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III A missile defense system must be able to deal with an attack containing
decoys in addition to warheads. If the defense system does not have enough
interceptors to shoot at all the incoming objects, it must be able to discriminate
between decoys and warheads. This discrimination process is not perfect and
results in two types of errors: leakage (not shooting at warheads) and false
alarms (shooting at decoys). This article describes a methodology for analyzing
the consequences of these discrimination errors and determining how well
discrimination must perform in a variety of defense scenarios. The analysis
focuses on game-theoretic solutions in which the defense can achieve its overall
objective of surviving the attack regardless of the tactics used by the offense.

SINCE THE EARLY 19605, Lincoln Laboratory has
worked on many programs involving almost
all aspects of ballistic missile defense (BMD).

Initial BMD research focused on the problem of bal­
listic missile interception as expressed by the question
"Can a bullet hit another bullet?" Researchers soon
realized that an even more serious problem was "Can
we find and identify the bullet that needs to be hit?"
The process of identifying the target to be intercepted
is generally called discrimination. Discrimination is a
remote-sensing operation wherein sensor measure­
ments of target observables are interpreted to identify
the target as threatening or nonthreatening.

Traditionally, we have thought of threatening ob­
jects as reentry vehicles (RY) carrying lethal warheads
and nonthreatening objects as decoys that are deliber­
ately flown to confuse the defense. Decoys degrade
the defense in two related ways. If the defense mistak­
enly thinks a decoy is an RV and shoots at it, the de­
fense might exhaust its supply of interceptors prema­
turely. On the other hand, if the defense mistakenly
thinks an RV is a decoy and doesn't shoot at it, the RV
will penetrate the defense and the consequences will

be more immediate and more serious. Mistaking a
decoy for an RV is called a false alarm, while mistal\:­
ing an RV for a decoy is called leakage. In addition to
deliberate decoys, an attack typically contains inci­
dental debris and deployment hardware that must
also be discriminated from RVs. As we show below,
for a given level of discrimination performance the
defense can change decision thresholds to trade off
leal\:age and false alarms to balance the consequences
of these two types oferrors. Furthermore, we quantify
how improving discrimination performance improves
overall BMD system performance.

The work reported here was started in 1976 to an­
swer questions like "How good does discrimination
have to be?" and "What options are available if dis­
crimination is not good enough?" Over the past two
decades the focus of the national BMD research pro­
gram has changed significantly but the need for dis­
crimination and the need to assess discrimination­
performance requirements continue to be integral to

all candidate missile defense systems.
Two broad classes ofBMD systems have been ana­

lyzed. The first class is defense of high-value targets
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such as cities or defense radars for which low leakage
must be achieved. This defense often consists of two
or more layers that each thin out the incoming attack.
The second class is defense ofmultiple military targets
such as missile silos. Higher leakage is acceptable for
these targets, but the cost of the defense must be kept
low. The analyses presented in this article are drawn
from both of these BMD classes. As we analyze the
various types of defense systems for these two classes,
we emphasize the features they have in common as
well as their important differences.

Modeling of BMD Systems

Figure 1 shows the three major functions a BMD sys­
tem must perform; these functions are search and de­
tection, discrimination, and interception. The search­
and-detection stage scans the region of space through
which attacking objects must pass and detects any­
thing that might be an RV Objects-including RVs
and decoys-that are not detected at this stage travel
unimpeded to their destination, and the defense is
completely unaware of their existence (until it is too
late). Detected objects then pass through the discrim­
ination stage in which the objects are identified as
RVs or decoys. In the interception stage, all objects
that are classified as RVs will be fired at if a sufficient
number of interceptors are available. Interceptors will
not be fired at RVs that are misclassified by the dis­
crimination stage as decoys. RVs that are not fired at,
or are fired at but not killed, will continue to their
destination. As illustrated in Figure 1, each of the
functions of a BMD system might allow RVs to leak
through the system; the total leakage may well be
higher than the defense can bear.

To reduce the possibility ofleakage, the defense can
employ a parallel redundancy or series redundancy, as
shown in Figure 2. In parallel redundancy, two or
more elements perform the same function and RVs
will leak only if all the parallel elements fail. In series
redundancy, the sequence of functions shown in Fig­
ure 1 is repeated, frequently in another stage of the
missile trajectory, and the defense gets another chance
to detect, identify, and intercept those RVs which
leaked through the initial defense layer. In a tWo-layer
system, for example, if the layers operate indepen­
dently and each layer has 10% leakage, then the leak-
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FIGURE 1. Functional flow in a single-layer ballistic mis­
sile defense (BMD) system. The major functions are
shown along with the paths taken by RVs and decoys
through these functions.

age through two layers will be only 1%. Several of the
examples in later sections show how we can produce
more effective discrimination by combining discrimi­
nants from different sensors either within the same
layer or in subsequent layers.

Search and Detection

The search-and-detection process involves distin­
guishing between a measurement containing a target
signal plus noise and a measurement containing only
noise. This process is well understood because the sta­
tistical characteristics of both the signal and the noise
can be modeled in detail (see the sidebar entitled "De­
tection of Signals in Noise"). The detection process is
a balance between leakage (failure to detect) and false­
alarm rate (noise exceeding detection threshold). By
increasing the sensor signal-to-noise level, the defense
can reduce the detection leakage while maintaining
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Leakage

FIGURE 2. Functional flow in a parallel or multiple-layer
BMD system. The blue boxes illustrate parallel redun­
dancy within a layer while the green boxes illustrate an
additional defense layer in series with the first layer.

errors further broaden the distributions and increase
the overlap between RVs and decoys. For crude sen­
sors, the measurement errors can dominate the inher­
ent target spread and result in overlap even for poor
decoys, as shown in Figure 3(c), as well as for good
decoys, as shown in Figure 3(d). The overlap can be
reduced by using more accurate sensors, as shown in
Figures 3(e) and 3(f), but the measurement errors can
never be less than the inherent target spreads shown in
Figures 3(a) and 3(b). Thus there is a point of dimin­
ishing returns in improving sensor quality.

For the purpose of assessing discrimination perfor­
mance requirements, we can construct a simplified
mathematical model of the discrimination process.
Figure 4 illustrates the essence of this model. Figure

acceptable false-alarm rates. This trade-off represents
a cost trade because increasing the signal-to-noise ra­
tio (SNR) requires building a better sensor or operat­
ing the detection system at shorter ranges and deploy­
ing more sensors to maintain the needed coverage.

In modeling the search-and-detection process,
many parameters affect the performance as well as the
cost needed to achieve this performance. These pa­
rameters include search time, range, field ofview, type
of sensor used, target signal expected, and required
leakage level. Similar trade-offs occur when we con­
sider the discrimination function.

Discrimination

The discrimination function is similar to the search­
and-detect function in that it involves deciding be­
tween two possibilities-namely, is the detected ob­
ject an RV or non-RV For several reasons, however,
the problem is more difficult than distinguishing be­
tween "signal plus noise" and "noise only." First, the
physical connection between the actual targets and
the sensor observables used for discrimination might
not be fully understood. Second, many different types
of RVs and non-RVs must be distinguished. Finally,
for the case of deliberate decoys, the attacker is trying
to match the observables of the RVs and the decoys.
This matching can be done by making the decoys
look like RVs (simulation), by making the RVs look
like decoys (antisimulation), or by deliberately vary­
ing or obscuring the observables of both RVs and de­
coys (masking or confusion).

