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• Lincoln Laboratory is investigating the use of high-resolution fully
polarimetric synthetic-aperture radar (SAR) imagery to detect and classify
stationary ground targets. This article summarizes a study in which data
collected by the Lincoln Laboratory 33-GHz SAR were used to perform a
comprehensive comparison of automatic target recognition (ATR) performance
for several combinations ofpolarization and resolution. The Lincoln Laboratory
baseline ATR algorithm suite was used, and it was optimized for each
polarizationlresolution case. The polarizations evaluated were HH and PWF;
the resolutions evaluated were 1 ft X 1 ft and 1 m X 1 m. The data set used for
this study contained approximately 74 km2 of clutter (56 km2 of mixed clutter
and 18 km2 of highly cultural clutter) and 136 tactical target images divided
equally between tanks and howitzers.

I
N SUPPORT OF THE Critical Mobile Targets
(CMT) program sponsored by the Advanced Re­
search Projects Agency (~A), Lincoln Labora­

tory has developed a complete end-to-end automatic
target recognition (ATR) system that utilizes two­
dimensional synthetic-aperture radar (SAR) imagery
[1]. The ATR system is intended to address the sur­
veillance and targeting aspects of the ARPA War­
breaker program; this program requires a sensor that
can search large areas and also provide fine enough
resolution to detect and "identify the presence of mis­
sile launch systems such as a SCUD.

Currently there is much interest in examining SAR
ATR performance trade-offs with regard to polariza­
tion and resolution. For example, what performance
gain does sensor data at I-ft X I-ft resolution provide
over data at I-m X I-m resolution? Similarly, what
performance gain does fully polarimetric data provide

over single-polarization data? Several factors contrib­
ute to the difficulty in answering such questions. SAR
sensors operated by various organizations have differ­
ent polarization and resolution capabilities. Data
collections vary with respect to target types, target de­
ployments, countermeasures, season, and geographi­
cal region. Organizations evaluating ATR perfor­
mance typically test their own ATR algorithms by
using a single data set collected by one SAR sensor.
Because of these factors, direct and meaningful com­
parisons of ATR performance trade-offs with regard
to polarization and resolution are difficult.

Lincoln Laboratory has a large database of clutter
and target-in-clutter imagery, which can be used for
comprehensive ATR performance comparisons for
various combinations of polarization and resolution.
The data were gathered by the Lincoln Laboratory
Millimeter-Wave (33 GHz) SAR sensor [2], a high-
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resolution (1 ft X 1 ft) fully polarimetric Ka-band
SAR with a 7-km standoff range. Because the SAR
sensor data are fully polarimetric, the linear polariza­
tion components-HH (horizontal transmit, hori­
zontal receive), HV (horizontal transmit, vertical re­
ceive), and VV (vertical transmit, vertical receive)­
can be combined to form any desired polarization
combination (e.g., LL, LR, RR, HH-vv, and PWF).
Also, by processing less than the full bandwidth of the
SAR data, we can produce imagery that emulates im­
agery from a lower-resolution sensor.

The Lincoln Laboratory ATR system has three
main stages: detection (or prescreening), discrimina­
tion, and classification. In the detection stage, a two­
parameter constant false-alarm rate (CFAR) detector
is used as a prescreener to select candidate targets in a
SAR image on the basis oflocal brightness. In the dis­
crimination stage, a target-sized two-dimensional
matched filter accurately locates the position of can­
didate targets and determines their orientation. Then
discrimination features (including textural, size, con­
trast, and polarimetric features) are calculated and
used to reject cultural and natural-clutter false alarms
[3, 4]. In the classification stage, a two-dimensional
pattern-matching algorithm provides additional false­
alarm rejection and then classifies the remaining de­
tections by target type (i.e., tank or howitzer).

(a)

This article provides a direct performance com­
parison of the combinations of polarization and reso­
lution cases we tested. Also, because large amounts of
clutter and target data were used, the results are statis­
tically significant down to low false-alarm rates.

The next section gives an overview of the Lincoln
Laboratory SAR sensor and the data processing tech­
niques used in this study. The following section gives
an overview of the ATR system used in this study, and
describes the three stages (detection, discrimination,
and classification) in detail. A subsequent section
summarizes the performance studies. First, we com­
pare performance using I-ft X I-ft resolution data
and PWF and HH polarizations. Then we compare
performance using I-m X I-m resolution data and
PWF and HH polarizations. We also give the perfor­
mance results for a dual-resolution scheme that uses
I-m X I-m PWF data in the prescreener stage and
I-ft X I-ft data in the discrimination and classifica­
tion stages. The appendiX discusses the features used
in the discrimination stage.

The SAR Sensor and Data Processing Techniques

To evaluate the performance of the ATR system, we
used high-resolution (l ft X 1 ft) fully polarimetric
target data and clutter data gathered by the Lincoln
Laboratory SAR sensor at a 22.5° depression angle

(b)

FIGURE 1. The Lincoln Laboratory synthetic-aperture radar (SAR) sensor. (a) The sensor platform is a Gulfstream G1
aircraft, shown here in flight. (b) The radome, located at the bottom of the aircraft, contains the sensor antenna.
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FIGURE 2. A 1-ft X 1-ft resolution PWF SAR image of an
office building in Lincoln, Massachusetts. The high
resolution and polarimetric processing allow for near­
optical image quality. Cars are not seen because the
parking lot was empty when the SAR data were obtained.

and a 7-km slant range. Figure 1 shows the sensor,
which collects single polarization (HH, HV; and VV)
data that can be combined linearly to form any de­
sired transmit and receive polarization combination.
In addition, these three channels can be processed by
using an optimal polarimetric processing technique
known as the polarimetric whitening filter (PWF)
[5, 6]. The performance of the ATR system was evalu­
ated by using single-polarization-channel radar imag­
ery (HH) and PWF imagery. In addition, these data
were reprocessed to a lower resolution in order to
emulate a I-m X I-m sensor.

