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II A variety of machine intelligence (MI) techniques have been developed at
Lincoln Laboratory to increase the performance reliability of automatic target
recognition (ATR) systems. Useful for recognizing targets that are only
marginally visible (due to sensor limitations or to the intentional concealment
of the targets), these MI techniques have become integral parts of the
Experimental Target Recognition System (XTRS)-a general-purpose system
for model-based ATR Using laser radar images collected by an airborne sensor,
the prototype system recognized a variety of semi-trailer trocks with high
reliability, even though the trocks were deployed in high-clutter environments.

T
HE CONSTRUCTION ofan automatic target rec­
ognition (ATR) system is a demanding task.

. ATR systems must be able to locate and iden­
tifY specific targets that can be concealed intention­
ally through obscuration or camouflage, that are of­
ten designed to be nearly invisible in radar imagery,
and that can be deployed in the midst of distracting
signals. To gain tactical advantage, it is generally im­
portant that an ATR system be able to find a target
from as far away as possible. Under such conditions,
the selectively indicative signal features (signatures)
associated with a target are often barely discernible
from the background. Thus, inevitably, practical ATR
systems must be able to discriminate targets from
background in spite of weak, ambiguous, uncertain,
variable, or even contradictory evidence.

ATR system development can be particularly diffi­
cult under certain mission constraints and when the
costs ofsystem error are high. One such ATR applica­
tion is the use of airborne sensors to recognize strate­
gic relocatable targets (5RD such as the SS-25 ICBM

of the former Soviet Union (Figure 1 [left]). An ATR
system for recognizing SRTs must search through
images generated by one or more sensors (laser radars,
real- or synthetic-aperture radars, passive infrared im­
agers, and video cameras), requiring techniques of
data fusion. The search is for a very small number of
targets in a continent-sized area. The targets might be
caught in the open, but more likely will be found
along tree lines, perhaps partially occluded by foliage.
Because of the nature ofthe targets, a high probability
of detection is crucial. And yet the ATR system must
generate few false alarms (FA) due to mission limits
on the number of weapons that an aircraft can carry
to destroy the SRTs, the flying time of the aircraft
over the target area, and the processing capabilities of
human operators who must decide which detections
to pursue. A closely related mission is the detection of
Scud launchers, such as those used by Iraq in the
Persian Gulf War. A general term, critical mobile
target (CMT), refers to all mobile missile launchers,
including those used with 55-25 and Scud missiles.
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FIGURE 1. Photographs of (left) mobile missile launcher carrying a strategic SS-25 ICBM of the former Soviet Union, as
shown in a Soviet newspaper, and (right) tank truck used by Lincoln Laboratory as a substitute vehicle to develop and test
an automatic target recognition (ATR) system for detecting critical mobile targets (CMT) such as the SS-25 launcher.

To achieve reliable detection and recognition per­
formance in such demanding applications, we have
developed several new machine intelligence (MI) tech­
niques, including new approaches for model-based
classification [1-3], automatic learning ofmodels [4],
knowledge-based signal processing [5, 6], selective
attention [7], and pixel-level data fusion [7]. The
Experimental Target Recognition System (XTRS) de­
veloped at Lincoln Laboratory [8-10] provides a frame­
work for the application of these techniques and for
the rapid prototyping ofATR systems. Though XTRS
and these new MI techniques were intended specifi­
cally for ATR, they constitute a general-purpose ap­
proach to object recognition, with many potential
applications. For example, XTRS has been applied
successfully to the detection and tracking of hazard­
ous weather phenomena, as described in the article
"Machine Intelligent Gust Front Detection" by Rich­
ard 1. Delanoy and Seth W Troxel in this issue [11].
In the current article, we apply XTRS to the detection
and recognition of CMTs, specifically, tank trucks
(Figure 1 [right]) and logging trucks used as substi­
tutes for missile launchers.

Low-Level Machine Intelligence

Computer vision systems have traditionally been de­
signed in terms of a hierarchy of levels. Low-level
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vision works on a domain of pixel-level data. Because
the associated image processing operations are highly
repetitive and therefore relatively slow, low-level op­
erations tend to be kept simple. And, because a scene
can contain many objects of potential interest, low­
level operations tend to be generic and relatively de­
void of object-dependent knowledge. A typical low­
level operation is edge detection. In high-level vision,
the pixel-level data (for the edge-detection example, a
pair of images showing the strength and orientation
of edges) are transformed into symbolically described
features. Object identification is then performed by
matching these features against prior knowledge of
object characteristics.

This basic organization of computer vision has
often been used in the design ofATR systems. In the
detection process, which is analogous to low-level
vision, a threshold is applied to a set of signals. The
signals can come directly from a sensor or they can be
the result of a signal processing operation. For the
threshold to be effective, the signals associated with
targets must form a distribution that is distinguish­
able from the distribution of signals associated with
other objects in the background (i.e., clutter). Figure
2(a) illustrates this point. In any realistic detection
problem, there will exist some targets that have sig­
nals below the detection threshold; those targets will
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FIGURE 2. Discrimination of target and clutter signals
through the application of a threshold: (a) typical overlap

of targets and clutter distributions, and (b) illustration of

how signal processing, either conventional or machine
intelligence (MI) based, can improve detection performance

by increasing the separation of the distributions.

image. Clusters of high interest values are used as a
guide to focus computational resources on likely tar­
gets. In Figure 2(a), a threshold was applied to the
quantity "signal strength." For simple ATR systems,
the signal is typically the intensity of returned electro­
magnetic energy or a simple function thereof Interest
provides an alternative flexible metric to which thresh­
olds can also be applied. The power of this approach
is that the ourput of any sensor modality or feature
detector can arguably be expressed as an interest im­
age. Furthermore, the use of interest as a common
denominator greatly simplifies the fusion of pixel­
level data. Specifically, interest enables the use ofsimple
arithmetic or fuzzy logic to fuse spatial evidence from
a variety of sources.

There are three steps in low-level MI as used by
XTRS in the detection process. First, relevant feature
detectors are selected, given knowledge of the situ­
ational context. The context may include the intended
set of targets, various sensor-related parameters, and
identifiable environmental conditions affecting sen­
sor performance and target appearance. Often the use
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not be detected. There will also exist instances of
clutter associated with signals that are above the de­
tection threshold; such instances will result in FAs.

Developers ofATR systems have generally followed
the strategy of keeping low-level vision devoid of
object-dependent knowledge, and the processing done
in preparation for the application of thresholds is
usually kept simple. As a result, the thresholds must
be set fairly low to maximize the likelihood of detect­
ing targets. The high-level recognition process is then
responsible for suppressing as many FAs as possible.
Usually, FA suppression is accomplished through the
use of classifiers based on statistical techniques or MI
techniques, including those involving expert systems,
model-based matching, and neural networks. How­
ever, when a given ATR application involves only one
or at most a few intended targets or classes of targets,
the use of object-dependent knowledge for the detec­
tion process is feasible. And, in fact, because targets
are often hidden, camouflaged, or Qtherwise only mar­
ginally visible, object-dependent knowledge can play
an important role in enhancing detectability. In par­
ticular, detection performance can be improved by
separating the distributions of targets and clurter, as
shown in Figure 2(b). Although various techniques
have been developed to increase this separation (see,
for example, Reference 12), the techniques do not
typically involve any detailed object-dependent
knowledge.