Figure 3 illustrates the possibilities for error that
can occur in the discrimination process. The RVs and
the decoys usually differ in mass, but the sensors can­
not measure this difference directly. Instead they mea­
sure parameters that can be combined to yield an esti­
mate of the mass or an estimate of the likelihood that
an object is an RV Because the connection between
estimated mass and true mass (for example, through
kinematic variables) is not unique, even a perfect sen­
sor with no measurement errors produces a spread in
the values of estimated mass, as illustrated in Figure
3(a). For the case of good decoys, as shown in Figure
3(b), this spread can result in an overlap between RVs
and decoys, which causes decision errors even with a
perfect sensor. For actual sensors, the measurement
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DETECTIO OF SIGNALS I 01SE

FIGURE A. Signal-vector and noise-vector probability distributions.
These two-dimensional vectors have amplitude and phase; the threshold
is set on amplitude alone.

A CLASSIC PROBLEM for sensors is
the detection of a signal in noise.
The sensor must distinguish be­
tween the two possibilities: signal
plus noise and noise alone. This
problem is completely analogous
to the discrimination problem of
distinguishing RVs from decoys.
The sensor sets a decision thresh­
old and is subject to leakage (fail­
ure to detect) and false alarms (de­
tections of noise). By varying the
threshold, the sensor can trade off
the two types oferrors. By increas­
ing the S R the sensor can simul­
taneously reduce both types ofer­
rors. Curves of PL versus PFA for
various values of S R are called
operating curves. They are analo­
gous to the curves shown in Figure
4 with the k factor playing the role
ofS R.

For different types of sensors
and targets, there are different sta­
tistical distributions for both sig­
nals and noise. Passive sensors (ra­
dio receivers and optical sensors)
measure onlyamplitude, while ac­
tive sensors (radars and ladars)
measure both amplitude and
phase. Signals may be constant or
fluctuating, while noise may have
Gaussian or other statistical distri­
butions, depending on the source
of the noise.

We consider the simple case of
a radar detecting a constant signal
in a background of Gaussian
noise. Figure A illustrates how
detection and false-alarm proba-

bilities are calculated. S is the con­
stant signal taken as a vector along
the x axis. N is a random-noise
vector whose x and y coordinates
represent the in-phase and out-of­
phase noise components, which
are each Gaussian. The density
functions represent the probabili­
ty distributions for noise alone
and signal plus noise. A threshold
on received power is a circle cen­
tered at the origin. The false-alarm
probability PFA is the integral of
the noise distribution outside the
threshold circle; it is a function
only of the threshold-to-noise ra­
tio. The leakage probability PL is
the integral of the signal-plus­
noise distribution inside the

t
Noise

distribution

N--"""":

threshold circle; it depends on
both the signal-to-threshold ratio
and the S R. The resulting oper­
ating curves can be found in any
radar systems book; a sample is
given in Figure B. We see that for
ftxed S R, we can trade off leak­
age probability and false-alarm
probability by varying the detec­
tion threshold. To reduce both
types of error simultaneously, we
must increase the S R. This is
exactly the role played by the k
factor in the article.

Manysimilarities exist between
classical detection analysis and the
k factor approach to discrimina­
tion analysis, but there are also im­
portant differences. In detection

Low SNR

~
Signal plus noise

distribution

I

High SNR
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FIGURE B. Operating curves for detection of a constant signal in
Gaussian noise. This figure shows how leakage and false alarms can be
traded off as a function of signal-to-noise ratio.
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we often require and achieve false­
alarm probabilities of10-8 or even
lower, while we would never need
or expect this performance in re­
jecting decoys. For detection in
noise, the sensor must examine
millions of resolution elements,
which would cause it to become
overwhelmed ifPFA were too high.
Because the properties of Gauss­
ian noise (and many other types of
noise) are well understood, we can
be confident of reducing PFA by
raising the detection threshold.
For decoys and RVs the connec­
tion berween physical characteris­
tics and sensor observables is not
understood well enough nor is re­
peatable enough for us even to
hope to achieve values of PFA as
small as 10-8. Fortunately, we
don't expect to face an attack with
millions of decoys so we don't
need such low values of PFA-

4(a) shows typical observable distributions for rwo
populations of targets, represented by probability
density functions !R(x) and fD(x), for RVs and decoys,
respectively. The variable x represents the measured
(or computed) value of the observable (or combina­
tion of observables); throughout this article we collo­
quially say that the larger the observable x is, the more
RV-like the object is. The process of discrimination
amounts to setting a threshold -. and classifYing every
object whose observable is larger than -. as an RV As
illustrated in the figure, some decoys exceed -. and
they are mistakenly classified as RVs (i.e., they are
false alarms). More serious, however, are the RVs
whose observable lies below -., for these objects are
misclassified as decoys (i.e., they are discrimination
leakers) and ignored by the defense. If we lower the
threshold -. by moving it to the left, then we can de­
crease the number of leaking RVs, but only at the

price of creating more false alarms. These false alarms
will ultimately cause us to waste scarce interceptors.

Thus there is an inherent trade-off berween false
alarms and leakage. This trade-off can be illustrated
by plotting the probability ofleakage PI (the area un­
der!R(x) to the left of the threshold t) versus the prob­
ability of false alarm PFA (the area under fD(x) to the
right of -.). For different values of -. we can generate a
PI-PFA operating curve, as illustrated in Figure 4(b).
This figure shows that anytime we want to reduce the
rate of discrimination leakage we pay a price in in­
creased false-alarm rate; the rwo types of errors are in­
extricably linked through the PI-PFA operating curve.

In general, decoy density curves can be multimodal
if the attack contains a mixture of decoy types. Under
these more general circumstances the simple discrim­
ination model illustrated in Figure 4(a) with a single
moving threshold might appear to be an oversimplifi-
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FIGURE 3. Discriminant probability densities for different attack situations. The spread in the probability curves arises
from measurement errors and inherent target variability. (a) With a perfect sensor, poor decoys are well separated from
RVs while (b) good decoys are closer to RVs and may have a larger inherent spread in their observables. Sensors are
not perfect, however, and they typically introduce measurement errors that significantly broaden the probability curves.
(c) With a crude sensor, even poor decoys overlap with RVs while (d) good decoys show substantial overlap with RVs.
With accurate sensors, as in (e) and (f), the discrimination performance improves up to the limit of a perfect sensor.

cation. The appendix entitled 'M Optimal One-Di­
mensional Representation for a Sensor" shows that
the observable space (the x axis in Figures 3 and 4) can
be transformed into a space characterized by the rela­
tive probability or likelihood that the target is an RV
or a decoy. In this transformed space, the resulting

density functions are as shown in Figure 4(a) with a
single optimum decision threshold. Thus, throughout
this article, for binary discrimination (in which tar­
gets are grouped into two classes-RVs and decoys)
we use the single discrimination-threshold model il­
lustrated in Figure 4.
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Threshold

RVs

appropriate average of the two standard deviations. To
investigate many complex missile defense models, our
ability to characterize discrimination performance by
using a single parameter greatly aids in the analysis,
with little loss in accuracy.