Figure 2 shows an example of the imagery gathered
by the Lincoln Laboratory SAR sensor; this figure is a
I-ft X I-ft resolution PWF image of an office build­
ing located in Lincoln, Massachusetts. The high-reso­
lution data and polarimetric processing allow for
near-optical image quality, which is evident when we
compare the SAR image with the corresponding
aerial photograph of the office building shown in Fig­
ure 3. The SAR image was obtained under clear
weather conditions (and during off hours, which ex­
plains the lack of vehicles in the parking lot). How-

FIGURE 3. An aerial photograph of the office building in
Lincoln, Massachusetts, shown in Figure 2. Comparison
with the 1-ft x 1-ft resolution PWF SAR image in Figure 2
demonstrates the high quality of data gathered with the
Lincoln Laboratory SAR sensor.

ever, the quality and resolution of the SAR image
would not have been degraded by dense fog or thick
cloud cover. Thus a SAR sensor has a significant ad­
vantage over optical sensors: SAR image quality is not
dependent on weather conditions, and the SAR sen­
sor can be used during the day or at night. In addi­
tion, SAR sensors can image large areas from a long
distance.

The SAR image in Figure 2 was formed by using
PWF processing, which optimally combines the HH,
HV; and VV polarization components. PWF process­
ing enhances the quality of the imagery in twO ways:
(1) the amount of speckle in the imagery is mini­
mized, and (2) the edges of objects such as the build­
ing are more sharply defined. As a result, PWF-pro­
cessed imagery is visually much clearer than
single-polarization-channel imagery. For comparison,
Figure 4 shows a single-polarization-channel image
(HH) of the same scene. The speckle inherent in
single-polarization SAR imagery obscures much of
the detail visible in the PWF SAR image in Figure 2.
In addition, PWF-processed imagery improves the
performance of all three stages of the ATR system
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FIGURE 4. A 1-ft X 1-ft resolution HH SAR image of the
office building in Lincoln, Massachusetts. Although
many features are visible in this image, the speckle inher­
ent in single-polarization SAR imagery obscures much
of the detail seen in the 1-ft x 1-ft PWF SAR image.

FIGURE 5. A 1-m x 1-m resolution PWF SAR image of the
office building in Lincoln, Massachusetts. This image
has been oversampled to match the pixel spacing of the
1-ft x 1-ft SAR images in Figures 2 and 4. Some image de­
tail has been lost at the reduced resolution, but the
speckle reduction provided by PWF processing pro­
duces a clear image.
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compared to the performance achieved by using
single-polarization-channel imagery. The improve­
ment occurs because PWF processing reduces the
clutter variance and thus enhances target signatures
relative co the clutter background.

In addition, all the target data and clutter data
were reprocessed co I-m X I-m resolution in order to
investigate end-co-end ATR system performance for a
reduced-resolution sensor. Figures 5 and 6 show ex­
amples of I-m X I-m PWF-processed SAR data and
single-polarization HH SAR data, respectively. The
I-m X I-m HH image in Figure 6 is clearly domi­
nated by speckle. PWF processing reduces the speckle
CO an acceptable level, producing an image ofgood vi­
sual quality as shown in Figure 5. However, the PWF­
processed image in Figure 5 does not approach the
near-optical image quality of the I-tt X I-tt PWF im­
age shown in Figure 2.

The Baseline ATR System

This section describes the three stages-detection,
discrimination, and classification-of our baseline

FIGURE 6. A 1-m x 1-m resolution HH SAR image of the
office building in Lincoln, Massachusetts. This image
has been oversampled to match the pixel spacing of the
1-ft x 1-ft SAR images in Figures 2 and 4. Even though
this single-polarization image has the same resolution
as Figure 5, it is evident that this image is dominated by
speckle, which results in a lower-quality image.
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FIGURE 7. A block diagram of the three-stage SAR ATR system. The detector, or prescreener, selects candidate targets
in the image; the discriminator rejects natural-clutter false alarms while accepting real targets; and the classifier rejects
man-made clutter and classifies the remaining target detections by vehicle type.

(1)

SAR ATR system. Figure 7 shows a block diagram of
the system. The three stages are described below.

Stage 1: Detection and Prescreening

In the first stage of processing, a two-parameter
CFAR detector [7] is used as a prescreener; this stage
ofprocessing selects candidate targets in the image on
the basis of local brightness (i.e., by searching for
bright returns in units of dB). Figure 8 is a sketch of
the two-parameter CFAR detector used by the
prescreener. The detector is defined by the rule

X t -f1c K
--.- > CFAR'

(Jc

standard deviation of the clutter. A guard area exists
so that the target will not affect the clutter estimates.
The stencil size varies with resolution and the type of
target of interest; for tactical targets the stencil con­
tains 160 cells for I-m X I-m data and 640 cells for
1-& X 1-& data. If the amplitude distribution of the
clutter were Gaussian, then the CFAR detector would
provide a constant false-alarm rate for any given value
of KCFAR [7]. Because the clutter distributions of

where X
t
is the amplitude of the test cell, f1c is the es­

timated mean of the clutter amplitude, 0-c is the esti­
mated standard deviation of the clutter amplitude,
and KCFAR is a constant that controls the false-alarm
rate. If the detection statistic calculated in Equation 1
exceeds the constant KCFAR' the test cell is declared to
be a target; if not, the test cell is declared to be clutter.
Since the SAR image is in dB units, the detector rule
defined in Equation 1 is equivalent to the expression

Guard area

t
Test cell Target

TiC
-.- > K CFAR '

(Jc

where T/ C =X, - f1c is the peak target-to-average clut­
ter ratio (in dB); the quantity o-c is referred to as the
log standard deviation of the clutter.

