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• A multidimensional sensor suite consisting of a laser radar and a passive­
infrared (IR) sensor has been proposed and evaluated for detecting and
identifying ships at long ranges from an airborne platform. The passive-IR
sensor would detect targets by taking advantage of the high target-to­
background 'contrast and the sensor's ability to track over a wide field ofvievv.
The higher information content of the ship's range profile would then be .
exploited for target identification.

A two-part approach was developed to evaluate the proposed system. The
first part concentrated on creating synthetic signatures of naval vessels under a
variety of controlled sensor operating characteristics and target scenarios. Two
neural networks were used to classifY the synthetic signatures. In the second part
of the evaluation, active and passive-IR measurements of two naval vessels were
taken with an existing airborne multidimensional sensor system. These missions
demonstrated that measured range profiles were similar to the synthetic profiles.
Our results, from both synthetic and measured data, indicate that range-profile
and passive-IR signatures complement each other in covering all viewing aspects
for long-range ship classification.

ACTIVE AND passive-infrared (IR) sensors com­
bined with neural network classifiers have

. been proposed. to detect and identifY ships
at long ranges (approximately 100 km) from an air­
borne platform (Figure 1). To measure the ship fea­
Hires, S. Marcus has designed a noncooperative target
identification (NCTI) sensor suite [1, 2]. The multi­
dimensional sensor suite consists of a nonimaging
laser radar range profiler and an imaging passive­
IR detector array. The passive-IR sensor detects tar­
gets by taking advantage of high target-to-back­
ground contrast and by utilizing its ability to track
over a wide field ofview. The higher information con­
tent of the active range profile is then exploited for
target identification.

To evaluate the proposed system, we developed a
two-part approach. In the first part, we created syn­
thetic signatures of naval vessels because of the ex­
pense and difficulty of obtaining measured data from
targets under a variety of controlled conditions and

scenarios. We created the synthetic signatures by
modifYing ship models in software to include the op­
erating characteristics of the proposed active and pas­
sive-IR sensors. The signatures could then be evaluat­
ed under a variety of controlled sensor operating
characteristics and target scenarios for automatic ship
identification. To classifY the synthetic active and pas­
sive-IR signatures, two neural network processors
were studied: a multilayered neural network (MNN)
and the Adaptive Clustering Network (ACN) classifi­
er. The MNN is a feedforward multilayered network
that constructs an internal representation by learning
from training data. Once training is completed,
the learned internal representation enables the classifi­
cation of unknown input patterns. The ACN is an
unsupervised classifier that determines its own cate­
gories based on an association threshold and learning
rate.

Synthetic data are not, of course, a substitute for
measured data. Thus the second part of the system
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FIGURE 1. Ship detection/classification scenario for the
noncooperative target identification (NeTI) sensor
suite. The sensor suite contains an imaging passive­
infrared (IR) detector array that scans across a 12° x 12°

field of regard (FOR) and a non imaging laser radar range
profiler that scans across a smaller 2° x 3° FOR. The hori­
zon is roughly 250 km from the airplane.

evaluation focused on collecting data from two ships
of different naval classes. An airborne laser radar sys­
tem took multidimensional measurements-passive
IR and active range and intensity-of the naval ves­
sels. A major purpose of the missions was to deter­
mine whether the range profiles of the two ships at
similar ranges and viewing aspects were distinct
enough to be used for identification. An equally im­
portant goal was to demonstrate that the measured
range profiles were similar to the synthetic ship signa­
tures. Such a similarity would validate the neural
network classification results, which were based on
synthetic imagery.

Theory

We generated synthetic laser radar range signatures
and passive-IR images of naval vessels to evaluate the
potential performance of the NCTI sensor design for
each sensor domain. The active target signatures were
generated for a nonimaging laser radar range sensor,
which accumulated range-extent information as it
scanned across its field of regard (FOR). Passive-IR
target signatures were generated in a coarse imaging
mode over a larger FOR. This section summarizes the
sensor design, then discusses the statistics and as-
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sumptions that are contained in the models for the
two sensors.

NeT! Sensor Suite

The NCTI sensor suite was designed to detect and
identify ships and aircraft at long ranges (Figure 1). In
a coarse imaging mode, the passive-IR sensor detects
man-made targets against the natural clutter of the
ambient sky or sea within a 12° X 12° FOR. The sen­
sor exploits the assumed positive target-to-back­
ground contrast of these scenarios. Then, in a nonim­
aging mode, the pulsed laser radar sensor provides
highly resolved range-extent information within a
smaller 2° X 3° FOR. The laser radar measures the la­
ser pulse intensity reflected from an extended target.
Sufficient detector dwell time is allowed for the trans­
mitted pulse to traverse the target's extent and obtain
a range profile of the object.

The sensor suite, described in detail by Marcus in
References 1 and 2, was designed to fit in a modified
Low Altitude Navigation Targeting Infrared for Night
(LANTIRN) pod for mounting on a surveillance air­
craft. This design limited the size of the system, nota­
bly restricting both the active and passive-IR sensors
to share a common 15-cm aperture.

Because of the operational requirement that the
range of the sensor suite be 100 km, Marcus selected a
CO2 laser for the active sensor. This choice limited
the sensor's instantaneous field of view (IFOV)-i.e.,
the FOV of a single detector element-to 150 .urad
for diffraction-limited optics. For the particular CO2

laser chosen, the theoretical performance was calcu­
lated as a carrier-to-noise ratio (CNR) of 32 dB at a
range of 100 km for naval targets. This CNR value
was sufficient to achieve 1-m range precision with a
30-nsec pulsewidth. A simple 2 X 2 array was chosen
for the active system detector to be scanned through
the sensor's 2° X 3° FOR, as shown in Figure 1.

For the passive-IR sensor, Marcus specified a 15­
cm-aperture, f/2 charge-coupled device (CCD) cam­
era operating in the 3-to-5-.um waveband. The pas­
sive-IR sensor was designed to achieve an NEi1T of
0.1 KO and to operate at a signal-to-noise ratio (SNR)
of 32 dB at 100-km range. (Note: NEi1T, the noise­
equivalent delta temperature, is defined as the ther­
mal contrast that produces an SNR of 1.)
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ModeLfor Laser Radar Range ProfiLes

The range profile model is derived from on-going
modeling work for laser radar range signatures byJ.H.
Shapiro [3, 4] and T.]. Green [5]. The model extends
earlier laser radar imaging theory for peak-pulse logic
and first-pulse logic to account for range-spread tar­
gets. In a peak-pulse system, the sensor measures the
time between the transmitted laser pulse and the peak
of the pulse's reflected return. This time provides the
range to the largest or most highly reflective feature
within the sensor FOY. In a first-pulse system, the
sensor measures the time delay between the transmit­
ted pulse and the first pulse of the reflected return that
exceeds a prescribed threshold. Neither type of sys­
tem, though, uses the entire reflected laser radar pulse,
which contains detailed information abour the target
from which the pulse was reflected, specifically, the
target range extent within the sensor IFOY. It has
been proposed that a unique target representation,
suitable for identification, would be obtained if this
range-extent signature were measured.

The sensor model formulated by Shapiro and
Green [6, 7] describes the statistics of a coherent laser
radar receiver detecting a single reflected laser pulse.
The model assumes that the sensor IFOV resolves a
range-spread speckle target that has uniform, diffuse
reflectivity. This assumption is a reasonable estimate
of the target characteristics in the absence of detailed
reflectivity information. The model accounts for the
effects of the transmitter pulse width and the matched
intermediate frequency (IF) filter pulse width, as well
as for laser radar speckle and local-oscillator shot­
noise statistics. The coherent detection receiver is
modeled as a continuous wave (CW) local oscillator, a
bandpass IF filter, and a linear envelope video detec­
tor. A brief mathematical description of the model is
contained in ''Appendix 1: Synthetic Laser Radar
Range Profiles."