Figure 5 shows a simplified model we can use for
many classes of discrimination sensors. This model
assumes that the observables for both RVs and decoys
have Gaussian distributions with equal standard devi­
ations. As illustrated in Figure 5(a), the distance be­
tween the peaks of the RV and decoy densities, divid­
ed by the (common) standard deviation, is known as
the discrimination factor, or k factor. (Note that the k
factor is the special case of the Bhattacharyya distance
when the standard deviations are equal.) For such
Gaussian distributions, the k factor completely char­
acterizes the discrimination performance because it
unambiguously defines a PL-PFA operating curve. Fig­
ure 5(b) shows some representative operating curves
for different k factors. The higher the value of k, the
closer the operating curves hug the PL-PFA axes. For a
k factor ofzero the operating curve is a straight line; it
represents no discrimination ability whatsoever (i.e.,
random guessing). If the PL and PFA values are plotted
on a probability scale, as shown in Figure 5(c), the re­
sulting operating curves become parallel straight lines.

Interception

We analyze BMD systems by using two general classes
of interceptors-perfect and imperfect. A perfect in­
terceptor is defined as one that hits and kills its target
with a probability of one. Thus with perfect intercep­
tors any object classified as an RV will be killed, pro­
vided a sufficient number of interceptors are available
in the inventory. Perfect interceptors are a useful theo­
retical tool to investigate whether serious performance
weaknesses exist in the discrimination function.

In contrast, imperfect interceptors have a nonzero
probability of failure to kill. Such a failure can be
caused by an inaccurate interception (i.e., the inter­
ceptor misses the target) or by insufficient destructive
capability. To ameliorate this shortcoming the defense
can choose to fire several interceptors at once at each
object, or shoot one interceptor, perform a kill assess­
ment, and then shoot at the object again if necessary.
The first strategy is preferred if time is short and the
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FIGURE 4. The discrimination decision process and the
two types of measurement errors. (a) The RV and decoy
probability densities with a decision threshold results in
leakage (i.e., an RV is classified as a decoy) and false

alarms (i.e., a decoy is classified as an RV). (b) By shift­
ing the decision threshold, we can obtain an operating
curve that gives a trade-off between leakage and false­
alarm probabilities.

For unimodal single discrimination-threshold
models, such as that of Figure 4, discrimination per­
formance can be approximately characterized by a
fixed parameter known as the Bhattacharyya distance.
This number is determined by dividing the distance
between the two peaks of the density functions by an
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FIGURE 5. A simplified model of the discrimination pro­
cess. (a) RV and decoy probability distributions are
taken to be equal-variance Gaussian curves with means
separated by k times their standard deviation. The pa­
rameter k is known as the discrimination factor, or k factor.
The trade-off between leakage and false alarm is shown
for different values of k on (b) a linear scale and (c) a
probability scale. We can trade off leakage and false
alarms at fixed values of k by changing the decision
threshold ., and we can simultaneously reduce leakage
and false alarms by increasing the value of k.

Threat

To carry out discrimination performance analysis, we
must also include a model of the threat. A BMD sys­
tem must be able to handle a variety of incoming bal­
listic missiles carrying a variety of payloads. These in­
clude both theater missiles and strategic missiles with
single or multiple RVs, together with deliberate de­
coys and a spectrum of incidental deployment hard­
ware. Each missile has a given maximum payload; if
the offense wants to use additional decoys, then some
of the RVs must be removed or smaller RVs must be
substituted for the nominal RVs. In any case, the of­
fense must give up something to make room for the
decoys.

The offense can design heavy decoys that are likely
to be a good match to the RVs (i.e., the k factor has a
low value), but the offense can deploy only a few of
these decoys for each RV replaced. On the other hand,
the offense can deploy a much larger number oflight­
weight decoys but they are likely to be a poorer match
to the RVs (i.e., the k factor has a high value). Such
decoys are called traffic decoys and are discussed later
in the article. Thus the decoy size, or, equivalently,
the RV/decoy exchange ratio, is one of the offense vari­
ables that must be included in our model of the
threat.

The other offense variable is the offloading, or the
number of RVs to be removed and replaced with de­
coys. Figure 6 illustrates some of the trade-offs the of­
fense must consider when selecting a decoy design
and deciding what mix of RVs and decoys to use on
each missile. Each point in the plane in the figure de-

inventory is large. The second strategy is preferred if
the inventory is modest and sufficient time exists to
perform a kill assessment.
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FIGURE 6. An illustration of the payload options avail­
able to the offense. In this example, the total offense pay­
load is a maximum of ten RVs, and each RV can be re­
placed by a specific number of decoys (this number is
called the RV/decoy exchange ratio). The spectrum of
possible payloads is determined in RV-decoy space by a
point on a line for the appropriate exchange ratio. The
defense must be prepared to deal with any feasible pay­
load combination.

The leakage L is the probability that one or more RVs
will penetrate the defense either through discrimina­
tion leakage or interceptor exhaustion (or detection

L(M,N,I,k,-r).

The Fundamental Optimization Problem:
Offense and Defense Strategies for
Single-Layer Defense

Before we present results for a variety of offense and
defense scenarios, let us review all the decision vari­
ables controlled by the offense and defense, and
whether and when the actual value of these variables
will be known by the opponenr. Table 1 summarizes
these decision variables and classifies them into either
long-term, or strategic, decisions, such as what type
and quantity of components are deployed, or short­
term, or tacticaL, decisions relating to how these com­
ponents are used.

The offense and defense have conflicting goals and
differing strategies to implement these goals, which
places the problem in a game-theoretic context rather
than that of a straightforward optimization. Focusing
on what the offense and defense know and when they
know it gives the problem a hierarchical decision­
theory interpretation. If the defense knew exactly
what the offense attack would consist of in terms of
number and type of RVs and decoys, it would know
exactly what combinations of k factor and number of
interceptors would meet the overall BMD-system
leakage requirements. This solution is easy to obtain
and is shown in the next section as a stepping stone
toward the more general results. If the offense knew
the number of defense interceptors and the quality of
defense discrimination, it would select the mix ofRVs
and decoys that would maximize the leakage. To be
certain of achieving its objective, the defense must be
sized to handle all possible offense attacks.

Referring to the variables listed in Table 1, let M be
the number ofRVs and N be the number ofdecoys in
the offense threat. Let I be the number of interceptors
and k be the discrimination k factor comprising a
simple defense deployment. Let -r be the discrimina­
tion threshold. The overall system leakage L can be
written as a function of these five variables, or
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termines an RV/decoy exchange ratio and the number
of RVs offloaded for decoys. If no RVs are offloaded,
the defense does not need discrimination because
there are no decoys. If all the RVs are offloaded, again
the defense does not need discrimination (or anything
else) because there are no RVs. For some intermediate
value of offloading (which depends on many parame­
ters such as the k factor and the number of intercep­
tors available to the defense) the requirements for dis­
crimination will be most stressing; this is the situation
that the offense should select and the defense must
design for. In the next section, we indicate how the
offense and defense each select the most effective
component options in their multidimensional param­
eter spaces.
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Table 1. Offense and Defense Variables

Long Term (before attack)

Short Term (during attack)

Offense Variable*

Maximum number of RVs

RV/decoy exchange ratio

Numbers of RVs and decoys used
(subject to payload constraints)

Defense Variable**

Number of interceptors

k factor for each decoy type

Decision threshold

* Offense knows number of interceptors
Offense may know I<. factor
Offense doesn't know threshold

Defense knows maximum number of RVs
Defense may know exchange ratio and total number of objects

failure or interceptor failure, if appropriate). A num­
ber of scenarios are possible, depending on whether
the defense observes all the attacking objects before
making discrimination decisions or sees the attacking
objects one at a time. The calculation of L for these
cases is presented in the appendix entitled "Leakage
for Different Discrimination Scenarios."

For each scenario the offense chooses M and N to
maximize L while the defense chooses I, k, and -r to
minimize L. The net leakage result and the optimum
strategies chosen by the offense and defense depend
on the order in which these minimizations and maxi­
mizations are done.

