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II We have designed and developed an automatic ship classification (ASe)
system for classifying potential naval targets from inverse synthetic-aperture
radar (ISAR) imagery. Initially, the ASC system was developed for an over-the
horizon targeting application. In the application, an airborne platform with an
on-board ISAR sensor transmitted imagery to a host ship carrying the ASC
system. Our present focus is on placing the ASC system on board the sensor
platform to assist the flight crew in classifying naval vessels.

The current ASC system uses both neural network and conventional
processing techniques to determine the ship class of a target from ISAR
imagery acqnired during reconnaissance missions. An Adaptive Clustering
Network (ACN) allows a single ship class to be distributed across several
categories so that the system develops a degree of invariance to target motion.
We have evaluated the ASC system on a limited set of actual ISAR imagery
collected during operator training missions and on a larger database of imagery
from IBM. Our preliminary results indicate that an operational ASC system
with performance levels comparable to human operators can be achieved. From
these results, we feel that the ASC system is now ready for a thorough field
evaluation on board an ISAR sensor platform.

./

AN AUTOMATIC SHIP CLASSIFICATION (ASC) sys
tem [1-3] for classifying potential naval tar
gets from inverse synthetic-aperture radar

(ISAR) imagery was initially developed at Lincoln
Laboratory for an over-the-horizon targeting appli
cation. (For a description of the fundamentals of
ISAR, see the box entitled "Inverse Synthetic-Aper
ture Radar [ISAR] Imagery.") In the application, an
ISAR on board a Navy helicopter transmitted imag
ery to a host ship carrying the ASC system. After
preliminary testing in June 1991, the system was
installed on board a Navy destroyer prior to the vessel's
deployment to Hawaii. The high-resolution data ac
quired during the Hawaii mission was used for subse
quent laboratory evaluations and refinements of the
ASC system. Although excellent performance was at
tained, the small size of the Hawaii database (approxi
mately 500 frames) could provide only a rough esti
mate of the system's actual operational performance.

The present focus of the system's development is
on placing the ASC system on board the sensor plat
form to assist the flight crew in classifying naval ves
sels. In support of these efforts, we have recently
acquired from IBM Federal Systems a database con
taining imagery of ships of 12 different classes. This
database is significantly larger than the Hawaii data
base, and the IBM targets have each been imaged at a
variety of sensor-co-target orientations (in contrast co
the Hawaii data, which were primarily acquired at a
single target orientation). The IBM imagery, however,
is significantly lower in video quality than the Hawaii
database. Furthermore, the IBM imagery was acquired
from a lower-resolution sensor. Thus, as expected, the
performance of the ASC system on the IBM data was
lower than that on the Hawaii data.

We have implemented several new techniques and
algorithms both to improve the overall performance
of the system on the IBM imagery and to reduce the
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I VERSE SYNTHETIC-APERTURE
RADAR (ISAR) IMAGERY

=

ALTHOUGH SIMILAR in concept, in
verse synthetic-aperture radar
(ISAR) differs from synthetic-ap
erture radar (SAR) in one funda
mental way: SAR images are
generated by the motion of the
sensor platform with respect to

the target, whereas ISAR images
are generated by target rotation.
For the case of ships, rotation
around any of the three principal
axes generates the image. Conse
quently, ISAR imaging requires
that any relative motion between
the radar and the ship be com
pensated, leaving only the ro
tation of the ship on the ocean
surface. Hence, motion compen
sation is accomplished by track
ing a point on the target that pro
vides a consistent, strong radar
return.

The reflected energy from a
complex three-dimensional (3-D)
target such as a ship is detected
and processed into range-Doppler
space. If the ship is broadside
relative to the radar, then there
will be very little range extent,
and a mostly range-unresolved
image will result. Such an image
is referred to as a beam-orienta
tion view. Bow-orienration and

. . .
stern-onentatlOn VIews occur
when the ship is nearly head on
(bow or stern, respectively) to

the radar and highly range
resolved Images are produced.

The details of the imagery result
from the rotational motion of
the ship, which gives rise to dif
ferent velocities for the various
ship features.

Measurement Theory

The ISAR image is a range-Dop
pler representation of a rigid ro
tating object. The range-Doppler
principle implies that an appro
priate signal can be processed to

determine the range (time delay)
and radial velocity (Doppler fre
quency) ofeach scattering element
of the object. By associating the
time delay and Doppler frequen
cy with each element on a rigid
rotating object, we can use the
radial velocity gradients across the
object to generate the object's im
age. The image intensity is pro
portional to the returned signal
strength, which depends on the
radar cross section of the scatter
ing element.

The range rof a particular scat
tering element on a rigid rotating
object is given by the time delay
!1t between the transmitted and
received signals:

c!1t
r =-

2 '

where c is the speed of light. The
rigid object rotates at an angular
velocity of m radians per second
about a fIxed axis. If the scatter-

ing element is located a distance
d from the origin and is rotated a
radians from the vertical axis, the
corresponding Doppler frequen
cy fd is given by the following
equanon:

2md cos a 2my
A. =T'

where A. is wavelength and y is
the distance of the element from
the horizontal axis. Given a radar
coherence time ~ = 1/!1fd, the
Doppler resolution !1y can be
found with the following equa
non:

!1y = !1fd(2~)

= ~ (2(LIe"/ T,J
A.

2!1e

where !1e is the angle of rotation
during the radar coherence time

~.

