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• A method for performing piecewise smooth restorations on images corrupted
with high levels of noise has been developed. Based on a Markov Random Field
(MRF) model, the method uses a neural network sigmoid nonlinearity between
pixels in the image to produce a restoration with sharp boundaries while
providing noise reduction. The model equations are solved with the Gradient.
Descent Gain Annealing (GDGA) method-an efficient deterministic search
algorithm that typically requires fewer than 200 iterations for image restoration
when implemented as a digital computer simulation. A novel feature of the
GDGA method is that it automaticalry develops an annealing schedule by
adaptively selecting the scale step size during iteration. The algorithm is able to
restore images that have up to 71% of their pixels corrupted with non-Gaussian
sensor noise. Results from simulations indicate that the MRF-based restoration
remains useful at signal-to-noise ratios 5 to 6 dB lower than with the more
commonly used median-filtering technique. These results are among the first
such quantitative results in the literature.

A
N IMAGE-RESTORATION METHOD that reduces
noise while preserving naturally occurring
boundaries in a scene is presented. The

method is useful as a preprocessor to enhance the
performance of automatic target-recognition systems.

Target recognition is a process that can involve
many stages, including measurement, preprocessing,
detection, segmentation, feature extraction, and clas­
sification. For adequate recognition performance in a
noisy environment, it is often important that the
preprocessing stage be capable of restoring measured
images. (We justifY this statement in the section "Simu­
lation Results.") The restoration should reduce the
variability in the scene that results from measurement
noise and clutter while preserving important features
that make targets separable in the classification stage.

Both objectives can be accomplished by using prior
statistical knowledge of the measurement process and
the clutter in the scene, or by using an empirical
formulation of the desired restoration. (Details of
using either a statistical or empirical formulation are
contained in the following section.)

Using the latter approach, the work described in
this article is based on an empirical image-restoration
model that requires nearest neighbor pixels to have
similar values (smoothing), without losing fidelity
to the original measurement. The pixel interaction
of the model smooths small pixel differences,
but allows large differences to remain as a discontinu­
ity (edge). If detailed statistical information concern­
ing the measurement and scene is available, the infor­
mation can be quantitatively incorporated into the
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Background

In this section the Bayesian formulation of image
restoration is reviewed to show the formal connec­
tions to the restoration method that is the subject
of this article. The Bayesian formulation relates the
posterior probability that an estimate of the true
image x r is obtained given a measured image x m and
the prior probabilities:

The term p(xml xr) incorporates prior knowledge of
the measurement process, and P(xf

) incorporates prior
knowledge of the scene. The present model finds an
estimate xr that approximately maximizes P(xr Ixm

)

given the measurement x m and prior knowledge of
the scene in the form of P(x r

). In the present model
each pixel depends only on its four surrounding neigh­
bors and the measured pixel as shown in Figure 1.

The probabilistic (Bayesian) formulation is equiva­
lent to a physical system description in terms of an
energy [3]:

in the literature. Because of prohibitive computa­
tional requirements, few quantitative characterizations
of image restoration algorithms have been performed.
Most work in the literature has compared the restored
imagery qualitatively, rather than determining the ef­
fect of the restoration stage on the overall system
performance.

The same model can be applied to a large number
of sensor measurements (Doppler, intensity, passive
infrared, range, and video) by the adjustment of a
single parameter. This feature is especially relevant for
hardware implementation because it allows a single
chip to be used for processing a wide variety of imag­
ery. The model has a massively parallel architecture
with local neighbor pixel interactions (four nearest
neighbors) and can be implemented on a parallel­
processing computer or a custom analog VLSI chip.
Implementation of the model in analog VLSI would
allow video-rate restoration of 512 x 512 pixel
images.

