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B We are developing an evaluation facility that includes an electronic terrain
board (ETB) to provide an effective test environment for automatic target
recognition (ATR) systems. The input to the ETB, which is a high-performance
computer graphics workstation, is very high-resolution data (15 cm in 3-D)
taken with pixel registration in the modalities of interest (laser radar, passive IR,
and visible). The ETB contains sensor and target models so that measured
imagery can be modified for sensitivity analyses. In addition, the evaluation
facility contains a reconfigurable suite of ATR algorithms that can be interfaced
to real and synthetic data for developing and testing ATR modules.

A first-generation hybrid-architecture (statistical, model based, and neural
network) ATR system is currently operating on multidimensional (laser radar
range, intensity and passive IR) sensor, synthetic, and hybrid databases to
provide performance and validation results. A recent study determined the
sensor requirements necessary for target classification and identification of eight
vehicles under various view aspects, resolutions, and signal strengths.

This article presents a description of the infrared airborne radar used to
gather sensor data, a discussion of sensor fusion and the hybrid ATR measure-
ment system, and a review of the ATR evaluation facility. This article also
discusses the computer manipulation and generation of laser-radar and passive-
IR sensor imagery and the processing modules used for target detection and
recognition. We give results of processing real and synthetic imagery with the

ATR system, with an emphasis on interpreting results with respect to sensor

design.

F I Y HE BATTLEFIELD SCENARIO continues to grow
in complexity as the use of high-resolution
sensors and precision strike weapons has forced

the increased use of concealment and camouflage tech-

nology to improve vehicle survivability. The advent of
multidimensional sensors that trade individual sensor
performance for aggregate system performance and
automatic target recognition (ATR) systems that can

assist in or automatically identify targets also are a

threat to vehicle survivability. The understanding of

multidimensional sensors, the algorithms that are used

to process their data, and the manner in which they
are evaluated is necessary to determine their suitabil-
ity for military applications.

Unfortunately, the testing and acceptance of ATR
systems for military applications has proven elusive.
On one hand, many researchers are concerned that
not enough information exists in one sensor modality
to build an ATR system that performs effectively
against targets in natural and man-made clutter. On
the other hand, the use of multisensor information to
solve this vexing problem is relatively recent, and the
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results are limited. Although we have strong indica-
tions that several sensor modalities are better than one
for rarget identification, no convincing database of
evidence exists. :

At Lincoln Laboratory we have constructed a fly-
able multisensor measurement system to evaluate the
use of single and multiple sensor modalities for search-
and-identification applications. This article describes
the measurement system, which includes a forward-
looking suite of sensors, a down-looking suite of sen-
sors, and an MMW sensor. We also describe an ATR
system for processing laser radar range and intensity
imagery as well as other sensor modalities.

Testing the ATR system to quantify the perfor-
mance limits of the multisensor measurement system
is an important step in the development of useful
benchmarks and the definition of radar requirements.
This article examines the performance tests we have
developed and provides a summary of test resules for
spatial extent, image quality, and 3-D recognition
requirements. An ATR evaluarion facility is currently
under development to provide an effective test envi-

Sensor control panels

Recording devices

85.5-GHz MMW radar
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ronment for ATR systems. The inputs to the facility,
which is a high-performance computer graphics work-
station and data-processing engine, are very high-
resolution data (15 cm in 3-D) taken with pixel regis-
tration in the modalities of interest (laser range,
intensity passive IR, and visible) and stored in darta-
bases. An electronic terrain board (ETB) combines
the databases with sensor and target models to modify
the measured imagery for ATR sensitivity analyses.

The Infrared Airborne Radar
The Infrared Airborne Radar (IRAR) is a flyable

multisensor measurement system that consists of a set
of active and passive infrared (IR) and active millime-
ter-wave (MMW) sensors. This system is installed in
a Gulfstream G-1 twin turboprop test aircraft used by
Lincoln Laboratory; Figure 1 illustrates the locations
of these sensors in the aircraft. We are especially inter-
ested in the ability of the multisensor measurement
system to detect targets autonomously (i.e., without
human interaction with the measurement system).
In the forward-looking sensor suite, the active laser

Forward-looking radar
10.6-um active laser radar
8-to-12-uym passive IR

Down-looking radar
10.6-ym active laser radar
8-to-12-um passive IR
0.8-pm active laser radar