For further details of ISAR
measurement theory, see Refer
ences 1 and 2.
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number of misclassifications to an operationally ac
ceptable level. In the preprocessing stage, for example,
an automatic frame rejecter has been added ro iden
tify frames that have excessive noise as well as frames
that have no targers. We have also incorporated a class
contrast mechanism that enables the system ro report
ambiguous ship imagery as "unknown," thereby re
ducing the number of misclassifications. In addition,
the system has been extended to take advantage of the
multiple frames obtained during observation inter
vals of the target ships. The multiple frames are used
ro accumulate evidence for a particular decision,
thereby reducing errors that arise when only a single
frame of a target is used. And we have also incorpo
rated target-orientation information into the system
to reduce misclassifications.

This article is divided into three major sections:
"Databases Used" describes both the data collection
mission of August 1991 and the database derived
from the IBM videotapes; "System Description" pre
sents details of the ASC system; and the remainder of
the article describes the system performance achieved
with the Hawaii and IBM databases.

Databases Used

Hawaii Mission and Database

A preliminary version of the ASC system was initially
demonstrated in June 1991 at the North Island Naval
Air Station (NAS) in San Diego. The system, which
was installed at the NAS site, processed imagery from
flight videotapes that had been generated by an ISAR
sensor platform on board a Navy helicopter. The
classification performance of the system at the
NAS site warranted an operational evaluation. Thus
in August 1991 the system was installed on board a
Navy destroyer. During the ship's subsequent transit
ro Hawaii, sensor evaluation missions were flown,
and a database was compiled from videotapes
that had been generated by the helicopter's on-board
ISAR.

The sensor imaged the target ships primarily at
near-bow and near-stern sensor-to-target orientations.
For the majority of frames, the target was centered
with little or no drift, fading, or truncation. A total of
502 frames were collected for six different classes of

Table 1. Hawaii Database

Class Class Type Number of
Frames

H1 Frigate 7

H2 Oil supply ship 205

H3 Destroyer 35

H4 Commercial (assorted) 31

H5 Destroyer 126

H6 Destroyer 98

Total 502

target ships. Table 1 shows the number of frames in
each class.

IBM Database

The ISAR imagery from IBM Federal Systems was
obtained in the form of four videotapes containing a
rotal of roughly three hours of data. The visual quality
of the data appeared to have suffered from the degra
dation that results from multigenerational videotape
copying. Each tape contained different numbers of
observations of each target class. A title screen indi
cating the class of the imaged ship preceded each
observation, and a color bar that lasted for several
seconds marked the beginning and end of the obser
vation. This format greatly facilitated the formation
of the database. The video imagery within each obser
vation was digitized at a rate of about 1 frame/sec,
and the resulting frames were stored on a separate
disk file. As a result, the full range of target variations
was captured in the database. The digitized data were
then screened ro remove frames that did not contain
ISAR data and to eliminate any numerals that had
been superimposed on the imagery by the sensor
system.

Because the Hawaii data were collected from an
experimental high-resolution ISAR sensor, only lim
ited data were available from that system. Thus imag
ery containing only six ship classes at a single orienta-
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tion could be obtained for processing. The IBM data,
on the other hand, were collected by low-resolution
ISAR sensors for which a significant amount of data
was available. Thus imagery containing 12 ship classes
of up to five target orientations each were obtained
from IBM.

The ASC system preprocessed the IBM imagery
with a frame-rejection algorithm to remove images
that were either devoid of targets or of a low signal-to
noise ratio. Because the system was configured to
process single targets in a field of view, observations
that contained two targets were disqualified. Table 2
lists the total number ofusable observations and frames
for each of the 12 classes of ships. The table indicates
that the numbers ofobservations and frames were not
evenly distributed among the 12 ship classes. The
ground truth and number of frames for each observa
tion of each class in the final database are contained
in Reference 3. The ground truth provided in that
reference was taken from a document that accom
panied the video tapes, which roughly described the

sensor-to-target orientation as bow, oblique bow, stern,
oblique stern, and beam (i.e., broadside) for each
observation.

System Description

ISAR imagery is characterized by a high degree of
variability. Two frames of the same ship seldom look
exactly alike. The ASC system automatically addresses
variations in ISAR imagery by employing the Adap
tive Clustering Network (ACN) classifier, which gen
erates separate categories, or clusters, for the various
presentations of a target.

In the baseline ASC system, the processing consists
of target segmentation, clutter rejection, centering,
feature-vector extraction, and classification by the
ACN, as illustrated in Figure 1. The target is seg
mented from the noise background by applying a
threshold based on the image statistics. After clutter is
eliminated, a feature vector is formed by summing
the intensities in each range bin of the cleaned image.
During training, the ACN gathers similar feature vec-

Table 2. IBM Database

Class Class Type Number of Observations Number ofFrames

Cruiser 16 1910

2 Cruiser 4 338

3 Frigate 6 662

4 Frigate 8 830

5 Battleship 18 1668

6 Ice breaker 6 357

7 Minesweeper 3 132

8 Destroyer 9 771

9 Frigate 36 1403

10 Cruiser 12 1217

11 Hydrofoil 5 244

12 Aircraft carrier 14 1403

Total 137 10,935
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tors together to form clusters. During testing, the
ACN reports the class name of the cluster that best
matches a particular feature vector.