(1)

(2)E ex: - log P(x).

image-restoration model.
This article describes an image-restoration model

that is based on a neural network formulation using
Markov Random Fields (MRF) , as described in the
box, "Markov Random Fields." In the model, a neu­
ral network sigmoid function provides pairwise pixel
interaction potentials. The function behaves quadrati­
cally for small differences but saturates for large dif­
ferences. The MRF property of the model allows an
image to be, in effect, decoupled into a large number
of connected local neighborhoods, each of which can
be processed independently. The local-neighbor in­
formation is propagated during iteration such that a
global image restoration is effected when the system
reaches a steady state. The restored image can be
found by solving an optimization problem that de­
pends on the pixel interaction potentials. The MRF
property that allows each pixel update to depend only
on a local neighborhood of pixels eases the computa­
tional burden. For the case of a Gaussian pixel inter­
action, the potential function is quadratic, leading to
a simple optimization problem that involves the solu­
tion of a large set of linear equations. For sigmoid
interaction potentials (the present work), a difficult
high-dimensional nonlinear optimization problem re­
sults. Stochastic methods are commonly used to solve
such problems, but such methods are often very slow
and sensitive to the choice of annealing schedule. We
propose the novel deterministic Gradient Descent
Gain Annealing (GDGA) method for solving high­
dimensional nonlinear optimization problems. This
method is fast and automatically chooses an annealing
schedule. GDGA is used to solve optimization prob­
lems resulting from the neural-network-based MRF
image-restoration model. Previous deterministic an­
nealing work, such as mean field annealing [1, 2],
does not incorporate an automatic annealing sched­
ule.

The utility of the MRF model in restoring images
corrupted with varying levels of non-Gaussian mea­
surement noise has been investigated. Model perfor­
mance has been evaluated quantitatively in terms of
target detection and recognition, and the performance
has been compared' to that of the commonly used
median-filtering technique. The quantitative results
reported in this article are among the first such results
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MARKOV RA DOM FIELDS

A SERIES OF EVE TS in time
form a Markov Chain if the prob­
ability of the outcome ofan event
at time t + 1 depends only on the
outcome of the event at time t.

This concept can also be ap­
plied to processes on a lattice.
A Markov Random Field (MRF)
defined on a lattice implies
that the update of a pixel at
site ij depends only on the val­
ues of pixels in a local neigh­
borhood of sites Nij (Fig­
ure A). In terms of conditional
probabilities,

P(Xij = xijl X/k = x/k'

lk E lattice, lk .. ij)

= P(Xij = xijl X/k = X/k'

lk ENij)'

where ~j is the real-value distri-

bution ofa random variable asso­
ciated with lattice site ij and xij is
the specific value of the variable
at that site. Thus the definition of
an MRF on a l~l.ttice transforms
a global problem into a more
computationally tractable local
problem.

It is also true that an MRF on
a lattice has the following energy­
based formulation:

e-U(x)

P(x) =--,
Z

where U is the global potential
function for the entire lattice and
Z is the partition function, which
normalizes the probability P(x) to

a range from 0 to 1.
In the present work the energy

E(x) is defmed over all indepen­
dent pairs ofsites p on the lattice:

U(x) = 'Lp Ep(x).

The specific energy of inter­
action for a pair of sites is given
by a sigmoidfunction:

where the gain (f3 < 0) defines
the scale of the sigmoid, as shown
in Figure B. A small magnitude
of the gain produces a large-scale
(broad) sigmoid, while a large
magnitude of the gain produces a
small-scale (narrow) sigmoid. For
either case, the sigmoid function
has the property that the response
saturates after the input exceeds a
certain level. For a high magni­
tude of the gain, note that the
sigmoid saturates very quickly,
even for small inputs. The gain in
the sigmoid function is inversely
proportional to the temperature
of an energy-based formulation.

~~ --
.......... I--

........
-.........

...---------+--------.... X
ij

FIGURE A. Markov Random Field (MRF) defined
on a lattice. In the figure, the update of a pixel at
site ij depends only on the values of pixels at sites
Ik in a local neighborhood of sites Nij

FIGURE B. Sigmoid function Ep(x) for different magnitudes
of the gain p. A small magnitude of the gain produces a
large-scale (broad) sigmoid, while a large magnitude of the
gain produces a small-scale (narrow) sigmoid.
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FIGURE 1. Nearest-neighbor architecture used in the
Markov Random Field (MRF) image restoration.
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tion "Deterministic Solution") to decrease the satura­
tion gain term f3 in Equations 4 and 5 from -0.001 to
-10.0. (Note that the gain is negative in the present
formulation.)

The saturating aspect of the sigmoid function (from
the neural network literature [4]) in Equation 5 al­
lows the formation of sharp boundaries between dis­
similar regions. The main advantage of using a sig­
moid surround term is that sharp segmentations can
be obtained without a separate "line process" [3],
which would require solving 2MN - M - N extra
equations. Hence the sigmoid term clearly reduces
the computational load. For the same reason, a sig­
moid function is used for the field, or measurement,
term. The sigmoid function solves the problem of
providing smoothing (noise reduction) while preserv­
ing naturally occurring boundary information in the
scene.