FIGURE 1. Schematic diagram of the multisensor measurement system on the Gulfstream G-1
aircraft, showing the location of each individual sensor system. The two sensor suites—forward-
looking and down-looking—are located in the aft section of the aircraft, the recording system and
electronic racks are located in the midsection, and the antenna for the MMW radar is located in the
nose. The forward-looking sensor suite is mounted on an optical table and then relayed through a
pod on the fuselage. The down-looking sensor suite is housed entirely in the pod aft of the forward-

looking sensor system.
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radar sensor measures absolute range with a precision
of 1 m while the passive-IR sensor measures the ther-
mal intensity of the target and scene in the 8-to-12-
um band. The down-looking sensor suite, which is a
multispectral active-passive sensor, has the ability to
measure relative range with a precision of 15 c¢m, as
well as the ability to measure passive-IR thermal in-
tensity. In addition, an MMW real-aperture measure-
ment system developed by General Dynamics of
Pomona, California, is installed in the aircraft. This
MMW sensor measures absolute range with a resolu-
tion of 0.5 m, and is slaved to cover the same search
area as the forward-looking sensor.

All the IRAR sensors reside on board the aircraft
platform. The heart of the IRAR system is located in
the center section of the aircraft. A radome extends
down from the center of the aircraft, allowing the
laser beam of the forward-looking sensor to exit
through a germanium window on the left side of the
radome. An additional window immediately to the
right of the germanium window is used by the mea-
surement system's boresighted color television cam-
era, which is used to point the laser beam manually
and to record a live sequence of the measured scene.

The radome was modified so that the down-look-
ing sensor could be placed immediately behind the
forward-looking laser-radar pointing-mirror assembly
and look straight down; the scan direction of the
down-looking sensor is therefore always perpendicu-
lar to the longitudinal axis of the aircraft. The MMW
system is sufficiently small so chac the 1-ft diamerter
radar dish and the gimbal mount are totally enclosed
within the nose cone of the aircraft.

Forward-Looking Laser Radar

The transmitter in the forward-looking sensor is an
RF-excited, water-cooled, CO, waveguide laser oper-
ating at 10.6 um. In the pulsed mode, the transmitrer
laser provides a nominal 25-nsec pulsewidth ar ap-
proximately 3-W average power at a pulse-repetition
frequency of 20 kHz. In CW operation, the laser can
provide power in excess of 30 W.

A 5-in diameter, afocal, Ritchey-Chretien telescope
functions both as the transmit and receive aperture of
the sensor to produce a 200-prad diameter beam
(100-prad resolution). The sensor uses two linear 12-

element arrays of HgCdTe photovoltaic detectors:
one array for the active measurements and one for the
passive measurements. Registration of the active and
passive measurements is always assured because both
arrays share the common telescope.

In the present configuration, the two arrays are
oriented vertically to provide a 10° azimuchal cover-
age at 2.5 scans/sec in linescan mode. In a separate
framing mode (25.6 mrad by 12.0 mrad), the scan-
ning mirrors operate at 20 frames/sec; when the pas-
sive channel is enabled, however, the recording rate is
reduced to 10 frames/sec because of recorder limita-
tions. Television images from the boresighted TV cam-
era are digitized and stored on computer tapes. Table
1 shows selected system parameters for the forward-
looking sensor.

Figure 2 is an example of a laser radar range image
and a passive-IR image made simultaneously by the
forward-looking sensor. Two features in these images
are particularly interesting with respect to data fusion
and scene understanding: (1) the road that traverses
vertically in the center of the scene is clearly visible in
the passive-IR image in Figure 2(b) but invisible in
the range image in Figure 2(a) because the road is at
the same elevation as the local ground plane, and (2)
although a tank (at the center left of the scene) has a
negative passive-IR contrast with the background, it
has positive range contrast in the active laser radar
image. We can overcome the measurement limita-

Table 1. Forward-Looking Laser Radar
System Parameters

CO;, laser
Wavelength 10.6 pm
Nominal power, CW 30 W
Pulsed, average 3w
Number of detectors 12
Telescope aperture 13cm
Instantaneous field of view 0.2 mrad
Range sampling interval 11m
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FIGURE 2. (a) Passive-IR imagery and (b) laser radar range imagery taken simultaneously at Stockbridge, New
York, by the forward-looking sensor. The passive-IR image in part a is coded by thermal intensity, so that
warmer objects such as vehicles are brighter than cold objects. The range image in part b is coded by color to

distinguish objects at different distances from the viewer.

tions of each individual sensor by fusing the informa-
tion from the two sensors to provide enhanced detec-
tion capabiliry.

Millimeter-Wave Radar

To investigate the advantages of combining the out-
put of two or more diverse sensors, we added the
General Dynamics 85.5-GHz real-aperture MMW
radar to the forward-looking sensor suite. This radar
has low cross-range resolution and high line-of-sight
resolution, and operates at 3.5 mm. Table 2 lists the
operating characteristics of this radar. The MMW
antenna is mounted in the nose section of the aircraft
and is boresighted to the IRAR sensor suite during
pointing-mode operation.