We assume that the sequence ofevents is as follows:
(1) the defense deploys with given values of I and k;
(2) the offense selects optimum values of M and N
subject to a payload constraint; and (3) the defense
sets an optimum threshold -r. Assuming that the de­
fense has chosen a deployment, this sequence can be
represented symbolically by

i(I,k) = max {min L(M,N,I,k,-r)}.
M,N r

The offense optimization is done by systematically
searching all possible values ofM and N subject to the

constraint

N
M + - = M o = total payload = constant,

R
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where R is the RV/decoy exchange ratio. The defense
optimization can be done by setting a threshold -r such
that the expected number of interceptors used is

(1)

or by always shooting at the I most threatening tar­
gets. The differences between these two discrimina­
tion strategies are discussed in the appendix entitled
"Leakage for Different Discrimination Scenarios."

Offense Offloading

As discussed above, the offense attempts to optimize
its attack by a judicious mixture of RVs and decoys.
Figure 7 shows an example of how we determine the
most stressing attack. Consider a simplified example
ofa threat with a maximum of ten RVs, each ofwhich
can be replaced by ten decoys, for a maximum of one
hundred decoys. This corresponds to an RV/decoy ex­
change ratio R of 10. The defense consists of eight,
ten, or twelve perfect interceptors and a sensor that
has a k factor of 3. We consider several different at­
tacks, each represented by a point on the abcissa of the
figure. The defense looks at all the threat objects in
the attack and uses all of its eight, ten, or twelve inter­
ceptors. The expected number ofleaking RVs is calcu­
lated for each attack. Leakage curves are plotted for
each level of interceptor inventory, and the most dam­
aging attack is highlighted with a small circle. Notice
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Single Defense Layer: Multiple Discriminants
with a Traffic-Limited Sensor

As discussed in the threat subsection above, the of­
fense has the option of deploying large numbers of
lightweight decoys, or traffic decoys, that will not be a
close match to the RVs. If the defense sensor can make
accurate measurements on these traffic decoys, it can
easily discriminate them. If the defense sensor must
handle large numbers of targets, however, it may only
be able to make preliminary rough measurements on
each object, which reduces the discrimination perfor­
mance. In this subsection we address the issues related
to traffic limitation on discrimination sensors.

We assume a discrimination sensor with a limited

simplicity we consider perfect interceptors and a fIxed
normalized threat consisting of M:= 1 RV (i.e., the
number of RVs is normalized to unity) and N = 10
decoys.

Figure 8 shows the operating curves that illustrate
the trade-offs involved in a single-layer confIguration.
Figure 8(a) is an example of the PrPpA operating
curves for this single-layer system. Superimposed on
these operating curves are straight lines of constant !
(i.e., number of interceptors fIred) as obtain~d from
Equation 1. By cross-plotting with! as an abcissa we
see that each PrPPA operating curve corresponds to a
unique leakage-inventory (Pc!) performance curve,
as shown in Figure 8(b). The two sets of performance
curves are entirely equivalent for a specifIed threat.
Most analyses of the discrimination performance of a
particular defense deployment use the Pc! perfor­
mance curves. By specifYing a fIxed level of leakage,
such as PL = 0.1, we can generate an interceptor versus
sensor-quality (I-k) trade-off curve, as shown in Fig­
ure 8(c). These curves are particularly useful to quan­
tifY how an increase in interceptor inventory can be
used to offset a decrement in sensor quality.

For the case ofa single RV and perfect interceptors,
the probability of overall system leakage L is the same
as the probability of discrimination leakage PL' For
some of the subsequent examples, the defense must
factor in the additional effects of detection leakage,
interceptor leakage, and interceptor exhaustion in
converting the requirements on L into requirements

on PL'

Number of
~interceptors

8 (perfect)

9876543210
10 20 30 40 50 60 70 80 90 100

Attack

0.1

2

~
Cll

~ 0.5
Cll

'0

2
u
~ 0.2
x
w

0.05
L...-...u.._...l-----I_-.L.._.l...----l.._...l-----I~u.u.__I

RVs 10
Decoys 0

that the most damaging attack for each curve has a
higher fraction of decoys as the interceptor inventory
increases, bur the overall leakage decreases as intercep­
tor inventory increases.

To illustrate some defensive issues in the next ex­
amples, we consider offensive threats that are fIxed
bur not necessarily the most stressing. In subsequent
examples we include worst-case scenarios. Each exam­
ple forms an increasingly larger subsystem of the re­
dundant systems and the multiple-layer systems illus­
trated in Figure 2.

FIGURE 7. Possible leakage for different attack sce­
narios. The offense has a payload equivalent to ten RVs,
and any or all of the RVs can be replaced with ten decoys
each. For each feasible attack, we calculate the expected
number of RVs leaking through the defense system for a
defense with discrimination k factor equal to 3 and for
eight, ten, or twelve interceptors. The optimum attack
and the resulting leakage for each defense case is shown
by a circle. For the case of eig ht interceptors, the best at­
tack does not use any decoys at all.

Single Defense Layer Using Single Discriminant

A single-layer confIguration using a single discrimi­
nant forms the most basic defense architecture. It is
the confIguration illustrated in Figure 1, and it serves
as a good introduction to the issues involved in deter­
mining discrimination performance. We are primarily
interested in the trade-off between sensor quality, as
expressed by the k factor, and the interceptor invento­
ry 1, to achieve a fIxed system leakage objective L. For
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1.0 1=10
traffic capacity To such that it can measure up to To
objects and discriminate them with a given k factor. If

0.8 8
faced with a threat of M RVs and N decoys, with the
total number of threat objects T = M + N> To, then
the best strategy is to make measurements on To ob-

0.6 6 jects, and select objects to be intercepted on the basis
;;: of the number of interceptors available. The first tar-Q...

0.4 4 gets shot at should be measured objects that appear
RV-like. If other interceptors are available, they could

0.2 2 be fired at random at unmeasured objects. Finally, if
still more interceptors are available, they could be
fired at measured objects that appear decoy-like. A

0.2 0.4 0.6 0.8 1.0 precision sensor utilized in this manner is said to have
PL a fixed traffic capacity To.
(a) Figure 9 shows curves of PI versus interceptor in-

ventory I for two sensors with k factor equal to 3; one
1.0 sensor has no traffic limit, which is identical to the

lowest curve in Figure 8(b), while the other sensor has

0.8 a traffic limit To equal to 5. For leakage values above
1 - Tol T, the curves are similar. For smaller'values of

0.6
PI the traffic-limited curve falls off with a constant

-' slope corresponding to random shooting at objects
Q...

not measured. Finally, when there are enough inter-
0.4 ceptors to shoot at all unmeasured and RV-like tar-

gets, the leakage reduces asymptotically to zero.
0.2 The performance of the traffic-limited sensor in

Figure 9 is relatively poor. In this case, a better solu-

2 4 6 8 10
tion for the defense would be to measure all incoming

1
objects first with a relatively crude sensor or discrimi-

(b) nant that cannot be saturated. We call this measure-
ment function bulk filtering, or bulk discrimination.
The general defense strategy for using multiple dis-

10 criminants with a traffic-limited sensor is to precede a
PL = 0.1 precision sensor with a bulk filter. For precision sen-

8 sors with a fixed traffic capacity, the bulk filtering can
be performed in an optimal way.