Segmentation

Figure 2 shows an artist's rendition of ISAR imagery
after digitization, and Figure 3 contains the scaled
histograms of the background pixels and the target
pixels. Note that the application of an appropriate
threshold to the image intensity values will remove

Video data

Digitization

Segmentation

most of the background noise while leaving the target
mostly intact. The ASC system performs the opera
tion auromatically by

z .. = {Xi) if xi) > mglobal + NO"global

1J h'o ot erwlse,

where xi) is the input image value, mglobal is the global
mode of the image, O"global is the global standard de
viation, and Nis a user-selected parameter. The value

I

Clutter rejection

•

Featu re-vector

extraction f\!\
r--~v~

Feature vector

Classification

Identification of ship class (In the
training mode, categories are

formed. In the testing mode, the
best matches are reported.)

FIGURE 1. Automatic ship classification (ASC) system concept.
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FIGURE 2. Artist's rendition of ISAR imagery after
digitization.

1.0

0.0 L...- --'--'

Intensity

FIGURE 3. Scaled histogram of background pixels (yel
low), target pixels (blue), and the overlap (green)
for the imagery shown in Figure 2.

FIGURE 4. The result of target segmentation performed on
the imagery in Figure 2.
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of the parameter was chosen to provide the best classi
fication performance and Figure 4 shows the resulting
Image.

Clutter Rejection

ISAR imagery often contains vertical streaks as seen
in Figure 2. Figure 4 shows that the target-segmen
tation process does not remove this vertical streak.
These streaks can have an adverse effect on the system's
performance. During feature-vector extraction (to be
discussed later), the intensities in each range bin are
summed to form the profile of the ship. A result of
this process is the formation of large peaks in the
profile at the locations of the vertical streaks. When
the profile is later normalized by scaling, the large
peaks act to suppress details of the ship.

To eliminate vertical streaks and other outliers, we
can group the nonzero pixels in the segmented image,
find the major axis of the ship by using a weighted
least-squares line fit, and eliminate those pixel groups
whose centers are more than 10 pixels away from the
least-squares line [4, 5J. Figure 5 illustrates this pro
cess. In addition to generating a profile that better
represents the ship, this procedure also removes noise
pixels that can adversely affect measurements per
formed on the segmented target.

Centering

The location of a target in the sensor field of view is
controlled by the ISAR operator during data collec
tion. Centering a target in the sensor field of view is
difficult when there is relative motion between the
target and the sensor platform-a target often shifts
its location in the image frame during an observation,
and a target may not be positioned in the same loca
tion between observations. Because the current ver
sion of ACN cannot account for such effects, the
ASC preprocessor must center the segmented target.
The centering can be accomplished by shifting the
image so that its intensity-weighted center of mass is
in the center of the frame.

Extraction ofFeature vector

ISAR imagery is three dimensional: each pixel is
mapped according to its range-Doppler position (x, y),

and the pixel intensity is proportional to the radar
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(c)
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FIGURE 5. The result of clutter rejection performed on the

imagery of Figure 4: (a) the nonzero pixels are grouped

with a single morphological clustering algorithm (the re

sulting five different groupings are shown in five different

colors), (b) the ship's major axis (denoted with a dashed

black line) is found by using a weighted least-squares line
fit that is weighted by pixel intensities, and (c) pixel groups

whose centers are more than 10 pixels away from the major
axis are eliminated. (In part b, the centers of the five differ

ent pixel groups are denoted with red "+" signs,) Note that

the use of clutter rejection eliminates vertical streaks and

outliers that may be present in the imagery, In addition to

generating a profile that better represents the ship, the

process also removes noise pixels that can adversely af

fect measurements on the segmented target.

•

•

Adaptive Clustering Network (ACN)

After the feature vector has been extracted, the salient
information in the vector needs to be isolated. One

Because the ship length is incorporated into the
scaled feature vector, the accurate extraction of this
measurement is critical. The initial system found the
length by summing the occurrences of nonzero range
bins. With this procedure, the occurrence of a few
outliers did not have a significant effect on the result
ing length, bur gaps in the target could reduce the
measured length considerably. Another method of
finding the length is to apply the clutter-rejection
rourines to the segmented image to eliminate most of
the outliers. Then the length can be found by taking
the difference between the minimum and maximum
nonzero range bins. This length will be immune to
dropouts in the target, but it will be very susceptible
to any outliers that have not been removed by the
application of thresholds and clutter-rejection tech
niques. The current system incorporates both of the
above measurement methods to take advantage of
their respective strengths. The two calculated lengths
are averaged to produce a length that is used to scale
the feature vector, and this average length measure
ment is then appended to the feature vector.

Ii = 255 ( Ii - fmin J.
fmaY. - fmin

return. Because the summed intensity distriburion
over range remains consistent during target perturba
tions, the feature vector is formed by accumulating
the intensities for each range bin. This process consis
tently provides a useful feature vector, even when
there is little vertical extent in the imagery (Figure 6).
The ASC system also accomplishes a type of smooth
ing, or coarse coding, by summing the data for a
particular bin with the data for the two adjacent bins .

