
Fourier-Space Image Restoration
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II Computational restoration techniques are frequently applied to two
dimensional images when the propagation medium or noise in the sensing
apparatus significantly corrupts the recorded image data. Deconvolution
processes are among the oldest and best understood of these techniques,
although nonl\near and iterative computational methods can provide superior
performance when real-time data processing is not a requirement. For many
practical problems, however, Fourier deconvolution is the method of choice,
because acceptable results can usually be obtained with a minimum of
computational effort. The correction of point-spread-function distortions
induced by sparse-aperture receivers is an example of an application for which
Fourier deconvolution is particularly well suited.

Sparse-aperture optical telescopes are higWy advantageous if the costs
associated with the orbital deployment of a filled-aperture receiver are
prohibitive. A telescope incorporating a sparse-aperture mirror could be
compactly folded to make a small lightweight payload, which could be placed
into orbit by a relatively inexpensive launch vehicle. Although the raw imagery
produced by a sparse-aperture system would show significant distortions, near
diffraction-limited images can be recovered by using appropriate data processing
techniques.

To motivate this investigation, we use a three-petal telescope structure having
a 10% fill factor as a model to study the image reconstruction process and its
sensitivity to sensor noise. A receiver of this type can produce images
comparable to those generated by a filled aperture of the same diameter,
provided that an average signal-to-noise ratio on the order of 100 can be
maintained over the entire image. The results of this study are promising, and
lend strong support to the feasibility of constructing inexpensive, ligh~eight
surveillance satellites employing folded-mirror architectures.

T
HE APPLICATION OF FOURIER deconvolution
to two-dimensional image processing was pio
neered by Robert Nathan, who used this pro

cedure to improve the quality of pictures received
from the Ranger and Mariner missions in the mid
1960s [1]. This technique has since been re£ned by a
number of investigators, including J.L. Harris [2],
C.W Helstrom [3], D. Slepian [4], and WK. Pratt
[5]. In 1970 A. Labeyrie [6] proposed a variant of this
technique to extract the autocorrelation function of
celestial objects from short-exposure astronomical
images distorted by atmospheric turbulence; this pro
cess is referred to as speckle interfirometry. Although

astronomers have found speckle interferometry to be
useful, its applicability is limited to the investigation
of objects having relatively simple structures, such as
binary stars. The full power of the Fourier decon
volution process can be exploited as a means of recon
structing true two-dimensional images only if instan
taneous samples of focal-plane sensor data can be
combined with simultaneous measurements (or a

priori knowledge) of the aperture-plane pupil func
tion. This computational approach has been success
fully applied to correct the effects of turbulence with
out the use of deformable mirrors (see the sidebar
entitled "Turbulence-Free Astronomical Imaging"),
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TURBULENCE-FREE ASTRONOMICAL IMAGING

ATMOSPHERIC TURBULE CE im
poses a time-varying phase pertur
bation on the wavefront of any
radiation that propagates through
the atmosphere; this effect se
verely distorts imagery produced
by terrestrial telescopes. An adap
tive optics system can be used to
sense the input wavefront and ap
ply a real-time correction to the

wavefront with the aid of a me
chanically actuated deformable
mirror, as indicated in Figure A
[1]. Elimination of the wavefront
distortion permits near-diffrac
tion-limited pictures to be formed
at the focus of the telescope.

Image compensation can also
be performed without the aid ofa
mechanical phase-correction de-

vice by computationally decon
volving the measured wavefront
distortion from the digitized im
agery. This alternative approach is
illustrated in Figure B.

The Fourier deconvolution
techniques described in this ar
ticle have been successfully ap
plied to imagery collected with
Lincoln Laboratory's 241-chan-
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FIGURE A. System architecture for adaptive optics
restoration. The phase sensor determines the input
wavefront and the deformable mirror is mechanically
altered to correct for the distortions in the input
wavefront.

FIGURE B. System architecture for computational
image restoration. This system employs no active
error-correction hardware, but relies on computa
tionally combining the digitized imagery with mea
surements of the input wavefront.
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nel adaptive optics system [2].
Figure C compares representative
image distortion profiles for the
star Vega, showing point spread
functions of the original distorted
image, the image obtained with
the adaptive optics system, and
the image obtained through com
putational reconstruction. Al
though an adaptive optics system
always yields superior results un
der low signal-to-noise condi
tions, the requisite hardware
modifications for computational
reconstruction are more easily
implemented, particularly in an
existing facility where space might
be limited.
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FIGURE C. Experimental data comparing turbulence-compensated
point spread functions of the star Vega obtained with a 241-channel
adaptive optics system and with Fourier deconvolution. Computational
reconstruction techniques are typically somewhat less effective than
real-time adaptive optics phase compensation, and in this example the
profile of the reconstructed star image is about 50% wider than the pro
file generated by the adaptive optics system.