The cross-range resolution of the MMW radar is
such that a 10° azimuthal field of regard is stored as
15 intensity-versus-range profiles on each scan. The
oversampling that occurs in the down-range dimen-
sion is then used to enhance the processing statistics
for detection. The modulation characteristics of the
sensor are such that the line-of-sight range resolution
is 1.7 ft, while data are sampled at approximately half
this value, thus providing the potential for excellent

range I'C.\'lllllli()l‘l on llh_' rargcet.

Figure 3 illustrates the range resolution of the
MMW radar in combinartion with a passive-IR imag-
ing sensor. Three logging trucks in the passive-IR
image in Figure 3(a) are each highlighted by a box.
The environmental conditions at the time the data
were taken are responsible for the low passive-IR con-

Table 2. Millimeter-Wave Radar
System Parameters

Operating frequency 85.5 GHz
Transmitter power 15 mW
Modulation format FMCW
Antenna diameter 12in

Antenna beamwidth 0.76°, one way

0.57°, two way
Range resolution 1.67 ft
PRF 1600 Hz

20dB, including

system losses

Noise figure
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FIGURE 3. (a) Passive-IR imagery and (b) boresighted MMW radar imagery. The MMW radar data are
displayed as a 3-D plot of down-range, cross-range, and thermal-intensity values. The three logging
trucks indicated by boxes in the passive-IR image correspond to four of the five highest MMW radar
intensity peaks. Part b shows two peaks for the one truck in the center of part a because distinct returns
were obtained from both the truck cab and the truck bed.

trast. If the MMW radar signal is displayed as a 3-D
image (cross-range, down-range, and intensity), how-
ever, as shown in Figure 3(b), then four of the five
highest intensity peaks shown in the figure corre-
spond to radar returns from target locations. Two
peaks are determined in Figure 3(b) for the truck in
the center of Figure 3(a) because we obrained strong
distinct returns from both the truck cab and the truck

bed.

Down-Looking Laser Radar

The multispectral active-passive down-looking sensor
is a compact multiple-channel system thac employs
two lasers for active detection and a single passive
detection channel. This sensor is configured with a
10.6-um amplitude-modulated continuous wave
(AMCY) CO, laser and a 0.8-um AMCW AlGaAs
diode laser for the two active channels, which are
coregistered with an 8-to-12-um passive detection
channel.

The system was designed with 1-mrad angular reso-

lution to provide a 15-cm cube on the target from an

optimal measurement height of 150 m. The active-
channel lasers are modulated at 15 MHz to provide
an AMCW waveform that translates to a 10-m range
ambiguity but provides 15-cm precision (i.e., the range
values are produced from 0 to 10 m in 15-cm incre-
ments and they fold over at the range boundaries).
Thus these measurements are relative range measure-
ments with 15-cm precision, as compared with the
absolute range measurements of the forward-looking
sensor. Table 3 lists selected parameters of the muldi-
spectral active-passive down-looking sensor, and Fig-
ure 4 shows five separate images produced by this
sensor during a flyover of the USS Connole.

The muldspectral down-looking sensor has two
characteristics of interest for the development and
testing of ATR systems: (1) the viewing aspect allows
the imaging of objects in clutter that are not generally
seen by forward-looking sensors, and (2) the highly
precise range imagery gives us the capability to trans-
form the observed scene to a variety of viewing as-
pects. Figure 5 illustrates this process. Figure 5S(a)

contains a photograph of a truck thart is camouflaged
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Table 3. Down-Looking Laser Radar
System Parameters

Angular resolution 0.5 mrad, x and y axes

Range precision 15¢cm
Range ambiguity interval 10m
Altitude range 400 ft to 1300 ft
Ground coverage 2000 ft at 1000 ft

by nerting and parked on a dirt road in a forest.
Figure 5(b), which is the down-looking range image,
clearly shows the road and the truck, with the height

image of the camouflaged truck from a viewpoint
that is just above the road. In this way, a down-
looking view can be used to develop or test algo-
rithms for a forward-looking or near-forward-looking
sensor through the use of coordinate transformations.
A more denailed description of how down-looking
dara can be utilized for a variety of ATR evaluation
tasks is given in the section entitled “The ATR Evalu-
ation Facility.”