During an ISAR observation, the overall vertical
extent of a target can fluctuate widely. Thus the fea
ture vector must be normalized to allow the classifier
to group the varying images correctly into the same
class. The current system normalizes the feature vec
tor by scaling to 8 bits the profile values that are
between 0 and the maximum [6]:
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FIGURE 6. Artist's rendition of ISAR imagery and corresponding feature vector for (a) typical case and (b) transition

state.

approach looks for a fixed set of relationships that
defines the target classes, and classifies inputs based
on this information. The difficulty with this approach
is in the selection of a metric that provides separabil
ity across the wide range of inputs. The Adaptive
Clustering Network (ACN) [7], an unsupervised neu
ral-network-based associative classifier, avoids the
need for such a metric by automatically determining
the relevant information in the input through calcu
lations of the correlations between different feature
vectors. Essentially a clustering algorithm, the ACN
automatically groups feature vectors together to form
clusters, and a slow learning rule (described below) is
used to adapt the cluster centers as new data are
encountered. The ACN avoids the construction of
a look-up table of the training data by allowing over-
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lap between clusters (i.e., multiple classes are permit
ted in the same cluster). The overlap is resolved later
(after the training process has been completed) by
statistically assigning a class name to each cluster.

The ACN shares many common attributes with
other classifiers described in the literature, in particu
lar, the Adaptive Resonance Theory (ART) neural
network [8J. The ACN, however, is unique because it
combines a slow learning rule with statistical methods
to assign class names to clusters for single-frame and
multiframe classification. The ACN is similar to the
Recursive Coulomb Energy (RCE) model [6, 9-12J
in that new clusters are automatically formed, but the
RCE does not adapt the cluster centers as new data
are encountered. The k-means algorithm [13J up
dates the cluster centers by averaging all exemplars
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Clusters

Class A Class A Class B Class B Class B Class C Class A Class C

Input feature vectors

FIGURE 7. Adaptive Clustering Network (ACN). For a detailed description of the network, see the main text.

associated with a cluster, while the ACN uses slow
learning for the selective reinforcement of localized
regions. The standard k-Nearest Neighbor (k-NN)
algorithm [14] uses the most frequently occurring
cluster to assign class names but does not cluster the
training data. The Learning Vector Quantizer (LVQ)
[15] clusters the training data but requires a supervised
scheme for adjusting the cluster centers to reduce
classification errors.

Figure 7 shows a diagram of the ACN. In the
network, inputs are grouped together into clusters by
calculating the correlations between the inputs. For
ship recognition, the training correlation Ctrain be
tween a featute vector Finpur and an existing cluster Fk

is defined as

k _ I1npllt' Fk

ctrain - II IIII II'I1npllt Fk

If the best match from the above equation is less
than the training correlation threshold A.train (i.e., if
maxk ltrain < A.crain) , then a new cluster is added.
Otherwise, the best-match cluster is updated accord-

ing to a simple "learning" rule given by

Fnew Fold (F FOld)
k = k + Y lI1pllt - k '

where y is the learning rate, which governs the rate of
update of a cluster Fk' For y = 1, the inpur value
replaces the cluster. For y = 0, no update occurs.
Typically, the learning rate is set to a value between
0.10 to 0.25 (called "slow" learning) to suppress small
variations caused by noise and target shifts in the
image frames, and to reinforce consistent features in
the images. After the training database has been pro
cessed, each cluster is assigned a class name (described
below).

The ACN is an unsupervised neural network in
the sense that the feature vectors are allowed to group
together into clusters regardless of what class they
represent. Thus it is possible that a given cluster may
contain several different input classes, as illustrated in
Figure 8. The class with the highest frequency of
occurrence in a cluster is the class name that is applied
to that cluster. Ideally, one class would contain most
of the entries in a given cluster. However, if there exist
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different classes with similar feature vectors, then a
given cluster may not be dominated by a single class.
Such clusters can result in incorrect classifications
during the testing process. To reduce this possibility,
the ACN reviews the clusters after training, and those
clusters in which no single class dominates are labeled
"unknown." Thus, during testing, confusable classes
(i.e., classes with similar feature vectors) may be re
ported as unknown, thereby reducing the number of
misclassifications.

To determine the degree to which the peak class
dominates the other classes in a given cluster, we use a
measure called the cluster class contrast. The cluster
class contrast is calculated for each cluster by taking
the number of entries for the peak class and subtract
ing the average number of entries for the remaining
classes. The result is normalized by dividing by the
total number of entries in the cluster. Thus the class
contrast for a cluster formed ftom a single class will be
unity, and the class contrast for a cluster in which no
single class dominates will be close to zero because the
difference between the peak and the mean will be very

small. After traInIng, clusters whose class-contrast
measurements fail to meet a given threshold are la
beled unknown. A potentially adverse effect of this
technique is the labeling of all of the clusters that
represent a given class as unknown by setting too high
a threshold. This effect can occur particularly for low
Arrain settings because such settings increase the likeli
hood that multiple classes will fall into the same
cluster. These classes will always be reponed as un
known during testing.

At the conclusion of training, the actual class names
of the feature vectors versus the matching cluster class
names are tabulated and reponed in the form of a
confusion matrix (to be discussed in the following
section). The percentage of vectors that matched the
correct cluster classes and the percentage that were
matched incorrectly are also calculated. Finally, the
number of clusters formed are reponed to indicate
the level of generalization that the system achieved.

The operation of the ACN during testing is similar
to the operation during training. During testing, how
ever, the clusters are not modified by the incoming

--- Average
of classes
A and C

CBA

---------.,.....---,--------- Peak

1<+1I<1<-11<-2

A ........

