analysis extracts spectral features from the speech frames.
Channel compensation removes the effects of transmission degradation from the resulting spectral representations.
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FIGURE 5. Statistical speaker model. The speaker is modeled as a random source producing
the observed feature vectors. Within the random source are states corresponding to charac­
teristic vocal-tract shapes.

the success of statistical pattern-recogmtlon ap­
proaches for a wide variety ofspeech tasks, we adapt a
statistical formulation for such a speaker model.

In the statistical speaker model, we treat the
speaker as a random source producing the observed
feature vectors, as depicted in Figure 5. Within the
random speaker source, there are hidden states corre­
sponding to characteristic vocal-tract configurations.
When the random source is in a particular state, it
produces spectral feature vectors from that particular
vocal-tract configuration. The states are called hidden
because we can observe only the spectral feature vec­
tors produced, not the underlying states that pro­
duced them.

Because speech production is not deterministic
(a sound produced twice is never exactly the same)
and spectra produced from a particular vocal-tract
shape can vary widely due to coarticulation effects,
each state generates spectral feature vectors according
to a multidimensional Gaussian probability density
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function (pdf), with a state-dependent mean and
covariance. The pdf for state i as a function of the D­
dimensional feature vector x is

b.(x) = __I__
I (2n)D/2I L ill/2

x exp{-l (x - ILi((Lifl(x - ILi)}'

where ILj is the state mean vector and L j is the state
covariance matrix. The mean vector represents the ex­
pected spectral feature vector from the state, and the
covariance matrix represents the correlations and vari­
ability of spectral features within the state.

In addition to the feature-vector production being
a state-dependent random source, the process govern­
ing what state the speaker model occupies at any time
is modeled as a random process. The following dis­
crete pdf associated with the M states describes the
probability of being in any state,
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M

{A"",PM}' where LPi = 1,
i=!

The Gaussian Mixture Speaker Model

From the above definition of the statistical speaker
model, we can show that the pdfof the observed spec­
tral features generated from a statistical speaker model
is a Gaussian mixture model (GMM) [19]. In terms
of the parameters of an M-state statistical speaker
model, the GMM pdf is

and a discrete pdf describes the probability that a
transition will occur from one state to any other state,

aij = Pr(i ~ j), for i, j = 1, ... , M.

The above definition of the statistical speaker
model is known more formally as an ergodic hidden
Markov model (HMM) [17]. HMMs have a rich
theoretical foundation and have been extensively ap­
plied to a wide variety of statistical pattern-recogni­
tion tasks in speech processing and elsewhere. The
main motivation for using HMMs in speech-recogni­
tion tasks is that they provide a structured, flexible,
computationally tractable model describing a com­
plex statistical process.

Because we are primarily concerned with text-in­
dependent speech, we simplify the statistical speaker
model by fixing the transition probabilities to be the
same, so that all state transitions are equally likely.
That is, we set aij equal to 11M While the sequencing
information of the states can contain some speaker­
specific information, it generally represents linguistic
information and has been shown experimentally to be
unnecessary for text-independent speech [18].

hidden state, weighted by the probability of being in
each state. With this summed probability we can pro­
duce a quantitative value, or score, for the likelihood
that an unknown feature vector was generated by a
particular GMM speaker model.

Despite the apparent complexity of the GMM,
model parameter estimates are obtained in an unsu­
pervised manner by using the expectation-maximiza­
tion (EM) algorithm [20]. Given feature vectors ex­
tracted from training speech from a speaker, the EM
algorithm iteratively refines model parameter esti­
mates to maximize the likelihood that the model
matches the distribution of the training data. This
training does not require additional information,
such as transcription of the speech, and the param­
eters converge to a final solution in a few iterations.

Applying the Model

With the GMM as the basic speaker representation,
we can then apply this model to specific speaker-rec­
ognition tasks of identification and verification. The
identification system is a straightforward maximum­
likelihood classifier. For a reference group of 5 speaker
models {A.]> 1l.:2, ... , A.s}, the objective is to find the
speaker identity 5 whose model has the maximum
posterior probability for the inpur feature-vector se­

quence X = {x]>"" xT}' The minimum-error Bayes'
rule for this problem is

Assuming equal prior probabilities of speakers, the
terms Pr(A.) and p(X) are constant for all speakers and
can be ignored in the maximum. By using logarithms
and assuming independence between observations,
the decision rule for the speaker identity becomes

(1)

M

p(x/A.) = L pA(x) ,
i=J

where

represents the parameters of the speaker model. Thus
the probability of observing a feature vector X t com­
ing from a speaker model with parameter A. is the sum
of the probabilities that X t was generated from each

in which T is the number of feature vectors and
p(xtlA.J is given in Equation 1. Figure 6(a) shows a
diagram of the speaker-identification system.