Using the model, we can calculate a synthetic
profile for each element of the 2 x 2 detector. Each
element of the detector records an independent range
profile for the portion of the target that occupies
the element's IFOY. Each range profile is unique
with respect to the aspect and range of a particular
target. For the final target signature, we sum all

the range-registered IFOV profiles that the sensor
has scanned. This sum will also be aspect dependent.

ModeLfor Passive-IR Signatures

Passive-IR imagery is a measure of the thermal radia­
tion from a target and background within a particular
waveband of detector sensitivity. For the proposed
passive-IR sensor, we selected the 3-to-5-,um wave­
band after considering the target characteristics, at­
mospheric transmission, and sensor technology [1, 2].

At the shallow depression angle of the proposed
sensor, a naval vessel would be observed against the
ocean, with no sky background in the image. From
this study, we modeled the scenario as a warm isother­
mal target on an ambient isothermal background
without using highly detailed thermal models. The
synthetic passive-IR image was constructed with a
simple image template that consisted of a target sil­
houette, at the desired observation aspect, against a
featureless background plane, representing the ambi­
ent ocean. For each sensor pixel in the template, a pair
of passive-IR intensities was calculated, one intensity
value for the target and the other for the background.
The appropriate target or background value was then
inserted into the final synthetic passive-IR image by
using the image template as a guide. We modeled the
passive-IR signatures of the target and the back­
ground by using two overlapping Gaussian distribu­
tions. (For further details of the method used, see
''Appendix 2: Synthetic Passive-Infrared Imagery" and
Reference 8.) The mean and standard deviation of
each distribution were selected from experimental
data [2J. In the estimation of the thermal distribu­
tions, the sensor NE~T was taken into account.

Ship Models and Database of
Synthetic Signatures

The four ship models used in this research were of ac­
tual naval vessels: the USS Duncan (FFG 10), the
USS Horne (CG 30), the USS Spruance (DD 963),
and the USS Texas (CGN 39). Based on Navy draw­
ings, photographs, and physical models of the ships,
the four synthetic models were constructed as a col­
lection of elementary scattering shapes by Georgia
Tech Research Institute (GTRI) using the MAX geo­
metric database editor [9J. These solid representations
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USS Duncan

USS Spruance

USS Horne

USS Texas

FIGURE 2. Georgia Tech Research Institute (GTRI) ship models visualized in the Army's Ballistic Research Laboratory
computer-aided design (BRL-CAD) solid modeling environment: the USS Duncan (FFG 10), the USS Horne (CG 30), the
USS Spruance (DD 963), and the USS Texas (CGN 39). These four models were used to generate the synthetic laser radar
range signatures and passive-IR imagery used in our research.

were converted to facets for portability to other mod­
eling environments.

The four models, each containing more than
15,000 facets, were then imported into the Army's
Ballistic Research Laboratory (BRL) computer­
aided design (CAD) solid modeling environment
[10J. In BRL-CAD, the entire structure of each ship
was represented as a single solid continuous skin.
BRL-CAD rendered the solid models with high reso­
lution at several viewing aspects and sensor depres­
sion angles. Figure 2 contains four examples of the
renderings.

In the final step, a ray-tracing algorithm was used
to convert each visual model to a range image. The
ray-tracing algorithm sampled the model surfaces rep­
resented by each pixel in the output image, and as­
signed to a pixel the range nearest the observer-a
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process not unlike the operation of a first-pulse laser
radar ranging system [11J. Ship models were generat­
ed at 31 viewing aspects, from bow to port, in 30 in­
crements. Each of the models was rendered and ray­
traced with 0.25-m resolution on target to form the
finely resolved synthetic imagery that would be used
to calculate the active and passive-IR signatures. This
process ensured that small-scale details of the models
would be retained in the calculation of the target
signatures.

Signatures were then generated for the ship-identi­
fication sensor suite in two domains: active and pas­
sive IR. The active signatures were generated for a
nonimaging laser radar range sensor. The passive-IR
signatures were generated in a coarse imaging mode.
The following subsections describe the synthetic sig­
natures that were calculated for the two sensor do-



• BAUM, TUNG, AND RAK
Non-Cooperative Identification ofShips with Electrooptical Data

mains, and the resulting databases.

FIGURE 3. Expected-value range signatures of the
Duncan at different aspect angles from bow to beam:
(a) 0°, (b) 30°, (c) 60°, and (d) 90°. The signatures are for a
30-nsec pulse. (Note: A closed-form solution was used
to calculate the signatures.)
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Laser Radar Range Signatures

For the laser radar range sensor, we calculated a data­
base ofship signatures based on a 100-km operational
range and 32-dB CNR, yielding I-m range resolution
[1, 2]. The complete database consisted of synthetic
signatures from the four ships at 31 different aspects,
from bow to port, in 3° increments.

With the high-resolution-rendered BRL-CAD
models, the range-signature database could be calcu­
lated with the equations in Appendix 1. The process
called for subsampling a highly resolved model to ob­
tain a range-extent histogram for the portion of the
target resolved by the detector IFOV This histogram
was convolved with the transmitted laser pulse and
the IF filter to form an IFOV profile. Range profiles
were calculated for each instance of the detector's
IFOV within the sensor's FOR and then accumulated
to form a single target and aspect-dependent range
signature, or frame. To understand the effects of laser
speckle on signature characterization, we used Equa­
tion A ofAppendix 1 to generate signatures subject to
speckle statistics. We then used Equation C ofAppen­
dix 1 to compute the expected value of the signatures,
averaged over speckle statistics. (Note: The expected
value of a signature is the trace that would result if an
infinite number of sample signatures, subject to the
random effects of speckle, were averaged together.)

Realizing that the nonimaging sensor model mea­
sures range-extent information, we expected that the
naval vessels measured near bow aspect (head on)
would have significant range extent, while vessels
measured near beam aspect (broadside) would have
little range extent. Figure 3 demonstrates this expect­
ed aspect dependence for noiseless range signatures of
the Duncan.

It was important to determine whether the signa­
tures of the different ships were distinguishable. Fig­
ure 4 displays noiseless range signatures of the four
ships at a 30° viewing aspect. Note the unique charac­
teristics that should make classification possible. At
first glance, these noiseless signatures do appear readi­
ly distinguishable.

The examples displayed in Figures 3 and 4 repre­
sent the expected values of the ship range signatures.
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FIGURE 4. Expected-value range signatures of four ships at a 30° aspect angle: (a) the Duncan,
(b) the Horne, (c) the Spruance, and (d) the Texas. The signatures are for a 30-nsec pulse. (Note: A
closed-form solution was used to calculate the signatures.)

We were able to calculate these signatures directly be­
cause of the availability of a closed-form solution
(Equation C in Appendix 1). In the proposed sensor,
the measured signatures would be obtained by averag­
ing numerous frames together to reduce the effects of
laser speckle. This averaging is necessary when speckle
is present because speckle severely limits the SNR of a
laser radar system. The results of cumulative averag­
ing, which increases the SNR of the signatures, are
shown in Figure 5. Note that the effects oflaser speck­
le dominate the range signatures when fewer than
eight frames are averaged. In such cases, the intensity
fluctuations caused by laser speckle are very signifI­
cant. Indeed, such fluctuations will have a tremen­
dous impact on the classification of naval vessels un­
less an adequate number of frames are averaged.

Last, we modeled the laser pulse at widths of 10, 30
and 50 nsec with the corresponding matched IF filter
widths. Increasing the laser pulse width smoothed the
contributions of the various components and super­
structure of the ships; decreasing the width preserved

8 THE LINCOLN LABORATORY JOURNAL VOLUME 7. NUMBER I, 1994

the characteristic details for identification of ship
range signatures.