Thus, in addition to using MI techniques in the
conventional role of high-level classification and FA
suppression, we have developed a set of new tech­
niques for low-level MI. Thresholds are still an un­
avoidable part of detection but, when low-level MI is
applied directly to the pixel-level data early in the
detection process, the use of thresholds is in a relative
sense postponed and, as a result, made more effective.

Interest Images

A key to implementing low-level MI in XTRS is the
concept of interest and interest image [7]. By our defi­
nition, interest is a dimensionless quantity indicating
the likelihood that a specific feature, indicative of a
target or class of targets, is present at a given image
pixel. A spatial map of such interest values, each
constrained to the range [0,1], constitutes an interest
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of just one feature detector can accomplish adequate
target-detection performance.

In the second step, the selected feature detectors
are applied to the appropriately prepared input imag­
ery. Each detector generates as its output an interest
image that provides spatial evidence for the presence
of particular target features. A targeted object may be
represented by more than one detector; each detector
looks, for example, for a distinct set of features or for
an alternative target configuration.

The final step calls for the fusion of evidence,
which is accomplished with a rule of combination
prescribing how interest values from multiple interest
images are to be combined. The rule of combination
depends on the set of feature detectors selected. In the
case of multiple feature detectors looking for alterna­
tive target configurations, the rule of combination
could be the maximum (fUzzy-or in fuzzy set theory);
i.e., at a specific pixel location, the maximum of the
interest values across all interest images at that loca­
tion could be used. In the case of several feature
detectors looking for different vehicle features that are
likely to be present all the time, the fusion of interest
values might be done by an averaging process. Al­
though not fully exercised in the CMT version of
XTRS, the rule of combination could be arbitrarily
complex to reflect knowledge of the variable reliabil­
ity of different feature detectors under different view­
ing conditions.

For situations in which only targets return strong
intensity signals, the intensity signal returns might
provide a ready-made interest image. In practice, how­
ever, laser intensity can be an unreliable discriminant
because the energy returned from a target surface
depends on the specularity of the surface and its
orientation relative to the incident laser beam. Also,
high (or low) range values from a laser radar are
usually unreliable predictors of target locations be­
cause targets are not customarily parked at the highest
(or lowest) points in a locality. Thus the effective use
of laser radar imagery requires that objects in the
imagery be identified also on the basis of shape.

Functional Template Correlation

In studying the principal techniques for shape analy­
sis, we found that the basic equations of cross-correla-
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tion and mathematical morphology (MM) [13] can
be generalized into a single class of operations, which
we have called fUnctional shape matching. Briefly de­
scribed, these shape-analysis tools all use kernels (struc­
turing elements in MM), which are basically subimages
that are looked for within the image to be probed. For
probing a pixel in an image, the origin of a particular
kernel is positioned over the pixel's location. A two­
argument function is then applied to each kernel
value and the corresponding value in the image. (For
cross-correlation, the two-argument function is mul­
tiplication. For MM dilation and erosion, the func­
tions are addition and subtraction, respectively.) Next,
an arbitrary operator is applied to the function values
obtained for the set of pixel locations on the kernel.
(For cross-correlation, the operator is summation. For
MM dilation and erosion, the operators are maxi­
mum and minimum, respectively.)

Eventually, we realized that functional shape match­
ing not only includes the classic shape-analysis tools,
but it also encompasses a variety of signal processing
techniques that have never been tried before. From
functional shape matching, we implemented a tool
for generalized matched filtering called fUnctional tem­
plate correlation (FTC) [5]. Whereas the kernel of the
classic techniques is a subimage indicating specific
expectations of image values for a successful match,
the kernel used in FTC is a set of indexes, each
corresponding to a unique scoring function. Each of
these scoting functions can define arbitrary expecta­
tions for image values at each pixel location on the
kernel. The outputs of these scoring functions are
scalar values, which are averaged and then "clipped"
to the range [0,1]. (In the clipping process, those
averaged scores which are less than zero are assigned a
value of zero, while those averaged scores which are
greater than one are assigned a value of one.) Compa­
rable in spirit '.0 the membership functions of fuzzy
set theory, scoring functions provide a means of en­
coding uncertainties. But, in addition, scoring func­
tions can be used to encode a surprising amount of
knowledge of the physics of a matching problem.
Using FTC, we can construct customized matching
techniques that are more powerful than the classic
shape-analysis operations. (Note: For a brief intro­
duction to FTC, see the box, "Functional Template
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Correlation," in the article "Machine Intelligent
Gust Front Detection," by Delanoy and Troxel in this
issue [11].)

Data Used in System Development and Testing

For the development and testing of a CMT version of
XTRS, a large dataset of images in Maine was col­
lected to simulate the detection of CMTs in a high­
clutter, mainly forested environment. Semi-trailer
trucks, which approximate the appearance of missile
launchers, were positioned amidst both natural and
man-made clutter. The simulated targets included the
tank truck shown in Figure 1 (right), the same tank
truck but under camouflage netting, a loaded logging

truck, and an empty logging truck. This variety of
vehicles was used to test XTRS's ability to discrimi­
nate between targets of similar shapes and sizes. The
vehicles were positioned on or near roads, both in the
open and along tree lines. The man-made, or cultural,
clutter included residential neighborhoods and a log­
ging camp (Figure 3) that contained heavy logging
equipment such as other semi-trailer trucks.

Pixel-registered range and intensity images of the
various vehicles were generated with the Hughes­
Danbury GaAs Laser Linescanner carried aboard a
Gulfstream G-l aircraft (Figure 4). Characterized by
a O.85-,um wavelength, the linescanner has a range
ambiguity of 10m, a precision of ambiguous-range

FIGURE 3. Aerial photographs of man-made, or cultural, clutter represented in the laser-radar-image dataset. Contained in
the photographs are railroad cars, fuel tanks, stacks of logs, empty logging trucks, other road vehicles, and heavy logging
machinery. All of these objects, easily confused with the set of targets being sought, are potential sources of false alarms

(FA).
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Electronics racks

Recording system

O.85-pm down-looking laser radar linescanner
10.6-pm forward-looking laser radar
8-to-12-pm forward-looking passive imager

FIGURE 4. Lincoln Laboratory airborne sensor platform.
The Gulfstream G-1 carries a O.85-/lm down-looking laser
radar linescanner, a 10.6-/lm forward-looking laser radar,
and an 8-to-12-/lm forward-looking passive imager. The
images used in the experiments described in this article
were collected with the O.85-/lm Iinescanner.

values of 15 cm, and an angular resolution of 1.0
mrad. Images were collected during the winter and
summer of 1989 with a down-looking sensor plat­
form that was operated at altitudes between 200 and
300 m by the Opto-Radar Systems Group of Lincoln
Laboratory. The example range and intensity images
shown in Figure 5 reveal the high resolution achieved
with the 0.85-/lm linescanner. Image widths were
between 64 and 150 m; image lengths could be arbi­
trarily long because of the linescanner used. Long
scans were subdivided into overlapping images rang­
ing in length from 100 to 400 m. In total, the dataset
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collected contained 2303 image pairs (range and in­
tensity) covering 17.13 km2 of ground area un­
der both winter (snow) and summer (dense foliage)
conditions.