Although the verification task requires only a bi­
nary decision, it is more difficult to perform than the
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FIGURE 6. Speaker-recognition systems for identification and verification. The feature vectors extracted from the front­
end processing in Figure 4 are fed into speaker identification and verification systems. (a) In identification, the goal is to
pick the one speaker out of a group of 5 speakers whose model has the highest probability of generating the input fea­
ture vectors. (b) In verification, the system must decide if the input voice belongs to the claimed speaker or to another
background speaker. The likelihood ratio A(X) compares the score from the claimant model with that of a background
model. Then the likelihood ratio is compared with a threshold value 8. The claimed speaker is accepted if A(X) ~ 8 and
rejected if A(X) < 8.

If we apply Bayes' rule and discard the constant
prior probabilities for claimant and impostor speak­
ers, the likelihood ratio in the log domain becomes

tern is to apply a likelihood-ratio test to an input ut­
terance to determine if the claimed speaker is ac­
cepted or rejected. For an utterance X, a claimed
speaker identity with corresponding model A.c' and
the model of possible nonclaimant speakers A.c, the
likelihood ratio is

identification task because the alternatives are less
defined. Figure 6(b) shows a diagram of the speaker­
verification system. The system must decide if the
input voice belongs to the claimed speaker, having a
well-defined model, or to some other speaker, having
an ill-defined model. In a hypothesis-testing frame­
work, for a given input utterance and a claimed iden­
tity, the choice becomes Ho if X is from the claimed
speaker, or HI if Xis not from the claimed speaker.

A model of the universe of possible nonclaimant
speakers must be used to perform the optimum likeli­
hood-ratio test that decides between Hoand H]. The
general approach used in the speaker-verification sys-

Pr(X is from the claimed speaker)

Pr(X is not from the claimed speaker)

Pr(A.c1 X)

Pr(A.cI X ) .
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The term P(XIAd is the likelihood that the utterance
belongs to the claimed speaker and p(XIAc) is the
likelihood that the utterance does not belong to the
claimed speaker. The likelihood ratio is compared
with a threshold eand the claimed speaker is accepted
if A(X) ~ eand rejected if A (X) < e. The likelihood
ratio measures how much better the claimant's model
scores for the test utterance compared with a non­
claimant model. The decision threshold is then set to

adjust the trade-off between rejecting true claimant
utterances (false-rejection errors) and accepting
nonclaimant utterances (false-acceptance errors). In a

real-world application such as telephone banking,
this trade-off would be between security and cus­
tomer satisfaction.

The terms of the likelihood ratio are computed as
follows. The likelihood that the utterance X belongs
to the claimed speaker is directly computed as

1 T
10gp(XIAc) = T Llogp(xIAd. (2)

t=1

The 1/ Tfactor is used to normalize the likelihood for
utterance duration.

The likelihood that the utterance is not generated
from the claimed speaker is formed by using a collec­
tion of background-speaker models. With a set of B

background-speaker models, {Ai' ~, ... , AB}, the
background speakers' log-likelihood is computed as

where P(XIAb) is computed as in Equation 2. Except
for the 11 T factor, p(XI AC) is the joint probability
density that the utterance comes from a background
speaker if we assume equally likely speakers.

Background speakers have been successfully used
in several different speaker-verification systems to
form various likelihood-ratio tests [l0, 21]. The like­
lihood normalization provided by the background
speakers is important for the verification task because
it helps minimize the nonspeaker-related variations in
the test-utterance scores, allowing stable decision

thresholds to be set. The absolute-likelihood score of
an utterance from a speaker is influenced by many
utterance-dependent factors, including the speaker's
vocal characteristics, the linguistic content, and the
speech quality. These factors make it difficult to set a
decision threshold for absolute-likelihood values to
be used during different verification tests. The likeli­
hood-ratio normalization produces a relative score
that is more a function of the speaker and less sensi­
tive to nonspeaker utterance variations. Note that the
identification task does not need the normalization
because decisions are made by using likelihood scores
from a single utterance, requiring no inter-utterance
likelihood comparisons.

Background-Speaker Selection

Two issues that arise with the use of background
speakers for speaker verification are the selection of
the speakers and the number of speakers to use. Intu­
itively, the background speakers should be selected to
represent the population of expected impostors,
which is generally application specific. In some sce­
narios, we can assume that impostors will attempt to

gain access only from similar-sounding or at least
same-sex speakers (dedicated impostors). In a tele­
phone-based application accessible by a larger cross
section ofpotential impostors, on the other hand, the
impostors can sound very dissimilar to the users they
attack (casual impostors)-for example, a male im­
postor claiming to be a female user.