Passive-IR Signatures

Initially, the NCTI sensor suite was designed so that
a target would be detected by a passive-IR sensor
and identified by a laser radar. Early in the pro­
gram, however, we noted the potential to develop
ship silhouette recognition with the passive-IR imag­
ery. To understand the difficulties associated with
long-range passive-IR silhouette recognition, we
synthesized passive-IR imagery at ranges of 25, 50,
and 100 km. Each image had the appropriate sensor
SNR based on the sensor design in References 1 and
2, and was calculated as a function of range and atmo­
spheric extinction coefficient (a measure of how
strongly the atmosphere will attenuate the signal).
The conditions modeled were based on a summer sce­
nario with the sensor at an altitude of22,000 ft and a
slant range of 100 km, yielding 18.1-dB atmospheric
attenuation. Because a high frame rate was technically
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FIGURE 5. The reduction of laser speckle by averaging (a) 1, (b) 4, (c) 8, and (d) 16 range signatures.
For comparison, the expected value of the range signature is shown with a dashed line. The signa­
tures are for the Duncan at a viewing aspect of 30°,

feasible with the sensor design, the recommendation
was that all detection and recognition of ship silhou­
ettes be studied with 16-frame-average imagery. The
16-frame average would improve the recognition per­
formance because such averaging would enhance the
effective sensor SNR by a factor of4. Table 1 summa­
rizes the sensor parameters. The complete database
consisted of ship silhouettes generated at 31 different
aspects, from bow to port, in 3° increments for each
of the four ships.

The passive-IR imagery was synthesized from the
high-resolution-rendered BRL-CAD ship models.
Basically, each ship model was scaled to the appropri­
ate range and converted to a binary silhouette tem­
plate. Using the method described in Appendix 2, we
synthesized the passive-IR imagery (Figure 6) with
sensor- and range-dependent thermal distributions
for the ship and background.

Synthesizing the passive-IR imagery with the pro­
posed sensor angular resolution of 150 .urad, we soon
discovered that the identification of the ship silhou-

ettes would be difficult at long ranges because of the
limited number of pixels on target. At a range of
100 km, for example, a ship with length 172 m and
with 17 m of deck above the waterline would present
only one row of 15 m X 15 m square pixels to the sen­
sor. Because of the limited number ofpixels on target,
the calculation of super-resolution (SR) sensor pixels
was proposed to enhance the recognition process. In
the SR technique [12], subsequent frames of imagery
are shifted by fractional pixels, thus allowing the sen-

Table 1. Passive-IR Sensor Parameters

Range Attenuation 16-Frame ~TConlrasl

(km) (dB) SNR (KO)

25 4.5 164.0 1.28

50 9.05 58.0 0.76

100 18.1 7.2 0.27
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FIGURE 6. Synthetic passive-IR imagery of two ships at different aspect angles. The left images are for 50°, the middle
images are for 70°, and the right images are for 90°. The ships are at a range of 25 km.

(a)

(c)

(b)

(d)

FIGURE 7. The effects of super-resolution (SR) on synthetic passive-IR imagery: (a) image of a ship at a range of 25 km,
(b) image of the same ship at 50 km, (c) image of the ship at 50 km after the application of SR, and (d) image of the ship at
100 km after the application of SR. Note that the 50-km SR image has twice the detail of the standard 50-km image.
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sor, with additional computer processing, to obtain
more detailed information about the passive-IR target
signature. This pixel shifting is possible because the
pointing accuracy of the sensor is less than the IFOV.
A single sensor pixel can be subdivided algebraical­
ly by isolating its sub-pixel components in each of
the shifted overlapping images. For example, we can
super-resolve a series of 150-tlfad images at 100 km
by shifting the images by 75 ,urad in azimuth and ele­
vation. The resulting image will have an angular reso­
lution of 75 ,urad at 100 km, and the image will look
as though the 150-,urad sensor had been operated at a
range of 50 km.

For the purposes of this initial study, we assumed
perfect SRi that is, the 100-km 2x SR case was mod­
eled in the following way: sensor statistics that were
appropriate for a 100-km image were applied to an
image that had been modeled at 50 km. A sample of
this imagery is shown in Figure 7. Although the as­
sumption ofperfect SR may be optimistic, it provided
an initial data point to study classifier performance
with realistic sensor parameters and target-to-back­
ground contrast ratios.

The database of passive-IR imagery was further
processed for feature extraction to minimize the clas­
sifier memory storage requirements. By selecting fea­
tures that were invariant under translation, in-plane
rotation, and scale changes, we could use a single fea­
ture pattern stored in the classifier memory to recog­
nize targets at a variety of ranges. The invariant repre­
sentation we chose uses the log-radius polar-angle
mapping (LPM) function on segmented targets. It has
been shown [13] that LPM features are effective in
clustering targets viewed from many different aspects
into a few categories. Thus the LPM transform is an
ideal choice for 3-D target recognition. Figure 8
shows the effects of target segmentation and invari­
ance transformation for all four ships at two different
VIews.

Data Collection

While the synthetic ship signatures were being gen­
erated, data were also being collected from two naval
vessels deployed at sea. As discussed earlier, these mea­
surement exercises had two purposes: (1) to deter­
mine whether range profiles of two different ships

(a)

(b)

FIGURE 8. Target segmentation and invariance transfor­
mation performed on the four ships of Figure 2 at (a) 900

and (b) 300 viewing aspects. The left column of images
shows the original synthetic passive-IR imagery, the
middle column shows the silhouettes after the applica­
tion of thresholds, and the right column shows the log­
polar maps (LPM) of the silhouettes. The LPM provides a
useful feature pattern that is invariant with respect to
translation, in-plane rotation, and scale changes.

were distinct enough to be used for identification and
(2) to validate the accuracy of the synthetic imagery.

The Infrared Airborne Radar (IRAR) System

To evaluate the active portion of the proposed NeTI
sensor suite, we used the Infrared Airborne Radar
(IRAR) [14] to collect data for the range profile stud­
ies. IRAR is a forward-looking multidimensional in­
frared sensor operated by the Opto-Radar Systems

VOLUME 7. NUMBER 1, 1994 THE LINCOLN LABORATORY JOURNAL 11
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(a)

\
\

(b)

FIGURE 9. Ship targets used for the range-profile measurement exercises: (a)

the USS Connole (FF 1056), a Knox-class frigate, and (b) the USS Samuel B.
Roberts (FFG 58), a Perry-class guided-missile frigate. The drawings are from

Jane's Fighting Ships, 1991-1992.

Group at Lincoln Laboratory. In its usual mode of
operation, IRAR collects pixel-registered laser radar
intensity, range, and passive-IR images. The active
channel of the sensor uses a waveguide CO2 laser op­
erating at 10.6 J1m to measure absolute range with
1-m precision. The passive-IR channel measures tar­
get and scene thermal characteristics in the 8-to-12­
J1m band. The system contains two linear 12-element
arrays of HgCdTe photovoltaic detectors. One detec­
tor array is dedicated to the active channel and the
other array to the passive channel. In typical opera­
tion, the arrays are oriented vertically and are scanned
perpendicular to the airplane's motion.

The IRAR system was reconfigured to test the con­
cept of range profiling for ship targets at distances up
to about 5 km, which is farther than the system's usual
operational range. Measurements at these longer
ranges required an increase in the system's carrier-to­
noise ratio (CNR), which we accomplished by remov­
ing the beam expander and focusing the laser so that
only one detector would be illuminated. With only
one detector being scanned instead of 12, the scan
rate had to be increased to maintain contiguous cover­
age on the ground. At the higher scan rate, however,
each scene element was oversampled. We compensat-

12 THE LINCOLN LABORATORY JOURNAL VOLUME 7. NUMBER 1. 1994

ed for this effect in software, as described in the sub­
section "Data Enhancement and Compensation."

The passive detector array was rotated 90° so that
the array was scanned along its length rather than per­
pendicular to its length, as is the usual case. Thus each
scene element was sampled 12 times during a scan. To
take advantage of this overscanning, time-delay-and­
integration (TDI) processing was applied to the pas­
sive-IR data in software. The TDI processing im­
proved the effective SNR by a factor ofapproximately
"1/12.