System Description

The architecture of the CMT version of XTRS con­
sists of five modules (Figure 6): preprocessing, detec­
tion, extraction, decomposition, and matching. Each
module has a standard structure (Figure 7) that con­
sists of four main elements: (1) a parameter library­
a collection ofalgorithms, numbers, and/or data struc­
tures that encode knowledge relevant to the current
stage of processing; (2) a parameter selector-a rule­
based expert, i.e., a collection of rules, that uses con­
textual information and previous results to choose
parameters from the parameter library; (3) a generic
processing engine; and (4) a rule-based feedback ex­
pert that evaluates the output of the processing en­
gine and decides where control should be directed. In
the complete system, the feedback expert of one mod­
ule and the parameter selector of the subsequent mod­
ule conceptually form a local-control node.

Preprocessing

The Hughes-Danbury GaAs Laser Linescanner pro­
duces pixel-registered range and intensity images that,
in preparation for the detection process, require a
number of data transformations.

First, because an aircraft's speed with respect to the
ground varies depending on the wind velocity vector,
the aspect ratios of targets that have been imaged by
the linescanner can often become distorted. In an
operational system, these distortions can be avoided
by using an inertial navigation system either to regu­
late the linescan rate or to provide data that would
allow the images to be corrected by interpolation. For
the data used in this article, the interpolation was
performed interactively to obtain the correct target
aspect ratios.

Second, the ambiguous-range values are converted
to absolute altitudes above some arbitrary reference
altitude. Once the absolute altitudes have been deter­
mined, a map of altitudes for the local ground level
can be computed with a technique based on morpho­
logical operations [14-16]. In the technique, only



• DELANOY ET AL.
Machine Intelligent Automatic Recognition ofCritical Mobile Targets in Laser Radar Imagery

those surface shapes which are wider than the in­
tended targets are retained as part of the local ground
level. (Note: There exist other techniques for estimat­
ing the local ground level; see, for example, Reference
17.) When the altitudes ofthe local ground level are
subtracted from the absolute altitudes, the resulting
image will contain values that are the heights of small
objects (including targets) above the local ground
level. In this article, subsequent uses of the term range
image will refer to this image of heights above the
local ground level.

For the last step of preparation, the range and
intensity images are scaled by linear interpolation to a
resolution of 0.25 m per pixel side. Images of lower
resolution (0.5 and 1.0 m per pixel side) are then
generated by a subsampling of the data. The lower­
resolution images are used for detection, while the
high-resolution images are used for extraction and

high-level matching.
(Note: During preprocessing, no attempt was made

to clean the linescanner imagery of noise. Such a
procedure was unnecessary due, in part, to both the
high quality of the imagery and the noise-resistant
properties of FTC.)

Detection

In the CMT verSIOn of XTRS, three-dimensional
detection is essentially performed by four target de­
tectors (i.e., feature detectors representing whole tar­
gets instead of individual features). The tank truck is
represented by two alternative target detectors, one in
which the truck is exposed, the other in which the
truck is covered with camouflage netting. The logging
truck is similarly represented by two target detectors,
one in which the truck is empty, the other in which
the truck is loaded with logs.

(a) (b)

FIGURE 5. Example (a) intensity and (b) range images taken during winter with the O.85-,um down-looking laser linescanner
shown in Figure 4. Note the tank truck (lower left), empty logging truck (upper left), and house trailer (upper right) in both
images. The range image has been transformed such that each pixel value represents a height above an arbitrary reference
altitude with lighter pixels indicating a greater height.
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where the cab or trailer is expected constitutes strong
evidence that a target is not present at that location.
On the other hand, heights greater than the expected
interval of 2.5 to 3.5 m result in scores no less than
0.5, the level ofambiguity, because such heights could
potentially indicate the presence of an occluding sur­
face. In other words, the cab of a tank truck might or
might not be present under an occluding surface that
is at least 4.0 m high.

The other scoring functions work in the same man­
ner, except that the expected interval of heights for
the background in scoring function 0 is from 0.0 to
0.5 m, and the expected interval for the hitch area in
scoring function 2 is from around 1.0 to 2.0 m. These
scoring functions are tuned such that, when the tem­
plate is applied to a patch ofbare ground (zero height),
the negative scores from scoring function 1 balance
the positive scores generated by scoring functions 0
and 2, resulting in an overall score near 0.0. And, of
course, an unobscured target should generate a score
near 1.0.

The above functional-template design provides a
simple means of minimizing the effects of occlusion.
This capability, not easily obtained with cross-correla­
tion or MM operations, is necessary for finding tar­
gets partially covered by foliage. In the extreme, a
target that is completely occluded should generate a
score of 0.5 (Figure 9).

In Figure 8, the second functional template for the
exposed tank truck is designed for intensity imagery.
Because the surface of the truck is smooth (specular)
with regard to the laser wavelength, the reflected laser
beam will tend either to miss the sensor (resulting in a
low intensity value) or hit the sensor directly (result­
ing in a high value). Scoring function 4, correspond­
ing to the trailer and cab, encodes these expectations
by returning high scores for very low and very high
intensity values, and low scores for intermediate in­
tensity values. The hitch area returns the laser energy
more diffusely; thus, scoring function 5, which corre­
sponds to the hitch area, returns high scores for inter­
mediate intensity values. The intensity values associ­
ated with surrounding ground areas are highly variable
and unpredictable, except that they are seldom very
low. Scoring function 3 encodes this expectation with
highly negative scores for low intensity values, but nil
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FIGURE 6. Architecture of Experimental Target Recogni­
tion System (XTRS), showing the five processing mod­
ules as well as the way in which knowledge is represented
at each level.

Sensor imagery

The target detector for the exposed tank truck
consists of the two functional templates shown in
Figure 8. The first functional template encodes the
expected appearance of the truck in range imagery
(i.e., images of heights above the local ground level).
In scoring function 1, which corresponds to the top
surfaces of the cab and trailer, a maximal score of 1.0
is returned for heights from 2.5 to 3.5 m. The uncer­
tainty comes from signal noise and inaccuracies in
estimating the local ground level. The negative scores
reflect the fact that tank trucks are opaque to laser
illumination; i.e., the presence ofground-level heights
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(i.e., no opinion) for intermediate and high intensity
values.