Stochastic Solution

To solve the nonlinear optImization problem sug­
gested by Equation 3, researchers have often attempted
stochastic methods, which do not require the deri­
vative of the energy with respect to the restored

(3)

(4)

(5)

Model Description

Equation 2 indicates that a minimization of the en­
ergy will result in a maximization of the probability
P(x r Ix ffi

). The total system energy can be expressed as
the sum of a field term (which is due to the measured
image) and a surround term (which is due to the
neighbor interactions):

Thus an MRF image processor may be specified by
defining the energy function rather than the prob­
abilities. This empirical approach is used in the present
work.

where /1rr:'. is the difference between the restored and
measured pixels (i.e., 8ij = xij - xij ), and f3F is the
saturation gain term. The sigmoid function is also
used for the surround term:

The field coupling A. in Equation 3 is an adjustable
parameter that determines the importance of the mea­
surement term relative to the surround term: a small
value of A. produces a higWy smoothed image with
little contribution from the measured image, whereas
a large value essentially reproduces the measured im­
age. The sigmoid function is used in both terms. The
field term is given by

where /1s is the surround pair difference, l.e.,
P .

/1sp = X~l - x
r
2' where p refers to all independent

nearest neighbor pixel pairs in the image, and pI
and p2 refer to the members of a pair). Note that
for an M X N lattice there are (N - I)M
horizontal pairs and (M- I)Nverrical pairs for a total
of 2MN- M - N independent pairs.

The estimate of the original image xr that mini­
mizes the system energy is obtained with a determin­
istic search procedure. The present work uses the
GDGA deterministic search (described in the subsec-
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state and, as a consequence, can be used for a
wide range of optimization problems. Stochastic
methods are also well suited for high-dimensional
problems that are characterized by many acceptable
solutions (restored states) all having approximately
the same energy. Image restoration requires a solution
with low energy, but does not need the global
mInImum.

The present work derives a stochastic solution by
relating the statistical description of the problem to
an energy-based representation. By making a cor­
respondence to a physical system at thermal equi­
librium, we can express the formulation in Equa­
tion 1 in terms of minimizing the energy of a
system. The probability that a physical system in
equilibrium with a heat bath at temperature T is in
state i with energy Ei is given by the Boltzmann
distribution:

-E;

kBT
P (x = i) = _e_

T Z(T) ,

where kB is the Boltzmann constant and Z( T) is
the partition function, which is simply the sum of
the exponential term EJ(kBT) over all possible
states i.

It is assumed that the solutions to the optimization
problem are equivalent to the states of a physical
system and the cost of a solution corresponds to the
energy of a state. Asymptotic convergence to a set of
globally optimal solutions can be obtained provided
that the different states are generated properly and the
appropriate conditions are used to decide whether a
given state should be accepted [5]. Stochastic meth­
ods for solving the optimization problem involve start­
ing at a high temperature and annealing (i.e., re­
ducing) the temperature until the system "freezes" to
the minimum energy state. Ideally, the proce­
dure would be implemented reversibly such that the
system is always at thermal equilibrium and a true
global minimum is reached rather than a metastable
state.

Stochastic methods for solving nonlinear optimi­
zation problems typically use a simulated annealing
method [6] combined with a Monte Carlo technique
such as the Metropolis algorithm [7] or the Gibbs

sampler [8]. For a comprehensive study that investi­
gates the application of simulated annealing to image
reconstruction, see Reference 3 by S. Geman and
D. Geman. The problem with such stochastic solu­
tion techniques is that a good annealing schedule is
difficult to determine, and the solution time can be
prohibitive in terms of the number of iterations re­
quired because an equilibrium must be reached at
each stage of annealing. At high temperatures a large
temperature step is possible because the search covers
a wide range of the state space. As the temperature is
lowered, however, the system often reaches a critical
point below which the state is "frozen," analogous
to the phase diagram of real physical systems. If
the critical point on the energy-versus-temperature
curve were known, then large steps could be taken
before the critical point were reached and small steps
afterwards. Unfortunately, the "phase diagram" de­
pends on the initial measurement, or field, term.