Previous systems have relied on selecting back­
ground speakers whose models (termed the ratio set,
or cohorts) are closest to or most competitive with
each enrolled speaker. This choice is appropriate for
the dedicated-impostor scenario but, as seen in the
experiments and discussed in Reference 10, it leaves
the system vulnerable to impostors with very dissimi­
lar voice characteristics. This vulnerability occurs be­
cause the dissimilar voice is not well modeled by the
numerator or denominator of the likelihood ratio.

Even though we can employ methods of rejecting
very dissimilar voices on the basis of thresholding the
probability score from the claimed speaker's model
[10], the approach of judicious background-speaker
selection was pursued here. The experiments that we
conducted examine both the same-sex and mixed-sex
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Thirty-two component GMMs were trained with twenty­
four seconds of speech and tested with three-second
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tion experiments on fifty sets of speakers randomly
selected from the pool of 630 available speakers and
averaging the results. This procedure helped average
out the bias of a particular population composition.
Population sizes of 10, 100,200,300,400,500,600,
and 630 were used. Figure 7 shows the speaker-iden­
tification accuracies for the various populations.

Under the near ideal TIMIT conditions, increas­
ing population size barely affects performance. This
result indicates that the limiting factor in speaker­
identification performance is not a crowding of the
speaker space. However, with telephone-line degrada­
tions the NTIMIT accuracy steadily decreases as
population size increases. The largest drop in accu­
racy occurs as the population size increases from 10 to

100. Above 200 speakers the decrease in accuracy be­
comes almost linear. With the full population of 630
speakers, there is a 39% gap between TIMIT accu­
racy (99.5%) and NTIMIT accuracy (60.7%). The
correct TIMIT speakers have an average rank of 1.01,
while the correct NT1MIT speakers have an average
rank of 8.29. A speaker's rank for a test utterance is
the position of his or her model's score within the
sorted list of speaker-model scores, with a rank of 1.0
representing the best-scoring speaker.

TIMIT and NTIMIT Results

impostor situations. Background speakers are selected
by using an algorithm described elsewhere [22].

Ideally, the number of background speakers should
be as large as possible to model the impostor popula­
tion better, but practical considerations of computa­
tion and storage dictate a small set of background
speakers. In the verification experiments, we set the
number of background speakers to ten. The limited
size was motivated by real-time computation consid­
erations and the desire to set a constant experimental
test. For a verification experiment on a given data­
base, each speaker is used as a claimant, while the re­
maining speakers (excluding the claimant's back­
ground speakers) act as impostors and we rotate
through all speakers. Large background-speaker sets
decrease the number of impostor tests.

Identification Experiments

Identification experiments were conducted on the
TIMIT [23], NTIMIT [24], and Switchboard [25]
databases (for more information on these databases
see the sidebar, "Speaker-Database Descriptions,"
along with Table 1, which lists the characteristics of
each database). The goal of the experiments was to ex­
amine the performance of the identification system as
a function ofpopulation size for both clean wideband
speech and telephone speech. The TIMIT perfor­
mance provides an indication of how crowded the
speaker space is under near ideal conditions. The
NTIMIT results indicate the performance loss from
using noisy telephone speech. Results on the more re­
alistic Switchboard database provide a better measute
of expected extemporaneous telephone-speech per­
formance and the effect of handset variability.

For the identification experiments on the TIMIT and
NTIMIT databases, all 630 speakers (438 males, 192
females) were used. Speaker models with 32-compo­
nent GMMs were trained by using eight utterances
with a total duration of approximately twenty-four
seconds. The remaining two utterances with a dura­
tion of approximately three seconds each were indi­
vidually used as tests (a total of 1260 tests).

Identification accuracy for a population size was
computed by performing repeated speaker-identifica-
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FIGURE 8. Speaker-identification accuracy as a function
of population size on the Switchboard database. Sixty­
four-component GMMs were trained with six minutes of
speech and tested with one-minute utterances.

For the complete 630-population TIMIT data­
base, there are no cross-sex errots, and male and fe­
male accuracies are 99.8% and 99.0%, respectively.
For the complete 630-population NTIMIT database,
there are four cross-sex errors. Accuracy is 62.5% for
male speakers versus 56.5% for female speakers.