As illustrated in Figure 8, the test cell is in the cen­
ter of a boundary stencil, and the cells in the bound­
ary stencil are used to estimate the local mean and log

FIGURE 8. Diagram of the CFAR detection algorithm.
First-order and second-order clutter statistics are esti­
mated from the data in the boundary stencil and com­
pared with the test cell. The guard area prevents target
scatters from affecting the clutter estimates.
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Table 1. List of Discrimination Features

d(X) = ~(X - M/i-1(X - M), (2)
n

tures into a single discrimination statistic. This subset
varies with polarization and resolution. The choice of
features used to determine the discrimination statistic
is discussed in more detail in the section entitled "Per­
formance of the ATR System." The discrimination
statistic is calculated as a quadratic distance metric,

where n is the number of features in the subset, M
and i are estimates of the mean vector and covari­
ance matrix of the features in the subset, and X is the
vector of corresponding features measured from the
detected object [9]. The quantities M and L are esti­
mated by using a set of training feature vectors calcu­
lated from an independent set of non-netted target­
training images (targets that are not concealed by
radar-scattering camouflage nets).

The distance metric d(X) represents a statistical
measure of the distance of the detected object from
the target class [l 0]. A theoretical analysis of the per­
formance of this discriminator has been performed
[4, 9], under the assumption that the features mea­
sured from the detected object are jointly Gaussian.
Many of the features listed in Table 1 clearly do not
satisfY this assumption. Thus, in this study, the

Standard deviation
Fractal dimension
Weighted fill

Mass
Diameter
Normalized rotational inertia

Peak CFAR
Mean CFAR
Percent bright CFAR

Percent pure (odd or even)
Percent pure even
Percent bright even

Textural features

Size features

Contrast features

Polarimetric features
(fully polarimetric

data only)

high-resolution data are only approximately Gaussian
[8], the CFAR detector does not always yield a con­
stant false-alarm rate; however, the CFAR detector is
still a reasonable algorithm for detecting targets in
clutter.

Because a single target can produce multiple
CFAR detections, the detections in target-sized re­
gions are clustered together. Then a 128-ft X 128-ft
region of interest (ROI) around each cluster center is
extracted and passed to the discrimination stage of
the ATR system for further processing.

Stage 2: Discrimination

The discriminator analyzes each 128-ft X 128-ft ROI
that it receives from the detector. The goal of dis­
crimination processing is to reject clutter false alarms
while accepting real targets, thereby reducing the
computational load in the classification stage. The
discrimination stage consists of three steps: (1) deter­
mining the position and orientation of a detected ob­
ject, (2) computing textural, size, contrast, and pola­
rimetric features, and (3) combining the features into
a discrimination statistic that measures how target­
like the detected object is.

To determine the position and orientation of the
object, the discrimination algorithm places a target­
sized rectangular template on the image; the template
is slid in range and cross-range and rotated until the
energy within the template is maximized. This object
position estimate is more accurate than the estimate
produced in the prescreening stage. The estimation
operation is also computationally reasonable because
it is performed only on the regions of interest passed
by the prescreener. Because the target is assumed to be
brighter than the surrounding clutter, the operation is
similar to processing an image with a two-dimen­
sional matched filter when the orientation of the tar­
get is unknown.

The second step in the discrimination stage calcu­
lates twelve discrimination features (nine for single­
polarization data). These features, which are listed in
Table 1, are described in detail elsewhere [3, 4]. The
appendix gives a brief description of the features used
in this stage.

The third and final step in the discrimination stage
combines a subset of the twelve discrimination fea-
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thresholds were set empirically, as explained in the
following section.

For an actual target, the quadratic distance metric
calculated by using Equation 2 is small, and the corre­
sponding ROI will be passed from the discrimination
stage to the classification stage for further processing.
Most clutter false alarms produce a large value for the
distance metric d(X), and will be rejected in the dis­
crimination stage. Some man-made clutter discretes
that are target-like (such as trucks and other vehicles)
will pass the discrimination stage; therefore, the clas­
sification stage of the ATR system must have the abil­

ity to reject them.

Stage 3: Classification

A mean-squared-error (MSE) pattern-matching clas­
sifier is used to reject cultural false alarms caused by
man-made clutter discretes such as trucks and small
buildings, and to classify the remaining target detec­
tions by vehicle type. In these studies we imple­
mented three-class classifiers (tank, howitzer, and
clutter) for both I-tt X I-tt imagery and I-m X I-m
imagery. The pattern-matching references used in
these classifiers were constructed by averaging five
consecutive spotlight-mode images of a target col­
lected at a 22.5 0 depression angle and at 10 incre­
ments of azimuth, yielding seventy-two smoothed
references for each of the targets at the given depres­
sion angle. For an operational system to be able to ac­
commodate a range of depression angles, an ex­
panded set of pattern-matching references would
have to be constructed at various depression angles.

To construct the reference templates for the MSE
classifier, we choose thresholds for the pixel values
(converted to dB) of non-netted target-training im­
ages to eliminate all but the brightest and dimmest
1.5% of the data. This procedure reduces the original
target image to a collection of target shadow pixels
and bright target pixels. A binary image of these pixels
is then generated and morphologically processed (by
using a series of dilations and erosions with various
binary kernels) to create a binary mask; all of the pix­
els in the original (dB) image that are not under the
mask are used to calculate an average dB clutter level
{Lc' The target-training image Ui is then normalized

by Ri = Ui - {Le'

With this normalization scheme, the average clut­
ter level has been removed, but the energy of the ref­
erence target relative to the clutter background is re­
tained; therefore, howitzer templates (for example)
will have more total power than tank templates, mak­
ing howitzers and tanks more separable. Because of
the normalization, this approach is not affected by
errors in absolute radar-cross-section calibration of
the sensor data. After normalization, the target im­
ages are windowed with a rectangular mask that is
slightly larger than the size of the target and oriented
at the same angle as the target. This windowing elimi­
nates the influence of nearby clutter in the classifier
templates.