B

C

Clusters Classes for the I<th cluster

FIGURE 8. Cluster class contrast. The class with the highest frequency of occurrence in a cluster becomes the class name
that is applied to that cluster. Thus for the I<th cluster the class name B is assigned. To determine the degree to which the
peak class dominates the other classes in a given cluster, we use a measure called the cluster class contrast, which is
calculated for each cluster by taking the number of entries for the peak class and subtracting the average number of entries
for the remaining classes. The result is then normalized by dividing by the total number of entries in the cluster.
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feature vectors and no new clusters are formed. In the

testing process, the ACN calculates the correlation

between an input vector and each of the stored clus
ters. The clusters are then sorted by their correlation

to the input, and a class histogram based on the top k
NN clusters is formed. The relative contribution of

each cluster to the class histogram is determined by
the class-contrast values that were calculated earlier

during the final phase of the training process. A k
NN class contrast based on the peak in the class

histogram is then calculated. If the calculated value

exceeds a given threshold, then the input is identified

as the class name associated with the peak in the

histogram. Otherwise, the input is reported as un

known. Note that the case of k = 1 simply identifies

the input as the class name of the best-match cluster.

At the conclusion of testing, a confusion matrix is

reported, along with the percentages correctly and
incorrectly identified, and the percent classified as

unknown.

Implementation

The ASC system, which has been implemented en

tirely in software, resides on a Sun Microsystems

Sparcstation 2. A Sun VideoPix Sbus card performs

the digitization of the ISAR video data.

Results Using the Hawaii Database

The performance of the ASC system on the Hawaii

data has been presented in detail elsewhere [1, 2, 16].

For the purposes of this article, only a summary of

the evaluation is provided. The classification per

formance is typically stated in terms of the per

centage of frames classified correctly, the percentage

classified incorrectly, and the percentage reported

unknown.

Training

Using the Hawaii data, we trained the ASC system

with 276 images, comprising roughly half the data.

Consecutive subsets of the frames were chosen at

random. The training correlation threshold Atrain and
the learning rate y for the ACN were set to 0.90 and

0.25, respectively. With those settings, the classifier

grouped 88% of the frames correctly, and a total of

21 clusters were formed, representing a 13: 1 reduc-

tion of the training data. The confusion matrix in

Table 3 summarizes the results. (Note: The horizontal

rows in the table represent the actual classes of the

targets while the vertical columns contain the classes

reported by the system. Thus, for the ideal case in

which the system classifies every target correctly, all of

the off-diagonal entries would be zero.) All four ex

amples of Class 1 were grouped incorrectly with Class

5 because of the small number of frames for Class 1.

Table 3 also shows that many Class 2 frames were

grouped incorrectly with Class 6. These errors oc

curred because the target orientations at which these

two classes were imaged caused the peaks in the fea

ture vectors to coincide and the measured lengths to

be roughly the same. A slightly higher training corre

lation threshold Atrain would have eliminated this con
fusion, but it would have also resulted in the creation

of a significantly higher number of clusters.

Testing

The remaining 226 images were used to test the

trained system. At a testing correlation threshold Atest

of 0.75, the system classified 95% of the images cor

rectly and 5% incorrectly, and 0% were reported as

unknown. The confusion matrix in Table 4 shows

that five examples of Class 3 were misclassified as

Class 6. The errors occurred because the two classes

have similar characteristics that produced similar im

agery under certain circumstances.

Results Using the IBM Database

In the IBM imagery, there were many instances In

which the target faded into the noise background due

to drift in the sensor's automatic gain control (AGC).

There were also instances in which most of a target

shifted off the edge of an image. Both of these situa

tions resulted in unrecognizable targets. Because these

unusable frames occurred frequently in the data, an

automated frame-rejection capability was necessary to

eliminate the labor-intensive need for editing the data

manually, as well as to enable the ASC system to

operate autonomously.
We incorporated a simple algorithm into the ASC

preprocessor to reject the unusable frames. Ideally, an

image should conrain a region of high-intensity pixels

that form the target, and a low-intensity background.
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Table 3. Confusion Matrix for Hawaii Database: Training

Class Reported by System

2 3 4 5 6
Actual

class

1 0 0 0 0 4 0

2 0 81 0 0 0 29

3 0 0 21 0 0 0

4 0 0 0 18 0 0

5 0 0 0 0 65 0

6 0 0 0 0 0 58

To find the target region, the algorithm first samples
an image into overlapping windows and sums the
pixel intensities contained in each window. The win
dow with the highest sum is assumed to contain the
target, and the average of the remaining windows is
assumed to be indicative of the background level.
Thus subtracting the average of the window sums
from the highest window sum provides a measure of
the target strength over the background noise level. If
an image does not contain a target, then the differ
ence between the highest sum and the average sum
will be very small. The difference will also be small for
images containing faint targets and high levels of
background noise. By applying a threshold to the
normalized value of this difference between the high
est sum and the average sum, the frame-rejection
algorithm was able to remove the majority of the
unusable frames encountered in the IBM database,
reducing the total number of resulting feature vectors
from 12,814 to 10,935.

Training

The performance obtained with a neural-network
based automatic recognition system is highly depen
dent on the examples used to train the system. The
training data should encompass as many variations of
the targets as possible so that the system will be able
to recognize the targets in most circumstances. On
the other hand, the number ofclusters formed should
be kept to a minimum by including only those train-
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ing examples which contain complete and clear repre
sentations of the targets.