The two functional templates shown in Figure 8
were applied simultaneously to the input range and
intensity images, and overall scores were computed as
the average of the scores returned from the six scoring
functions. Because the orientations of targets are typi­
cally arbitrary and unknown a priori, an FTC score
was computed for each of 36 uniformly spaced tem­
plate rotations (l 0° increments) at each pixel location
of the input imagery. For a particular pixel location in
an input image, the score associated with the maxi­
mally scoring orientation was assigned to the corre­
sponding pixel location in the output image. As pre­
viously indicated, each such output image is treated as
an interest image, indicative of the likelihood of find­
ing a target at any particular pixel.

In a similar way, output interest images were also
generated for each of the three other target detectors,
and the four interest images were combined by taking

the maximal scores at each pixel location. The result­
ing combined interest image was then scanned for
pixels having interest scores above a certain threshold
(typically 0.75), and the above-threshold pixels were
grouped into clusters.

Next, a box was placed around each cluster. The
boxes were used to extract range and intensity
subimages containing the interest cluster and thus the
candidate target. The boxes were square, with sides
50% longer than the longest dimension of the targets
being sought. Up to fout boxes with above-threshold
interest scores and a minimum of overlap with each
other were constructed for each image. The cluster of
above-threshold interest scores that led to the creation
of a particular box was used to create a list of tar­
get hypotheses. At each pixel in a cluster, the inter­
est score is always associated with the highest-scoring
target detector at the highest-scoring orientation. Each
pixel's hypothesis consisted of the highest-scoring tar­
get detector's name, pixel coordinates, orientation,
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intensity imagery, has no opinion above a certain intensity value.

and interest score, which was used to rank the hy­
potheses. For each box generated, information re­
garding the size and location of the box as well as
hypotheses about what might be in the box was placed
in a data structure referred to as a "window.» Because
the CMT version of XTRS uses the function maxi­
mum for the rule of combination of interest scores,
the score achieved at any pixel location by the high­
est-scoring target detector is also the value stored at
that same location in the window.

Extraction and Decomposition

Windows generated by the detection process are used
as input to extraction. The position and size of each
window are used to extract full resolution (0.25 m per
pixel side) subimages of range, intensity, and interest.
In the extraction module (Figures 6 and 7), the pa­
rameter selector chooses from the library an extractor
corresponding to the highest-ranking hypothesis in a
window. In the current implementation of our sys-
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tern, a full-resolution functional template is created
for the extractor by a zooming process that is applied
to the corresponding detection template. The pre­
liminary location and orientation information recorded
in the hypothesis is then used to probe the window
with the full-resolution template. The window is
probed only at the pixels immediately surrounding
the hypothesis location and only for orientations
within 10° of the hypothesis orientation. Although
the angular increment for FTC is 10° for detection,
an increment of 1° is used for extraction.

At the location and orientation of the best full­
resolution FTC match, a rectangular mask with out­
side dimensions that approximate the dimensions of
the candidate target is positioned to isolate an image
region. The isolated region then undergoes the appli­
cation of height thresholds followed by a cleaning
with MM, and the resulting region is subdivided with
a stencil consisting of an array of rectangles (six or
eight in our application), each marking the area limits

of one subregion. For the tank truck, Figure 10(a)
shows the eight idealized subregions, each ofwhich is
characterized with regard to a number of attributes
such as length and width, and various texture mea­
sures such as a measure of the local variance in the
subregion. The characterized object region and part
subregions together with a list of candidate target
identities extracted from the window hypotheses serve
as input to the matching process. (Note: If the match­
ing module fails to make an identification, control is
directed back to the beginning of the extraction mod­
ule. In such a case, the extraction process is repeated
for the hypothesis that has the next highest interest
score. The processing stops either when the target has
been identified or when all hypotheses have been
examined.)

Matching

Candidate targets are identified by matching the ob­
ject region and part subregions against appearance

(a) (b) (c)

FIGURE 9. The functional template for a tank truck is applied to (a) bare ground, (b) a 100% occluded target, and (c) a fully
exposed target. The corresponding expected scores for the three cases are 0.0, 0.5, and 1.0, respectively.
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FIGURE 10. Appearance models:
(a) top view of an idealized tank­

truck region decomposed with a
target stencil into eight charac­
terized subregions, and (b) cor­
responding appearance model
(AM) for the tank truck. Note that
each of the eight subregions is
characterized with regard to a
number of attributes such as
length and width, and various tex­
ture measures. In the AM, an ob­
ject node (TANK TRUCK) is bro­
ken into eight part nodes (PART
1 through PART 8) correspond­
ing to the eight subregions. Each
object and part node contains a
set offuzzy predicates that define
the allowable limits for computed
values of the different attributes
such as length and width. Each predicate has an associated weight Wi that is used to bias computed match scores. In a
similar way, constraints (e.g., COMBINED WIDTH and SAME HEIGHT) specify the limits ofthe relationships between the
different parts. The AM shown here has been simplified. In practice, the AMs of the modeled trucks have as many as 80
constraints between the different parts. Note, also, that for the sake of simplicity, the existence of constraints between
certain parts (e.g., between PART 2 and PART 4) has not been shown.
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models (AM) [1-3]. Figure 10(b) illustrates the gen­
eral construction of an AM for the tank truck. Note
that the AM consists of an object node (TANK
TRUCK) and a series of part nodes (e.g., PART 1)

that specify the limits of properties of the different
pans. Attributes of the object region and part subre­
gions can include length, width, aspect ratio, circum­
ference, average image value, and texture measure­
ments, among other quantities. Each object and part
node contains a set of fuzzy predicates and associated
weights that define the allowable limits for the com­
puted values of the different attributes. There is typi­
cally one fuzzy predicate for each attribute. In a simi­
lar way, constraints (e.g., COMBINED WIDTH and
SAME HEIGHT) specify the limits of the relations
between parts.

By treating a computed attribute 8 as the argument
of the corresponding fuzzy predicate [(x), we can
easily obtain a score [(8) for the computed value 8.
The scores obtained from a ser of fuzzy predicates
together with the weights associated with those predi­
cates can then be used to calculate a weighted average
that provides an overall match score for each part.
Similarly, a match score can be computed for each
constraint. For example, the sum of the widths of
PART 1 and PART 2 would be the input to the
constraint COMBINED WIDTH shown in Figure
10(b). Match scores for each part and each constraint
become pieces of evidence that can then be combined
with the Dempster-Shafer theory of evidence. The
output is a target identity, which may be none to
indicate an unknown target type. (Note: References 1
through 3 provide a detailed description of matching
based on AMs, including a description of the
Dempster-Shafer theory of evidence.)

Using the above approach, we constructed five
AMs, one each for the exposed tank truck, the cam­
ouflaged tank truck, the loaded logging truck, the
empty logging truck, and the truck cabs. The cabs
were modeled through a separate AM because, in
several cases, the frame boundary of the images
had occluded the trailers.

Through experience, we learned that the AMs that
were more successful were generally more compli­
cated. As the size and complexity of the AMs grew,
however, it became apparent that we could not con-

tinue to construct AMs manually. Thus automatic
construction techniques were needed.