In practice a conservative annealing schedule is
often used:

1
Tcx:

logk'

where k is the iteration number and T is the temp­
erature. Such a schedule can require hundreds of thou­
sands of iterations or more to produce an acceptable
restoration. Automated Local Annealing (ALA) has
been suggested to provide an automatic annealing
schedule for neural networks [9], but the procedure
is not directly applicable to an image-restoration
formulation.

Another problem is that the computational ex­
pense of the stochastic method also depends on the
number of allowable states per image pixel. An image
with 8-bit pixels requires many more iterations for
the full exploration of the state space as compared to,
for example, a 4-bit image. Indeed, the solution of
such nonlinear optimization problems remains a chal­
lenging research area.

Deterministic Solution

The large number of iterations that the stochastic
approach requires in practice has motivated the use of
a deterministic solution technique to solve the non­
linear image-restoration problem. The deterministic
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where t represents a pseudo-time quantity. If Equa­
tions 4 and 5 are substituted for the total energy term
in Equation 6, then the equation of motion for a
single pixel at a lattice site ij is

where Llk refers to all of the lattice sites in the image
and Lp refers to all of the independent pixel pairs in
the lattice. In the present work the MRF is given by
the two horizontal and two vertical pairs associated
with a given lattice site ij, resulting in a neighborhood

J

(7)

and substituting for axr/at from Equation 6 into
Equation 7, resulting in

N;jgiven by

Nij = {Xj+l,j' Xj_l,j' Xj,j+l' Xj,j-l}.

Hence, with this local neighborhood the update
of a pixel at lattice site ij depends only on the pixel's
four nearest neighbors.

The objective is to find the steady-state solution to
Equation 6 that results in a state xr that minimizes the
system energy. The particular form ofEquation 6, the
equation of motion, guarantees that the steady-state
solution minimizes the energy. This relationship can
be shown by using the identity

In the present work the GDGA deterministic tech­
nique is used to minimize the energy. This formu­
lation is similar to the Graduated Non Convexity
(GNC) approach of A. Blake and A. Zisserman
[10] and the technique used by Y.G. LeClerc [11],
and has some similarity to mean field annealing
[1]. We have found GDGA to be substantially faster
than the stochastic techniques described in the litera­
ture. The GDGA technique iteratively solves Equa­
tion 6 by calculating the gradient of the energy and
updating the state (similar to an Euler solution of a
system of coupled differential equations). In this
al?proach the magnitude of the gain terms rf and
If in Equations 4 and 5 are increased from a value
starting at 0.001. At small gain magnitudes the res­
toration acts to smooth the image because the en­
ergy terms are approximately locally quadratic with
the pixel difference. (An energy term that is quad­
ratic generates a larger penalty for larger pixel dif­
ferences. Hence a smooth image, i.e., an image with
equal pixel values, minimizes this energy.) Also,
at small gain magnitudes all edges in the image
are smoothed, resulting in a blurred image. As
the magnitude of the gain is increased the natural-

(6)
aXr
-=-V'rEat x'

approach attempts to minimize the system energy by
iteratively updating pixel values across the lattice until
a steady state is reached. In the approach, the use of
high gain values for the iterative solution to Equation
3 produces a restored image with sharp boundaries.
(Note: In the analogy of the physical system discussed
earlier, a high gain value corresponds to a low tem­
perature, or a small scale in that a small change in the
input to the sigmoid function will produce a large
change in the output.) The use of high gain values,
however, will most likely lead to the procedure's being
trapped in a local minimum. To remedy this problem
we have developed the GDGA technique, which starts
the solution procedure at a low gain (i.e., a high
temperature, or large scale). The intermediate solu­
tion at low gain is then used as an initial condition to
the problem at a higher gain, and the procedure is
repeated until the fmal desired gain values are achieved.
Solving a series ofproblems each at higher gain values
is equivalent to temperature annealing in the stochas­
tic approach. In addition, we have developed an auto­

maticannealing (gain increase, or scale decrease) sched­
ule that is described below.

An equation of motion based on the total energy
from Equation 3 is defined by
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ly occurring boundaries in the measured image
start to appear, and eventually a sharp segmentation
results.