Sensor Fusion

Figure 3 illustrates the possible benefits of fusing
MMW radar imagery and passive-IR imagery. This
figure demonstrates that the MMW radar image can
be used to indicate areas of interest in a coregistered
passive-IR image. Other techniques that incorporate

of the truck above the road encoded in color. Figure the detection lists from both sensors usually fuse the

5(c) is a computer-transformed forward-looking range lists by an OR or AND procedure; i.e., the target

0.8-pym laser radar

10.6-um laser radar

Intensity ——————»

8-to-12-ym passive IR

Range

FIGURE 4. Example of imagery produced by the multispectral active-passive down-looking sensor during a flyover of the
USS Connole. This sensor produces coregistered laser radar range and laser intensity images for wavelengths of 0.8 um
and 10.6 um, as well as an 8-to-12-um passive-IR thermal-intensity image. Note the parked helicopter near the stern of the
ship in each of the sensor domains as well as the depiction of the ship's wake.
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(a)

FIGURE 5. (a) Optical photograph of a truck covered with camouflage netting on a road in a forest. (b) The relative range
image of the truck as determined by the multispectral down-looking sensor. (c¢) The 3-D spatial transformed image
illustrates the relative range image data in part b as viewed from a depression angle similar to that of the optical photograph

in part a.

must be detected at least on one list (OR) or on all
lists (AND). The OR procedure produces a higher
likelihood of detection at the expense of a high false-
alarm rate. On the other hand, the AND procedure
has a low false-alarm rate at the expense of a lower
likelihood of detection. The next section describes an
AND procedure that fuses sensor data to create a
range-passive histogram, and the following section
describes a maximum-likelihood fusion estimate for
object detecrion.

Range-Passive-IR Histogram

Target cueing and detection can be accomplished
with range darta alone, with a range-only histogram,
or with a range-passive-IR histogram (which is cre-
ated by using an AND operation to fuse range and
passive-IR data registered at the pixel level) [1]. The
range-only histogram is a 3-D mapping of the num-
ber of occurrences of a range value plotted in a coor-
dinate system of cross-range versus down-range. The
histogram is calculated by scanning the range image
pixel by pixel and adding one count to the histogram
bin that corresponds to the pixel azimuth and the

pixel down-range value:
"“;h‘h'{"""'-"~ rmg) = E Ulaz,el) ,
t'a'l

where

1 if Rlaz,el) = rn
Ulaz,el) = ) g ;
0 otherwise

and where R(az, el) is the absolute range of that pixel,
and rng is the specific range value. Peaks in the 3-D
range-only histogram indicate regions of significant
vertical extent, or werticality, in the image, and the
magnitude of the peak represents the vertical surface
area of an object in the image. The property of verti-
cality is effective for finding targets in open terrain; it
produces a large number of false alarms, however,
when applied in wooded areas.

The passive-IR thermal intensity can be used as a
discriminant to separate trees from man-made targets
that have a significant positive thermal signature. Pixel-
level fusion of the range image data and the passive-
IR image data is possible because each pixel of the
range and passive-IR images is collocated. Each pas-
sive-IR pixel can be registered, according to its associ-
ated range value, to compute what we define as a
range-passive-1R histogram.

The range-passive-IR histogram is a 3-D mapping
of the sum of the passive-IR intensities plotted in
Cf().‘is-[‘:{ngc Versus Lll)\\"l'l‘rllngﬂ Cﬂ()l'dinﬂtcs deri\’t‘.(l
from the pixel-registered range image. Figure 6 shows
an example of a range-passive-IR histogram. In Figure

6(a), a passive-IR intensity histogram is calculated for
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each column, which corresponds to a particular cross-
range value that uses both the range image to provide
the coordinates for the histogram and the pixel-regis-
tered passive-IR image for the intensity values. An
azimuth value is selected, and then we scan the range
image pixel by pixel along that azimuth column, where
the range value for each pixel selects the histogram
range bin. The corresponding passive-IR intensity
value in Figure G(b) is then added to that histogram

Range image

-

Elevation

R Y 0

Azimuth
[ =1.2kmrange (a)

Passive-IR image

Elevation

BEEEEE.

Azimuth
(b)

Range/passive-IR histogram

Range (km)

1.2 km Cross range (m)

(c)

FIGURE 6. Schematic diagram of how the range image and
passive-IR image are mapped into a range-passive-IR his-
togram. (a) An azimuth value is selected, and the range
image is scanned pixel by pixel along thatazimuth column;
the range value for each pixel selects the histogram range
bin. (b) The passive-IR intensity value from the correspand-
ing passive-IR image column is then added to the histo-
gram bin. (c) In this way a three-dimensional range-pas-
sive-IR histogram (cross-range, range, passive-IR inten-
sity) is created.
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bin. In this way, a three-dimensional histogram (cross-
range, range, passive-IR intensity) is created, as shown
in Figure 6(c). Peaks in the histogram indicate objects
with vertical extent (i.e., trees, buildings, and ve-
hicles) and with sufficient thermal contrast with re-
spect to the background (i.c., running engines, heated
buildings).