Automatic model building requires example sets of
the decomposed targets. For each attribute of each
part ofeach target, fuzzy predicates can be constructed
from the population of values found in the example
set. Figure 11 shows a fuzzy predicate that has been
constructed for the attribute LENGTH of the part
node PART 1. The red dots at the top of the figure
represent the population of length values from all
PART Is in the example set. During the construction
of a fuzzy predicate, outlier (i.e., statistically inconsis­
tent) values are discarded, and a cluster analysis is
performed to determine the number of clusters that
might best explain variances in the remaining values.
For each cluster, the mean and standard deviation are
computed, and an interval of maximum returned
score (1.0) is established between the minimum and
maximum lengths of each cluster. Outside this inter­
val of maximum returned score, the fuzzy-predicate
curve ramps down from 1.0 to 0.0 with a slope that is
proportional to the standard deviation aof the cluster
population. The value of a is multiplied by the coeffi­
cient [3 called the recognition tolerance, to determine
the width of the ramping interval. For small values of
[3, the fuzzy predicate is relatively intolerant oflengths
that are outside the already observed range of values,
while high values of [3 result in a greater tolerance
of such variations. The final fuzzy predicate is the
maximum of the individual functions generated for
each cluster. The weight associated with each fuzzy
predicate is initialized to 0.1, a value chosen to allow
an increase (and decrease) by at least an order of
magnitude.

Fuzzy predicates are constructed for each attribute
of each part. Not all attributes, however, are equally
effective in discriminating targets from clutter. To
determine which attributes are effective discriminants,
we use a second phase of model building called super­

vised discrimination learning. In the process, weights
associated with attribures that are weakly discriminat­
ing are decreased, while weights for attributes that are
strongly discriminating are increased. Whether an at­
tribute is discriminating or not is determined by indi­
vidually reevaluating each attribute within the AMs
of targets after an incorrect identification has been
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made. If a fuzzy predicate rerurned a high score mat
conrributed co the error, then me associated arrribure
is nondiscriminating and the corresponding weight is
decreased. For example, consider me response co an
FA in which some piece ofclurrer has been incorrecrly
idenrified as a target. In the idenrification process,
fuzzy predicates were evaluated for me differenr at­
tributes. If me score from a particular evaluation was
greater than 0.5 (ambiguity), then that attribure con­
tributed co the mistaken idenrity and is thus not
discriminatory; consequently, the corresponding
weight is decreased. On the other hand, if the score
was less than 0.5, indicating that the attribure had
correcrly denied me mistaken idenrity but was out­
voted by the other fuzzy predicates, then the associ­
ated weight is increased. (Note: Reference 4 conrains
specific equations and schedules for the weight ad­
justmenrs, along wim a more detailed description of
supervised discrimination learning.)

Results

Much of me innovation of me CMT verSIOn of
XTRS is in me developmenr of techniques for low­
level MI. To evaluate me effectiveness of mese tech-

niques, mis section will presenr the detection results
first, separate from me results of me overall system
recognition performance.

Detection Performance

Each ofme four FTC-based target detectors was tested
individually for a range of inrerest mresholds. Figure
12 shows the probability of detection Po plorred as a
function of the false detection (FD) rate for the four
implemenred deteccors. (Note: FD is distinct from
FA, which is the false-alarm level for the overall
system.)

For the tank-truck deteccors, both exposed and
camouflaged, me detection performance was quite
good. In bom cases, Po was around 0.7 at the thresh­
old level where me first FD occurred. Given me
17.13 km2 of ground area covered by me dataset, the
one FD resulted in a rate of 0.058 FD/km2

. For a Po
of 1.0, the associated minimum FO rate was approxi­
mately 2.0 FO/km2

. The target deteccor for me loaded
logging truck performed slightly less well. Because the
shape of me vehicle changed wim each load of logs,
the deteccor's functional template had co be con­
structed with more fuzziness; i.e., the template had co
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FIGURE 11. Automatic construction of a fuzzy predicate for the attribute LENGTH ofthe part node PART 1 of Figure 10(b).
The red dots at the top of the figure represent the population of length values from all PART 1s in the example set. During
the construction of a fuzzy predicate, outlier (Le., statistically inconsistent) values are discarded, and a cluster analysis is
performed to determine the number of clusters that might best explain variances in the remaining values. For each cluster,
an interval of maximum returned score (1.0) is then established between the minimum and maximum lengths ofthat cluster.
Outside this interval, the fuzzy-predicate curve for the cluster ramps down to 0.0 with a slope that is proportional to the
standard deviation a of the cluster population multiplied by the recognition tolerance f3. The final fuzzy predicate is the
maximum ofthe individual functions generated for each cluster.
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FIGURE 12. Probability of detection PD plotted as a function of the false-detection rate
for the four target detectors. Each point along any of the curves shown is associated
with a particular value ofthe interest (or detection) threshold.

provide a greater tolerance for variations in shape. But
the most difficult to represent as a functional tem­
plate was the empty logging truck, because of the
small size of the vehicle's trailer. With an elongate
shape such as that of the tank truck, small uncor­
rected distortions in the length of the target did not
have a serious effect. With the empty logging truck,
however, the rear axles of the vehicle are the only
reliably visible part of the trailer and, because this
portion of the truck is short relative to the overall
truck length, even a small distortion in the truck
length can move the axles ahead or behind the patch
of the functional template representing the axles. Con­
sequently, the shape and appearance of the empty
logging truck could not be defined as precisely as for
the other targets. Fortunately, scoring functions can
be modified easily to adjust the degree of tolerance to
variations in shape and appearance. Although the
detection rates for the two logging-truck configura­
tions were lower for a given FD rate than for the tank
truck, the performance was still respectable.

For a better understanding of the sources of FDs,
the clutter data were divided into natural and man­
made (cultural) clutter. Any image containing a large,
man-made object (e.g., a building, non-target ve­
hicles, or stacks of logs) was placed in the cultural­
clutter group. Each of the target detectors was then
applied to both divisions of the data. Figure 13 shows

example results for the loaded logging truck. The
probability density was computed as the percent of all
detections found within each successive short interval
of interest scores (0.016 in the range from 0.0 to 1.0).

Most instances of natural clutter (mainly trees and
shrubs) tended to have interest scores around 0.65,
with no interest scores above 0.8. The population of
target interest scores (shown as red dots at the top of
Figure 13) had scores ranging from 0.79 to 0.94.
Thus the detector for the loaded logging truck achieved
a perfect partition between targets and natural clutter
(i.e., a threshold of 0.78 resulted in 100% detection
with no FDs). In contrast, man-made objects were a
more troublesome source ofFDs because such objects
generated a few interest scores that were as high as
0.9. Included in the high-scoring cultural objects were
other semi-trailer trucks, such as the deployed tank
truck, and stacks of logs similar in shape to the loads
carried by the logging trucks. The results for the other
target detectors were roughly the same as that for the
loaded logging truck with the detectors for the tank
truck providing a slightly better partition between
targets and clutter, and the detector for the empty
logging truck a slightly worse partition.