Measurement Exercises

The reconfigured IRAR sensor flew two missions on
board a Gulfstream G-1 aircraft to collect data from
two target ships. Figure 9 contains line drawings of
the two ships: the USS Connole, a Knox-class frigate
(FF 1056) that is 134 m long, 14.3 m wide, and 4.6 m
high from the waterline to the main deck; and the
USS Samuel B. Roberts, a Perry-class guided-missile
frigate (FFG 58) that is 138 m long, 13.7 m wide, and
4.5 m high from the waterline to the main deck.

Data Processing

An example of the raw overscanned data is shown in
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FIGURE 10. Exam pie of laser radar overscan ned data:
(a) intensity and (b) range imagery for a broadside view
of the Connole.

given spot 12 times with each scan in a time-delayed
fashion. Readouts from all 12 detectors were recorded
and a TDI performed on the data in software. With
TDI processing and by averaging the typical 8 to
12 overscans, we improved the SNR of the processed
passive-IR data by a factor of approximately 10.

Next, the target was segmented from the sea back­
ground in the active imagery by applying a threshold
to the intensity data. Values below the threshold were
set to zero in the intensity image, and the correspond­
ing pixels in the registered range image were also set to

zero. Figure 11 contains an example of the processed
and segmented active imagery. We filled in the drop­
outs in the imagery by using the techniques described
earlier, and we removed most of the background noise
by applying a threshold. The pseudo-color stripes in
the range image indicate that the aircraft's forward
motion has been removed. (The pseudo-color tech­
nique assigns a single color to a user-defined number
of range counts on the displayed image.) Even after
compensation for overscanning and for the aircraft's

(b)(a)

Data Enhancement and Compensation

With a single "look" at a diffuse target, the effective
SNR cannot exceed unity for high CNR [15]. In
these data-collection exercises, however, each scene el­
ement was overscanned; i.e., there was more than one
measurement of intensity, range, and passive-IR data
at each imaged pixel area. Consequently, to take ad­
vantage of the multiple measurements, we applied
processing techniques to each data domain in order to
increase the effective SNR beyond unity.

For the intensity data, we averaged the overlapping
values at each pixel. Because each intensity value in an
overscanned scene element represented an indepen­
dent measurement, this frame-averaging process im­
proved the SNR by reducing the speckle effect. When
N scans of data are averaged, the improvement in
SNR is proportional to ,jN At the longest ranges, the
number of overlaps in the data was between 8 and 12.
Thus the frame averaging improved the SNR by a fac­
tor of approximately 3.

The range data represented instantaneous range
values from the moving aircraft to the ship. To create
an accurate range profile, we had to correct these val­
ues so that they would represent measurements from a
single stationary point ofview. Thus range differences
from scanline to scanline were taken into account to
produce a snapshot type of image. We then applied a
histogram-cluster-average (HCA) filter to the mo­
tion-corrected (but still overscanned) range data to
improve the range precision.

As with the intensity and range data, the passive-IR
data also represented overscanning of each scene ele­
ment. Thus we averaged the overlapped passive-IR
values to improve the SNR, as we had done with the
active intensity data. In addition, because the 12­
element passive-IR detector array had been rotated so
that it scanned along its length, the detectors imaged a

Figure 10 for a broadside view of the Connole. To pro­
cess and analyze the data, we developed software for
removing the overscanning effect, increasing the ef­
fective SNR of the remaining data, and correcting the
range values and geometric distortions (created by the
motion of the ship and aircraft). The corrected range
and intensity data were then combined to produce a
range profile: a plot of intensity as a function of range.
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(a) (b)

FIGURE 11. Example of speckle reduction and segmentation of laser radar ship data: (a) intensity and (b) range imagery
for a broadside view of the Connole. Note that the ship mast appears tilted and the bottom of the ship is not horizontal. In
the range image, a pseudo-color technique was used to assign a single color to a user-defined number of range counts
in the image.
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forward motion, geometric distortions are still ap­
parent in the images. These distortions include a gen­
eral rotation of the entire ship and an arching of the
central mast toward the stern. To correct for such dis­
tortions, we used the following processing steps.

During each approach of the aircraft to the ship,
the sensor's line of sight was generally not aligned
with the aircraft's centerline. This angular offset creat­
ed an artificial cross-range motion between the ship
and the sensor from one scan to the next. Conse­
quently, tall structures, such as masts, appear tilted in
the resulting imagery, as in Figure 11. In addition, the
ship's own motion contributed to the cross-range dis­
tortion. To correct for these effects, we decomposed
the ship and aircraft motions into components per­
pendicular to the sensor's line of sight, as shown in
Figure 12. Using this vector analysis, and including
the overscanning effect, we derived the following
equation for f...p, the azimuthal shift, of a pixel per
scan:

N[V: sin e - ~ cos<f3a + e + 270° - /35)]
f...P= ,

R¢f

where v: = aircraft speed in m/sec, /3a = aircraft head-

FIGURE 12. Vector analysis of ship and aircraft motions
for correcting geometric distortions. For more details of
the analysis, see the main text.
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(a) (b)

FIGURE 13. Example of laser radar imagery corrected both for relative motions between the sensor and target ship and

for sensor mirror rotation: (a) intensity and (b) range imagery for a broadside view of the Connole. Note that, compared

with the imagery of Figure 11, the ship mast has been straightened, and the bottom of the ship is now horizontal rather

than tilted.

ing in degrees (clockwise from magnetic north), ~ =

ship speed in m/sec, f3s = ship heading in degrees
(clockwise from magnetic north), e=azimuthal offset
of the sensor line of sight (LOS) from the aircraft
heading in degrees, If> = IFOV in radians, R = ship
range in meters, N = number of overscans, and f =
pulse-repetition frequency of the sensor system. This
correction was computed at each pixel location and
propagated through every scanline to obtain geomet­
rically correct images.

Finally, the mirror system of the lRAR sensor caus­
es a rotation of the entire image. A complex 3-dimen­
sional ray-tracing calculation by R.]. Hull [15]
showed that ey , the amount of rotation for a vertical
object, is given by

tan ey = - sin y tan lfI,

where y is the mirror depression angle and lfI is the
mirror pointing angle. In general, the mirror pointing
angle is 45°. When the depression angle is small, as is
the usual case, the equation reduces to ey =: -yo This
result implies the image should be corrected by a
clockwise rotation of the same magnitude as the mir­
ror depression angle (confirming a rule of thumb sug­
gested by D.G. Biron [16]).

Figure 13 shows an example of imagery that has
been corrected both for motion distortions and mir­
ror rotation. In particular, note that the ship mast has
been straightened, and the bottom of the ship is now

horizontal rather than tilted (compare to Figure 11).
These corrected data were then passed to the range
profiling code.

Range Profiling

The final piece of software took the motion- and
range-corrected data from the previous stage and cre­
ated a range profile-a plot of returned intensity ver­
sus range.

In the proposed system, range profiling enables
ship classification. To obtain a range profile, we would
record a time history of amplitude returns for each
pixel as the sensor scans a target. Signals would be
received first from those parts of a ship which are
closest to the sensor, while reflected signals from por­
tions farther away would be sensed later. Thus the in­
tensity of the return as a function of time (range) is
recorded for each pixel, and the ship's signature may
be obtained by combining all of the range profiles that
are generated from scanning the sensor's FOV With
the design parameters provided by Marcus [lJ, a sin­
gle pixel of the proposed detector would cover an area
18 m X 18 m on the ship at a nominal operating range
of 100 km.

The lRAR sensor, however, is a peak-detecting sys­
tem. That is, for each pixel only the peak value of the
returned signal intensity is recorded with the time-of­
flight (range) measurement of that peak signal. Thus
many scans of the reconfigured (one-detector) lRAR
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FIGURE 14. Measured range profile for a near-stern view of the Roberts.
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FIGURE 15. Comparison of near-stern views of (top) the Connole and (bottom) the Roberts. From left to right, the figure
contains video images of the two ships, the measured range images, and the resulting range profiles. The Connole was
at a range of 3 km, and the Roberts at 3.9 km.
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sensor must be used to obtain spatially resolved imag­
es of a ship in both the range and intensity domains.
Range profiles can then be created by summing the
intensity values into their corresponding range bins,
with each bin representing 1 m, the downrange reso­
lution of the IRAR sensor.