6

FIGURE 8. Generation of defense performance curves for

4 an attack of one RV and ten decoys. A set of discrimina-
tion operating curves together with curves of expected

2
numbers of interceptors used is shown in (a) as a func-
tion of leakage probability and false-alarm probability.
The leakage probability and number of interceptors are

0 cross plotted in (b). Finally, (c) shows how the number of
0 2 3 4 5 interceptors and the k factor may be traded off for a fixed

k leakage probability of 0.1. The dots in parts band c repre-
(c) sent corresponding leakage and k-factor values.
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T = M RVs + N decoys1.0

0.8

0.6

-.J
Q..

0.4

0.2

0
0 5 10

°1 .-----1 51

(a)

1--... R1

Uncertain

FIGURE 9. Effect of traffic limits on discrimination perfor­
mance. The unlimited traffic curve is a repeat of the K= 3
curve in Figure 8(b). For a traffic-limited sensor that can
handle only five of the eleven targets, the performance is
clearly poorer. The straight portion of the curve arises
from firing randomly at objects that the sensor cannot
measure.

Figure 10 illustrates the process of sequential dis­
crimination. Figure lO(a) shows a bulk filter (sensor
51) in series with a precision sensor 52. T is the in­
coming traffic and To is the maximum traffic capacity
of sensor 52. Figure lO(b) shows the procedure to be
used in measurement space, where Xl is the bulk dis­
criminant and Xl is the precision discriminant. The
distributions of the observables in sensors 51 and 52
are indicated along the Xl and Xl axes. Note that the k
factor for 52 is considerably larger than the k factor for
51. Probability contours for the joint distributions are
also shown. The notation Rl , R2 , D l , and D2 denote
objects that are classified as RVs and decoys, respec­
tively, by the appropriate sensor. For the bulk filter 51'
two traffic thresholds "a and "b are set. Objects that
fall outside these thresholds are classified specifically
as RVs or decoys. Objects that fall between the thresh­
olds are classified as uncertain, and they are selected
for further measurement by the precision sensor. Be­
cause precision sensor 52 has a fixed traffic capacity of
To, the thresholds "a and "b are chosen so that the ex-

X2 .---------r---'--r------...,

°1

1)

R1

siDJl
(b)

FIGURE 10. Discrimination by a bulk-filter sensor 51 fol­
lowed by a traffic-limited precision sensor 52' (a) The
bulk filter reduces a total of T objects to To uncertain ob­
jects that are subsequently measured by the precision
sensor. (b) The measurement space of the two sensors
shows the corresponding RV and decoy density func­
tions and the two traffic thresholds ora and "b' The bulk fil­
ter operates on measurement x1. while the precision dis­
criminant uses x1 and x2 on those uncertain objects in
the region between the thresholds. Regions R1• R2•°1•

and 02 denote objects that are classified as RVs or de­
coys by the appropriate sensor.
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T= 11

• Bulk filter

De=1 ~'
only

1<.1 = 1

T = 11

Precision

T =11
sensor only

To=3 I To- T =8

+ +

rl h Intercept

1<.2 =3 randomly

Decoys RVs

FIGURE 11. Discrimination performance for a bulk filter
and precision sensor in series. The bulk filter has no traf­
fic limit and a discrimination I<. factor equal to 1, while the
precision sensor has a discrimination I<. factor equal to 3
but can handle only three of the eleven objects in the at­
tack. (a) The three flow diagrams show the object flow
through each sensor alone and through the combination
of the two sensors in series. (b) The resulting perfor­
mance curves show leakage as a function of interceptor
inventory for the three sensor cases.

pected number of objects classified as uncertain IS

equal to To.
We want to stress an important point here. Many

pairs of traffic thresholds that contain To objects be­
tween them can be chosen along the Xl axis. Only one
pair is optimal, however, and they can be determined
by the optimal discrimination rules referred to in the
appendix entitled "Sequential Discrimination with
Limited Resources." This appendix illustrates how the
attacking objects can be identified into more than two
classes (i.e., RVs, decoys, uncertain), subject to several
defense constraints (such as number of interceptors
and sensor traffic capacity). Let 'fa and 'fb be the opti­
mal traffic thresholds in the bulk sensor. Next, all ob­
jects classified as uncertain-i.e., all objects in the
center area in Figure 1o(b)-are measured by the pre­
cision sensor 52 and classified as RVs and decoys by
using a threshold 1) in the two-dimensional xI-Xz mea­
surement space. The total number ofobjects classified
as RVs-namely, the area RI + R2-must be equal to
I, the total number of interceptors.

Figure 11 (a) shows different combinations of a
bulk filter and a precision sensor in series, for specific
k factors and traffic capacity To. Figure 11 (b) shows
the performance curves for the combination and also
for the bulk filter alone and the precision sensor
alone. Ofparticular importance is the region for small
values of the inventory I in which the combined sen­
sor performance is far superior to that of either the
bulk filter or the precision sensor alone. For large val­
ues of I, the defense is shooting mostly at decoys, and
precise discrimination is not that necessary.

Figure 12 illustrates different trade-offs that can
occur for a bulk sensor and a precision sensor in series
with an attack ofone RV and ten decoys. Figure 12(a)
shows the trade-offs in k factor necessary to achieve a

Bulk filter
and precision

sensor

t
1<.1 = 1

• To=3

1<.2 = 3

Decoys RVs

(a)

1.0

0.8
Precision sensor

0.6
....,

Q..

0.4 Bulk filter and

0.2

0.0
0 5 10

Interceptor inventory I
(b)
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prescribed level ofleakage, namely, L = PI = 0.2. The
fixed traffic capacity of the precision sensor is the
independent parameter. When the precision sensor is
not traffic limited at all (i.e., To = T = 11), the circular

arc

defines the required combined k factor, where kj is the
k factor for the bulk filter and k2 is the k factor for the
precision sensor. When the precision sensor is traffIc

limited, a minimum quality of bulk ftltering must be
available to achieve the required leakage. Figure 12(b)
shows how the minimum required k factor for the
bulk filter varies as we change the required level of
leakage. Figure 12(c) considers a pair of sensors with
fixed k factors (k1 = 1, k2 = 3) and shows how increas­
ing the interceptor inventory I is a possible (but ex­
pensive) way to compensate for a limited traffic ca­
pacity in the precision sensor.

In designing a defense system, we must be able to
select combinations of sensors and interceptors that

T (1 RV, 10 decoys) T (1 RV, 10 decoys) T (1 RV, 10 decoys)

Bulk filter Bulk filter Bulk filter

Precision sensor Precision sensor Precision sensor

M=1
N= 10
k1 = 1
k2 = 3

Leakage PL

(c)

2 3 4 5 6

Interceptor inventory I

1=1 1=1

6.0 6.0 11

M=l M=l 10
5.0 N= 10 5.0 N= 10 9

3 = To
1=1 1=1 8

4.0 4.0
PL = 0.20 To = 3 7

->ce.J 3.0 ->ce.J 3.0 Leakage PL
1-0 6

5

2.0 2.0 4
3

1.0 1.0 2
1

0.0 0.0 0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0

k1 k1

(a) (b)

FIGURE 12. Trade-offs for a bulk filter and a precision sensor in series. All results are for an attack of one RV and ten
decoys. (a) The k-factor requirements for the two sensors to achieve a leakage of 20% or less are shown as a function of
the traffic capacity of the precision sensor. (b) The k-factor requirements with a traffic capacity of 3 are shown as a func­
tion of the leakage requirement. (c) The trade-off between precision-sensor traffic capacity and the number of intercep­
tors is shown as a function of the leakage requirement. In each case, the associated block diagram shows the target flow
through the sensors.