This calculation is written as

H oplaz, rng) = E Plaz, el) x Ulaz, el),
el

where U(az, el) is as defined previously and P(az, el)
is its processed passive-IR intensity. Peaks in the range-
passive histogram indicate regions of vertical extent
that have positive thermal contrast.

Figure 7 shows how the range-passive histogram
algorithm was applied t an IRAR linescan scene
taken at Fort Devens, Massachusetts. The linescan
scene contains the passive-IR image and laser radar
range image of three trucks and a moror generator set.
The vehicles were not in operation; their thermal
signature is due entirely to solar heating. Figure 8
shown the resulting range-passive histogram. The three
largest peaks correspond to the three trucks in the
scene. For each peak, the truck position is now local-
ized in cross-range and down-range. This example
clearly shows the value of fusing multiple sensor do-
mains at the pixel level with an AND operation,
which improves the probability of detection and low-

ers the probability of false alarms.

Theoretical Study of Active-Passive Detection
of Multipixel Targets

Research into the development of a quasi-optimal,
single-sensor detection processor for multipixel laser
radar was done by M. Mark [2] and resulted in the
generation of receiver operating-characteristic curves
for this processor. Mark used a generalized-likelihood
ratio test to estimate unknown parameters for a maxi-
mum-likelihood estimate. Computer simulations with
benign synthetic scenes, generated wich uniform laser
intensity, range, and passive-IR values for target and
background, were used to provide performance mea-
sures. Recent extensions of this work to multiple sen-
sor modalities (laser radar range and laser intensity,



* KOLODZY
Multidimensional Automaric Target Recognreion System Evaluation

FIGURE 7. A scene containing three trucks and a motor generator as imaged by (a) the
passive-IR sensor and (b) the laser radar range sensor in the forward-looking sensor suite.
The trucks and generator are clearly visible in the center of the passive-IR image. The laser

radar range image depicts the objects as silhouettes standing out of the sloping terrain and

in the same location as in the passive-IR image.

PASSIVE WEIGHTED HISTOGRAM

FIGURE 8. The result of processing the data in Figure 7

with the range-passive-IR histogram. The down-range val-
ues are color coded in the same manner as the laser radar
range image in Figure 7. The four highest peaks corre-
spond to the three trucks in the scene. These peaks would

cue a classification processor to a region of interest.

passive-IR chermal intensity) were accomplished by
S. Hannon and ]. Shapiro [3]. The results of these
computer simulations, which were later confirmed by
experimental data, indicate that for a specified operat-
ing power such as the probability of detection and the
probability of false alarm, the required sensor signal-
to-noise ratios were relaxed for a multisensor mea-
surement system over a single sensor system.

Figure 9 depicts the sensor/target requirements for
a 10-pixel target (2 pixels by 5 pixels) on a 1000-pixel
image (20 pixels by 50 pixels). The target size can be
scaled to simulate a tank-sized vehicle at a distance of
approximately 5 km with a sensor field of view (given
a 6° depression angle) of 15,000 mZ. Figure 9 indi-
cates the sensor requirements for detecting 99% of
tank-sized vehicles at 5 km with a false-alarm rate of
107, or of 0.1 km™2. Because the simulations were
done on idealized scenes, however, the results are not
directly transferable ro a specific sensor design. The
trends still indicate a reduction for either passive-IR
signal-to-noise ratios (SNR) or laser radar carrier-to-
noise ratios (CNR) when a combination of two sen-

sors is employed.
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Sensor/ftarget requirements
Probability of false alarm = 107
Probability of detection = .99

10.0
o Passive onl
= 78 2
% Passive/range
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= Range only
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- Passive/range/
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4.0 12.0 15.0

Active system (CNR in dB)

FIGURE 9. Sensor/target requirements for multipixel tar-
get detection using the generalized likelihood ratio test for
single and multiple sensor modalities to detect a tank-size
target at 5 km with a probability of detection of 0.99 and a
false-alarm rate of 10 per image or 0.1 km™ [3]. A 7-db
SNR is required for a passive-only sensor system, and a
12-dB CNR is required for a laser radar range-only sensor
system. The SNR and CNR requirements are relaxed for a
combined passive-range sensor system or a passive-range-
intensity sensor system,

Hybrid ATR System
We have developed ATR processing modules for the

primary sensor groups described previously; these
groups are laser radar intensity, range, passive-IR ther-
mal intensity, and MMW. Although the individual
processing modules can vary among sensor groups,
the general processing structure has the same sequence
of stages: cleanup, detection, segmentation, feature
extraction, invariant mapping, and classification. The
general ATR system was originally developed to oper-
ate on laser radar range and intensity imagery, and the
results presented in this article are based on this imag-
ery. Figure 10 illustrates the processing modules for
the range-imagery recognition system; this system is
described in more detail below.