To provide a controlled dataset for training, we
selected the best frames in the IBM database accord
ing to the following criteria: good signal-to-back
ground ratio, a complete target with bow and stern
present, an image that characterizes the target class
well, and frames that contain a single target. Applying
these criteria to the IBM database yielded 4487 se
lected frames, i.e., 35% of the entire database of
12,814 frames. We refer to this dataset of4487 frames
as the selected-frame dataset.

Neural network ASC systems for ISAR imagery are
commonly trained on every other frame in the data to
accommodate the wide range of variations in the
imagery [6, 10]. Thus roughly half of the selected
frame dataset was used for training, leaving the re
maining frames for testing. The alternate-frame train
ing set consisted of 2381 images. The training
correlation threshold Atrain and learning rate r were
set such that each class was represented by at least one
cluster (0.98 and 0.25, respectively), resulting in
the formation of 1015 clusters. During training,
94% of the frames were grouped into clusters with
the correct class name, and the remaining 6% matched
incorrect clusters. Table 5 contains the confusion
matrix.

The coarse target-orientation information avail
able in the ground truth for the IBM database (men
tioned earlier) allowed us to evaluate the effects of
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Table 4. Confusion Matrix for Hawaii Database: Testing

Class Reported by System

2 3 4 5 6
Actual

class

1 0 0 0 0 2

2 0 94 0 0 0

3 0 0 9 0 0 5

4 0 0 12 0 0

5 0 0 0 0 61 0

6 0 0 0 0 39

target-orientation cueing on system performance.
When a target is imaged at an oblique orientation, a
foreshortening of the target occurs and details of the
target can become masked. Thus the imagery of a
large ship at an oblique orientation can be similar to
the imagery of a small ship at an end-on orientation.
Because of such effects, we expected that the use of
target-orientation cueing would lead to performance
gains. When orientation information was manually
incorporated into training (discussed in the section
"Target-Orientation Cueing"), the number of frames
that were grouped correctly increased to 98%, with
1062 clusters formed.

We also investigated the effects ofapplying a thresh
old to the cluster class contrast. By applying a thresh
old of 0.90 to the cluster class contrast, we found that
the class names of 39 clusters were changed to "un
known," which helped to decrease the number of
incorrect classifications made during testing. Only 39
clusters (3.8% of the total of 1015 clusters) were
affected by the cluster class contrast because of the
relatively high setting ofthe training correlation thresh

old Arrain' The majority of classes were spread across
many clusters.

Testing

Testing of the various configurations of the ASC sys
tem was performed with two datasets, representing
the two modes of system operation. For the operator
assistant mode, in which the operator chooses the

frames to be classified by the ASC system, the remain
ing alternate frames from the selected-frame dataset
were used to evaluate the system. Thus this dataset,
which we refer to as the selected-frame testing dataset,
consisted of 4487 - 2381 = 2106 frames. For the
automatic mode, in which the system operates au
tonomously over all of the data, the dataset consisted
of the all-frame database minus the training dataset.
Thus this dataset, which we refer to as the all-frame
testing dataset, consisted of 12,814 - 2381 = 10,433
frames. Note that we purposely did not include in
either of the testing datasets any of the frames that
were used for training. For all of the test cases, the
correlation threshold Aresr was set to 0.90, unless oth
erwise noted.

Single-Frame Testing

When evaluated with the selected-frame testing data
set (2106 frames), the ASC system classified 87% of
the frames correctly and 12% incorrectly, and 1%
were reported as unknown. The confusion matrix in
Table 6 shows that Class 9, which had the largest
number of frames, was responsible for the majority of
errors. This result was expected because the Class 9
ships were imaged at a greater range than the other
vessels. Thus the Class 9 imagery contained more
noise and less-well-defined targets. When the all-frame
testing dataset 00,433 frames) was used, the ASC
system classified 62% of the frames correctly and
31 % incorrectly, and 7% were reported as unknown.
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Table 5. Confusion Matrix for Selected-Frame Dataset from IBM Database: Training

2 3 4

Class Reported by System

5 6 7 8 9 10 11 12
Actual

class

1

2
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7

8
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Table 6. Confusion Matrix for Selected-Frame Dataset from IBM Database: Testing

2 3 4

Class Reported by System
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If the correlation threshold Aresr had been set lower
than the 0.90 value used, some of the frames that
were reported as unknown might have instead been
classified incorrectly, thus resulting in a higher per
centage of incorrect classifications.

Multiple-Frame Processing

To date, ASC systems for ISAR imagery have treated
each individual frame in the data as a separate event.
Typically, however, an operator classifies the entire
observation of a target, not a single snapshot.

Storage of the individual observations in the data
base into separate disk files allowed the ASC sys
tem to classify entire observations as well as the indi
vidual frames. Multiple-frame classification was ac
complished by forming a histogram of the reported
classes for each frame in an observation. Figure 9
shows the class histogram for Observation 2 ofa Class
1 ship. The peak in the class histogram indicates
the most frequently reported class during the obser
vation. This multiple-frame technique leads to a
significant performance increase because it reduces
spurious single-frame errors caused by image
variability.

Using multiple-frame processing to evaluate the
selected-frame testing dataset, the system achieved a
95% correct classification rate, with 5% incorrect and
0% reported unknown. For the all-frame testing
dataset, multiple-frame performance led to an 83%
correct classification rate, with 14% incorrect and 3%
reported unknown.
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Class

FIGURE 9. Example of class histogram using multiple-frame
classification. The histogram is for Observation 2 (a Class
1 ship) from the IBM database. (Note: Class 13 represents
the unknown class.)