,

The purpose of this article is to demonstrate the
effectiveness of Fourier deconvolution for a visible
imaging application in which the optical transfer
function can be accurately determined. Specifically,
we describe a simulation in which terrain imagery ob
tained from a Landsat satellite is first processed to
replicate the image that would be produced by a
highly thinned receiver. The Fourier deconvolution
process is then implemented by using the optical
transfer function appropriate for the collection aper
ture. To gauge the practical utility of the technique,
we repeated the deconvolution process for a range of
signal-to-noise conditions. Finally, we show that the
requisite signal-to-noise ratio for faithful reproduc
tion can be achieved for a nominal satellite-surveil
lance scenario.

Basic Mathematical and Physical Concepts
of Image Restoration

The implementation of any data-recovery procedure
requires considerable care to avoid mathematical
singularities and the introduction of excess noise. To
convey an appreciation for these concerns, we first
briefly review the derivation of the deconvolution
concept as it applies to optical imagery.

The single-element optical system illustrated in
Figure 1 incorporates all of the spatial relationships
essential to this discussion. The lens is placed at the
origin of the coordinate system, with the x-axis and y
axis in the aperture plane, and the object and image
planes are located at z =-R and z =f, respectively. We
assume that the distance R is much longer than the
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FIGURE 1. Spatial relationship between the object, aperture, and image planes of a
simple imaging system. The object is assumed to be separated from the lens by a
distance that is much longer than the Fresnel distance D2 jA, where D and A repre
sent the aperture diameter and optical wavelength, respectively. The lens is placed
at the origin of the coordinate system, and the object and image planes are located
at z =-R and z =f, respectively.

Fresnel distance D 2 I A, where D and A. represent the

aperture diameter and optical wavelength, respec
tively. For large values of R, the distance lis equal to

the focallengrh of the lens.
For the geometry indicated in Figure 1, the lens is

situated in the Fourier plane of both the object and

the image. The relationship between the electric field
Ua in the aperture plane and the field ~ in the image

plane is

where .r{.} represents the Fourier transform and Cis
a constant. It is clear from this expression that the
magnitude of the electric field's spatial frequency at

(Ix' Iy ) in the image plane is proportional to the
magnitude of the field at point (xl AI, ylAI) in the

plane of the lens.
A detector placed in the image plane does not di

rectly record the electric field, but rather the square of

the field, which is defined as the field intensity 1,
where

(2)l=IUJ.
In an ideal receiver the intensity pattern is equal to

the convolution of the aperture's point spread func
tion PSFwith the object function 0, or

For computational convenience we can represent this
relationship as a linear operation in the Fourier
domain,

where the subscript c is used to identify the point
spread function ofa circular aperture. If some form of
optical distortion is introduced at the plane of the

lens, the point spread function will include a second
component, indicated by the subscript d, which re
sults in a distorted image 1', where

which makes use of the fact that the optical transfer
function OTF and the point spread function are Fou-

(1)
.1'{Uj(x, y)} == Uj(lx' I)

= C UaPfIx' Ally)'
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rier transform pairs. This equation forms the basis for
the deconvolution operation, in which we attempt to
recover the diffraction-limited image I from the cor
rupted image 1'.

If all of the distortion effects are multiplicative in
the plane of the aperture, as suggested by Equation 3,
then it is possible to compute the optical transfer
function from the pupil function P, which describes
the shape and phase-delay characteristics of the
receiver's primary collector. As the light passes
through the aperture plane, a distorted field U; is
generated, where

When this expression is combined with Equations 1

and 2, the following relationship is developed:

J'{r} = c2[P(iflx,ifly)UaCVlx , Ally)]

@[P(iflx,Ally)Ua(iflx,ifly)r

For incoherent illumination, this expression is equal
to the product of the convolutions of the pupil func
tion and the aperture-plane electric field [7]; i.e.,

J'{r} = C
2

[Ua(iflx' Ally) ® U;(iflx' Ally)]

[P(iflx' Ally) ® P*(iflx' ifI y)].

This form demonstrates that the system's optical
transfer function is proportional to the convolution
of the pupil function. By convention, the optical
transfer function is normalized to unity; the specific
form of the calculation is

lector. For a lens of diameter D, the pupil function P
is described by the circle function of the radial param
eter r,

r ~ D

r> D

where

For this symmetry we can define the one-dimensional
spatial frequency

/"=~/}+I}.