VOLUME 7, NUMBER 1. 1994 THE LINCOLN LABORATORY JOURNAL 77



• WEINER AND ROCKLIN
Discrimination Performance Requirements for Ballistic Missile Defense

Leakers and decoys

Objects

~

FIGURE 13. Target flow through a two-layer (midcourse
and terminal) BMD system. In this case, the objects
identified as RVs in the first layer are kept in track while
those identified as decoys are dropped (other cases will
be considered in subsequent figures). Note that inter­
ceptors are fired in both layers.

because of interceptor failure continue to be tracked
and their discrimination measurement Xl is retained
and handed over to the second layer. Objects classified
as decoys do not have their measurements retained.

At the second layer, all these objects (correctly
identified decoys and misidentified RVs) are reac-
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ecoys RVs
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Decoys RVs
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~

D

can handle the entire spectrum of attacks. Bulk filters
must be available to handle numerous crude decoys,
precision sensors must be available to handle better
decoys, and enough interceptors must be available to
handle the RVs and the very-high-quality decoys that
appear RV-like even to a precision sensor. If the de­
fense is lacking in anyone of these areas, the offense is
likely to try to exploit this weakness.

Multiple-Layer Defenses

A major reason the defense operates with multiple
layers is leakage reduction. If a single layer destroys
90% of the attacking RVs, two independent layers
operating sequentially can destroy 99% of the RVs.
By definition, each layer in a multiple-layer defense
has its own complement of interceptors and its own
interception phases. In the case ofa two-layer defense,
there are two distinct interception phases (as indicat­
ed by the two layers in series in Figure 2). This defense
configuration is a significantly different architecture
from the configuration of two sensors in series within
a single layer. In this section we also drop the assump­
tion of perfect interceptors and assume that each in­
terceptor has its own associated probability of failing
to kill its target; that is, a single interceptor has an as­
sociated leakage L. The second layer can cover leakage
from the first layer because of either discrimination
failure or interceptor failure.

Figure 13 shows one mode of operation of a two­
layer defense. We have not shown the search-and-de­
tection functions in this figure because we want to
highlight the passage of discrimination information
between the first (or midcourse) and second (or termi­

nal) layers. Figure 14 illustrates the options for oper­
ating the system in Figure 13. In all three cases Xl is
the measurement observable for the first layer and X2

is the measurement observable for the second layer.
Probability contours for the RV and decoy measure­
ments are indicated. The mode ofoperation known as
handover RVs, which is illustrated in Figures 13 and
14(a), leads to the following scenario. Incoming ob­
jects are measured by sensor 51 and a discrimination
threshold rex!) is set based only on measurement Xl

and a midcourse inventory constraint II' Objects clas­
sified as RVs (shown in green and blue to the right of
the threshold) are fired on. Those RVs which survive
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quired and then measured by sensor 52' A new dis­
crimination threshold for the second layer is set; this
threshold takes the discontinuous form shown in Fig­
ure 14(a). Threshold r(x2) is applied only to the sub­
collection of objects classified as decoys in the first
layer; it depends only on measurement Xl because the
XI measurement was not retained for these objects.
Threshold r(xl , X2) is applied to the subcollection
classified as RVs in the first layer; it depends on both
of the measurements XI and X2' The thresholds r(Xl)
and r(xl , x2) are set according to a terminal inventory
constraint 12 , These two thresholds minimize overall
leakage according to the optimal discrimination rules
set forth in the appendixes entitled ''An Optimal One­
Dimensional Representation for a Sensor" and "Se­
quential Discrimination with Limited Resources."

Figures 14(b) and 14(c) illustrate the form of the opti­
mal thresholds for the cases in which no information
and all information, respectively, is handed over to the
second layer.

We now discuss some results for these three han­
dover strategies, which we denote as Rvs only, none,
and all. The following parameters are used for the fig­
ures below: the inventory constraint II can vary, but 12

is related to II by the equation 12 = 1/10; single­
interceptor failure probabilities in each layer are de­
scribed by the relation II =12 =0.05; and the offensive
RV/decoy exchange ratio Ris 10. For any given defen­
sive deployment (kl' k2, II' 12), we assume the offense
will optimize its offloading fraction ofRVs and decoys
to stress the defense maximally.

Figure 15 shows the sensor discrimination trade-

Handover RVs
x2 r-------r--------,

, , , ,
, , ,

r(x, x2)",

No handover Handoverall

, , , , , ,
, , , , , , ,

"""""" ,

r(x,/2)",

(a)

D Shoot in midcourse only

D Shoot in terminal only

D Shoot in both layers (if necessary)

(b) (c)

FIGURE 14. Discrimination in a two-layer BMD system. The two-dimensional measurement space of the midcourse (x1)
and terminal (X2) sensors is shown together with decision thresholds for three different hand over strategies. (a) The
handover-RVs case corresponds to the flow diagram in Figure 13, while (b) in the no-hand over case no communication
occurs between layers, and (c) in the handover-all case all information obtained by the midcourse layer is passed to the
terminal layer. Because the decision to fire midcourse interceptors is based on midcourse data only, the x, threshold is
vertical. Depending on the hand over option, the terminal threshold is a function of x2 only for some objects and a func­
tion of x, and x2 for others. Objects in the green region (upper right) are shot at in both layers, objects in the blue region
(lower right) are shot at only in the midcourse layer, while objects in the yellow region (upper left) are shot at only in the
terminal layer. The leakage arises from RVs that are in the white region (lower left) or are shot at and missed.
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FIGURE 15. Defense and offense trade-offs for a two-layer BMD system. (a) The k-factor requirements necessary to
achieve a 1% overall leakage are shown for the case of one midcourse interceptor and 0.1 terminal interceptors for each
RV in the baseline (all RV) offense payload. The three handover strategies are those illustrated in Figure 14. (b) The
point (k1 =2.56, k2 =4.0) examined shows overall leakage as a function of offense offload fraction p for several different
interceptor inventories for an RV /decoy exchange ratio of 10. The optimum offload is the one that maximizes the leakage.
For sufficiently high interceptor inventorys, the best attack does not use decoys. This curve is analogous to the curve
shown in Figure 7 for a single-layer system.

off curves required to achieve an overall leakage L of
0.01, or 1%, through both layers. For this case we
have assumed perfect detection. An interceptor inven­
tory 11 for this example is set equal to the offensive
payload Mo; that is, the midcourse interceptor inven­
tory would equal the number of RVs in the attack if
there were no offloading. We see that if information
from the first layer is handed over to the second layer,
then the discrimination requirements on the 52 sensor
can be made arbitrarily small if sensor 51 is good
enough. If no discrimination information is handed
over to the second layer, then minimum values for
both k1 and k2 are required to achieve an overall leak­
age of 1%. Values of k1 and k2 above or to the right
of the curves in Figure 15(a) will result in an overall
leakage of less than 1% for the appropriate handover
configuration.

By comparing the curves in Figure 15(a) we see
that the defense can achieve its objective in a variety of
ways, including different combinations of k1 and k2

and different handover strategies. The difference in k­
factor requirements between the handover case and
the no-handover case is particularly important when
the terminal layer has poor discimination perfor­
mance and the information handed over would be
most welcome. In this case, there is relatively little dif­
ference between the curves for handing over measure­
ments on all targets and handing over only measure­
ments on the objects classified as RVs; this fact is
particularly important because the number of objects
classified as RVs is typically a small fraction of the to­
tal number ofobjects in the attack, and the communi­
cations requirements could be reduced.