When we examine the results from the NTIMIT
database, the main degradations appear to be noise
and bandlimiting. The TIMIT database has an aver­
age signal-to-noise ratio (SNR) of 53 dB, while the
NT1MIT database has an average SNR of36 dB. The
examination of sweep tones from each telephone line
used in the NTIMIT database shows little spectral­
shape variability. This result is not surprising, because
the telephone handset is the source of most spectral
shaping and a single handset was used for all record­
ings. Detailed studies that systematically impose vari­
ous degradations on TIMIT speech (e.g., bandlimit­
ing, noise addition) to explain the performance gap
berween the TIMIT and NTIMIT databases can be
found elsewhere [26, 27].

Recently published results based on a different
training and testing paradigm with the complete 630­
speaker TIMIT database also show a very high accu­
racy of95.6% with a text-independent technique that
scores only selected phonetic clusters [28]. To the

author's knowledge, there have been no published
speaker-identification experiments conducted on the
complete NTIMIT database.

Switchboard Results

For the Switchboard database, 113 speakers (50
males, 63 females) were used with 64-component
GMMs trained by using six minutes of speech ex­
tracted equally from rwo conversations. Testing was
performed on a total of 472 utterances of one-minute
duration. There were rwo to rwelve test utterances per
speaker with an average of four utterances. Identifica­
tion accuracy was computed as above, except 100 sets
per population size were used for populations of 10,
25,50,75, 100, and 113. Figure 8 shows the speaker­
identification accuracies for the various populations.

Although not directly comparable, the Switch­
board results exhibit the same decreasing trend as the
NTIMIT results shown in Figure 7, but not as rap­
idly. Because of the increased training and testing data
and the higher SNRs (typically 40 dB or higher), the
Switchboard results are higher than the NTIMIT
results. For the 113-speaker population, the overall
accuracy is 82.8%, with an average rank of 2.29.
There are rwo cross-sex errors, and the male speakers
have an accuracy of 81.0% compared with an accu­
racy of 84.3% for the female speakers.

The effect of handset variability on the results was
examined by using the telephone numbers associated
with the training and testing utterances. For each
conversation in the Switchboard database, a coded
version of the callers' telephone numbers was given.
Conversations originating from identical telephone
numbers were generally assumed to be over the same
telephone handset. Conversely, we could have as­
sumed that there is a correlation berween conversa­
tions originating from different telephone numbers
and callers using different handsets.

Neither assumption is strictly true, since callers can
use different telephone units with the same telephone
number, and similar telephone units can be used at
different telephone numbers. There are, of course,
other factors, such as different transmission paths and
acoustic environments, which also change with differ­
ent telephone numbers. The aim here was to examine
the performance when training and testing utterances

1251007550

Switch board

Population size

1.0

0.9

0.8
>-u
~ 0.7
::J
u
u 0.6
ltl
c
0 0.5
ro
u 0.4;;::
:;::
c

0.3(])

"0

0.2

0.1

0
0 25

VOLUME B. NUMBER 2. 1995 THE LINCOLN LABORATORY JOURNAL 183



• REYNOLDS
Automatic Speaker Recognition Using Gaussian Mixture Speaker Models

SPEAKER-DATABASE DESCRIPTIO S

FOUR DATABASES WERE USED to
conduct speaker-recognition ex­
periments at Lincoln Laboratory:
TIMIT, TIMIT, Switchboard
and YOHO (see Table 1).

The TIMIT database, devel­
oped by Texas Instruments, Inc.
and MIT, allows the examination
of speaker-identification perfor­
mance under almost ideal condi­
tions. With an 8-kHz bandwidth
and a lack of intersession variabil­
ity, acoustic noise, and micro­
phone variability and distor­
tion, TIMIT's recognition errors
should be a function of overlap­
ping speaker distributions. Fur­
thermore, each utterance is a read
sentence approximately three sec­
onds long. The sentences are de­
signed to contain rich phonetic
variability. Because of this vari­
ability, speaker-recognition per­
formance that uses three-second
TIMIT utterances is higher than
using three-second utterances ex­
tracted randomly from extempo­
raneous speech.

The TIMIT database, devel­
oped by EX, is the same
speech from the TIMIT database
recorded over local and long­
distance telephone loops. Each
sentence was played through an
artificial mouth coupled to a car­
bon-button telephone handset via
a telephone test frame designed to
approximate the acoustic cou­
pling between the human mouth
and the telephone handset. The

speech was transmitted to a local
or long-distance central office and
looped back for recording.

This arrangement provides the
identical TIMIT speech, but de­
graded through carbon-button
transduction and actual telephone
line conditions. Performance dif­
ferences between identical experi­
ments on TIMIT and TIMIT
should arise mainly from the ef­
fects of the microphone and tele­
phone transmission degradations.