From the convolution of the circle function we obtain
the following expression for the optical transfer func
tion of!,.,

OT~(j;.) =

~ [cos-I [I/" IJ- I/,. I 1 - [I/" IJ
2

1
n 10 10 10

for I/,. I~ 10 '

and

OT~(/,.) = 0 for I/,. I> 10 .

The cutoff frequency fa for a circular aperture is equal
to DIAl, as illustrated in Figure 2. The point spread
function is computed by using the Hankel transform;
the result is the familiar Airy pattern,

PSF(r)= nD
2 [2 JI(nDrIA/)] ,

c 4(,1./)2 nDrlif

(4)

which is shown in Figure 3. The beamwidth (full
width at half maximum) for this diffraction-limited
system is approximately iffD.

We can demonstrate the relationship between the
optical transfer function and the point spread func
tion by compuring these functions for a circular col-

Image Reconstruction from Noiseless Data

When an optical system is subject to aberrations in
the plane of the aperture, evidence of the effect is dis
played as a narrowing of the optical transfer function
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FIGURE 2. Optical transfer function for a circular aper
ture of diameter 0, This function is approximately trian
gular in shape and has a cutoff frequency of DIM.

(due to the attenuation of high-spatial-frequency im
age components) and a broadening of the point
spread function. As suggested by Equation 3, the dif
fraction-limited image can be recovered from the in
tensity data if the optical transfer function of the ap
erture-plane distortion has been measured; i.e.,

!F{ I} = / !F{1'}) = 0 TF / !F{1'}) ,
\ OTFd c\ OTF

FIGURE 3. Point spread function for a circular aperture of
diameter 0, This plot represents the diffraction-limited
impulse response of a perfect collector,

optical transfer function is non-zero within the trans
mission band of the diffraction-limited transfer func
tion. Because neither of these requirements is likely to
be satisfied with real data, a technique must be found
to remove singularities and limit the amount of gain
applied in spectral regions where the signal-to-noise
ratio is low. Naive attempts to implement Fourier
deconvolution usually fail when these problems are
not properly addressed.

This relationship is a variant of a standard optimiza
tion problem for additive noise that was first solved
by Norbert Wiener [8]. Similar problems have been
treated previously in the literature [3, 9, 1OJ, and the

Optimal Reconstruction ofImages with Finite Noise

The general problem of image reconstruction can be
treated as one of optimal estimation in which we wish
to reproduce a given signal as accurately as possible in
the presence of additive noise. The signal in this case
is the diffraction-limited image I = 0 ® PS~. The
recorded signal is the sum of the corrupted image
l' and a noise component n. The data-recovery pro
cess is assumed to involve a convolution with the two
dimensional operator g, which is optimized to obtain
the best picture quality,

where the nonsubscripted OTF represents the total
optical transfer function of the receiver, as computed
in Equation 4. The indicated ensemble average is ap
propriate when multiple images of a dim object are
collected, each ofwhich may be associated with a dif
ferent distortion pattern. The net effect of this opera
tion is to apply gain at spatial frequencies for which
the total receiver OTF is less than the optical transfer
function for a circular aperture. The diffraction-lim
ited image is recovered from the inverse transform of
this expression; for computational convenience the
operand has been modified to avoid division by a
complex number:

This relationship assumes, however, that the cor
rupted image l' is noiseless and that the composite
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Equation 6 describes the operator whose output will
most nearly match the noise-free image formed by a
diffraction-limited aperture. Combining this expres
sion with the Fourier transform of the recovered im
age as defined in Equation 5 provides a complete de
scription of the desired transformation,

standard result is

.r{g} = .r{I} .r*{I~} = .r{I{ .r*{I'} 2'

1.r{I'+n}1 1.r{I'}\ +1.r{n}1

~ _-l{ (OTF*.r{I'+n})}I-.r OT~ 2 '

IOTFI + Fn/~

(6)

(7)

This description is a special case ofa more general for
malism [12],

(9)

Equation 9 reproduces the Markov expression when v

= 1/2. If the spatial statistics of the scene are radially
symmetric, the two-dimensional power spectral den
sity function is obtained directly from the Hankel

transform of 9\0'

This function displays an f, -2(1+ v) characteristic at

high frequencies.
The sensor noise is assumed to be white, which

implies that the noise spectrum is constant to first or
der. For a discrete data-collection system the signal
will be constant over a square pixel of dimension Ppix'

When the noise is spatially uncorrelated from pixel to
pixel, this model results in a triangular-shaped auto
correlation function having a value of (j; at the ori

gin; the associated power spectral density function of
the noise in rectangular coordinates is

where ~ = 1.r{O}1
2

and Fn = 1.r{n}1
2

are the power
spectral density functions associated with the object
and the system noise, respectively. This operation is
known as Wiener deconvolution.