At typical mission ranges, an IRAR pixel covers an
area about 1 m X 1 m on a target ship. This area is a
sub-pixel, in a sense, of the proposed NCTI sensor.
Considerations described by 5.]. Rak [17] indicate
that range profiles created from the IRAR resolved
peak-detected data would be representative of profiles
generated by the unresolved, range-intensity signals
from the proposed NCTI sensor.

Initially, we tested the range profiling code by us­
ing measurements taken of an airplane parked on the
ground. Gross features such as the airplane's length
were discernible from the profile. Next, we created a
profile of a synthetic range image of a ship. Detailed
ship features could be identified in the range profile.
This success provided confidence in using profiles for
ship identification. Examples from the measurements
of the Connole and the Roberts are shown and dis­
cussed in the following section.

Discussion of Range Profiles from Ships

A few examples from the measured database demon­
strate some of the features and usefulness of range
profiles. The examples include an interpretation of a
single profile and a comparison of profiles from the
Roberts and the Connole.

Figure 14 contains an example of a range profile
of the Roberts, viewed from just off the ship's stern.
An analysis of the profile and the original image
determined that the higher peaks in the profile cor­
responded to regions of the ship with the most surface
area. Thus the highest peak represented returns from
the hangar door at the rear of the ship. This door,
which was at a fixed range, presented the largest re­
flective sutface to the sensor. The other peaks in the
profile represented (from left to right) returns from
the ship's smokestack and other features on top of the
superstructure, the main mast, the secondary mast
in front of the main mast, and the bridge area of
the ship.

A major task of these missions was to determine

whether range profiles could be used to discriminate
one ship from another. Figure 9 shows that the Con­
nole and the Roberts, which belong to different ship
classes, do appear different from each other. For ex­
ample, the superstructure of the Connole has a rela­
tively irregular shape, while the superstructure of the
Roberts is more uniform and rectangular. In addition,
the Connole has one massive main mast, while the
Roberts has two slender masts. Such structural differ­
ences should be reflected in range profiles from the
two ships, and the differences should be especially ap­
parent at near-bow or near-stern viewing angles. Fig­
ure 15 shows profiles from the two ships at about the
same range and same near-stern viewing aspect.
Clearly, the profiles have different shapes. For exam­
ple, the profile from the Connole shows a good deal
of structure in the flight-deck region (behind the
hangar-door spike), while the profile of the Roberts
shows few features in that area. The reason for this dif­
ference can be seen in the ship outlines of Figure 9.
The Connole has a stepped rear deck behind the han­
gar with a gun mounted on the lower level. Also, dur­
ing the measurement exercise, a helicopter had been
parked on the ship's flight deck. The stern region of
the Roberts, on the other hand, has a uniform struc­
ture with a flat landing pad, hence the lack of features
in that area of the profile.

Validation of Synthetic Range Profiles

The second major purpose of the flight missions was
to collect data with which to validate the synthetic
ship models described earlier. We chose the Duncan
(FFG 10) as the model for comparison with the Rob­
erts (FFG 58) because both ships are Perry-class guid­
ed missile frigates, although the Duncan was built ear­
lier than the Roberts.

Stern views of the ships were desirable to yield
range profiles with many features for comparison.
From the limited database of measured data, we se­
lected a view of the Roberts at 5°off the stern. Because
the data were recorded at a range ofabout 4 km with a
sensor depression angle of 6.7°, each pixel covered a
square of about 80 cm X 80 cm on the ship. For com­
parison with these measured data, we generated a view
of the Duncan model at a similar aspect angle, depres­
sion angle, and pixel size, and used this noiseless syn-
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The solid line represents the synthetic profile of the Duncan (FFG 10) and the dashed
line represents the measured profile of the Roberts (FFG 58). Both profiles are for near­
stern views at 4 km.

thetic image to obtain a range profile of the ship.
Figure 16 shows both the measured profile of the

Roberts and the synthetic profile of the Duncan. The
similarities of the two profiles indicate that the mea­
sured ship data validate the accuracy of the model.

There are, however, a few differences between the
two profiles. At the stern end of the profiles (the left
end of the range axis), the synthetic profile of the
Duncan has a large spike, representing the ship's tran­
som, while the measured profile of the Roberts con­
tains no such spike. This difference exists because the
ships were constructed about six years apart. The
Duncan was built with its transom relatively vertical.
By the time the Roberts was built, the flight deck of
Perry-class frigates had been extended backwards, and
this extension required the transom to be angled
down at about 45° [18]. Because a surface at this angle
reflects laser energy toward the water and not up to­
ward the sensor's detector, the measured profile of the
Roberts shows no returns at that location.

From left to right along the synthetic profile of the
Duncan, three distinct spikes are apparent in the re­
gion representing the flight deck. Note that these

18 THE LINCOLN LABORATORY JOURNAL VOLUME 7. NUMBER 1. 1994

three spikes do not appear in the measured profile of
the Roberts. The spacing between the spikes represents
the range discretization of the software range sensor
model that was used to calculate the range image. The
software behaves, in some sense, like a first-return­
detected sensor. The lRAR sensor, however, is a peak­
detecting sensor. Thus the three spikes do not appear
in the measured profile. Furthermore, because the
lRAR sensor has the statistical uncertainty inherent in
a real system, the measured range values from the
flight deck appear as clusters rather than discrete
spikes.

The peaks representing the main mast of the
Duncan model are smaller (relative to the hangar­
door spike) than the corresponding peaks in the mea­
sured data from the Roberts. The model of the Duncan

assumes that all surfaces are diffuse reflectors, whereas
the main mast of the Roberts is constructed of many
narrow, interlacing metal struts that produce specular,
as well as diffuse, returns. Because the gain ofspecular
over diffuse cross section can be substantial (as shown
by Hull [19]), we expected this disparity in the main­
mast peaks of the two profiles.
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Despite these differences, the two profiles are strik­
ingly similar. In both profiles, the same length for the
ship from stern to bridge is displayed, the spike repre­
senting the hangar door is clearly visible, small peaks
representing identifiable features on top of the super­
structure are present, the main mast appears at the
same relative location, a spike corresponding to the
mast just forward of the main mast can be identified,
and, last, structures representing bridge features are
shown in the same locations.

Because of these similarities and because of our
ability to account for the major differences described
above, we feel that the synthetic image of the Duncan
accurately models the measured data from the Roberts.
Thus the classification results reported below should
apply to measured ship data in addition to synthetic
lmagery.

Neural Network Classifiers

Artificial neural networks are making a dramatic
comeback this decade because ofadvances in comput­
er hardware technology and the ease of implemen­
tation of these types of networks in massively parallel
architectures. Because they are capable of learning
from sample data and because they are tolerant of
noise, artificial neural networks are frequently used
for pattern-recognition applications. The utility of ar­
tificial neural networks for image enhancement and
target classification of range imagery has been demon­
strated by the Opto-Radar Systems Group at Lincoln
Laboratory under the Autonomous Infrared Sensor
Technology Program [13] of the Defense Advanced
Research Projects Agency (DARPA).

A few of the issues investigated under the ship­
identification program were the range-profiling reso­
lution necessary for target classification, the sensitivi­
ty of the profiles to changes in viewing angle, and the
angular resolution and SNR required by an imaging
system to identifY targets successfully. For target clas­
sification using either range profiles or features ex­
tracted from passive-IR imagery, we applied two arti­
ficial neural networks: a multilayered neural network
(MNN) [20] and the Adaptive Clustering Network
(ACN) classifier, which is similar to the adaptive reso­
nance theory (ART) [21] neural network.