In the process, observations in which no single class
forms a distinct peak in the class histogram are
labeled unknown.

Figure 11 shows the effect of applying different
thresholds to the observation class contrast for the
multiple-frame tests. For the selected-frame data,
Figure 11 (a) shows that this technique eliminates
all misclassified observations at a threshold of 0.5,
with a resulting performance of 81 % correct and
19% unknown. For the all-frame data, Figure ll(b)
shows that at the same threshold level the system
achieves a performance level of 62% correct and

1.00.80.4 0.6

Threshold

0.2
o~~~~d
0.0

FIGURE 10. Effect of applying different thresholds to the
cluster class contrast for multiple-frame performance on
the all-frame testing dataset.
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Observation Class Contrast

The class contrast, which we used to reduce mis
classifications caused by confusable clusters, can also
be applied to the multiple-frame class histograms to

reduce misclassifications of confusable observations.

Cluster Class Contrast

We also investigated the effect of applying a threshold
to the cluster class contrast. Figure 10 shows how
different threshold settings affects the multiple-frame
performance of the system for the all-frame testing
dataset. Note that the cluster-class-contrast threshold
removes some of the misclassifications at the expense
of lowered correct-classification rates.

VOLUME 6, NUMBER 2,1993 THE LINCOLN LABORATORY JOURNAL 303



• MENON, BOUDREAU, AND KOLODZY
An Automatic Ship Classification System for ISAR Imagery

38% unknown with no misclassifications.

FIGURE 11. Effect of applying different thresholds to the
observation class contrast for the (a) selected-frame test
ing dataset and the (b) all-frame testing dataset. The
thresholds were applied to the multiple-frame class his
tograms to reduce misclassifications of confusable
observations.

CLuster Histogram

Another method of using multiple frames to identify
an observation is to form a histogram of the best
matching clusters (as opposed to the best matching
classes) for each frame in the observation. The class
name of the cluster with the peak number of entries
for each observation is then reported. Applying this
method to the all-frame testing dataset without the
use of target-orientation information resulted in 80%
correct classifications, with 20% incorrect and 0%
unknown. As discussed earlier in the subsection "Mul
tiple-Frame Processing," the class histogram method
yielded 83% correct classifications, with 14% incor-

During testing the orientation of the target was uti
lized to select the appropriate ACN memory.

The use of target-orientation information for both
training and testing with the selected-frame dataset
improved the correct-classification rate to 100%. In
comparison, without the orientation information the
correct-classification rate was 95%, with 5% incor
rect and 0% unknown.

The use of target-orientation information with the
all-frame testing dataset resulted in an overall correct
classification rate of 83%, with 11 % incorrect and
6% unknown. For the stern observations, 100% cor
rect classification was obtained because this orienta
tion produced highly defined features. The perfor
mance for the bow orientation was lower (84% correct,
10% incorrect, and 6% unknown) because the bow
observations contained a large number of frames with
high noise, incomplete targets, and/or poor sensor
stabilization. The lower performance for the oblique
bow orientation (74% correct, 21 % incorrect, and
5% unknown) and oblique stern orientation (84%
correct, 8% incorrect, and 8% unknown) can be at
tributed to the coarse coding of orientation labels
over a wide range of actual target orientations, which
varied from near bow/stern to near beam. The lower
performance for the beam orientation (82% correct,
9% incorrect, and 9% unknown) was expected be
cause beam imagery is generally not well resolved in
range. Application of a threshold to the class contrast
for each observation eliminated all misclassifications
and yielded an overall performance of 71 % correct
and 29% unknown.
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Target-Orientation Cueing

To investigate the effects of target-orientation cueing,
we trained the system on all ships at given target
orientations (bow, oblique bow, stern, oblique stern,
and beam); thus the system formed separate ACN
memories for each of the five different orientations.
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FIGURE 12. Effect of the correlation threshold ~est on the
multiple-frame performance of the system using the all

frame testing dataset.
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only testing entries (constituting the unseen observa
tions). We anempted ro achieve the desired system
response-that unseen observations be classified as
unknown-by increasing the testing correlation
threshold Atest from 0.90 ro 0.95.

For the bow-orientation case, the system was trained
on a total of seven observations, which resulted in the
formation of 176 clu tel's. Table 7 shows the results
when the system was subsequently tested on the re
maining 21 seen observations and three unseen ones.
The increased correlation threshold (from 0.90 ro
0.95) reduced both the number of correct and incor
rect classifications from the previously reponed levels.

To assess how the ASC system would perform on
independent observations, we subgrouped the bow
and stern-orientation observations in the IBM data
base into new training and testing subsets. The obser
vations at oblique bow and oblique stern orientations
were not used because they contained roo wide a
range of actual target orientations. The observations
at beam orientation were also omined because there
were roo few of them for a meaningful analysis. For
both the bow- and stern-orientation observations, we
subgrouped the data such that some of the ship classes
had entries for both training and testing (constituting
the seen observations for testing), while others had

Correlation Threshold

rect and 3% unknown. The performance of the clus
ter histogram was inferior to that of the class histo
gram because the correct class for a given observation
may be distributed across several clusters, thus result
ing in the lack of a distinct peak in the cluster
histogram.