The Switchboard database,
developed by Texas Instruments,
Inc., is one of the best telephone­
speech, speaker-recognition data­
bases available. Large amounts of
spontaneous telephone speech
from hundreds of speakers, col­
lected under home and office
acoustic conditions with varying
telephone handsets, make recog­
nition results from Switchboard
more realistic for telephone-based
applications. Because the channel
conditions tend to be clean, chan­
nel noise is not a major issue.
However, background noise from
radios or televisions can be found
in some recordings.

To produce the Switchboard
database, engineers recorded each
side of a two-way conversation
separately to isolate speakers.
However, because ofperformance
limits of the telephone-network
echo canceling, even single con­
versation halves may have con­
tained low-level opposite-channel

echo. In this work, speaker turns
from the transcripts and differen­
tial-energy echo suppression were
used to isolate single-speaker
speech for training and testing.

The YOHO database, devel­
oped by ITT, was designed to sup­
port text-dependent speaker-veri­
fication research such as is used in
secure-access technology. It has a
well-defined train and test sce­
nario in which each speaker has
four enrollment sessions when he
Ot she is prompted to read a series
of twenty-four combination-lock
phrases. Each phrase is a sequence
of three two-digit numbers (e.g.,
"35-72-41"). There are ten verifi­
cation trials per speaker, consist­
ing of four phrases per trial. The
vocabulary consists of fifty-six
two-digit numbers ranging from
21 to 97 (see Reference 10 for the
selection rules). The speech was
collected in an office environment
with a telephone handset con­
nected to a workstation. Thus the
speech has a telephone bandwidth
of 3.8 kHz, but no telephone
transmission degradations.

The YOHO database is differ­
ent ftom the above text-indepen­
dent, telephone-speech databases,
which allows us to demonstrate
how the GMM verification sys­
tem, although designed for text­
independent operation, can also
perform well under the vocabu­
lary-dependent constraints of this
application.
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Table 1. Characteristics of the Speaker Databases

Database Number of Number of Channel Acoustic Handset Intersession
Speakers Utterances per Environment Interval

Speaker

TIMIT 630 10 read Clean Sound Wideband None
sentences booth microphone

NTIMIT 630 10 read PSTN* long Sound Fixed carbon None
sentences distance and local booth button

Switch board 500 1-25 PSTN long Homeand Variable Days-
conversation distance office weeks

YOHO 138 4/train, 10/test Clean Office Telephone, Days-
combination lock high quality months

* Public Switched Telephone Network

Table 2. Switchboard Identification Experiment

tal of 97 test utterances (one to six utterances per
speaker). On this task, using ten-second and sixty­
second utterances, the GMM system has an accuracy
of94% at ten seconds and 95% at sixty seconds com­
pared with 96% at sixty seconds for ITT's nearest
neighbor classifier [29]; 90% at ten seconds and 95%
at sixty seconds for BBN's Gaussian classifier [30];
and 89% at ten seconds and 88% at sixty seconds for
Dragon Systems' continuous speech-recognition clas­
sifier [31]. The testing paradigm was the same for
these systems; the training paradigm was not. The ac­
curacy was increased to almost 100% for both of the
utterance lengths by using robust scoring techniques
[30, 32]. As above, there was significant overlap be­
tween training and testing telephone handsets, which
favorably biases performance.

originate from the same and different telephone
numbers under the assumption that the telephone
number implies a handset.

Since the speaker models were trained from two
conversations, there were at most two training tele­
phone numbers (handsets) per speaker. Of the 113
speakers, 95 trained with utterances from the same
telephone number. The first row in Table 2 shows the
number of test utterances with and without trainltest
telephone number matches. A train/test match oc­
curred if a speaker's testing utterance had the same
telephone number as either of the training utterances.
There is a clear dominance in this test of matched
telephone numbers.

The second row of Table 2 shows the number of
misclassifications for the two groups. Here we see that
most errors are from the mismatched conditions;
45% of the total number of errors come from the
mismatched group comprising only 16% of the total
number of tests. The error rate of the mismatched
group is almost five times that of the matched group,
indicating the sensitivity to acoustic mismatches be­
tween training and testing conditions. That so many
mismatch errors occur even with channel compensa­
tion further indicates that the degradations are more
complex than a first-order linear filter effect.