It can be argued that logging trucks provide more
stressful testing than would arise from an actual CMT
application. Because missile launchers are large and
nonarticulated, their detection is less vulnerable to
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FIGURE 13. Distributions of interest (or detection) scores for natural and man-made
(cultural) clutter for the loaded-logging-truck target detector. The red dots at the top of
the figure indicate the interest scores for instances of the deployed loaded logging
trucks. At an interest (or detection) threshold of about 0.78, the loaded-logging-truck
target detector achieves perfect discrimination between deployed loaded logging trucks
and natural clutter. There is no threshold, however, that would yield a perfect discrimina­
tion between these targets and cultural clutter.

the effects of distortion. Also, CMTs have only three
basic shape variations: missile down for transport,
missile erected for launch, and without a missile fol­
lowing launch. These three variations have precise
known shapes, in contrast to the amorphous nature
of log loads.

Occlusion Experiments

One of the primary motivations for the development
of FTC was to overcome the way in which occlusion
disrupted the more traditional shape-matching tech­
niques. Various attempts to design an MM approach
for detection and extraction failed with targets that
had as little as 5% of their surface areas occluded
by foliage. With functional templates, however,
all targets could be detected readily without much
challenge.

To explore the limitations of FTC in detecting
targets occluded by foliage, we designed experiments
in which targets that were cut out from one image
were positioned along a tree line within another im­
age. Beginning at locations where the target was com­
pletely unobscured, the target was incrementally moved
under the foliage, with the vehicle's major (i.e., longi-
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tudinal) axis either perpendicular or parallel to the
tree line. Figure 14 summarizes the results of the
experiment with the target perpendicular to the tree
line for target occlusions of 2%, 36%, and 66%.

The left frames in each row are range images of a
tank truck that has been synthetically placed perpen­
dicular to the tree line. The center frames show the
location and orientation of the best match for the
tank-truck functional template in the images, along
with the corresponding interest scores. The pixels
themselves indicate the scores returned from indi­
vidual scoring functions for each location on the tem­
plate: black, white, and gray pixels represent 0.0, 1.0,
and intermediate values, respectively. The right frames
show the results of recognition based on the matching
of the decomposed target with AMs of the targets. It
should be noted that occluded targets were included
in the example set used to build the AMs.

The first row of Figure 14 shows that a target that
is almost completely exposed (only 2% occlusion)
results in a strong interest score and correct recogni­
tion. For a target occlusion of 36%, the interest score
is barely above the interest threshold of 0.75, but the
target is recognized correctly nonetheless. For an oc-



• DELANOY ET AL.
Machine Intelligent Automatic Recognition ofCritical Mobile Targets in Laser Radar Imagery

FIGURE 14. Summary of foliage occlusion experiment for a tank truck that has been syntheti­
cally positioned perpendicular to a tree line. The top, middle, and bottom rows are for the
target with 2%, 36%, and 66%, respectively, of its surface area occluded by foliage. The left
frames are range (height above ground) images, the center frames indicate the locations
and orientations corresponding to the highest interest scores (indicated in the frames), and
the right frames show the final AM-based recognition results.

FIGURE 15. Summary of foliage occlusion experiment similar to that of Figure 14, except the
tank truck has been positioned parallel to the tree line.
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clusion of 66%, the interest score is only 0.65, which
is below the interest threshold of 0.75. Consequently,
this target is not detected and therefore not processed
by the matching module. (The UNKNOWN identi­
fication in the figure is the result of our dropping the
interest threshold to below 0.63.) And yet, as shown
in the center frame, the best match produced by FTC
correctly determines the location and orientation of
the target, despite the target's being more than half
occluded. We have obtained similar results for the
case in which the major axis of the tank truck is
parallel to the tree line, as shown in Figure 15.

For the combined data of perpendicular and paral­
lel target placements, Figure 16 contains a plot of
interest score as a function of percent occlusion. The
figure shows that the decrease in interest score as a
function of percent occlusion conforms to an ex­
pected linear relationship: performance degrades
gradually as occlusion increases, without any intervals
of rapid degradation. At an interest threshold of 0.75,
targets occluded up to around 36% are detected and
recognized. Lowering the threshold would permit the
detection and recognition of targets with an even
higher percent of occlusion, bur would also increase
the FD rate.
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FIGURE 16. Summary of results for the experiments de­
scribed in Figures 14 and 15. Note that at the detection
interest threshold of 0.75, the system is able to detect and
recognize targets with up to 36% of their surface areas
occluded by foliage.
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Overall System Performance

Although FTC can provide high detection rates with
few FDs, the fewer FDs the better. Because FTC
bases its interest scores solely on how well image
values compare to expectations at different locations
on the kernel, it does not exploit the known relation­
ships of target parts. We have relied on the technique
ofAMs as a means of modeling such additional infor­
mation and, by so doing, have provided the means for
rejecting FDs and discriminating between multiple,
similarly shaped target classes.

For initial testing, we used an interest threshold of
0.75 to detect clusters of high interest values in the
Maine dataset. A total of 492 detections resulted,
including all 63 deployed targets. These detected tar­
gets were then extracted, characterized, and matched
against AMs, as described earlier.

Initially, when we built the AMs we used 50% of
the targets as examples and a recognition tolerance f3
of 0.3. The remaining targets that were classified as
UNKNOWN (i.e., insufficiently like any modeled
target) were subsequently added to the example set as
we refined the models. Eventually, 80% of the targets
were included in the example set to reach a recogni­
tion performance of 100%. No supervised learning of
weights was done for this test. Under these condi­
tions, there were no FAs in all 17.13 km2 (2303
image pairs) of data.

The above results include some targets deployed in
the open, but they also include a number of very
difficult cases. Figure 17 shows photographs and a
map of a deployment in which the empty logging
truck and the camouflaged tank truck were placed on
a narrow dirt road with tall trees on either side. For
the empty logging truck, Figure 18 contains the range
and intensity images, an interest image highlighting
pixels having above-threshold interest values and show­
ing the selected windows, and an image showing the
final recognition results. The truck, visible in the
lower left corner, has been correctly recognized. An
FD, triggered by a collection ofshrubs having roughly
the size and spacing of the pans of the empty logging
truck, was correctly rejected during AM-based match­
ing. Figure 19 shows the results for the camouflaged
tank truck of Figure 17. Note that in this case the
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FIGURE 17. Photographs and deployment map of "hidden targets" used in the Portage, Maine, experiments.

target is represented in the range image mostly as a
broad tent with only a few pixels having height values
corresponding to the ground. Because the shape of
the camouflage netting can vary from site to site, the
scoring functions for the range functional template
were constructed to incorporate considerable uncer­
tainty and were thus weakly discriminating. In inten­
sity images, however, the camouflage netting actually
helps make the target stand out against the back­
ground, probably because of interference effects caused
by some of the laser energy being reflected by the
netting material and some being reflected by the
ground [17]. The scoring function for the intensity
functional template for the camouflaged tank truck
exploits this phenomenon.