The successful application of Wiener deconvolu
tion is strongly dependent on our ability to estimate
the ratio of the noise and object power spectra,
Fn / Fo' For small sources, such as an isolated star, this
quantity is a constant equal to the square of the sig
nal-to-noise ratio of the total optical power.

Wiener Deconvolution Applied to Terrain Imagery

In this section we discuss the form of Wiener
deconvolution for terrestrial scenes. The explicit in
clusion of the object power spectrum ~ in the
deconvolution process described by Equation 7 pro
vides a strong motivation to develop an analytical rep
resentation of this quantity that has general applica
bility. For optical and infrared imagery of terrain
features, a first-order Markov description of the
autocorrelation function is frequently employed for
this purpose [11]. The Markov description is

(10)

where (j; is the intensity variance of the scene, and
the characteristic correlation length Po is defined as

00

Po =~ f9\o(p)dp·
(jo 0

(8)

In the limit that the characteristic correlation length
of the scene is much larger than the dimensions of a

sample element (i.e., Po » Ppix) we can assume that
Fn(f,) "" Fn(O). When this result is combined with
the power spectral density function given in Equation
10, the frequency-dependent signal-to-noise ratio is
found to be
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FIGURE 4. Landsat imagery of the greater Boston area. This color rendition represents a combination of
separate red, green, and blue images obtained by the satellite's Thematic Mapper. The spatial resolution of
this picture as created by the Landsat imaging system is 29 m. A corrupted version of this image was used
to illustrate the image-restoration performance of the Fourier deconvolution process.

,

Later in this article, we use the Landsat terrain im
age of the Boston area shown in Figure 4 to illustrate

FoU;·) "" (cr~J[ P; J4r(v)r(v +;)
FnU;·) crn Ppix [r(v + 1/2)]

X[1 + (2.[; r(v)Poh J2j-O+V)
r(v + 1/2)
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the performance of the deconvolution process; there
fore, it is useful at this point to investigate the statistil
cal properties of these data. Figure 4 shows a 1024 X

1024 visible image covering a 30-kn/ region of east
ern Massachusetts. Figure 5 gives the average radial
autocorrelation function for this scene. By using
Equation 8 we compute a characteristic correlation
length of approximately 1 km from these data, and

we obtain a best fit to the correlation model specified
in Equation 10 for v = 0.07. Both of these numbers
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imagery collected by sparse-apertute receivers. Size
and weight parameters are primary considerations in
the design of high-resolution surveillance satellites,
and the use of aperture-thinning techniques could re
sult in a significant reduction of the costs associated
with payload deployment. Consider, for example, the
three-petal shape shown in Figure 6, which has a col
lection area only one-tenth that of the filled aperture.
Such a structure could be folded into a compact pack
age deployable by a relatively small and inexpensive
launch vehicle, as suggested in Figure 7. Although
this particular design is not optimal for high-quality
image recovery-indeed, the distributed-collectot
geometries proposed by Golay [14] are much better
suited for this purpose (see the sidebar entitled
"Golay Receiver Configurations")-it has the benefit
ofsimplicity and it also provides a rather stressing test
of the deconvolution process.

The possibility of reducing the payload weight of a
reconnaissance satellite by an order of magnitude is
clearly intriguing. However, as a first step in proving
that the aperture-thinning concept is economically
viable, we must demonstrate that the image quality
achievable with a sparse-aperture receiver is compa-
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are consistent with parameters obtained in pnor
analyses of infrared terrain imagery [13].