The MNN is a feedforward multilayered network

that constructs an internal representation by learning
from training data. The internal representation is a set
of linkweights that defines the connections between
the nodes in either the input or the output layer and
the nodes in one or more of the hidden layers. Once
training is completed and the internal represen­
tation has been learned, the representation allows the
MNN to map an unknown input to a particular out­
put category that has been previously defined (in the
training process) by similar inputs. The learned inter­
nal representation thus enables unknown input pat­
terns to be classified.

The ACN is an unsupervised classifier that deter­
mines its own categories, rather than having the cate­
gory separation determined apriori. The formation of
categories is a function of an association threshold pa­
rameter (called the vigilance p) and the rate at which
the memory is updated (called the learning rate).

The following subsections discuss the training al­
gorithms for both types of neural network classifiers
together with their algorithm design parameters.

Multilayered Neural Network

Feedforward MNNs have been attracting much inter­
est in target-recognition applications ever since D.E.
Rumelhart [20] developed a learning algorithm called
backward error propagation (BEP) for this type of
MNN. With the BEP algorithm, MNNs have been
applied successfully in many experimental works. For
the conventional BEp, however, the convergence
speed had been slow. Consequently, M.M. Menon
and E.]. Van Allen [22] developed a deterministic
gain-annealing mechanism in BEP to speed up the
convergence. We have employed this gain-annealing
BEP training algorithm in our MNN classifier, using
range profiles as input target features.

Our MNN classifier contains three layers of fully
interconnected nodes in a feedforward network. Fig­
ure 17 shows the architecture of the network. A sig­
moid function is used for the node function at each
node output:
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FIGURE 17. The multilayered neural network (MNN) classifier: (a) diagram of three layers of interconnected nodes and
(b) activity at thejth node in the nth layer with linkweights w.

where x'} is the output of the jth node in the nth layer.
To minimize the error, the linkweights W'}i as well as
the gain 13 and offset eare allowed to vary from node
to node. For the experiments described in this article,
we kept the scaling parameter a and offset parameter c
at constant values of 2.0 and -0.5, respectively.

The gain-annealing algorithm is based on the hy­
pothesis that the optimum representation at a low
gain (small 13) is a good approximation for the opti­
mum at a high gain (large 13). At low gain, the optimi­
zation problem is easy to solve. Hence, by starting at a
low gain and by slowly raising the gain levels in the
cycles of the gain-annealing process, we can make the
iterative BEP converge much faster than the conven­
tional algorithm.

For our MNN classifier, the input layer has ap­
proximately 250 nodes, corresponding to the number
of range bins in the simulated range profiles. We have
chosen to use 12 nodes in the top (output) layer to
map each of the four ships into 3 separate aspect cate­
gories (0°_27°, 30°-57°, and 60°-90°). For the hid­
den layer, the number of nodes is determined auto­
matically by the training data. During training, a new
node (up to 25 total) is added to the hidden layer un­
til the error tolerance has been satisfied.

Adaptive Clustering Network

The ACN [23] is an unsupervised neural classifier
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that clusters input vectors into a few stable categories.
Figure 18 shows a schematic diagram of the ACN.

At the beginning of a training cycle, the long-term
memory (LTM) traces are initialized to the first input
vector. During training, each input vector Xi is com­
pared with all of the stored LTM traces Wk to find the
best match, which is given by

IfP max for a given input vector Xi is greater than the
preset vigilance p, the input vector Xi is "learned"
onto the LTM according to

Wk = Wk + (Xi - Wk)!H,

where ~tis the learning rate. IfPmax does not exceed P,

the ACN creates a new category for the input vector
Xi. Training data are presented repeatedly to the net­
work until the categories formed no longer change.
Once the LTM traces have stabilized, a test pattern
can be presented to the ACN and classified by its cor­
relation with the LTM traces.

Classification Results Using
Synthetic Range Profiles

The synthetic range profile data for training consisted
of 124 ideal profiles (four ships, at 31 different view-
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FIGURE 18. Algorithm for the Adaptive Clustering Net­
work (ACN). During training, each input vector Xi is
compared with all of the stored long-term memory (LTM)
traces Wk to find the best match, which is called pmax. If
pmax for a given Xi is greater than a preset vigilance p,
Xi is "learned" onto the LTM at a learning rate of M. If
pmax does not exceed p, a new category is created for the
input vector Xi.

ACN Results

Using the ACN, we examined the effectiveness of
range profiling to determine both the amount ofcate­
gory compression that was possible during training,
and the rate of correct classification during testing.
We also studied category formation as a function of
viewing angle to determine the angles at which the
profiles were no longer distinguishable. This informa-

at all. Also, as expected, the classifier was more effec­
tive in separating profiles that had higher SNR (i.e.,
profiles that had been obtained through an averaging
of a greater number of frames). Lastly, Table 2 shows
that the MNN could classifY nearly 80% of the target
ships correctly for 0°_27° (near-bow) aspects with
16 frames averaged and a transmitter pulse width of
30 nsec. Similar results were found for pulse widths of
10 and 50 nsec.

Create new
category

Yes

Store category
information

MNN Results

ing aspects, from bow to port) for each transmitter
pulse width (l0, 30 and 50 nsec). We eliminated
speckle from the profiles and normalized them with
respect to their peak values. Figure 4 shows four
examples.

The test data contained speckle-reduced averages
of 32, 16, 8, and 4 profile frames to simulate various
SNRs. There was a total of 12 sets of testing data: for
each of the three transmitter pulse widths, there were
four sets (one for each of the four different frame aver­
ages) of 124 profiles. Figure 5 contains examples of
the test data.

Using the range profile data, we tested the effec­
tiveness of both the MNN and the ACN. A strength
of the ACN is its ability to separate the training data
automatically into different categories withom specif­
ic supervision. The resulting categories revealed the
intrinsic classes in the data. MNN, on the other
hand, forced the separation of the data into different
categories by design. The training results from the
MNN gave a measure of how successfully this could
be done.

As mentioned previously, the MNN classifier was
designed for a 12-category problem-three aspect
groups (0°_27°, 30°-57°, and 60°-90°) for each of
four ships-at a given pulse width. We used the ideal
range profiles to train the MNN classifier and the
frame-averaged noisy profiles to test the classifier.
Table 2 contains the results for all four frame averages
of testing data for a pulse width of30 nsec. Classifica­
tion results for the training data have also been in­
cluded to show how well the network could be
trained.

We designed these initial experiments for the case
in which there was no a priori information about ei­
ther the viewing aspect or the ship class. A classifica­
tion was called correct only if both the ship ID and
the viewing aspect were classified correctly.

Not surprisingly, the most difficult profiles to train
on and to classifY were those from the broadside or
near-broadside aspects. Specifically, training of the
MNN classifier started to break down somewhere in
the 30°-57° viewing range. For 60°-90° aspects, the
classifier could not be trained into the four ship classes
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Table 2. MNN Classification Results' for Synthetic Range
Profiles of Four Ships at Different Viewing Aspects

Viewing Aspect
0°_27° 30°_57° 60°-90° Overall

Training Data 100% 93% 43% 77%

Testing Data!
32 83 60 39 60

16 78 40 34 50

8 63 20 25 35

4 48 25 23 31

'Results are given in percent of profiles correctly classified by the system for
a 30-nsec pulse width.

2Four different datasets were used for testing. The datasets were created by
averaging different numbers (32, 16, 8, and 4) of profile frames to investi­
gate classifier performance at enhanced SNR levels.

1Results are for 31 viewing aspects of each of the four
ships with a vigilance of 0.95.

Table 3. ACN Training Results' for Synthetic
Range Profiles of Four Ships

tion would indicate whether, and at which aspects,
another discriminator (e.g., passive-IR data) would be
necessary.

We presented the ACN with a four-class problem
that consisted of range profiles created from the four
synthetic ship models at 31 viewing aspects each.
The training results determined (1) the number of
categories formed by the 124 range profiles and (2)
the viewing aspects at which the categories became
confused.