When an ROI is passed to the classifier, the mean
clutter level is calculated and the ROI is normalized,
as described above. The MSE is calculated for all of
the classifier templates in the reference library, and
the template that minimizes the error is chosen as the
best match. For a given reference template, the error £

is calculated for the test image under the reference
template window by

N

L(Ri -T}
£ = -'.i=.=1'--- _

N

where N is the number of pixels in the reference tem­
plate window (which can vary for different reference
target sizes and different aspect angles), and Ri and T;
denote pixel values in the reference template and test
image, respectively. The reference template is slid a
small amount in range and cross-range to compensate
for any small target centroid errors, and the mini­
mum error over these translations is taken as the best
match for that template. Because of the normaliza­
tion of the reference images and test images, the error
£ is a measute of the relative difference in total power
between the two, which aids in the rejection of clutter
discretes.

Each detected object that passes the discrimination
stage is compared to each of the stored references. If
none of the matches is below some maximum allow­
able score, the detected object is classified as clutter;
otherwise, the detected object is assigned to the class
(tank or howitzer) with the best match score. For an
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MSE classifier, the lower the score the better the
match; i.e., a perfect match has an MSE score of 0.0.

Performance of the ATR System

This section summarizes the performance of the de­
tection, discrimination, and classification stages of
the SAR ATR system. A total of 56 km2 of high-reso­
lution (l ft X 1 ft) clutter data were processed by the
ATR algorithms, along with 136 netted target im­
ages. The targets were M48 tanks and M55 howitzers,
which have similar dimensions. These target data and
clutter data were collected at Stockbridge, New York,
and are referred to in this article as the Stockbridge
data set. The clutter data contained a significant
number of man-made discretes such as buildings,
roads, cars, and electrical lines. The target-training
data were taken from a set of non-netted target im­
ages. The target test data were collected under realistic
deployment conditions in which the targets (with the
same orientations and articulations) were covered
with radar camouflage netting.

We show performance curves at all three ATR
stages (detection, discrimination, and classification)
for each combination of polarization and resolution
that were studied. First the detection, or prescreening,
performance curve was generated. Then an operating
point on that cutve was selected and the detected ob­
jects (targets and false alarms) corresponding to that
operating point were passed to the discrimination
stage to obtain the discrimination performance curve.
Finally, an operating point on the discrimination
curve was selected and the detected objects corre­
sponding to that operating point were passed to the
classification stage to obtain the classification perfor­
mance curve. To compare results in a consistent man­
ner among combinations of polarization and resolu­
tion, we set the operating point for the prescreener at
probability of detection PD = 1.0, for the discrimina­
tor at PD = 1.0, and for the classifier at PD = 0.9.
These fixed probability-of-detection levels allow us to
compare ATR performance for the combinations of
polarization and resolution by examining only the
false-alarm rates at the output of each stage.

In the discrimination stage, the location and orien­
tation of each detected object was determined. The
discrimination features (textural, size, contrast, and
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polarimetric features) were calculated and the best
subset of features (for each polarizationlresolution
case) was used by the discriminator to reject both
natural-clutter false alarms and man-made clutter
discretes. For a given polarization/resolution case, all
possible combinations of three or more features were
tested against the test targets and the clutter false
alarms passed to the discriminator by the detection
stage. The best combination of features was used in
the discriminator for that case. Thus, the compari­
sons presented in this article are for the best possible
discrimination performance for each case.

To test the robustness of these discrimination fea­
ture sets against a different data set, we ran the ATR
algorithm suite (using the same discrimination fea­
ture sets and threshold settings) on an additional 18
km2 of highly cultural clutter collected near Ayer,
Massachusetts. The results obtained were comparable
to the results with the original Stockbridge data set
(see the next section).

In the classification stage, the two-dimensional
MSE pattern-matching classifier was applied to those
detected objects which had passed the discrimination
stage. In the classification stage, the MSE threshold
was set to produce a probability ofdetection PD = 0.9.
Therefore, of the 136 netted test targets input to the
MSE classifier, a total of 122 test targets were de­
tected (i.e., classified as either a tank or howitzer).
The two-dimensional MSE pattern-matching classi­
fier was also applied to the clutter false alarms that
passed the discrimination stage; these clutter false
alarms were either rejected by the classifier (i.e., de­
clared "clutter") or were classified into tank or howit­
zer categories. Classification confusion matrices were
tabulated that summarize the ability of the MSE clas­
sifier to reject clutter false alarms and assign the re­
maining detected objects into tank and howitzer
classes.

Performance Using 1ft X 1-ft Resolution Data

Figure 9 presents the performance curves of all three
stages of the ATR system for the PWF-processed
data. Note that the discrimination stage reduces the
number of false alarms by approximately a factor of
five, compared to the detection stage, and the MSE
classifier shows a further reduction in false alarms by
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The results presented in Table 2 also indicate the
clutter rejection capabilities of the MSE classifier. In
the classification stage, with the probability of detec­
tion PD = 0.9, nearly 99% of the clutter false alarms
presented to the classifier were rejected as being non­
targets. Finally, the false-alarm density achieved at
PD = 0.9 is calculated from the data in the table to be

FIGURE 9. Performance curves for the three stages of the
ATR system using 1-ft x 1-ft resolution PWF data. All
algorithm training was performed by using non-netted
tactical target imagery; testing was then performed on
netted targets. To prod uce false-alarm statistics, 56 km2

of clutter data collected in Stockbridge, New York, were
used.

1.0 I1ITTTTTlII"T"'"'II;l+ml=TTTTmn7lTTcmrr---rTTTTTInmore than an order of magnitude. The false alarms at
each stage were categorized as either man-made
discretes or natural-clutter false alarms. Table 2 gives
the breakdown for each stage with respect to the type
of false alarm.