If we make the assumption that v is typically less
than 0.5 for the scenes of interest and Po is likely to be
much larger than the diffraction-limited resolution of
the sensor, then Equations 7 and 11 can be combined
in the following manner to form the Wiener estimate
of the diffraction-limited image,

FIGURE 5. Autocorrelation function of the Landsat imag
ery within the 630-to-690-nm waveband. A correlation
length of 1 km is derived for these data on the basis of a
parametric curve fit to the autocorrelation model given in
Equation 9. A quantitative estimate of the correlation
length is essential to the Wiener deconvolution process.
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We now discuss the application of this algorithm to a
specific image-reconstruction problem.

where

j = 'J-I{OT~[ OTF*'JU' + n) ]},
IOTFI2+ Cv/;?+2v

C - 4v l+v -(I+2v) 2 2v[an J2v - n v Ppix Po
ao

(12)

(13)

1"'--- 0 ------'

- "'--0/20

Restoration of Image Data Collected by
Sparse-Aperture Reconnaissance Satellites

One application ofWiener deconvolution that is po
tentially of great interest to both the defense commu
nity and the civil sector is the restoration of optical

FIGURE 6. Illustration of a three-segment sparse aper
ture having an outer diameter of 0 and segments of
width 0/20. The collection area of the design shown in
this figure is approximately 10% of the full aperture.
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FIGURE 7. A sparse-aperture reconnaissance system could be placed into orbit by a small and relatively inexpensive
launch vehicle. Upon deployment the aperture sections would be unfolded and phased to form a coherent receiver.

rable to that obtained with a conventional receiver. In
the next section we address the issue of performance
by using quantitative comparisons involving the
modulation transfer function, point spread function,
and processing simulations incorporating down-look
ing satellite imagery.

Comparative Analysis ofReceiver Modulation Transfer
Function and Point Spread Functions

The modulus of the optical transfer function, or
modulation transfer function MTF, associated with
the three-petal structure illustrated in Figure 6 dis-
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GOLAY RECEIVER CO FIGURATIO s

THE THREE-PETAL RECEIVER inves
tigated in this article was selected
to demonstrate the application of
image-reconstruction algorithms
to a lightweight receiver structure
that could be compactly folded
into a relatively small and inex
pensive launch vehicle. The three
petal geometry does not, however,
provide the optimal image quality
for low-fill-factor collectors.

Sparse-aperture optical receiv
ers have been studied for at least
twO decades; some of the first
work in this field was performed
in the early 1970s by Marcel
Golay [1]. Golay developed a
technique for positioning small

independent elements to form ar
rays having nOntedundant auto
correlation functions. Receiver
designs of this type produce opti
cal transfer functions that uni
formly fill the frequency space
within the diffraction-limited
transmission band ofa filled aper
ture of comparable dimensions.

Figure A illustrates an example
of a nine-element Golay system
having a 10% fill factor within a
circular region. The array compo
nents are positioned so that no
more than twO of the elements
overlap for autocorrelation func
tion displacements larger than
one element diameter. This StruC-

ture results in a modulation trans
fer function that provides a dense
sampling of the spatial frequen
cies transmitted by the full aper
ture, as shown in Figure B. In gen
eral, a Golay structure containing
n independent elements will gen
erate a modulation transfer func
tion exhibiting n

2
- n + 1 separate

regions. The raw imagery gener
ated by such apertures is particu
larly well suited for reconstruction
by methods of post-processing
data enhancement.

References
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FIGURE A. Example of a Golay structure incorporat
ing nine receiver elements, creating a 10% fill factor
within a circular region. Golay systems position ele
ments to form arrays having nonredundant autocor
relation functions, and they can be constructed by
using an arbitrary number of array components.

FIGURE B. The optical transfer function associated
with the nine-element Golay system. The central core
results from the overlap of all array components near
the origin of the autocorrelation function, whereas
each of the remaining seventy-two peaks arises from
the overlap of exactly two elements.
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(a)

(c)

(b)

(d)

FIGURE 8. Comparison of system mod ulation transfer functions for (a) a diffraction-lim
ited circular aperture, (b) a three-petal receiver having a 10% fill factor, (c) Wiener
deconvolution for eJa leJn = 10, and (d) Wiener deconvolution for eJa leJn = 100. This pro
gression demonstrates the ability of Fourier deconvolution to transform, underfavorable
signal-to-noise conditions, the highly aberrated modulation transfer function of a
sparse-aperture receiver into a transferfunction that is nearly identical to the modulation
transfer function of a filled circular aperture.

plays a six-fold symmetry in which the high spatial
frequencies are heavily attenuated in comparison with
the modulation transfer function of a circular aper
ture, as shown in Figures 8(a) and 8(b). Notice, how
ever, that most of the region within the band limit of

40 THE LINCOLN LABORATORY JOURNAL VOLUME 8, NUMBER 1. 1995

the circular aperture in Figure 8(a) is non-zero, which
is a first indication that deconvolution techniques are
likely to provide significant improvement under
favorable signal-to-noise conditions. The effective
modulation transfer function of the Wiener decon-
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volution process is the Fourier-space multiplicative
factot appearing in Equation 12,

OT~OTF2
MTFWiener ::: 1---

2
--'-----1,

IOTFI + CJ}+2v

FIGURE 9. Comparison of cumulative point spread func
tions. The enclosed-energy profile provides a convenient
means of relating the ability of an imaging system to con
centrate light to the focusing capability of a diffraction
limited receiver. (Note that the curves for deconvolution
are not monotonic because the point spread functions
associated with these operations include negative val
ues.) This figure demonstrates that sparse-aperture im
agery having a signal-to-noise ratio of 100 can be pro
cessed to produce pictures nearly as sharp as those
generated by a filled circular aperture.