Before the ACN could be trained, we had to
choose a value for the vigilance p, which controls
the number of categories formed, given a particular

Pulse Width
(nsec)

10

30

50

Number of Categories
Formed

26

18

16

input set. In general, a high vigilance value should be
used to separate input patterns having small feature
differences, while a low vigilance value should be used
for a rough separation of patterns having large differ­
ences. Thus the vigilance should be chosen based on
the particular application at hand. For our analysis,
we chose five vigilance values: 0.99, 0.95, 0.90, 0.85,
and 0.80.

During the training process, the 124 noise-free ex­
pected-value range profiles (with a given pulse width)
were presented repeatedly to the classifier until the
LTM traces had stabilized. The procedure was repeat­
ed for each of the three pulse widths and for the five
vigilance values.

First, we examined the training results to deter­
mine the amount of category compression achieved
by the ACN. For example, with a vigilance of 0.95,
the classifier formed 26 categories for the 10-nsec
pulse, 18 categories for the 30-nsec pulse, and 16 cat­
egories for the 50-nsec pulse (Table 3). These results
represent memory compression factors of 5, 7, and 8,
respectively. As expected, the number of categories
decreased with increasing pulse width because longer
pulses do not resolve ship features as well, causing the
profiles to look similar to each other. Shorter pulses
yield better range resolution, thus emphasizing differ­
ences between the profiles. This trend was also appar-
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FIGURE 19. Typical ACN category formation for ship range profiles. The four different colors (red,
blue, green, and yellow) in the lower parts of the pie charts represent the four ship classes. For a
given ship, each shaded wedge represents those viewing angles which the classifier grouped into
a single category. For example, the results for the Duncan show that all viewing aspects from 0°
(bow) to about 50° form only three distinct categories (the three shades of red). The confused cat­
egories, represented by the different shades of purple bounded by the white dashed lines, begin
to form at about 50°. These results are for a pulse width of 30 nsec, a vigilance of 0.95, and 16-frame
averages.

ent for the other vigilance values.
Next, we studied the training output to determine

the angles at which the range profiles became difficult
to distinguish. As discussed earlier, range profiles
contain the most information when a sensor views
a ship at aspects providing the most range depth.
When a ship is viewed from just off the bow or stern,
almost the entire ship length contributes to the
range profile. Thus the classifier should be able to
discriminate easily between the profiles created at
near-bow and near-stern aspects. When a ship is
viewed broadside, however, it presents far less infor­
mation to the range sensor because nearly the entire
ship is at the same range. Thus the classifier should
have more difficulty distinguishing the profiles at
near-broadside aspects.

Figure 19 shows the category-formation results for
range profiles at a pulse width of 30 nsec. The four
different colors (red, blue, green, and yellow) in the

lower parts of the pie charts represent the four ship
classes. For a given ship, each shaded wedge represents
those viewing angles which the classifier grouped into
a single category. For example, the results for the Dun­
can show that all viewing aspects from 0° (bow) to
about 50° form only three distinct categories, as de­
noted by the three shades of red. The figure shows
that confused categories, represented by the different
shades of purple in the upper sections of the pie
charts, begin to form around 50°. Similar behavior
was found for the other pulse widths. For those view­
ing angles at which the profiles become indistinguish­
able, another discriminator is needed. This analysis
implies that the critical viewing angle is about 50° off
the bow (or stern).

After the LTM traces of the stable categories had
been established with training data, we presented the
test data to the ACN. For each input test pattern, the
classifier computed the correlation between the pat-
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tern and each of the existing LTM traces. If the high­
est correlation exceeded the set vigilance, the classifier
assigned the input pattern to the category correspond­
ing to the LTM trace that produced the highest corre­
lation value. When the inpur pattern and the assigned
category were of the same ship, we scored the match
as a correct classification, regardless of the viewing as­
pect. This procedure was different from that used by
the MNN classifier, which required both the ship
class and viewing aspect to be correct.

As before, we created test data of 4-, 8-, 16-, and
32-frame averages to study the classification perfor­
mance as a function ofSNR. The test sets consisted of
these frame-averaged profiles at all 31 aspects for the
four ships and for each pulse width.

During the testing process, we kept the learning
rate at the same value as that used during the training
phase. We set the vigilance to a small, near-zero value
to ensure that the test patterns would be classified
into one of the established categories. (Alternatively,
the vigilance could have been set to a higher value
and the patterns that did not correlate well with any
of the LTM traces could have been assigned to a cate­
gory labeled "unknown.") All of the test results re­
ported in this section are from training with a vigi­

lance of 0.95.
We studied the classification performance of the

ACN in terms of the same 30° increments described
earlier. Table 4 shows the results of this analysis for
the 30-nsec pulse width. For a given number of
frames averaged, performance is best for the 0°_27°
(near-bow) viewing aspects because of the reasons
described earlier. In fact, classification for this range
of angles is quite good for the 32- and 16-frame aver­
ages. Classification begins to degrade for the 30°-57°
aspects, as the profiles become narrower. Finally, the
test results falloff dramatically for the 60°-90° as­
pects. The performance at these aspects is not much
better than if the profiles had been assigned randomly
to one of the four ship classes. These results reflect
the confusion in category formation during the train­
ing phase.

Classification Results Using
Synthetic Passive-IR Imagery

Using the ACN classifier, we tested the effectiveness
of synthetic passive-IR imagery for ship identifica­
tion. The classification results for the passive-IR ship
silhouettes can be presented similarly to the range­
signature results in that both have a strong depen­
dence on ship aspect. With range profiles, the range
depth ofa ship was shown to be the critical factor. For
aspects near broadside (representing the minimum
target range depth), the recognition performance de-

Table 4. ACN Classification Results' for Synthetic Range
Profiles of Four Ships at Different Viewing Aspects

Viewing Aspect
0°-27° 30°_57° 60°-90°

Training Data 100% 93% 43%

Testing Date!
32 83 60 39

16 78 40 34

8 63 20 25

4 48 25 23

,Results are given in percent of profiles correctly classified by the system
for a 30-nsec pulse width and a training vigilance of 0.95.

2Four different datasets were used for testing. The datasets were created
by averaging different numbers (32, 16, 8, and 4) of profile frames to
investigate classifier performance at enhanced SNR levels.
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FIGURE 20. ACN category formation for passive-IR ship silhouettes. As in Figure 19, each red,
blue, green, and yellow shaded wedge represents viewing aspects that have been mapped into a
single category. The different shades of purple bounded by white dashed lines represent con­
fused categories.

creased dramatically. We expected the opposite to be
true for passive-IR ship silhouettes. At broadside as­
pects, a ship's silhouette is very distinct. At near-bow
(or near-stern) aspects, on the other hand, most ship
silhouettes look alike, which should result in a de­
crease in recognition performance.

As described earlier, the passive-IR inputs to the
classifier were log-polar-mapped target silhouettes.
The database consisted of four ships, each at 31 views
from 0° (bow) aspect to 90° (beam) aspect in 3° incre­
ments, for a total of 124 inputs.

The goal of the training phase was to determine
the classifier vigilance that would provide the greatest
target separability while minimizing the overall num­
ber of categories. We initialized the ACN memory by
training the classifier with noiseless ship silhouettes
(i.e., ship silhouettes with infinite SNR) scaled to a
range of 25 km. Using noiseless silhouettes ensured
that a highly detailed silhouette representation was
learned onto the ACN LTM traces. (Note: All recog­
nition testing for ship silhouettes was performed
against this benchmark.) Using a training vigilance

of 0.87, the ACN mapped the 124 inputs into just
11 categories. This level of memory compression was
consistent with the level achieved by similar process­
ing methods applied to other 3-D targets rotated out
of plane [13].