Also included in Table 2 is the best subset of fea­
tures used in the discrimination stage. For PWF and
HH polarizations, the best subset of features was
found by examining all possible combinations of
three or more features and determining which subset
produced the best discrimination performance using
the netted target data set and the 56 km2 of
Stockbridge clutter false alarms. As the data in Table 2
show, the set of 3457 clurter false alarms from the de­
tection stage is nearly equally divided between natu­
ral-clutter false alarms (bright tree lines, berms, iso­
lated trees) and man-made discretes (buildings,
nontarget vehicles, roads, electrical lines). The best
subset of discrimination features was able to reject­
nearly equally-both the man-made discretes and the
natural-clutter false alarms. The size features (diam­
eter and normalized rotational inertia) are effective at
rejecting objects much larger or much smaller than
the targets of interest. The textural features (fractal di­
mension and standard deviation) are effective at re­
jecting natural-clutter false alarms. The polarimetric
feature (percent pure even) takes advantage of the
even-bounce nature of targets such as tanks and how­
itzers, and the contrast feature (mean CFAR) is effec­
tive in rejecting false alarms that do not have a suffi­
cient mean local brightness.

Table 2. Clutter False-Alarm Statistics and Categories for PWF Data at 1-ft x 1-ft Resolution*

Stage Probability
ofdetection

Detection 1.0

Discrimination" 1.0

Classification 0.9

Total number of Number of Number of
false alarms man-made-discrete natural-clutter

false alarms false alarms

3457 1760 1697

709 444 265

6 4 2

* Target data: 136 tactical targets (netted)
Clutter data: 56 km2 Stockbridge clutter

** Best subset of discrimination features:
1. Fractal dimension 4. Percent pure even
2. Standard deviation 5. Diameter
3. Mean CFAR 6. Normalized rotational inertia
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1.0 r--T'""T'"T"TTTnr-"-'""T'T'1rmr----r-rT"TT'TTJ"---T'""T'"T"TTT"""""""""'"'T'T'!"TTT1 use of polarimetric discrimination features such as
percent pure even are not possible with single-polar­
ization data. The false alarms at each stage are catego­
rized as either man-made discretes or natural-clutter
false alarms. Table 3 gives the breakdown of each
stage into types of false alarms. As the data in Table 3
show, the number of false alarms coming our of the
prescreener was significantly greater than that
achieved by using PWF data. Most notably, the num­
ber of natural-clutter false alarms increased by nearly
a factor of four (6473 natural-clutter false alarms) re­
sulting in a total of 8739 false alarms for HH data. By
using the best subset of discrimination features for
HH data the discriminator rejected slightly more
than half of the false alarms. Nearly all the false
alarms rejected were from the natural-clutter cat­
egory; only a small fraction of the false alarms from
man-made discretes were rejected.

Table 3 also indicates that the MSE classifier is able
to reject most of the clutter discretes even though a
single-polarization channel is being used. At the final
detection probability of PD = 0.9, nearly 94% of the
false alarms presented to the classifier were rejected as
being non-targets. However, the performance is sig­
nificantly worse than that achieved by using PWF
imagery. The false-alarm density achieved at PD = 0.9
is calculated from the data in the table to be approxi­
mately four false alarms per km2 (229 false alarms in
56 km2 total clutter area).

The second function of the classifier is to assign
objects accepted as targets to target classes (i.e., tank
or howitzer). Table 4 shows the classification perfor-
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FIGURE 10. Performance curves for the three stages of
the ATR system using 1-ft x 1-ft resolution HH data.
The discrimination stage does not provide as large a
false-alarm red uction as when using 1-ft x 1-ft resolution
PWF data.

approximately 0.1 false alarms per km2 (6 false alarms
in 56 km2 total clutter area).

Figure 10 presents the performance of all three
stages of the ATR system for the single-polarization
I-ft X I-ft resolution HH data. Note that the dis­
crimination stage does not significantly reduce the
false-alarm density. This result occurs partially be­
cause of the large amount of speckle contained in
single-polarization data, which prevents accurate esti­
mates of the discrimination features. Additionally, the

Table 3. Clutter False-Alarm Statistics and Categories for HH Data at 1-ft x 1-ft Resolution"

Stage Probability
ofdetection

Detection 1.0

Discrimination"· 1.0

Classification 0.9

Total number of Number of Number of
false alarms man-made-discrete natural-clutter

false alarms false alarms

8739 2266 6473

3758 1928 1830

229 83 146

• Target data: 136 tactical targets (netted)
Clutter data: 56 km2 Stockbridge clutter

** Best subset of discrimination features:
1. Standard deviation 3. Mean CFAR
2. Weighted fill 4. Mass
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Table 4. Performance of MSE Classifier (Detection Probability = 0.9)*

PWF data Classified as Classified as Classified as

1-ft x 1-ft resolution tank howitzer clutter

Tank 62 0 6

Howitzer 0 60 8

Clutter 6 0 703

HH data Classified as Classified as Classified as
1-ft x 1-ft resolution tank howitzer clutter

Tank 60 0 8

Howitzer 0 62 6

Clutter 210 19 3529

* Training data: non-netted targets; test data: 136 netted targets
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cult because of the large amount of man-made clutter.
When the Ayer PWF data were processed through the
ATR system, the prescreener produced 4133 false

FIGURE 11. Com parison of end-to-end performance of
the ATR system using 1-ft x 1-ft resol ution PWF data and
1-ft x 1-ft resolution HH data from the Stockbridge data
set. Overall, end-to-end performance of the ATR system
is degraded when using HH data compared to using
PWF data.

mance of the MSE classifier for both PWF and HH
data, in the form of confusion matrices that tabulate
the correct and incorrect classifications. Recall that
the MSE classifier used templates constructed from
non-netted targets; the classification results shown in
Table 4 are for clutter discretes and netted test targets
that passed the detection and disctimination stages.
At the ourput of the classification stage, 90% of the
netted targets were classified as targets, and 100% of
these targets were correctly classified by vehicle type.