Modular ATR System Concept

The unambiguous range image is first processed by
the cleanup stage to reduce data anomalies and en-
hance the image. The cleanup stage atctempts to re-
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construct the most probable input image that would
produce the measured sensor image. This reconstruc-
tion clarifies the image appearance, and makes the
returns from the various objects in the scene appear
more continuous and complete by reducing sensor
and scene artifacts such as dropouts and anomalies.

Next, the enhanced image is processed by the de-
tection stage to identify correctly sized regions of
constant range as potential targets. The detection stage
extracts these regions from the background clutter
and removes the ground plane. The detected targer at
the output of this stage is a silhouette consisting of
mulriple fragments and rough boundaries.

The multiple fragments are combined by the seg-
mentation stage into a complete, smooth, filled sil-
houette. The completed silhouette is then separated
by the feature extraction stage into feature regions
(e.g., barrel, turret, body, and tread for a rank). For
this article, the entire target silhouette is considered
the single feature. The silhouette is then mapped by
the invariant-mapping stage into an abstract pattern
that is invariant to translation, rotation, and scale
within the sensor field of view. This invariant pattern
is processed by the classification stage, which initially
learns to cluster the invariant maps into groups and
then, after the training cycle, classifies the input dara
with respect to its learned categories.

Image Cleanup

To provide adequate recognition performance in a
noisy environment, the cleanup stage must be capable
of using prior knowledge to restore measured images.
We present here an image-restoration model that quan-
titatively incorporates prior knowledge of the mea-
surement process and scene. The model is based on a
Bayesian formulation using Markov random fields, as
introduced by S. Geman and D. Geman [4]. The
processing is massively parallel because the Markov-
random-field assumption allows the image to be
decoupled into a large number of connected local
neighborhoods, each of which can be processed inde-
pendently. The local-neighbor information is spread
out in tme such thar a global image restoration is
effected when the image-restoration system reaches a
steady state.

Real-time image restoration is possible by using
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Cleanup

Detection

Feature extraction

Invariant maps

Classification

Y

Tank

FIGURE 10. The six processing modules of the range imagery-recognition system: cleanup of
sensor artifacts, detection of potential targets, segmenting targets to improve image characteris-
tics, extraction of relevant features, invariant mapping of features to remove translation and rotation
effects, and the classification of features into target categories.

the model with a massively parallel single-instruction
multiple-daca (SIMD) computer such as the Connec-
tion Machine or a direct hardware implementation
on a custom microprocessor. A more detailed descrip-
tion of the image-cleanup process is given in this issue
in the article by Murali M. Menon entitled “An Effi-
cient MRF Image-Restoration Technique Using De-
terministic Scale-Based Optimization.”

We applied the image-cleanup process to a simple
synthetic image corrupted with noise according to a
measurement model described in the literature [3].
The noise does not have a Gaussian distribution and
is based on realistic sensor measurements. The origi-
nal noise-free synthetic image has a simple geometric
shape at a constant pixel value, with a background
that linearly increases in pixel value from the top of
the image to the bottom. Figure 11(a) shows the
uncorrupted image, while Figure 11(b) shows the
image with 70% of the pixels corrupted with noise.

The original image has 256 gray levels, and the noise

spans the entire range of possible pixel values. Except
for a few discrepancies at the boundary, the restora-
tion shown in Figure 11(c) is nearly perfect, especially
th‘.‘ recovery ()r th(.' S]D],‘Jing b:lckground.

Target Detection

The detection stage of the ATR processing system
extracts target-like regions from the enhanced range
image produced in the cleanup stage. The process
occurs in three phases: (1) regions of interest are
selected, (2) rarget-like objects are detected, and (3)
objects are extracted from the scene. Regions of inter-
est are located by using range-only or range-passive-
IR histograms, as previously described in the article.
The peaks of these histograms indicate regions of
significant vertical extent (i.e., constant range with
varying elevation), or a significant thermal signature
with some vertical extent. The selected regions are
searched for areas of constant range that have range

contrast with their neighbors and are similar in size
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FIGURE 11. The effect of processing a synthetic laser radar range image of a geometrical object with the image-cleanup
neural network. (a) The original noise-free image, (b) the image with 70% of the pixels corrupted with noise, and (c) the
restoration of the original image from the corrupted image with only a few discrepancies at the image boundary.

(both in absolute height and width) to a rarget of
interest. The target-like region is then separated from
the background by selecting only the pixels with that
range value. The object is then extracted from this
selected image by computing and removing the ground
plane.