The steady-state solution of Equation 6 at a given
gain value is found by setting the gradient of the
energy to zero and iteratively solving for the new pixel
value. The deterministic technique is implemented
with a fIxed-point iteration around each pixel, in
which the pixels are updated with a Jacobi (fully
parallel) scheme [12]. In the technique, the gradient
of the energy is set to zero, and the term xij is updated
based on the old values of its neighbors:

r(new)
x·· =lJ

where

A s r(old) S r(old) S r(old)
= gi,j-l Xi,j-I + gi,j+I Xi,j+I + gi-I,j Xi-I,j

S r(old) d
+ gi+I,j xi+I,j' an

S S S S
B = gi,j-I + gi,j+I + gi-I,j + gi+I,j .

(8)

In Equation 8 the nonlinear term gij is given by

and the derivative is given by

(11)

Note that in Equations 10 and 11 the gain
term f3 refers to both the fIeld and surround
terms.

The GDGA technique starts at a small magni­
tude of gain and repeatedly applies Equation 8 until
convergence, which typically requires fewer than
10 updates. Then Equation lOis used to update
the gain terms l and~ and, with the new values, the
pixels are again updated. The procedure is terminated
when the magnitude of the gain becomes large­
typically, a value of 10. For both simulated and real
images, the GDGA algorithm is able to complete the
restoration process (i.e., achieve sharp segmentation
with noise removal) by using a total of 100 to 200
applications ofthe update equation (each application,
or iteration, ofEquation 8 updates all the pixels in the
lattice). The restoration of a 128 x 128 pixel, 8-bit
image requires less than 5 min on a SUN-4 work­
station.

Further experiments have revealed that the auto-

In Equation lOa constant energy step I1E is used,

where l1ij is calculated based on the old pixel values.
At this point the lattice could be updated, but a
gain annealing schedule has not yet been speci­
fIed. The GDGA technique automatically selects
an annealing schedule by using feedback from
the total system energy to select the gain step size.
The strategy involves varying the step in f3 in or­
der to maintain constant steps in energy. The f3
step is given by

FIGURE 2. Original (noise free) image containing a lin­
early sloping background with a target at constant range.

(9)

(10)
11f3 = !1.E

aE'

af3
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FIGURE 3. The image of Figure 2 has been synthesized
for a carrier-to-noise ratio (CNR) of 10 dB, correspond­
ing to an image in which 20% of the pixel values are
anomalous. (An anomaly is defined as a pixel value in
the corrupted image that differs from the value in
the original image by more than two range counts.)
Each pixel in the image has 8 bits (256 gray levels) of
resolution.

matic gain annealing process takes small steps in f3
at small magnitudes ofgain and toward the end of the
annealing takes large steps as the magnitude of f3
becomes larger. Thus the GDGA method adaptively
adjusts the step size to make efficient use of each
iteration. The adaptive nature of the algorithm
is especially evident when comparing restorations
of low- and high-noise imagery. Images with about
10% of the pixels corrupted with noise require fewer
than 20 iterations for the entire restoration, while
images with 70% noise require about 200 to 250
iterations.

Simulation Results

This section presents the qualitative and quantitative
results obtained from applying the GDGA algorithm
to the MRF image-restoration model described ear­
lier. The algorithm was tested on a synthetic range
image that had been corrupted with noise by a range­
sensor measurement model described in the literatute
[13, 14]. The measurement model, which simulates
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FIGURE 4. Results of MRF restoration on the synthetic
range image of Figure 3. A four-nearest-neighbor MRF
processor was used to restore the image. Note that the
edges have been nearly perfectly preserved.

a peak-detecting laser radar sensor that intro­
duces anomalies into the measurement, was used to
corrupt an image by relating the carrier-to-noise ratio
(CNR) of the range sensor to the expected percent
anomalies in the measurement. (An anomaly is de­
fined as a pixel value in the corrupted image that
differs from the value in the original image by more
than two range counts.) In this work CNR values of
10 dB and 6 dB were used, corresponding to 20%
and 71 % anomalies, respectively, in the corrupted
image. The measurement model does not assume a
Gaussian distribution and is based on realistic sensor
measurements.

The original (noise free) synthetic image shown in
Figure 2 contains a simple shape at a constant pixel
value against a background whose pixel values linearly
increase from the top to the bottom of the image.
In this work all of the input and restored images have
8 bits (256 gray levels) of resolution. Figure 3 shows
the range image of Figure 2 after the image has been
corrupted with 20% anomalies, and Figure 4 shows
the result of the MRF restoration. Except for a few
discrepancies at the boundary, the restoration is nearly
perfect, especially in recovering the sloping back­
ground. Figure 5 shows the range image of Figure 2

.'