Other published speaker-identification results for
the Switchboard database typically are based on a
smaller 24-speaker set (12 male, 12 female) with a to-

Number of
test utterances

Number of
errors

Percent error

No Matching
Telephone
Numbers

74

35

47.3%

Matching
Telephone
Numbers

398

43

10.8%
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Verification Experiments

Verification experiments were conducted on the
TIMIT, NTIMIT, Switchboard, and YOHO [l0, 33]
databases. The TIMIT, NTIMIT and Switchboard
databases were again used to gauge verification per­
formance over the range of near ideal speech to more
realistic, extemporaneous telephone speech. The
YOHO database was used to demonstrate perfor­
mance for a vocabulary-dependent, office-environ­
ment, secure-access application. As previously dis­
cussed, the composition of the impostor speakers can
greatly affect performance. Experiments using same­
sex impostors and mixed-sex impostors are presented
in conjunction with two different background­
speaker selection procedures. There were two same­
sex experiments and one mixed-sex experiment: male
speakers only (M), female speakers only (F), and male
and female speakers together (M+F).

By using the background-speaker selection algo­
rithm [22], we selected two background-speaker sets
of size ten from the complete speaker set of each data­
base. In the first background-speaker set, we selected
ten speakers who were close to the claimant speaker
but maximally spread from each other (denoted 10
msc in the experiments below). In the second back­
ground set, we selected five maximally spread close
speakers (5 msc) and five speakers who were far from
the claimant speaker but maximally spread from each
other (5 msf). Since the msf speakers were selected
from the complete database, they generally repre­
sented opposite-sex speakers. In all experiments, the
background speaker's utterances were excluded from
the impostor tests.

Results are reported as the equal-error rate (EER)
computed by using a global threshold. This threshold
is found by placing all the true test scores and impos­
tor test scores in one sorted list and locating the point
on the list at which the false acceptance (FA) rate (the

percent of impostor tests above the point) equals the
false rejection (FR) rate (the percent of true tests be­
low the point); the EER is the FA rate at this point.
The EER measures the overall (speaker-independent)
system performance by using the largest number of
true and impostor tests available.

Results using speaker-dependent thresholds (i.e.,
treating each speaker's true-utterance and impostor­
utterance scores separately) are generally higher than
global threshold results, but may have lower statistical
significance caused by the use of a smaller number of
tests available per speaker.

TIMIT and NTIMIT Results

For the verification experiments on TIMIT and
NTIMIT, the 168 speakers (112 males, 56 females)
from the test portion of the databases were used. As in
the identification experiment, speaker models with
32-component GMMs were trained by using eight
utterances with a total duration of approximately
twenty-four seconds. The remaining two utterances
with duration of approximately three seconds each
were individually used as tests. Experiments were per­
formed by using each speaker as a claimant, while the
remaining speakers (excluding the claimant's back­
ground speakers) acted as impostors, and by rotating
through all the other speakers. Table 3 shows the
number of claimant and impostor trials for the M, F,
and M+F experiments.

Table 3. Claimant and Impostor Trials for the TIMIT and NTIMIT Databases"

Experiment Number of Number of true Number of impostor Total number of Total number of
speakers tests per speaker tests per speaker true tests impostor tests

M 112 2 202 224 22,624

F 56 2 88 110 4945

M+F 168 2 313 334 52,538

" Background speaker set size of ten
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Table 4. Equal-Error Rate (Percent) for Experiments on the TIMIT and NTIMIT Databases·

Database M M F F M+F M+F
(10 msc) (5 msc, 5 msf) (10 msc) (5 msc, 5 msf) (10 msc) (5 msc, 5 msf)

TIMIT 0.14 0.32 0.28 0.71 0.50 0.24

NTIMIT 8.15 8.48 8.79 10.44 8.68 7.19

* msc indicates maximally spread close-background speakers; msf indicates maximally spread far-background speakers

Table 4 shows the results for the three experimental
conditions (M, F, and M+F) and two background­
speaker selections. As with the speaker-identification
results, almost perfect performance is obtained on the
TIMIT database; the NTIMIT performance is sig­
nificantly worse. The NTIMIT best M+F EER is
about thirty times worse than the TIMIT M +F EER.
Comparing the M+F experiments with and without
the far-background speakers makes it clear that inclu­
sion of the dissimilar speakers improved performance
by better modeling the impostor population. As ex­
pected, the dissimilar speakers for the male speakers
were mainly female speakers, and vice versa. How­
ever, since there was a predominance of male speakers
in the M+F test, the improvement is not as great as
may have occurred with a more balanced test.