Figure 12(a) shows the initial range image of an
M48 tank at 700 m and the subsequent detection
result that was formed by using the previously de-
scribed range-only histogram and removing the ground
plane. Figure 12(b) shows the M48 tank after the

cleanup stage and detection stage of processing.
p stag b I 8

(a)

Segmentation

The segmentation stage of the ATR system smooths

the boundaries and completes the fragments of the
detected potential target. The boundary-contour sys-
tem (BCS), a subsystem of a visual processing theory
developed by S. Grossberg and E. Mingolla [5], is
used to generate the perceived segmentation of the
potential target, with respect to illuminance contrasts.
The BCS system consists of two stages: an oriented-
contrast (OC) filter and a cooperative-competitive
(CC) loop. The OC filter measures local luminance

(b)

FIGURE 12. (a) The initial range image of an M48 tank; (b) the subsequent detection result that was
formed by using the range-only histogram and removing the ground plane.
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differences, or edges, within an image at a number of
different orientations. This filter models the orienta-
tion-selective cells discovered by D. Hubel and T.
Wiesel (6] in the human visual system. These ori-
ented edge strengths are then allowed to compete and
cooperate with one another in the CC loop to gener-
ate the perceived boundary contours.

The four layers of the CC loop consist of two
competitive layers, one cooperative layer, and a feed-
back layer. The first competitive layer thins and sharp-
ens boundaries within the image by allowing compe-
tition for dominance in the final boundary
segmentation between neighboring edge strengths of
the same orientation. The second competitive layer
straightens jagged or noisy boundaries by allowing
competition between edge-contrast strengths with dif-
fering orientations ac the same location. The coopera-
tive layer completes and connects boundaries by al-
lowing edges of like orientation to cooperate over a
distance in the image. The feedback layer introduces
into the system any new boundaries formed by the
cooperative layer.

The OC filter is implemented by convolving a set
of orientationally tuned digital filters with the input
image. The CC loop is modeled by using a set of four
coupled nonlinear differential equations for each ori-
entation and location within an image. Input to the
CC loop is static; therefore, the boundary is com-
plete when the system of differential equations is in
equilibrium.

The BCS algorithm has been previously applied to
laser radar imagery as reported by Kolodzy et al. [7]
and by E. Van Allen [8, 9]. Figure 13 shows an
example of BCS processing on the range image of an
M48 tank. The input range silhouette in the upper
left of the figure is the input to the segmentation
stage. The range-silhouette image is sampled to ob-
tain the oriented contrast strengths by using the OC
filter in each of twelve orientations. These oriented
contrast strengths are then processed by the CC loop
to produce twelve new images, which are compressed
into a single image by using one of two methods: (1)
compute the maximum contrast strength of any ori-
entation at each pixel location (upper right of Figure
13), or (2) sum the contrast strengths across all the
orientations at each pixel location (lower left of Figure

13). The compressed image is then filled to form a
completed and smoothed silhouette of the potential
target for classification. The specific filled image shown
in the lower right of Figure 13 is the result of using
the summing method for compressing the results of
the CC loop.

Feature Extraction

In general, the filled and smoothed image provided
by the segmentation stage of the ATR system is then
used to extract relevant features for classification. Many
different feature domains (images or vectors) such as
image geometry, object parts, fractal dimensions, dis-
tance of hot spots from the central locations, and the
Hough transform can be used and are part of on-
going research.

In particular, model-based systems have been de-
veloped at Lincoln Laboratory to parse images into
geometric features (such as circles, squares, rectangles)
and subsequently classify those features into target
features (such as barrel, hull, turret). These model-
based systems are discussed in the article by ]. Verly et
al. entitded “Machine Intelligence Technology for Au-
tomatic Target Recognition” [10]. The use of model-
based systems for feature extraction in this ATR sys-
tem has been evaluated previously by D. Dudgeon et
al. [11], and they are not discussed further in this
article. For our purposes, the pixel image provided
by the segmentation stage is used as the feature for
classification.

Invariance Mapping

The segmented silhouette is spatially mapped to elimi-
nate translation, rotation, and scale variations prior to
classification. An invariant silhouette is therefore built
directly into the classifier memory to form a single
compact representation for the target. This invariance
reduces the number of stored patterns from one pat-
tern for each of several terrain angles and ranges to a
single stored pattern, which reduces memory require-
ments and search times and improves efficiency. In-
variance can be obtained by using the following pro-
cess: (1) locate the segmented silhouette in the field of
view, (2) detect the silhouette edges, and (3) spatially
map the silhouette edges. The resultant abstract pat-
tern has the desired invariance and is processed di-
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RANGE SILHOUETTE MAX ORIENTED CONTRASTS

SUMMED ORIENTED CONTRASTS

BOUNDARY COMPLETION

FIGURE 13. Segmentation of a laser radar image of an M48 tank with the boundary-contour system (BCS)
showing smoothed boundaries and connected segments. The image in the upper left is the original segmented
range silhouette. The result of applying the BCS using the maximum-contrast edge-strength method is shown in
the upper right and the result using the summed-contrast edge-strength method is shown in the lower left. The
summed-contrast edge-strength result was then filled and is shown in the lower right.

rectly by the classifier in the next stage.