-MENON
An Efficient MRF Image-Restoration Technique Using Deterministic Scale-Based Optimization

FIGURE 5. The image of Figure 2 has been synthesized
for a CNR of 6 dB, corresponding to an image that has
71 % anomalies. Each pixel in the image has 8 bits (256
gray levels) of resolution.

with 71 % anomalies, and Figure 6 shows the result of
MRF restoration. Although the human visual system
can barely recognize the original shape at this noise
level, the MRF restoration is able to recover the un­
derlying edges that define the target's shape, as shown
in Figure 6. In both cases the MRF model produces a
piecewise smooth restoration of the input image. The
use of the sigmoid function facilitates noise reduction
(smoothing) while preserving sharp discontinuities
(edges).

Next we describe a quantitative analysis of the
model's performance based on the average percent of
anomalies in the restored image. This measure is rel­
evant to target detection in a noisy environment.
Figure 7 shows a statistical comparison between cor­
rupted images with and without restoration. In the
figure, each point represents an average over 10 runs
at a fixed noise level. The average percent anomalies
in the image gives an indication of the difficulty of
target detection; i.e., the probability of detection is
lower at higher anomaly percentages. For effective
detection, the percent of anomalies must be less
than about 10%. Thus the results show that
MRF restoration is effective up to a CNR of about
6 dB. At this CNR the average percent of anomalies

FIGURE 6. Results of MRF restoration on the synthetic
range image of Figure 5. A four-nearest-neighbor MRF
processor was used to restore the image. Note that the
edges have been preserved.

is 71% for the input image, 55% for the median­
filtered image, and only 4.5% for the MRF-restored
image. Clearly the MRF restoration provides
superior detection performance in a high-noise
environment.

We have also evaluated the utility of the MRF
image-restoration model as a preprocessor for tar­
get recognition in a noisy environment. Eight dif­
ferent binary silhouettes-broadside views of
different vehicles (Figure 8)-were used in this ex­
periment. Each of the silhouettes was centered in a
128 x 128 pixel image to simulate range images,
which were then corrupted with the range measure­
ment model to produce images corresponding to real­
istic range measurements. Twelve such images were
produced for each of the 8 silhouettes for a total of
96 images per each CNR value from 6 dB through
20 dB in I-dB steps, and at 80 dB. Next, detec­
tion and segmentation were performed on these simu­
lated range measurements to obtain noisy binary
range slices in which only those pixels within a certain
range are shown. The range slices were then used
to train a Nearest Neighbor Classifier (NNe) [15]
to separate the 8 different vehicles. We found that
at very high CNR values (40 dB) the classifier
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FIGURE 7. Average percent anomalies for range imagery as a function of sen­
sor CNR. The results from MRF restoration are compared with median filter­
ing and the case in which no processing has been performed to restore the image.
Each data point represents an average over 10 runs at a given noise level.
For effective target detection, the percent of anomalies must be less than about
10%. Thus the results indicate that MRF restoration is effective up to a CNR of
about 6 dB. At this CNR value the average percent of anomalies is 71 % for the
input image, 55% for the median-filtered image, and only 4.5% for the MRF­
restored image. Clearly, MRF restoration provides superior detection performance
in a high-noise environment.

created a unique category for each silhouette. At lower
CNR values (higher noise), however, the clas­
sifier formed extra categories because exemplars of
the same target were sometimes classified into dif­
ferent categories. We repeated the above proce­
dure rwice: once using the median-filter technique on
the corrupted images before the detection and seg­
mentation steps, and once using MRF restoration.
Figure 9 compares MRF restoration with iterated
median filtering and with the case in which no
processing had been performed to restore the image.
The performance at each CNR value is defined as
the fraction of the 96 examples that the NNC
has classified correctly. Note that the MRF restora­
tion is able to maintain an acceptable level of perfor­
mance at a CNR that is 5 and 10 dB lower than with
the median-filter and no-preprocessing case, respec­
tively. Thus, with MRF restoration, a sensor can be
operated at roughly 25% the power level required by

the use of a median filter.