For comparison purposes, Figure 11 presents the
end-to-end performance of the ATR system for both
HH and PWF I-ft X I-ft resolution data. Note that
the false-alarm density with PWF data is over an or­
der of magnitude lower than with HH data.

To investigate whether the discrimination feature
sets and classifier templates developed by using the
Stockbridge data were scene dependent, we processed
another 18 km2 of clutter data through the ATR sys­
tem with the same feature sets, templates, and thresh­
olds used for the Stockbridge data set. This new data
set was collected in Ayer, Massachusetts, and consists
almost exclusively of man-made objects, which yield
target-like false alarms because of the sharp edges of
buildings, vehicles, railways, and roads, as shown in
Figure 12. This data set is considered to be very diffi-
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(a)

(b)

FIGURE 12. (a) Optical image and (b) SAR image of man-made cultural clutter in Ayer, Massachusetts. The houses and
roads are clearly seen in the SAR image. The frozen pond appears as a black patch of very low radar returns because of
the forward scattering of the radar signal. This image, which consists almost exclusively of man-made objects, is repre­
sentative of the additional 18 km2 of cultural-clutter data used for the verification of discrimination feature selection.

alarms, the discriminator rejected 3114 of these as
clutter false alarms, and the classifier (PD = 0.9) re­
jected 1016 of the remaining ones, resulting in only
three false alarms at the output of the classification
stage of the ATR system from the 18 km2 clutter area.
Thus, although the prescreener detects many target­
like man-made objects, the discriminator is fairly ro-
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bust, and it rejects a large percentage of the clutter
false alarms that pass the prescreener. Finally, the ro­
bustness of the classifier allows the overall end-to-end
performance of the ATR system to remain relatively
stable.

By combining the data collected in Ayer with the
Stockbridge data set, we expanded the amount ofdata
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FIGURE 13. Comparison of end-to-end performance of
the ATR system using 1-ftx 1-ft resolution PWF data and
1-ft x 1-ft HH data. In this case, the Stockbridge data set
was combined with cultural-clutter data from Ayer, Mas­
sachusetts, to enlarge the overall test data set to 74 km2

.

The addition of the cultural-clutter data set somewhat
degrades the performance of the prescreener and dis­
criminator, but end-to-end performance of the ATR sys­
tem is degraded only slightly, as seen by comparing this
figure with Figure11.

tion of the detected object and combining features
into the discrimination statistic were applied. The cal­
culation of the textural, size, contrast, and polarimet­
ric features was also performed by using the
oversampled data, and the selected set of features ap­
plied to the reduced-resolution data was optimized to
maximize the false-alarm rejection performance of
the discriminator.

Classifier. The MSE classifier used to process the
high-resolution I-ft X I-ft ROIs was also used, with­
out modification, to process the I-m X I-m ROIs.
Again, this was done because the reduced-resolution
data were oversampled to match the pixel spacing of
the I-ft X I-ft resolution data. The MSE classifier
used new pattern-matching references; these were
constructed by averaging five consecutive spodight­
mode images (I-m X I-m resolution) of a target, col­
lected at 10 increments of azimuth, yielding seventy­
two references for each of the targets.

processed to 74 km2
. The addition of this cultural­

clutter data set has the effect of degrading the perfor­
mance of the prescreener and discriminator some­
what, but degrading overall end-to-end performance
only slightly. Figure 13 shows the end-to-end perfor­
mance of the ATR system for HH data and PWF
data. Comparing Figure 13 with Figure 11 clearly
shows that end-to-end performance is degraded only
slightly for both PWF and HH data by the addition
of the Ayer cultural-clutter data set.

Performance Using I-m X I-m Resolution Data

This section summarizes the performance of the ATR
system using reduced-resolution SAR data. In order
to emulate a reduced-resolution sensor, we repro­
cessed all the target data and clutter data used in the
I-ft X I-ft resolution studies to I-m X I-m resolution.
In addition, we examined the possibility of using
lower-resolution data only for the initial detection
stage; i.e., I-m X I-m resolution data were used for
detection followed by I-ft X I-ft data for discrimina­
tion and classification. This combination was per­
formed only with PWF data. Each of the three stages
of the ATR system was appropriately modified to
work with I-m X I-m resolution data. The following
modifications to the algorithms were performed:

Detector. The CFAR detector used I-m X I-m reso­
lution data, which provided a significant computa­
tional savings compared to the use of I-ft X I-ft reso­
lution data. This computational savings occurred
primarily because the amount of SAR data processed
by the detector was reduced by a factor ofsixteen. Ad­
ditional computational savings occurred because the
size of the boundary stencil was reduced by a factor of
four as a result of the reduction in resolution of the
SARdata.

Discriminator. The discrimination stage that pro­
cessed the high-resolution I-ft X I-ft ROIs was used,
without modification, to process I-m X I-m ROIs.
This was possible because the reduced-resolution data
were oversampled to match the I-ft X I-ft resolution
ROIs. The oversampling was not performed in order
to affect performance, but to make a reduced-resolu­
tion image have the same number of pixels as the
corresponding full-resolution image. Thus the same
algorithms for determining the position and orienta-
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FIGURE 14. Comparison of performance curves for the
ATR system using 1-m x 1-m resolution PWF data (solid
lines) versus 1-ft x 1-ft resolution PWF data (dashed
lines).

Figure 14 presents the performance curves for all
three stages of the ATR system for I-m X I-m resolu­
tion PWF data; the corresponding performance
curves for I-n X I-n PWF data are included for com­
parison. Note that the detection stage performs simi­
larly for both the I-n X I-n data and the I-m X I-m
data. The discrimination stage then reduces the num­
ber of false alarms by approximately a factor of three
for the I-m X I-m data; this indicates a degradation
of performance, compared to that obtained by using
I-n X I-ft data. Finally, the classification stage yields
only a minor reduction in the false-alarm density for
the I-m X I-m data, in marked contrast to the order­
of-magnitude reduction obtained by using I-n X I-ft
resolution data.