Independent Observation

As discussed earlier, the alternate-frame method of
selecting training and testing datasets is frequently
used for the laboratory evaluation of ASC systems.
All of the performance reported thus far has made
use of this technique to provide results that could
be compared with the efforts of other researchers.
For a deployable ASC system, however, the train
ing and testing methodology will be different. Pre
sumably, data will be gathered for the specific pur
pose of initializing the ASC system so that the sys
tem can be trained on all of the frames from a
fixed set ofobservations of each ship class to be recog
nized. In operation, the system will encounter new
observations of previously seen ship classes, as well
as unseen ship classes. Therefore, we tested the
ASC system on observations that were indepen
dent of the training data to provide results that
were more operationally relevant than the alternate
frame results.

During testing, the correlation value for the cluster
that best matches the input feature vector is com
pared to the correlation threshold Atest ' When the
correlation value exceeds the threshold, the class name
of the cluster is reported; otherwise the inpur is la
beled unknown. For the all-frame testing dataset, Fig
ure 12 shows that the threshold has a very slight effect
on the multiple-frame performance of the system
except at very high values. For Atest greater than 0.9,
the correct and incorrect classification rates decrease
sharply. It is important to note that the removal of all
misclassifications by increasing the correlation thresh
old also drastically reduces the number of correct
classifications. Thus the observation-based class-con
trast technique is a more effective means of reducing
or eliminating misclassifications than the correlation
threshold.
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Table 7. System Performance Using Independent Observations

Seen Observations Unseen Observations
Correct Incorrect Unknown Incorrect Unknown

Bow 13 (62%) 3 (14%) 5 (24%) 1 (33%) 2 (67%)

Stern 4 (67%) 0 2 (33%) 1 (17%) 5 (83%)

Overall 17 (63%) 3 (11 %) 7 (26%) 2 (22%) 7 (78%)

Table 8. System Performance Using Independent Observations
after the Elimination of Outlier Clusters

Seen Observations Unseen Observations
Correct Incorrect Unknown Incorrect Unknown

Bow 12 (57%) 1 (5%) 8 (38%) 0 3 (100%)

Stern 4 (67%) 0 2 (33%) 1 (17%) 5 (83%)

Overall 16 (59%) 1 (4%) 10 (37%) 1 (11 %) 8 (89%)

For the unseen bow-orientation observations, there
was one incorrect c1assification-a Class 6 ship was
misclassified as Class 10. This error occurred because
many of the frames from that one unseen observation
matched an outlier cluster that had been formed from
a single spurious frame from Class 10. The number of
frames (from the one unseen Class 6 observation) that
matched the outlier cluster was sufficient to produce
a high class-contrast value for the observation, so that
the observation-class-contrast threshold was not able
to remove the misclassification without sacrificing
most of the correct classifications. Table 8 shows
that the elimination of clusters formed from single
spurious frames removes that one misclassification of
an unseen observation and reduces both the number
of correctly and incorrectly classified seen obser
vations. The removal of these single-entry outlier
clusters resulted in 41 valid clusters for the bow
orientation.

For the stern-orientation case, the system was
trained on a total of five observations, which resulted
in the formation of 106 clusters. In Table 7, the one
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incorrect classification of an unseen stern-orientation
observation resulted from a Class 11 ship being
misclassified as Class 6. Because of the very small sizes
of the ships in both of these classes and because of the
low resolution of the sensor used, the number of
pixels for the ships in the two classes was small. As a
result, the system had difficulty distinguishing be
tween these twO ship classes. We could not eliminate
the misclassification by removing the single-entry out
lier clusters because the one misclassified unseen ob
servation matched clusters that were formed from
large numbers of frames. All of the seen stern-orienta
tion observations were classified correctly, and the
system performance for these observations was also
unaffected by the elimination of outlier clusters, as
shown in Table 8. The removal of single-entry outlier
clusters resulted in 30 valid clusters.

These preliminary results indicate that the system
correctly reports as unknown most observations of
classes that it has not seen before. But the sys
tem's performance in the independent-observation
tests was lower than that in the alternate-frame test
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because, in the independent-observation experi
ment, the system was trained on only one observa
tion per class per target orientation. (Note: In cases in
which there was only one observation per class per a
particular target orientation, the sole observation was
used for testing.) The single training observation
probably failed to provide examples of all the varia
tions found in the testing imagery. Thus a database
with a significantly higher number of observations
per class is required to attain statistically significant
independent-observation performance.

Summary and Conclusions

The Automatic Ship Classification (ASC) system has
undergone substantial improvements and extensive
evaluation. The latest testing was conducted on a
database containing 12 classes of ships. The use of
multiple frames of imagery obtained during observa
tion intervals of the target ships significantly im
proved the system's performance. The incorporation
of target-orientation information and the class-con
trast technique also reduced misclassifications. When
selected frames of the data were used in the training
and testing, the improved system classified 100% of
the targets correctly. When all of the frames were
used, the system classified 71% of the targets cor
rectly, with the remaining 29% reported as unknown;
i.e., no targets were classified incorrectly.

The results using the selected-frame testing dataset
show that the system would perform very well as an
operator assistant. In this scenario, the operator would
select the frames presented to the ASC system. The
all-frame testing results show that several observations
of a target would probably be required to obtain a
confident identification during autonomous opera
tion of the system.

From these results, we feel that the ASC system is

now ready for a thorough field evaluation on board
an ISAR sensor platform. For such an evaluation,
digital data from the actual ISAR sensor should be
provided for the initial training and subsequent fine
tuning of the system.
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