Switchboard Results

The verification paradigm on the Switchboard data­
base was different from that used on the TIMIT and
NTIMIT databases. Here, 24 claimant speakers (12
males, 12 females) were each represented by 64-com­
ponent GMMs trained by using three minutes of

speech extracted equally from four conversations.
A total of 97 claimant utterances of sixteen-second
average duration were selected from conversations.
Claimants had between one and six true tests with an
average of four. A separate set of428 utterances ofsix­
teen-second average duration from 21 0 speakers (99
males and 111 females) was used for the impostor
tests. The utterances were designated by using speaker
turns from the transcripts to isolate single-speaker
speech. Table 5 shows the number of claimant and
impostor trials for the M, F, and M+F experiments.

Two background-speaker sets were used from this
relatively small claimant population: a same-sex set
(ss) , in which each speaker used all other claimant
speakers of the same sex as background speakers, and
a selection consisting of five maximally spread close­
background and five maximally spread far-back­
ground speakers (essentially a mixed-sex set). Table 6
shows the results for these experiments.

We were initially surprised to see that the same-sex
background set (11 ss) did worse than the mixed-sex
background set (5 msc, 5 ms£) on the M and F ex­
periments. Since same-sex impostors were used in

Table 5. Claimant and Impostor Trials for the Switchboard Database *

Experiment Number of Average number of Number of impostor Total number of Total number of
speakers true tests per speaker tests per speaker true tests impostor tests

M 12 4 210 47 2520

F 12 4 218 50 2616

M+F 24 4 428 97 10,272

* Separate claimant and impostor populations used
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Table 6. Equal-Error Rate (Percent) for Experiments on the Switchboard Database*

Database

Switchboard

M
(11 ss)

5.83

M
(5 msc, 5 msf)

4.25

F
(11 ss)

11.39

F
(5 msc, 5 msf)

7.99

M+F
(11 ss)

8.25

M+F
(5 msc, 5 msf)

5.15

" msc indicates maximally spread close-background speakers; msf indicates maximally spread far-background speakers;
ss indicates same sex

these tests, we expected that using same-sex back­
ground speakers would perform better than a back­
ground set split between males and females.

However, closer examination of the utterances in
error showed that they generally were extracted from
a mixed-sex conversation and that the echo from the
opposite side was contaminating the utterance. Thus,
for example, some ostensibly male-only impostor ut­
terances actually contained female speech. As with
the TIMIT and NTIMIT experiments, a decrease in
EER was obtained in the M+F experiment by using
the mixed sex (close and far) background-speaker set.

Examination of the claimant-training and claim­

ant-testing utterance telephone numbers also found
that only sixteen of the claimant tests were from tele­
phone numbers unseen in the training data, which
favorably biases the FR rate. In the mismatched cases,
some speakers had high FR errors.

YOHO Results

For the YOHO experiments, each speaker was mod­
eled by a 64-component GMM trained by using the
four enrollment sessions (average of six minutes).
Each speaker had ten verification sessions consisting

of four combination-lock phrases (average of fifteen
seconds). Experiments consisted of using each
speaker as a claimant, while the remaining speakers
(excluding the claimant's background speakers) acted
as impostors, and rotating through all speakers. Like
the TIMIT and NTIMIT databases, there was a gen­
der imbalance: 106 male speaker and 32 female
speakers. Table 7 displays the number ofclaimant and
impostor trials for the M, F, and M+F experiments.

Table 8 gives results for three experimental condi­
tions with the two background-speaker sets. In addi­
tion to the EER, the table also gives the false-rejection
rate at false-acceptance rates of 0.1 % and 0.01%.
These latter numbers measure performance at tight
operating specification for an access-control applica­
tion. We see that very low error rates are achievable
for this task because of the good quality and vocabu­
lary constraints of the speech. The vocabulary con­
straints mean that a speaker's GMM need model only
a constrained acoustic space, thus allowing an inher­
ently text-independent model to use the text-depen­
dent training and testing data effectively.

The high performance is also found for identifica­
tion using the same data: accuracies of 99.7% for

Table 7. Claimant and Impostor Trials for the YOHO Database*

Experiment Number of Number of true Number of impostor Total number of Total number of
speakers tests per speaker tests per speaker true tests impostor tests

M 106 10 950 1060 100,700

F 32 10 210 318 6720

M+F 138 10 1268 1378 175,105

"Background speaker set size of ten
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Table 8. Equal-Error Rate (Percent) and False-Rejection Rate at False-Acceptance Rates
of 0.1% and 0.01% for Experiments on the YOHO Database·

Database M M F F M+F M+F
(10 mse) (5 mse, 5 msf) (10 mse) (5 mse, 5 msf) (10 mse) (5 mse, 5 msf)

YOHO 0.20 0.28 1.88 1.57 0.58 0.51

FR at FA =0.1% 0.38 0.38 1.89 1.89 0.87 0.65

FR at FA =0.01% 0.94 2.36 2.51 3.77 2.40 2.40

* msc indicates maximally spread close-background speakers; msf indicates maximally spread far-background speakers

males, 97.8% for females, and 99.3% for males and

females. The close-background and far-background
selections boosted performance for the M+F experi­
ment, which again was dominated by male speakers.