In addition to the results presented in Figure 14 for
PWF data, we examined the ATR performance using
I-m X I-m HH data. These results, which are sum­
marized in Table 5, show an order-of-magnitude in­
crease in false alarms for the end-to-end ATR system.

Because the performance of the detection stage was
comparable for I-m X I-m PWF data and I-n X I-n
PWF data, as shown in Figure 14, we evaluated the
performance of an ATR system using I-m X I-m data
for the detection stage, followed by I-ft X I-ft data in

FIGURE 15. Performance curves for the three stages of
the ATR system using 1-m x 1-m resolution PWF data for
the detection stage, followed by 1-ftx 1-ft resolution data
for the discrimination and classification stages. The
overall system performance (i.e., the output of the classi­
fication stage) is almost identical to the performance of
the ATR system using 1-ft x 1-ft PWF data exclusively.

the discrimination and classification stages. One rea­
son for using lower-resolution data for the CFAR pre­
screener is to save on computational resources. In par­
ticular, by reducing the resolution from 1 n X 1 n to
1 m X 1 m, we reduce the amount ofdata processed in
the prescreener stage by a factor of sixteen.

Figure 15 shows the performance ofall three stages
of the dual-resolution ATR system. Note that the
discrimination and classification stages yield a sub­
stantial reduction in the false-alarm density, and that
the end-to-end performance is essentially identical to
that obtained by using I-n X I-n resolution PWF
data exclusively.

Table 5 compares the number of false alarms that
passed through each stage with various combinations
of polarization and resolution. Table 5 also includes
the best set of discrimination features for each com­
bination of polarization and resolution. As expected,
each stage performs worse with I-m X I-m data than
with I-n X I-n data. However, the use of I-m X I-m
data for the prescreening stage followed by the use of
I-ft X I-n data for the discrimination and classifica-
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tion stages does not degrade the ovetall end-to-end
ATR performance.

Table 6 show the performance of the I-m X I-m
resolution MSE classifier in the form of a confusion
matrix for both PWF and HH data. At the output of
the classification stage, 90% of the netted targets were
classified as targets. However, the number of those
correctly classified into tank and howitzer categories
was low, indicating that it is difficult to separate these
two target types with I-m X I-m resolution data.

Summary

This article examines the performance of an end-to­
end ATR system designed for the detection and classi­
fication of tactical targets (tanks and howitzers) in
high-resolution (l ft X 1 ft) SAR data. The study was
quite extensive, using a large data set (approximately
74 km2 of clutter), a significant number of targets

(136) divided equally between tanks and howitzers,
and two polarizations (HH and PWF). In addition,
the data were reprocessed to examine the perfor­
mance that could be achieved with a lower-resolution
sensor (l m X 1 m).

Overall, the results indicate we achieve better per­
formance with PWF imagery than with a single-po­
larization channel. Also, ATR performance improved
as the image resolution increased. Thus I-ft X I-ft
PWF imagery showed the best ATR performance,
with a final false-alarm count of six (in 56 km2 of
Stockbridge data) at a detection probability of 0.9.
The corresponding I-ft X I-ft single-polarization­
channel performance using HH data had a final false­
alarm count of229 (in 56 km2 ofStockbridge data) at
the same detection probability of 0.9. For both PWF
and HH data, the probability ofclassifying the targets
correctly by target type was 100%.

Table 5. False-Alarm Statistics Comparison Using Stockbridge Data (56 km2
)

PWF PWF PWF HH HH
lftxlft 1 m xl m detector 1mxl m lftxlft 1mxl m

1 ft x 1 ft discriminator
and classifier

Detector output (Po = 1.0) 3457 13,176 13,176 8739 25,873

Discriminator output (Po = 1.0) 709 949 4401 3758 18,562

Classifier output (Po = 0.9) 6 6 1115 229 12,610

Best set of discrimination features

Standard deviation ~ ~ ~

Weighted fill ~ ~ ~

Fractal dimension ~ ~

Mass ~

Diameter ~ ~

Normalized rotational inertia ~ ~

Peak CFAR ~

Mean CFAR ~ ~

Percent bright even ~

Percent pure even ~
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Table 6. Performance of MSE Classifier (Detection Probability = 0.9)·

PWF data Classified as Classified as Classified as
1-m x 1-m resolution tank howitzer clutter

Tank 63 0 5

Howitzer 50 9 9

Clutter 1051 64 3286

HH data Classified as Classified as Classified as
1-m x1-m resolution tank howitzer clutter

Tank 59 3 6

Howitzer 30 30 8

Clutter 11,508 1102 5952

• Training data: non-netted targets; test data: 136 netted targets
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of the discrimination stage. Concepts for improving
the performance results of the MSE classifier are un­
der investigation. Some of these concepts may ulti­
mately provide us with a more robust classifier. For

FIGURE 16. Comparison of end-to-end performance of
the ATR system using both 1-ftx 1-ft resolution data and
1-m x 1-m resolution data, in HH polarization and PWF
polarization.

For the 1-m X 1-m data, the end-to-end perfor­
mance was considerably degraded. With 56 km2 of
clutter at a detection probabiliry of 0.9, the PWF im­
agery produced 1115 false alarms, whereas HH imag­
ery produced 12,610 false alarms. In addition, the
percentage of detected targets that were correctly clas­
sified by target type was unacceptably low.

Figure 16 presents a comparison of the end-to-end
results for PWF and HH data, for both 1-ft X 1-n
resolution and 1-m X 1-m resolution. The perfor­
mance curves indicate that the performance using
1-m X 1-m HH data is poor, the performance using
1-m X 1-m PWF data and 1-n X 1-n HH data is
roughly comparable, and the performance using 1-ft
X 1-n PWF data is superior.