Application ofWiener Deconvolution to Landsat Data

To test the utility of a sparse-aperture structure used
in conjunction with an appropriate data processor, we
selected a 256 X 256 section of the Landsat image
shown in Figure 4 for study. To assess the capability of
the processing technique fairly, we first convolved
these data with a circular-aperture point spread func
tion having a profile comparable to the dimensions of
a single pixel. Specifically, the relationships between
the diameter, focal length, and optical wavelength of
the satellite's aperture are related to the pixel dimen
sions within the plane of the sensor in the following
manner:

to levels comparable to those of the diffraction-lim
ited circular-aperture system.

The overall improvement in the point spread func
tion due to the application of Wiener deconvolution
is reflected in the enclosed-energy plots shown in Fig
ure 9. Each of the four curves shown in this illustra
tion represents the encircled point-spread-function
energy as a function of bucket diameter, which pro
vides a rough estimate of the effective system resolu
tion. If the diameter at which the 50% value is
achieved is selected as the resolution criterion, the
resolution of the three-petal satellite would be judged
to be a factor ofnine worse than the resolution for the
circular aperture. By contrast, image deconvolution
for 0'0/0'n = 10 yields a degradation factor of only
three, and the 0'0/0'n = 100 case is nearly identical to
the performance of a filled circular aperture.

Af
D = Ppix'

This expression also establishes the Fourier-transform
scaling between the aperture and image planes. The
resulting picture, shown in Figure 10(a), provides a
high-resolution baseline against which the recon
structed images can be compared.

To first order, the smearing introduced by the
three-petal collector is the ratio of the full-aperture
diameter to the petal width; this ratio is approxi
mately twenty for the test example used in this study.
The severity of the associated image degradation is
clearly evident in Figure 10(b), which is the result of
convolving the Landsat data with the three-petal
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where Cv is defined in Equation 13. We can evaluate
this function by applying the terrain parameters de

rived in Figure 5; namely, Ppix = 29 m, Po = 1 km,
and v = 0.07. The results of this exercise for signal-to
noise levels equivalent to 0'0/0'n = 10 and 0'0/0'n =

100 are shown in Figures 8(c) and 8(d), respectively.
In the image reconstruction example shown in Figure
8(c) the Wiener deconvolution process actually re
duces the modulation transfer function at the highest
spatial frequencies, which results in a slight broaden
ing of the point spread function. In the image recon
Struction example shown in Figure 8(d), essentially all
of the non-zero spatial frequencies have been restored

l
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(a)

(c)

(b)

(d)

FIGURE 10. Comparison of images obtained from (a) a diffraction-limited circular aperture, (b) a three-petal receiver
having a 10% fill factor, (c) Wiener deconvolution for CYo/CYn = 10, and (d) Wiener deconvolution for CYo/CYn = 100. This
qualitative comparison offers convincing evidence that Fourier-space restoration techniques can effectively correct
optical distortion introduced by sparse-aperture receivers.

receiver's point spread function. Because of the strong
attenuation of the high-spatial-frequency compo
nents of the original picture, only the grossest details
of this image are discernible. We must keep in mind,
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however, that most of these components have not
been eliminated, but only reduced in amplitude.

Wiener restoration of the suppressed spatial fre
quencies is demonstrated in Figures IO(c) and IO(d),
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which represent optimal reconstructions for a0/an =
10 and a0/an = 100, respectively. The first of these
two images displays a significant enhancement in
resolution compared with that for the three-petal col
lector in Figure 10(b), whereas the second is nearly as
sharp as the picture derived from the convolurion of
the raw data with the point spread function for a cir
cular aperture. Although these tests are admittedly
qualitative, they provide convincing evidence of the
feasibility and potential benefits of the reconstruction
concept.