J.P. Campbell presents verification and identifica­
tion results on the YOHO database from several dif­

ferent systems [33]. Compared with the 0.5% EER of
the GMM system, ITT's continuous speech-recogni­
tion classifier has an EER of 1.7% [10], ITT's nearest
neighbor classifier has an EER of 0.5%, and Rutgers

University's neural tree network has an EER of 0.7%
[34]. These results can be only loosely compared,
however, since different training and testing para­

digms and background speaker sets were used (e.g.,
ITT's continuous speech-recognition system uses five
background speakers).

Conclusion

In this article, we have reviewed the research, devel­

opment, and evaluation of automatic speaker-recog­
nition systems at Lincoln Laboratory. Starting from
the speaker-dependent vocal-tract information con­

veyed via the speech spectrum, we outlined the devel­
opment of a statistical speaker-model approach to
represent the underlying characteristic vocal-tract

shapes of a person's voice. With a text-independent
assumption, this statistical speaker model leads to the
Gaussian mixture speaker model that serves as the ba­

sis for our speaker identification and verification sys­
tems. The Gaussian mixture model provides a simple

yet effective speaker representation that is computa­
tionally inexpensive and provides high recognition

accuracy on a wide range ofspeaker recognition tasks.

Experimental evaluation of the performance of the

automatic speaker-recognition systems was con­
ducted on four publicly available speech databases:
TIMIT, NTIMIT, Switchboard, and YOHO. Each

database offers different levels of speech quality and
control. The TIMIT database provides near ideal
speech with high-quality clean wideband recordings,

no intersession variabilities, and phonetically rich
read speech. Under these ideal conditions, we deter­
mined that crowding of the speaker space was not an

issue for population sizes up to 630. An identification
accuracy of 99.5% was achieved for the complete
630-speaker population. The NTIMIT database adds
real telephone line degradations to the TIMIT data,

and these degradations caused large performance
losses. The NTIMIT accuracy dropped to 60.7% for
the same 630-population identification task. For veri­
fication, the TIMIT EER was 0.24%, compared with
7.19% on NTIMIT.

The Switchboard database provides the most real­
istic mix of real-world variabilities that can affect
speaker-recognition performance. The performance

trends on Switchboard appeared similar to those
found with NTIMIT, producing an 82.8% identifi­
cation accuracy for a 113-speaker population and an

EER of 5.15% for a 24-speaker verification experi­
ment. The factors degrading the NTIMIT and
Switchboard performances, however, are different.

High noise levels seem to be the main degradation in
NTIMIT, whereas handset variability and cross-chan­
nel echo are the two major degradations in Switch­

board. For the identification experiments, we found
that the error rate for utterances from telephone
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numbers unseen in the training utterances was almost
five times that of utterances from telephone numbers
found in the training utterances.

Finally, results on the YOHO database show that
low error rates are possible for a secure-access verifica­
tion application even with a text-independent verifi­
cation system. An overall EER of 0.51 % and a false­
rejection rate of 0.65% at a 0.1 % false-acceptance
rate were obtained. The constrained vocabulary along
with the good-quality speech allowed the model to

focus on the sounds that characterize a person's voice
without extraneous channel variabilities.

As the experimental results show, speaker-recogni­
tion performance is indeed at a usable level for par­
ticular tasks such as access-control authentication.
The major limiting factor under less controlled situa­
tions is the lack of robustness to transmission degra­
dations, such as noise and microphone variabilities.
Large efforts are under way to address these limita­
tions, exploring areas such as understanding and
modeling the effects of degradations on spectral fea­
tures, applying more sophisticated channel compen­
sation techniques, and searching for features more
immune to channel degradations.

For Further Reading

Most current research in speaker-recognition systems
is published in the proceedings from the following
conferences: International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Interna­
tional Conference on Spoken Language Processing
(ICSLP), and European Conference on Speech Com­
munication and Technology (Eurospeech). Other
publications that feature speaker-recognition research
are IEEE Transactions on Speech and Audio Processing

and ESCA Speech Communication Journal Excellent,
general review articles on the area of speaker recogni­
tion can be found in References 3 and 35 through 38.
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