Figure 20 shows the category distribution within
the classifier memory as a function ofangle, from bow
to beam aspect. As before, the shaded wedges in the
pie charts indicate the range of aspects that the classi­
fier has mapped into a single category. The four differ­
ent colors (red, blue, green, and yellow) indicate the
unique classes for each ship. Note that more catego­
ries were formed at near-bow aspects because the sil­
houette changes dramatically with angle at these as­
pects. In addition, note that at 0°_30° aspects the
ships became indistinct to the classifier; that is, several
ship inputs fell into a single category.

In the testing phase, we presented the noisy data­
sets to the classifier to determine the sensor operating
characteristics that could be tolerated. The 25- and
50-km imagery achieved correct recognition levels of
77% and 68%, respectively, with 16-frame averages.
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Table 5. ACN Classification Results1 for Synthetic Passive-IR Imagery of
Four Ships at Different Viewing Aspects

Apparent 16-Frame Viewing Aspect
Test Set Range (km) SNR 0°_27° 30°-57° 60°-90°

25 km 25 164 57% 93% 93%

50 km with 2x super-resolution 25 58 48 93 93

50km 50 58 41 89 79

'Results are given in percent of profiles correctly classified by system. All datasets were tested against the 25-km
noiseless training set.

This result was about the same as the performance of
the ACN on the training data. Further experiments
measured the effectiveness of using super-resolution
(SR) to enhance the recognition performance. The
50-km, 2x SR imagery, effectively scaled to a range of
25 km, achieved a correct recognition performance of
76%, almost as good as the 25-km imagery itself.
(Note: As mentioned earlier, all of the imagery was
tested after the classifier had been trained with the
25-km noiseless silhouettes.)

We ran additional experiments to determine the
target aspects at which the classifier was able to distin­
guish the ships. These results, summarized in Table 5,
show that the classifier was clearly able to distinguish
ships at aspects of 30°-57° and 60°-90°, achieving
correct recognition levels generally greater than 90%.
For aspects of 0°_27°, the correct recognition level
was only 40% to 60%.

Summary and Conclusion

A multidimensional sensor suite consisting of a laser
radar and a passive-IR sensor has been evaluated for
detecting and identifying ships at long ranges from an
airborne platform.

Active and passive-IR measurements of two Navy
frigates belonging to different classes were taken
with an existing airborne, multidimensional sensor
system. The missions demonstrated that the range
profiles were distinct enough to discriminate be­
tween the ships, despite their nearly identical sizes.
The measurements also validated the synthetic
range profiles, which had been created under a
variety of controlled sensor operating character-
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istics and target scenarios.
Using synthetic range profiles, the multilayered

neural network (MNN) and the Adaptive Clustering
Network (ACN) achieved correct recognition ofup to
100% for the classification of ships at 0°_27° (near­
bow) viewing aspects. Using the synthetic passive-IR
imagery, the ACN achieved correct recognition levels
generally greater than 90% for 30°-57° and 60°-90°
(near-beam) aspects. Thus our results, from both syn­
thetic and measured data, indicate that range-profile
and passive-IR signatures complement each other in
covering all viewing aspects for long-range ship classi­
fication.
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APPENDIX 1:
SYNTHETIC LASER

RADAR RANGE
PROFILES

THIS APPENDIX contains a brief mathematical descrip­
tion of the model used to obtain the synthetic laser
radar range profiles. A full derivation of the model is
contained in Reference 1 of this appendix.

The range profile measured at the detector output
is the magnitude of a complex envelope:

A

where l(nz ) represents the video-detected, range-sam-
pled output from the sensor at range increment nz.

(Note: The 1\ symbol denotes the estimated value of a
quantity, and the boldface type indicates a complex
quantity.) The detector output comprises contribu­
tions from the reflected target signature and local-os­
cillator shot noise:

(A)

which are defined below. The detector output at each
sensor instantaneous field ofview (IFOV) can be cal­
culated by convolving the transmitted laser pulse with
the target backscatter coefficient /3(nR)' Assuming that
all transmitted laser power is distributed uniformly
within the sensor IFOV and is incident on a range­
resolved target with uniform diffuse reflectivity, we
can estimate the backscatter coefficient, or normal­
ized target-range-extent signature weighting function,
to be

~(n ) = /3(nRfJ.R) .
R /3(Ro)

The variable ~(nR) represents the fraction of the tar­
get that is illuminated at range nR' normalized to full
illumination at reference range /3(Ro) , for a reflectance
model sampled at fJ.R intervals in range.

Next, laser speckle statistics are introduced as a
product of /3112(nR) with a sequence of independent,
identically distributed (lID) complex Gaussian ran-
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where

(C)

1.0. ( )w nt'
nt=-OO

(wI.O·(m). w*l.o·(n)) = 8mn ,

convolved with the discrete version of h(t):

where the time sampling increment Nt is equal to
T/ti.t, and the discrete-time sampling interval ti.t is

equal to 2ti.R/c.
Finally, the output at the video detector is calculat­

ed by summing the target and local-oscillator shot­
noise contributions and calculating the magnitude of

the complex envelope, as given by Equation A. The
closed-form expected value of the range signature,

(II(nz)I), which predicts apriori the result ofaveraging
an infinite number of measured profiles by using the

equations described above, is

{
I, m = n

8mn =
0, m =t n

This result is convolved with discrete versions of the

transmitter pulse set) and the matched filter impulse
response h(t), both with duration T = 11 i pulse­
width. The two pulses set) and h(t) are given by the

following:

and

where the brackets (... ) denote the expectation of a
quantity, the superscript * denotes the complex conju­

gate, and

dom variables {wspeckJe(nR): nR = 0, 1,2, ... , +oo}, for

which

Thus the reflected target signature can be written as and

l(nz)target = ~CNR(Ro) x (B)

+00 -4(n -nR)2 / N 2

n~o~ ffi(nR) e {N-: Z wspeckJe (nR)'

where the range sampling increment Nz is equal
to cT/(-V2ti.R) with c = speed of light. The quantity

CNR(Ro) represents the design carrier-to-noise ratio
of the sensor at a reference range Ro and is expressed in
terms of real system design parameters.

Equation B is the target contribution to the signal

at the detector output. The contribution due to local­
oscillator shot noise is modeled as an IID complex
Gaussian random variable {wl.o'(nJ nt = -00, ... , -2,
-1,0, 1,2, ... , +oo}, for which

01
B = ~25'

Equation C predicts the mean range signature the
sensor would measure by averaging over the effects of
laser speckle and shot noise. Because Equation C is a
function of the sensor's design, via CNR(Ro), and the

target characteristics, via f3(R), the equation is useful
for understanding the fundamental characteristics
and differences of the target signatures obtained with
the design under consideration.

Reference
1. T]. Green, ]r., and ].H. Shapiro, private communication.

and
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APPENDIX 2:
SYNTHETIC PASSIVE­
INFRARED IMAGERY

TO CREATE the synthetic passive-infrared (IR) imagery,
we selected the Gaussian-distributed passive-IR in­
tensities of both the target and the background by us­
ing the method described in Reference 1 of this ap­
pendix. First, a pair of independent random numbers
U1 and Uz were sampled from a uniform distribution.
Next we converted these numbers to a pair of inde­
pendent zero-mean unity-variance Gaussian-distrib­
uted numbers G1 and Gz by using the standard Box­
Mueller method:

G1 = ~-2ln(Ul) cos(2;rrUz )'

and

Gz = ~-2ln(Ul) sin(2;rrUz)'

The Gaussian values were then converted to the target
or background Gaussian distribution according to the
following:

and
A

Pb = O"bGz + f.1b'

where (f.1t' O"t) and (f.1b' O"b) represent the mean and
standard deviation of the Gaussian thermal distribu­
tions for the target and background, respectively. We
repeated this process of calculating target and back­
ground passive-IR pixel intensities for the entire im­
age template. Further details of the processing are
contained in Reference 1.

Reference
1. S. Hannon, "Detection Processing for MuJridimensional La­

ser Radars," Ph.D. Thesis, MIT Department ofElectrical En­
gineering and Computer Science (1990).
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