From a cost/performance standpoint, there is an
obvious advantage in replacing massive collectors
with lightweight telescopes that are coupled to so
phisticated data processors, particularly for space
based applications. For the highly thinned design
chosen for this investigation, a signal level on the or
der of a hundred to a thousand times larger than that
required for conventional imaging would be needed
to overcome collection losses and satisfY the Wiener
restoration criteria. However, as indicated in the ap
pendix, "Signal-to-Noise Calculations for a Represen
tative Reconnaissance Scenario," it is not unreason
able to expect that these criteria would be met for a
low-earth-orbit satellite. Furthermore, a more de
tailed system trade-off analysis might uncover collec
tor configurations and image processing approaches
that would reduce this requirement significantly.

Conclusions

This article offers convincing evidence of the utility
of Fourier deconvolution in extracting improved im
agery from non-ideal optical receivers. Although the
quality of the recovered image data is ultimately lim
ited by the cutoff frequency of the system's optical
transfer function, highly attenuated frequency com
ponents can be recovered as long as the signal-to
noise ratio exceeds the gain required for restoration.
These conditions are met for many scenarios of prac
tical interest.

To demonstrate the potential utility of image re
construction, we applied the optical transfer function
for a highly thinned optical collector to Landsat im
agery, and the reconstructed pictures were compared
with images obtained with a conventional telescope.
Under favorable signal conditions the reconstructed

images from the sparse-aperture collector nearly
match those obtained by a filled circular aperture.
This result lends strong support to the feasibility of
constructing inexpensive, lightweight surveillance
satellites employing folded-mirror architectures.
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APPENDIX:
SIGNAL-TO-NOISE CALCULATIONS FOR A

REPRESENTATIVE RECONNAISSANCE SCENARIO

SPARSE-APERTURE OPTICAL SYSTEMS are inherently less
efficient at collecting photons than filled apertures of
comparable dimension. The effects of these losses can
be further exacerbated by the noise amplification as
sociated with the implementation of an optical-trans
fer-function enhancement process. To establish over
all concept viability, we must demonstrate that the
requisite signal-to-noise ratio can be achieved in a real

. .
reconnaIssance scenano.

For an unresolved-target viewing geometry, illus
trated in Figure 1, a square detector of dimension d
collects light originating from a ground patch of area
(ppo} = (Rd11)2, where I is the telescope focal
length and R is the altitude of the reconnaissance sat
ellite. The collection aperture subtends a solid angle
equal to (TeI4)(DIR)2 with respect to the ground,

where D is the aperture diameter. This geometry re
sults in the following expression for the number of
electrons generated by the sensor within the spectral

bandwidth A[ < A < A2:

2 A2

N e = Ted 2 f(~) a!37:d T/(A) e(A)N(A) dA,
4(llno) he '-v------'~

AI collecrion source ( )
efficiency spectral radiance 1

where d is the detector size, Iino is the camera I
number, a is the net system transmission, f3 is the
telescope thinning factor, "d is the sensor dwell time,
T/ (A) is the detector quantum efficiency, N(A) is the
spectral radiance, and £(A) is the source reflectivity
(for reflected solar radiation) or emissivity (for black
body radiation).

To satisfy the Nyquist criterion the detector size
should be approximately equal to A112D, in which
case Equation 1 can be rewritten as
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where Ac is the center of the spectral bandwidth. For
some missions it may be advantageous to degrade the
sensor's resolution intentionally in order to increase
the total field of view or reduce the data bandwidth.
As a result, the dimensions of the pixel ground patch
would establish the size of the detector, so that

d = I Ppix IR and the following form is obtained:

Equation 2 is appropriate for high-altitude infrared
systems, whereas Equation 3 is applicable for most
low-altitude missions.

The dwell time of the system is directly related to
the satellite's orbital period 7;;. For a circular orbit,

where G = 6.67 X 10-11 nt_m2/kg2 is the gravitational

constant, Me = 5.98 X 1024 kg is the mass of the earth,

o

+

FIGURE 1. Lig ht-collection geometry for a telescope hav
ing a collection aperture with diameter 0 and focal
length f. The square detector with dimension d collects
light from a ground patch with dimension Ppix at a recon
naissance altitude R.
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Re = 6.36 X 106 m is the radius of the earth, and R is
the satellite's altitude. If the motion of the satellite is

used to generate two-dimensional images in a "push
broom" fashion, the pixels on the ground are scanned

at a velocity of v = 27CRe / ~. For this particular scan
configuration, the sensor's dwell time "Cd and the
ground resolution Ppix are constrained in the follow
mg manner:

where the parameter nd represents the number of pix
els in the detector array along the direction ofmotion
that are used for time delay and integration. For low
altitude satellites the orbital period is almost indepen
dent of the satellite altitude, in which case the dwell
time is proportional to R/D.