Generalization ofAMs

In the course of evaluating the dataset, we discovered
that, in addition to the one logging truck that Lin­
coln Laboratory personnel had deployed, there were
six other empty logging trucks in the vicinity. Only
two of these six trucks had interest scores greater than
0.75, and neither of the two was recognized as an
empty logging truck. Figure 20 shows intensity and
range images containing three of the six non-Lincoln
Laboratory trucks, along with a road-mobile crane
(top center). The truck in the image that had an
interest score above threshold was classified as UN­
KNOWN. Initially, we were disappointed with this
result until we realized that the discrimination made
by XTRS was in fact reasonable and useful. Figure 21
(left) is a range image of the logging truck deployed
by Lincoln Laboratory, and Figure 21 (right) is a

range image of one of the six other trucks. Note that
although both vehicles serve the same function and
are called logging trucks, their appearances are in fact
distinct. The truck deployed by Lincoln Laboratory
has a tractor with the cab directly over the engine,
while the other vehicle has a hooded tractor with the
cab behind the engine. Also, although the overall
lengths of the trailers are the same, the trailer of the
Lincoln Laboratory truck is narrower and lighter in
appearance. If the two vehicles are considered as two
distinct objects, then XTRS did successfully discrimi­
nate between the two variants with 100% accuracy.

Suppose, however, that AMs we built using ex­
amples of one model within a target class were to be
used to recognize a more general class of targets,
including other models not represented in the ex­
ample set. All six of the trucks not deployed by
Lincoln Laboratory were detected by decreasing the
interest threshold from 0.75 to 0.72. And all six
vehicles were recognized as empty logging trucks by
increasing the recognition tolerance f3 from 0.3 to
1.7. Thus, by using only two tunable parameters, we
could adjust the generality of the recognition for the
entire system. But the relaxation needed to generalize
the recognition had an associated cost: the FA rate for
the system as a whole increased from 0.0 to 1.7
FA/km2

. Of course, instead of generalizing the AMs
to include similar related targets, we could have con­
structed additional functional templates and AMs.

Supervised Discrimination Learning ofModel Weights

A common criticism of many research ATR systems is
that, because of the limited availability of data, the
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FIGURE 18. Detection and recognition results for the hidden empty logging truck of Figure
17. The truck is visible in the lower left corner of the images. A false detection, triggered by
a collection of shrubs, has been correctly rejected as UNKNOWN.

FIGURE 19. Detection and recognition results for the hidden camouflaged tank truck of
Figure 17.
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FIGURE 20. Detection and recognition results for three empty logging trucks that were not
part ofthe test deployment. (Note: The images also contain other vehicles, including pickup
trucks and a road-mobile crane, at the top center. Also note that in the range image the
building in the upper left corner has incorrect height values due to an artifact in estimating
the height of local ground for large objects.) Two of the three trucks received below­
threshold interest scores and were thus not detected. The remaining truck had an interest
score above threshold but was classified as UNKNOWN. The system failed to detect and
recognize the three trucks because of differences between them and the logging truck
deployed by Lincoln Laboratory (see Figure 21).

FIGURE 21. Enlarged range images for (left) empty logging truck deployed by Lincoln
Laboratory, and (right) empty logging truck discovered in the image dataset. Although both
vehicles are called logging trucks, their appearances are in fact distinct. The cab for the
truck on the left is directly over the engine, while the cab for the other vehicle is behind the
engine. Also, although the overall lengths of the trailers for the two trucks are the same, the
trailer for the truck on the left is narrower and lighter in appearance.
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dataset used to train a system is the same set used for
testing. To a certain extent, we addressed this criti­
cism by dividing our available data into two sets, one
for training, the other for testing. Because at most
only 50% of the targets were to be used in the ex­
ample training set, we assumed that a large recogni­
tion tolerance [3 would be required to achieve a Po of
1.0. With a large recognition tolerance, we also ex­
pected that the FA rate might be high. Consequently,
the supervised learning of weights was used to sup­
press the FAs.

For training, we built the AMs with a high [3 value
of 5.0 and an example set consisting of 1165 image
pairs (range and intensity) containing 28 targets. AM
weights were all initialized to 0.1. To establish a baseline
FA rate, we did not use supervised discrimination
learning to process the training data. The high [3 of
5.0 and a low interest threshold of 0.72 were selected
so that enough FAs would be generated to promote
opportunities for learning. The number ofFAs under
these conditions was 37 (4.3 FA/km2

). Next, super­
vised discrimination learning was initiated and, with
each complete pass through the training data, the
number of FAs generated during that pass was re­
corded. Figure 22 shows the results of 14 passes
through the training data. Note that the number of
FAs dropped from 37 to 21 during the first pass and
stabilized to an average of 19 FAs (2.2 FA/km2

) by
the fourth pass.

Mter the completion of training, testing was done
on 27 targets in 1134 image pairs covering 8.4 km2 of
ground area. Using the weights learned from training,
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FIGURE 22. Learning curve showing the decrease in false
alarms with training.
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we built the AMs at progressively larger values of
[3 ranging from 0.1 to 7.0. For each [3 value, the
probability of correct recognition PR was plotted as a
function of the FA rate. Figure 23 shows the results.
At the value of [3 in which the first FA occurs, the PR
was 0.44. For a PR of 0.93, the FA rate was 1.42
FA/km2

. Two of the targets were not recognized
(i.e., classification UNKNOWN) even with [3 set
to 7.0. At some higher value of [3, we do expect to
achieve a PR of 1.0, but we did not attempt to find
that particular [3 value. In this test, as well as in the
previously described tests, no targets were mislabeled
as another target identity.

Out of a total of 63 targets, only 55 were used: 28
for training and 27 for testing. The reason for this
intentional omission of eight targets was that there
were only four images of the tank truck in the open
and four images of an empty logging truck with the
trailer completely occluded by the frame boundary of
the image. With only two examples of a target for
training, the resulting AMs were too restrictive to
recognize any targets other than the two training
examples. This finding highlights how the building of
robust AMs depends on the proper selection of a
training set. As with any learning system, a realistic
and representative sampling of variations of object
appearance is necessary to achieve robust performance.

Conclusions

The Experimental Target Recognition System (XTRS)
provides a framework for applying machine intelli­
gence (MI) techniques to the task of automatic target
recognition (ATR). Based largely on aspects of fuzzy
set theory, these MI techniques enable the representa­
tion of uncertainties and known variabilities in target
appearance.

With rule-based experts and libraries of functions
and data structures, XTRS can be organized to adapt
automatically to environmental context and to

reconfigure the search for alternative targets. Using
multiple target detectors, XTRS can look simulta­
neously for different variations in target shape. The
outputs of all target detectors are expressed as interest
images, permitting the fusion of all sources of evi­
dence into a single spatial map. Despite the apparent
complexity ofXTRS, system performance can be con-
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FIGURE 23. Probability of correct recognition PR as a func­
tion of the false-alarm rate. Each point along the curve
corresponds to a particular value of the recognition toler­
ance parameter {3.

trolled effectively with only two tunable parameters:
the interest threshold for controlling the output of
low-level detection and the recognition tolerance for
controlling the output of high-level matching based
on appearance models (AM).