Hardware Implementation

For real-time image restoration, the MRF model can
be implemented either digitally-on custom digital
signal processing (DSP) chips or on a single-instruc­
tion multiple-data (SIMD) computer such as the
Connection machine manufactured by Thinking
Machines Corp.-or in an analog manner on a
custom VLSI chip.

For digital implementation, 72 floating-point
operations are required per pixel update. Typically, a
pixel must be updated about 100 times over the
course of the restoration. Thus a 256 X 256 image
restoration would require 472 million floating-point
operations, and a frame-rate restoration of the same
image would require digital hardware that delivers 14
GFLOPS of performance. This performance level is
at the leading edge of current digital processing tech-
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FIGURE 8. Binary silhouettes of 8 different vehicles that were used to evaluate the effect of
MRF restoration on target recognition. (For the test results, see Figure 9.)
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FIGURE 9. Fraction of correctly classified range slices as a function of sensor
CNR. In the experiment, the binary silhouettes of 8 different vehicles (Figure 8)
were used to create realistic noise-corrupted range measurements. Detection
and segmentation were performed on these simulated range measurements to
obtain noisy binary range slices in which only those pixels with a certain range are
shown. A total of 12 such slices was produced for each ofthe 8 silhouettes at each
CNR value. The 96 range slices at each CNR value were then used for training a
Nearest Neighbor Classifier (NNC) [15] to separate the 8 different vehicles. Before
being presented to the NNC, some of the range slices were restored by the MRF
model and others by an iterated median filter. The results compare MRF restora­
tion with the median-filter technique and with the case in which no processing
has been performed.

VOLUME 6, NUMBER 1, 1993 THE LINCOLN LABORATORY JOURNAL 157



-MENON
An Efficient MRF Image-Restoration Technique Using Deterministic Scale-Based Optimization

FIGURE 10. System architecture implemented as a re­
sistive grid (compare with Figure 1). The voltages Vm

and Vr represent the measured and restored images,
respectively. Note the presence of both field and sur­
round resistors.

nology. The advantage of an all-digital implementa­
tion is that it does not require the hardwiring of any
of the system parameters.

An all-analog implementation requires the imple­
mentation of the energy function as an analog circuit.
In the current example the system architecture can be
represented as a resistive grid (Figure 10). The resis­
tors are nonlinear in that their resistances are voltage
dependent:

t

The throughput is limited by the input/output onto
and off the analog chip, and not the circuit. With
current technology, images can be restored at a rate in
the thousands of frames per second.

Summary

An efficient Markov Random Field (MRF) based
method for performing piecewise smooth image res­
torations has been demonstrated. The underlying
model uses a neural network sigmoid potential be­
tween pixel pairs to allow the formation of sharp
boundaries between dissimilar regions in the presence
of noise. A novel deterministic method-called
Gradient Descent Gain Annealing (GDGA)-for solv­
ing the nonlinear coupled set ofdifferential equations
that the MRF model introduces was presented. The
GDGA algorithm typically requires fewer than
200 iterations to restore an image, where the number
of iterations is roughly proportional to the level of
noise in the image. Computer simulations on noisy
images have shown that restorations can be performed
for very high noise levels (i.e., images that have up to
71 % of their pixels corrupted with non-Gaussian
sensor noise). Simulation results indicate that MRF
restoration provides a 5-dB advantage in the carrier­
to-noise ratio (CNR) over conventional iterated me­
dian filtering. Although the same model is currently
used to restore images from different sensors, arbi­
trary potentials can be incorporated for the pixel in­
teractions so that the system can be tailored to specific
natural scenes and sensors. The system uses a mas­
sively parallel set of local neighborhoods (four nearest
neighboring pixels) for efficient implementation on
a parallel-processing computer or a custom analog
VLSI chip.

....:;z: .....!---- Field resistor
vr

1 .
1- d

Surround resistor

where !1p refers to the voltage difference between a
pair of adjacent sites. The nonlinear resistor is essen­
tially the inverse of Equation 9, and the circuit con­
sists of separate field and surround resistors, as shown
in Figure 10. At steady state there is a current balance
at every site and the voltages V r correspond to the
intensities in the restored image. The advantage of
this implementation is that there is essentially a "pro­
cessor" at every site, and the processing speed is lim­
ited only by the settling time of the analog circuit.
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