At this point we must introduce appropriate ex
pressions for the spectral radiance. For blackbody ra
diation the radiance N as a function of wavelength is
given by

(4)

where e = 3.00 X 108 m/sec is the velocity oflight, h =

6.63 X 10-34 W-sec2 is Planck's constant, k = 1.38 X

10-23 W-sec/K is Boltzmann's constant, and T"" 300

K is the source temperature [1]. For most scenes the
image contrast is determined primarily by tempera
ture fluctuations in the local terrain. To a good ap
proximation, the signal can be characterized as the
product of the scene standard deviation aT and the
derivative of Equation 2 with respect to temperature:

Typically, the scene standard deviation aT IS m the
range of 1 to 5°C [2].

The noise generated by the sensor includes several
terms, the most important of which are quantum
noise nQ due to photon-arrival statistics, additive
temporal noise nAT primarily due to readout-ampli
fier fluctuations, and multiplicative fixed-pattern

noise nMFP [3]. The magnitude of the first and third
of these effects is dependent on the average number of
collected electrons N e , where

and

and where Uc is the array uniformity following a two
point response correction. The total noise (standard
deviation of the temporal and spatial fluctuations) is
the square root of the sum of the variances, or

(5)

For a diffraction-limited infrared system sampled at
the Nyquist frequency, the average number of elec
trons collected by a pixel during a dwell time "Cd is

dJ...

2 3 (he)2h e exp --
J..kT

dJ...

The noise for this system is determined by substitut
ing this equation into Equation 5. Nominal values for

71, nAT> and UJor large InSb detector arrays are 0.5,
250 rms electrons, and 1%, respectively.

For reflected solar radiation the expression is more
complex because a number of additional parameters
are involved, such as the angle between the sun and
the normal to the earth's surface. To first order, the
reflected radiation can be modeled as a 5900 K black-
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body with an emissivity that incorporates all of the
geometrical factors involved in the reflection of light
from the sun to the satellite. By comparing data given
in The Infrared Handbook [4] with the output of a
blackbody having unit emissivity, we can develop the
following approximation from Equations 3 and 4:

( -6) 2 D2- 3xl0 na{37:dPpix
N = ----------'---

e 4R2

(6)

where T = 5900 K. In this case the contrast is due to
fractional changes in the terrain reflectivity (Jr' which

is perhaps on the order of 0.1. Thus the signal is ex
pected to be

( -6) 2 D2. 3 X 10 na{37:dPpix (Jr
slgnal = 2

4R

The noise for this system is obtained by substituting
Equation 6 into Equation 5; nominal values for T/,

nAT' and Uc for large Si detector arrays are 0.8, 5 rms
electrons, and 0.25%, respectively.

Table 1 establishes a baseline sensor construct in
volving a platform orbiting at an altitude of a thou-

Table 1. Parameter List For Baseline Signal-to-Noise Calculation

Parameter Symbol Visible sensor IR sensor

Detector material Si InSb

Center wavelength Ac 0.6f..Lm 4f..Lm

Satellite altitude R 1000 km 1000km

Aperture diameter D 10 m 10 m

Detector array size n d 1024 x 1024 1024 x 1024

System transmission a 0.5 0.5

Thinning factor f3 0.1 0.1

Quantum efficiency T/ 0.8 0.5

Temporal noise nAT 5 electrons 250 electrons

Corrected uniformity Uc 0.25% 1%

Pixel dimension Ppix 20cm 20cm

Effective dwell time 7:d 32 msec 32 msec

Ground emissivity E 0.9

Thermal signal (rms) (fT 3°C

Reflectivity signal (rms) (f, 0.1

Signal-to-noise ratio· (fo/(Jn 33 10

• designates optical power ratio, equivalent to electrical voltage
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sand kilometers, which carries a telescope having a
10% fill factor. The satellite is assumed to include
both visible and infrared sensors; the pixel dimen
sions for both have been set to 20 em, which is the
diffraction-limited Nyquist sample size for the long
wavelength camera.

The computed signal-to-noise ratio of 33 for the
visible sensor is likely to be adequate for most recon
struction algorithms intended to overcome the aber
rations introduced by aperture thinning. The evalua
tion of the infrared system is somewhat less
optimistic, because a signal-to-noise ratio of 10 has
been found to be marginal for the particular three
petal design discussed in the main body of this article.
It should be noted, however, that modest improve
ments in the collector design and sensor performance
could improve this factor substantially.
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