Figure 15(b) shows the result of the offense optimi­
zation that was used to calculate a single point on one
of the k1-k2 trade-off curves. The total offense payload
is Mo RVs, any or all of which can be replaced by ten
decoys per RV The offense offload fraction p is de­
fined as the fraction of RVs replaced by decoys. The
resulting system leakage L is a function of p and the
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FIGURE 16. Discrimination requirements for two-layer 8M D systems. (a) The flow diagram illustrates the flow of objects
through the two layers. The requirements on the k factor in the two layers are traded off in various ways in the three sets
of curves shown here. (b) This figure compares the different handover options; (c) this figure shows the increase in re­
quired k factor with RV/decoy exchange ratio; (d) this figure shows the decrease in required k factor with the number of
interceptors. In all cases the detection leakage is 1% per layer, the interceptor leakage is 5% per layer, and the overall
leakage requirement is 1%. The heavy curves in each of the three graphs have parameters in common; all other curves
are obtained by varying one parameter at a time.

defense parameters II' 12, kl , k2 , and the discrimina­
tion thresholds. Figure 15(b) shows how the system
leakage L depends on p and the relative defense inven­
tory II/Mo for the point (kl , k2 ) = (2.56,4.0) from the
handover-RVs curve in Figure 15(a). The upper of­
fense operating curve in Figure 15(b) shows that the
optimal offloading fraction is 0.18; this offloading

fraction gives an overall leakage of 1% when the inter­
ceptor inventory 11/ Mo = 1. Offloading curves for
other interceptor inventories (which were used in oth­
er k1-k2 trade-off curves) are also shown. These trade­
off curves are similar to those shown in Figure 7 for a
single-layer system with perfect interceptors. As the
interceptor inventory increases the fraction of decoys
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in the optimum attack also increases. As the inventory
1/Mo increases above the value 1.6, however, the op­
timal offloading fraction p jumps to zero offload. In
this case the defense discrimination is sufficient to
drive the offense away from using decoys.

Figure 16 shows examples of three different trade­
offs in k1-k2 space, again to achieve an overall leakage
of 1%. For these examples we include a detection
leakage of 1% per layer. Thus 1% of all targets are not
detected in midcourse and pass through to the termi­
nallayer, where an independent search and detection
is carried out; 1% of these targets are also not detect­
ed. This leakage, combined with additional leakage in
the intercept stage, forces us to reduce the discrimina­
tion leakage to achieve the overall system leakage re­
quirement. By using the same type of analysis shown
in Figure 15, we present requirements for k1 and k2

for different parameter trade-offs. For all three exam­
ples, the overall leakage requirement is met for k fac­
tors above the curves, while the leakage exceeds 1%
for k factors below the curves. The heavy curve in each
graph is the parameter value common to the other
graphs.

Figure 16(b) shows the effect of different handover
strategies. By comparing this figure with Figure 15(a),
we see that the handover-RVs curve now requires a
minimum k2 to achieve 1% overall leakage when de­
tection leakage is nonzero. Figure 16(c) shows that
discrimination needs to be better (and is likely to be
better) for lighter decoys. Figure 16(d) shows that dis­
crimination can be poorer if the defense has more in­
terceptors; note that this figure is the two-layer ver­
sion of Figure 8(c). Note that for all cases shown in
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Figure 16, both the offense and defense use their opti­
mum strategies and tactics, subject to the appropriate
constraints.

Summary

We have described a number of analyses of discrimi­
nation performance requirements for a variety of
BMD systems. All these analyses represent a compro­
mise between fidelity and flexibility. They involve
multidimensional optimization of both offense and
defense tactics that require extensive computation to
examine fully the relevant offense and defense system
parameters.

The general conclusions of these analyses are (1)
for each defense system, there is a threat (including
number of RVs, type of decoy, and mix of RVs and
decoys) that most stresses discrimination perfor­
mance; (2) beyond a certain level of discrimination
performance the offense does not benefit by using de­
coys (the defense does not need better discrimination
than this); and (3) the defense can compensate for
poorer discrimination by deploying more interceptors
(at low levels of discrimination this option becomes
expensive) .
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APPENDIX 1:
AN OPTIMAL ONE-DIMENSIONAL
REPRESENTATION FOR A SENSOR

ANY BINARY DECISION problem involving sensors with
measurement uncertainties that are described by
probability densities or, equivalently, any discrimina­
tion problem between two classes of objects, can be
recast in the form shown in Figure 4, namely, as two
unimodal distributions along a one-dimensional fea­
ture axis with a decision region determined by a single
threshold. In keeping with the notation of this article
we refer to the two classes of objects as RVs and de­
coys, but the underlying results are more general.

Let the functions gR(Z) and gD(z) be the probability
distributions of the RV and decoy populations, re­
spectively, where Z represents any point in a (possibly)
n-dimensional measurement space n. Suppose the

measurement space is partitioned into two regions nR
and nD so that if measurement ZEnR we classify the
object as an RV; likewise, if measurement ZEnD we
classify the object as a decoy. Suppose we seek optimal
discrimination regions n~ and n~ that minimize
the expected leakage

subject to an interceptor inventory constraint

1 = M fgR(z) dz + N f gD(z) dz = 10 '

Q R Q R

(a) (b)
o x

FIGURE A. RV and decoy probability distributions in a multidimensional measurement space.
(a) The two-dimensional space (zrz2) shows the probability density contours for an RV and a
mixture of three types of decoys. Contours of constant likelihood ratio A(z) connect points in
the space that are equally likely to be RVs. (b) By using these likelihood ratios, we can transform
the multidimensional space into a one-dimensional space in which RV and decoy probability
density distributions are functions of the variable x.
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where M and N are the RV and decoy populations,
respectively. Then the optimal discrimination region
nR is determined by

n~ = {z: A(z) ~ A},

where the quantity

A(z) = gR(z)
gD(z)

is the likelihood ratio and A is a constant that depends
on the prescribed inventory 10. The set of points z sat­
isfying A(z) = A determines a multidimensional
threshold surface in the measurement space.

Figure A shows an example of the probability con­
tours of a multimodal decoy population consisting of
three subtypes. A unimodal RV population is also
shown on this two-dimensional measurement space.
Two threshold contours Al and ~ are superimposed
to show how the threshold can vary in shape as the pa­
rameter Achanges. As Avaries, the probability ofleak­
age and the probability of false alarm, given by

PL = fgR(Z) dz
nD(A)

and

PFA = fgD(Z) dz,
nR(A)

respectively, trace out a PL-PFA operating curve similar
to that shown in the article in Figure 4(b).

Because all optimal thresholds are surfaces of con­
stant likelihood ratio in the measurement space, we
can show that the RV and decoy distributions can be
mapped onto unimodal one-dimensional distribu­
tions as illustrated in part bof Figure A and in the ar­
ticle in Figure 4(a). These unimodal distributions,
which can be constructed in a simple manner from
the PrPFA operating curve, have the important prop­
erty that their likelihood ratio is monotonic along the
x axis. In particular, by moving a single threshold
along the x axis, we can generate the same PrPFA op­
erating curve. Thus the two representations shown in
Figure A are equivalent.

APPENDIX 2:
LEAKAGE FOR DIFFERENT

DISCRIMINATION SCENARIOS

the leakage on the remaining three variables-Ai, N,
and I-also reflects the defense scenario.