XTRS uses AMs to model how targets and their
constituent parts appear in sensor imagery, thus pro­
viding an alternative to other classifiers, including
those based on neutal network, statistical, and other
model-based approaches. Unlike other model-based
approaches that encode the three-dimensional struc­
ture of an object, AMs define the observable appear­
ance of targets in specific sensor data within the con­
straints of the likely target orientations. AMs provide
a more controllable representation than neural net­
works. Because knowledge is represented in neural
networks as a diffuse population of weights, it is
difficult to identifY which image features are being
used. Not only are the attributes and weights ofAMs
easy to interpret, they can be modified by a user with
predictable effects on recognition performance. Neu­
ral networks have gained in popularity as classifiers
principally because of their ability to learn and en­
code discriminants automatically. As we have shown
in this article, the automatic learning of class dis­
criminants is also possible with AMs, but in a repre­
sentation that is more amenable to understanding
and selective editing.

Other techniques developed for XTRS embody
what we call low-level MI. Most existing MI tech­
niques used in computer vision rely on a preliminary
abstraction of raw data into a symbolic form. But the

process of abstraction necessarily reduces the amount
of information available for decision making, thus
handicapping an observer, no matter how intelligent.
Tools for knowledge-based signal processing and pixel­
level accumulation of evidence provide the intelligent
means ofusing object- and context-dependent knowl­
edge to guide the extraction of information directly
from raw image data without the need for abstrac­
tion. In particular, functional template correlation
(FTC) allows the construction ofgeneralized matched
filters that encode knowledge of the physics of a
detection problem. Customized operations constructed
with FTC are generally more powerful (i.e., more
discriminating) than comparable traditional signal
processing operations. In ATR versions ofXTRS, we
have used FTC as a one-step three-dimensional target
recognizer. For other applications, we have developed
knowledge-based fuzzy variations of standard image
processing operations, including thin-line detection,
smoothing operations, basic mathematical morphol­
ogy (MM) operations, and pattern matching.

The need for FTC arose from a perceived inad­
equacy of the standard techniques of shape analysis.
Although MM worked very well for unobscured tar­
gets, we could not devise a sequence of MM opera­
tions that would reliably detect and extract targets in
high-clutter environments, especially when the target
was partially occluded. We believe that our failure was
due in part to the all-or-nothing nature of MM op­
erations [18]. We have also investigated the use of
normalized cross-correlation, the other commonly used
tool for shape analysis. In its favor, cross-correlation
does provide a variable degree of match that can be
translated easily to interest values. But the matches
generated by cross-correlation are too literal in that
the interest scores are based on very specific, inflexible
patterns of image values.

The repetitive evaluation ofall scoring functions in
a functional template-for all orientations for each
pixel location-sounds computationally prohibitive.
But the process becomes feasible when the input im­
age values are scaled to some integer range (e.g., 0 to
255) and the scoring functions are implemented as a
precomputed two-dimensional lookup table that is
indexed by the scoring-function numbers and the
integer image values. The use ofsuch a lookup table is
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Table 1. Performance of Prototype System

Experiment

2 3

Training Testing

Number of targets 63 69* 28
Ground area (km2

) 17.13 17.13 8.6

Detection threshold 0.75 0.72 0.72
Number of detections 492 1173 656

Number of targets in 50 50 28
AM example set

Recognition tolerance 0.3 1.7 5.0
% correct recognition 100% 100% 100%
FAs/km2 0.0 1.7 2.2**

27
8.4

0.75
342

4.5
93%
1.4

* Includes six empty logging trucks not intentionally deployed
** After discrimination learning

generally faster than multiplication, making FTC
evaluation quicker than cross-correlation.

Low-level MI also allows XTRS to delay the appli­
cation of thresholds. Instead of applying thresholds
either to a single image consisting of raw data or to
the output of some simple transformation of the raw
data, we can apply the thresholds to maps of interest
containing evidence that has been extracted from a
variety of sources.

Unlike the AMs, the FTC-based target detectors
were constructed and tuned manually. The develop­
ment of a useful, operational ATR system that is able
to adapt swiftly to different targets and mission sce­
narios requires a mechanism for constructing func­
tional templates automatically. We have developed
methods for building functional templates from sta­
tistics accumulated from example targets, but these
methods have not yet been implemented. Functional
templates might also be constructed by using the
emerging techniques of genetic programming.

The success of our approach to ATR is indicated
by the overall system performance of the prototype
system, as summarized in Table 1. In experiment 1, in
which we used strict tolerances for the automatic
construction of the target AMs, we were able to achieve
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100% correct target recognition in the available data
with no mislabelings and no false alarms. It is impor­
tant to note that the AMs are flexible and can be
generalized to broader classes of vehicles by the ma­
nipulation of a single recognition tolerance. Experi­
ment 2 demonstrates this flexibility and, in particular,
the capability for generalization by increasing the rec­
ognition tolerances. Six empty logging trucks were
found in the dataset that were somewhat different
from the one logging truck that was intentionally
deployed. These six were appropriately rejected as
clutter in experiment 1. Suppose, however, that the
additional six trucks were to be included in a broader
class of empty logging trucks. By changing just the
recognition toler~ce from 0.3 to 1.7 in experiment
2, the system was able to recognize the six trucks as
empty logging trucks. Of course, the cost of general­
izing all models in this manner was that the FA rate
increased from 0.0 to 1.7 FNkm2

. Experiment 3
shows that AMs constructed from more limited train­
ing sets can be used to recognize targets with reason­
able reliability in a separate test set. The training sets
were limited in size and did not provide a good repre­
sentative sampling of vehicle appearances. Conse­
quently, AMs were constructed with large recognition
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tolerances in order to achieve high detection rates.
The resulting elevated false-alarm rate was suppressed
by roughly 50% through the use of supervised dis­
crimination learning. Despite these limitations, rea­
sonably good performance was evident in the separate
test dataset.

In contrast, without the techniques of low-level
MI and the automatic construction of complex AMs,
we were unable to construct an ATR system for this
application anywhere near as accurate, flexible, or
robust as the one described in this article [18]. Of
course, some credit for the performance of the system
must go to the quality of the sensor images used. But
images of good quality do not necessarily guarantee
reliable detection performance. Even with an image
ofexcellent quality, concealment and clutter can make
target detection a challenging problem.

So far, XTRS has been applied to two other ATR
problems: the recognition ofarmored vehicles both in
forward-looking laser radar images [8] and in fully
polarimetric synthetic-aperture radar images [9]. But
XTRS provides the means of solving a more general
class of object-detection problems. In addition to its
use in recognizing military targets, XTRS has been
applied successfully to the task ofdetecting and track­
ing hazardous weather phenomena in Doppler
weather radars [11].
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