Also, we have shown that we can use lower-resolu­
tion data (I-m X 1-m PWF imagery) for the initial
detection stage, followed by 1-ft X 1-ft PWF data in
the discrimination and classification stages, without
any degradation in the end-to-end ATR performance.
This rype of algorithm may be suited to situations in
which computation resources are at a premium.

Additional work in the field of ATR is currently
being pursued. Other polarization combinations are
being examined (e.g., vv, HY; and HH - VV), along
with new features to exploit further the performance
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example, one of these concepts involves the use of
three-dimensional target information in the classifier
templates [11].
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APPENDIX:
DETAILS OF THE DISCRIMINATION FEATURES

THIS APPENDIX PRESENTS DETAILS of the discrimina­
tion features used in the studies of the automatic tar­
get recognition (ATR) system described in this article.
The rypes of features used in the discrimination stage
of the ATR system include textural, size, contrast, and
polarimetric features.

Lincoln Discrimination Features

Standard-Deviation Feature. The standard-deviation
feature is a measure of the fluctuation in intensiry (ra­
dar cross section) in an image. The log standard de­
viation for a particular region is defined as the stan­
dard deviation of the radar returns in dB from the
regIOn.

Fractal-Dimension Feature. The fractal-dimension
feature provides a measure of the spatial dimensional­
iry of the detected object [1]. This feature estimates
the Hausdorffdimension of the spatial distribution of
the N brightest scatterers in the region of interest. For
example, a straight line has a Hausdorff dimension of
one and a solid rectangle has a Hausdorff dimension
of two. Various other space-filling objects with holes
have Hausdorff dimensions that fall between one and
two. An isolated point (or a disjoint set of isolated
points) has a Hausdorff dimension of zero.

Weighted-Fill Feature. The third textural feature,
the weighted-fill ratio, measures the percentage of the
total energy contained in the brightest five percent of
the scatterers of a detected object. For man-made ob­
jects a significant portion of the total energy is re­
flected by a small number of bright scatterers; for
natural clutter the total energy is distributed more
evenly among the pixels.

ERIM Discrimination Features

Nine of the discrimination features used in these
studies were developed at the Environmental Re­
search Institute of Michigan (ERIM). These features
were provided to Lincoln Laboratory under the Stra­
tegic Target Algorithm Research (STAR) contract.
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Instead of using a target-sized rectangular box as a
preliminary step in feature calculation, the discrimi­
nation stage computes the ERIM features from the
pixels contained in a target-shaped blob obtained by
performing morphological operations. These opera­
tions serve both as a method of grouping spatially re­
lated detections from the prescreener and as a method
of estimating the size, shape, and orientation of the
detected object. There are three categories of ERIM
discrimination features: size-related features, con­
trast-based features, and polarimetric features. Each
of these three categories contains three features. We
describe each feature in the following paragraphs.

ERiM Size Features. The three size-related features
(mass, diameter, and normalized rotational inertia)
utilize only the binary image created by the morpho­
logical operations. The mass feature is computed by
simply counting the number of pixels in the morpho­
logical blob. The diameter is calculated as the length
of the diagonal of the smallest rectangle (either hori­
zontally oriented or vertically oriented) that encloses
the blob. The normalized rotational inertia is the sec­
ond mechanical moment of the blob around its cen­
ter ofmass, normalized by the inertia ofan equal mass
square.

ERiM Contrast Features. The contrast-based fea­
tures (peak CFAR, mean CFAR, and percent bright
CFAR) are determined by the CFAR algorithm. The
CFAR statistic (given in Equation 1 in the main text)
is computed for each pixel ro create a CFAR image.
The peak CFAR feature is the maximum value in the
CFAR image contained within the target-shaped
blob. This quantiry is usually identical to the basic
CFAR detection statistic used in the prescreener algo­
rithm. The mean CFAR feature is the average of the
CFAR image taken over the target-shaped blob. The
percent bright CFAR feature is the percentage of pix­
els within the target-shaped blob that exceed a CFAR
threshold empirically determined from the target­
training data.



•

• NOVAK, HALVERSEN, OWIRKA, AND HIETT
Effects ofPolarization and Resolution on the Performance ofa SAR Automatic Target Recognition System

ERIM Polarimetric Features. The polarimetric dis­
crimination features require calibrated, fully polari­
metric data. These features are based on a transforma­
tion of the linear polarization basis in which the
Lincoln Laboratory MMW SAR sensor gathers data
to an even-bounce, odd-bounce basis described by
the equations

and

IHH - VVl
2

I [2Eeven = '--------'- + 2 HV ,
2

where HH (horizontal transmit, horizontal receive),
HV (horizontal transmit, vertical receive), and VV
(vertical transmit, vertical receive) are the three linear
components of the reflected energy. The odd-bounce
channel (Eodd) given by the first equation corre­
sponds to the radar return from a flat plate or a trihe­
dral; the even-bounce channel (Eeven ) corresponds to
the radar return from a dihedral. The motivation for
this polarimetric basis resides in the fact that few di­
hedral structures exist in natural clutter, whereas di­
hedral structures are plentiful on most man-made tar­
gets; therefore, natural clutter tends to return less
even-bounce energy than man-made objects.

The polarimetric features are calculated from the
even-bounce and the odd-bounce images. The per­
cent-pure feature is the fraction of pixels within the
target-shaped blob for which at least a certain fraction
of the scattered energy falls in either the even-bounce
or the odd-bounce channel. Percent pure even is the
fraction of "pure" pixels within the target-shaped blob
for which at least a certain fraction of the scattered
energy falls in the even-bounce channel. The percent­
bright-even feature is the fraction of pixels within the
target-shaped blob that exceed a certain value in the
CFAR image described above, and which are mainly
even-bounce scatterers.
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