Case 1: Defense Views One Object at a Time

In this case the objects arrive one at a time in random
order and the defense must decide whether to inter­
cept each object as it arrives. The defense knows M
and N but not the order ofarrival ofobjects. The per­
tinent equation for L(M, N, 1) is

AS WE DISCUSS in the body of the article, the key calcu­
lation done by both the offense and the defense is the
determination of the overall system leakage L, where
L(M, N, I, k, r) is a function of M (the number of
RVs), N(the number of decoys), I (the number of in­
terceptors), k (the discrimination k factor), and r (the
discrimination threshold). In this appendix we as­
sume that the defense is operating its discrimination
optimally by using some prescribed PrPFA operating
curve (i.e., a given k factor). As we shall see, the term
"optimally" depends on how the defense views the at­
tack and makes its discrimination decision (i.e.,
chooses a threshold r). The functional dependence of
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where

and where PL and PFA are related by the k factor. The
index i represents the number of decoys that arrive
before the last RV in the attack. In the first summa­
tion, if the number of decoys that precede the last RV
is such that i ~ J- M, then we don't care whether they
are classified as RVs or not; the interceptor supply will
not be exhausted. In the second summation, where
i ~ J- M + 1, we must include the probability that at
most J - M of these decoys are classified as RVs.

In the equation for Qabove, the defense chooses
the unique point on the PL-PFA operating curve that
maximizes the function Q. In general, these will not
be the same values that satisfy the inventory equation
given in case 3.

Case 2: Defense Views Entire Attack

If the defense observes the entire threat before com­
mitting its interceptors, it can achieve better perfor­
mance. It can measure the observables of all the in­
coming RVs and decoys first, and then shoot at the J
most threatening objects. The leakage probability L is

where

is the probability density of the N - (I - M)th largest
decoy (i.e., there are J - M decoys larger than this
one).

The double integral above is the probability that
the smallest RV is larger than the N - (I- M)th largest
decoy. That is, the double integral determines the
probability that all M RVs will be included in the J
largest objects. The functions F andf, with the appro­
priate subscripts, are the cumulative distribution and
density functions of the RV and decoy observables. F
for RV observables is defined as

x

FR(x) = f fR(z) dz.

Notice that in this case there is no need for a threshold
because all objects are observed before a decision is
reached.

Case 3: Simplified Model-Expected Leakage

In this case the threshold -r is chosen so that the ex­
pected number of objects classified as RVs is equal to

-.J 0.1
Q)

Ol
<ll
~

<ll
~

~
Q)

>
0 0.01

--- See whole attack
------. One at a time
- - - Expected value

65234
k factor

0.001 L..-_---I...__....L-_---l__....L..__.l...-_----I

o

FIGURE A. Leakage for different defense scenarios. The
leakage is least if the defense can wait to see the entire
attack before commiting any interceptors. The leakage is
highest if the defense must make a defensive decision on
each object one at a time. The expected-value result is
intermediate to these two leakage scenarios and is the
easiest to calculate.

h (x) = N!
D (N - J + M - I)! (I - M)!

X [FD(x)(-I+M-l[l_ FD(x){-M fD(x)

is the probability density of the smallest RV; and
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the interceptor inventory I, or

= M(l - PL ) + NPpA .

The expected probability of leakage is

L(M,N,I) = 1- (1- PL)M.

This approach results in a greatly simplified analysis,
with little loss in accuracy.

Numerical Results

To illustrate how results for the three cases differ, we
consider a simple attack containing two RVs and four
decoys against a defense with two interceptors (i.e., M
=2, N =4, and 1=2). Figure A shows the overall leak­
age L as a function of k factor for the three cases. We
can see that rhe defense always does better if it sees the
whole attack rather than ifit treats the objects one at a
time. Furthermore, in the low-leakage region, the
simple expected-value calculation gives results inter­
mediate to the other cases and should be a reasonable
approximation in many situations.

APPENDIX 3:
SEQUENTIAL DISCRIMINATION WITH

LIMITED RESOURCES

where

or to a traffic constraint

(1)

(3)

(2)

they minimize the expected leakage L, where

This relation is subject to either an interceptor inven­
tory constraint

CONSIDER THE RV and decoy distributions shown in
Figure A in the appendix entitled 'M Optimal One­
Dimentional Representation for a Sensor" in their
original measurement space. Suppose that after mea­
suring all the objects we wish to classify them as RVs
or decoys or uncertain, and that a final disposition of
objects classified as uncertain awaits further measure­
ments or data processing. As we see below, such situa­
tions arise naturally in discrimination systems with
traffic-limited sensors or in multiple-layer systems
with data handover.

We have developed an optimal discrimination rule
that includes the category ofobjects designated as un­
certain; we present this rule here informally. Let us
denote RVs as objects of class 1, decoys as objects of
class 2, and uncertain as objects of class O. By using
the notation from the appendix entitled 'M Optimal
One-Dimentional Representation for a Sensor," we
seek a partition of our measurement space into opti­
mal discrimination regions n;, n~, and n;, so that
if a measurement x lies in a region of n; then we clas­
sify that object as class i. These regions are optimal if
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two inequality conditions. Let x be the measurement
observable of any object. Suppose

If this inequality condition is satisfied, then the object
is classified as uncertain. If this inequality condition is
not satisfied, then the second inequality condition

is considered. If this second inequality condition is
satisfied, then the object is classified as class i. If the
interceptor inventory constraint in Equation 2 is ap­
plicable, then the optimal discrimination rules in
Equations 4 and 5 reduce to that in the appendix en­
titled 'M Optimal One-Dimensional Representation
for a Sensor." If imperfect interceptors are considered,
then the discrimination rules for the multiple-layer
defense result (see Figure 14).

On the other hand, for traffic-limited sensors
Equation 3 is applicable and the optimal discrimina­
tion rules are applied as follows. The constant It is a
threshold that is adjusted to satisfy the traffic con­
straint. Because the inequalities given in Equation 4
must be satisfied for both the RV and decoy likeli­
hood functions, the proper choice of It will yield a pair
of thresholds that delineate the region n~ as uncer­
tain. In the case of the bulk filter and the precision­
discriminant sensor in the limited-traffic-capacity ex­
ample, the proper choice of It yields the two optimal
traffic thresholds shown in Figure lOeb).

(4)

represents the likelihood function for class i. The op­
timal discrimination rules follow from considering

A. (x) = Pzlz (x)
I M(x)

is the overall population probability distribution over
the measurement space, Pi is the fraction of objects of
type i, T is the total number of objects in the threat,
and To is the traffic capacity of the precision sensor.

The weighting constants 'J in Equation 1 represent
the contribution to expected leakage caused by classi­
fying an RV (class 1) into category j. In some cases,
such as when an RV is identified as a decoy, the leak­
age is immediate and complete. Even if an RV is cor­
rectly classified as an RY; however, there may be a
leakage contribution due to interceptor unreliability.
This leakage would be accounted for by the weighting
constants 'J' For RVs initially classified as uncertain
(class 0), the expected leakage results from the proba­
bility of subsequent misclassification and the proba­
bility of interceptor failure, even if the subsequent
classification is correct. The weighting constants Cj in
Equations 2 and 3 represent those objects in class j
which contribute to the inventory constraint. For an
interceptor constraint, only objects classed as RVs
contribute. For a sensor traffic constraint, only ob­
jects classified as uncertain contribute.

The optimal discrimination rules are based on the
values of a likelihood function similar to that dis­
cussed in the appendix entitled "Leakage for Different
Discrimination Scenarios." The function
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