The rarget silhouertte is located in the plane of the
field of view by calculating a position-weighted sum,
or centroid, of its pixel intensities. The centroid of the
segmented silhouetre is then used as the origin in the
spatial mapping that follows.

The silhouette is next detected for edge strengths.
The edge-detection algorithm uses contrast-sensitive
oriented elliptical receptive fields. In this approach,
the receptive fields are passed over the image to sum
the pixel energy present in the area centered around
each pixel. The major axes of the elliprical receptive
fields are oriented in as many as twelve directions to
calculate edge strength as a funcdon of oriencation.
The outpur at each pixel in the edge image is the
output value of the strongest receptive field orienta-
tion at that pixel. Because edge detection by receptive
field processing is compurationally intensive, there is

a trade-off between orientation accuracy and process-
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ing time. The work described in this article was satis-
factorily accomplished by using four orientations for
the receptive fields.

The spatial-mapping function provides target rota-
tion and scale invariance within the plane of the field
of view. The function used in this work is a log-polar
mapping of the edge-strength image about its cen-
troid, as shown in Table 4. The log-polar mapping is
biologically inspired by the visual field mapping of
the human visual cortex, as demonstrated by E.
Schwartz [12].

The log-polar mapping transforms the edge-de-
tected range slice to a log-radius, polar-angle coordi-
nate system by using the centroid of the silhouerte as
its reference point. Determining the location of the
image centroid is important because the accuracy of
the log-polar mapping is often highly sensitive to
errors in the position of the centroid. Tests using

noisy simulated imagery, however, have shown the
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Table 4. Invariant Mapping of Silhouette Edge Strengths for Translation, Rotation,
and Scale Invariance in the Sensor Field of View

—

Translation Pixel centroid locates origin for
mapping log radius and polar angle
Polar angle
@ ‘)
2 \
Rotation Rotation in field of view is mapped ®
to shift in polar angle b=
% |
w
=
Scale Scale (or range) is mapped to B
shiftin log radius by
o

centroid calculation and log-polar mapping to have
robust behavior.

The log-polar mapping around the centroid of the
target maps rotation in the field of view to a shift in
polar angle, while it maps range to the target as a shift
in log radius. This mapping is insensitive to rotation
and scale variations; cross-correlation with an un-
rotated, unscaled log-polar mapping gives an estimate
of the amount of rotation and scaling present in the
detected silhouette.

Another method for making the log-polar map-
ping invariant to rotation and scale in the field of
view is to calculate the magnitude of its Fourier trans-
form. The shift property of the Fourier transform
eliminates the rotation and scaling shifts of the log-
polar mapping by treating the mapping as a periodic
function, as reported for laser radar range imagery by
Kolodzy et al. [7]. While this method has merit, it
will not be discussed further here; it is the subject of
other research [13].

Classification

In the final stage of the ATR system, a neural nerwork
is used ro classify the abstract invariant maps into
potential rarget categories. The adaprive resonance
theory (ART) developed by G. Carpenter and S.

Grossberg [14] defines a class of unsupervised neural
network classifiers that cluster an N-dimensional in-
put vector into a finite number of stable categories.
This clustering is a necessity if large training sets are
to be used.

Supervised networks and/or model-based systems
require exact knowledge of the target, or ground truth,
for each exemplar. For most large systems, thousands
(or millions) of training frames would need to be
ground truthed, which is a daunting if not impracti-
cal task. The ART-2 network, which is illustrated in
Figure 14, is basically a two-level correlation classifier;
this algorithm has been discussed by R. Lippmann
[15] and Menon and Kolodzy [16] to be similar to
the K-means clustering algorithm.

The ART-2 network is different from early ART
structures because it is designed to classify analog,
rather than binary, input patterns [17]. This analog
capability requires a robust structure that pays strict
attention to memory stability. The ART-2 network
classifies and stores patterns in the following manner.
The first layer (F1) normalizes the input with respect
to the feedback signal from the second layer (F2),
becoming a short-term memory (STM) trace. This trace
activates nodes in the second layer proportional to the
magnitude of its correlation with the corresponding

VOLUME G NUMBER 1, 1993 THE LINCOLY LABORATORY JOURNAL 131




* KOLODZY
Mudtidimensional Automatic Target Recognition System Evaluation

LTM traces

F1

reset

LTMm
feedback

Stabilization

Input

@ Generalized mean processing nodes

® Normalization nodes

FIGURE 14. Processing diagram of the ART-2 neural network. The input
image is presented and stabilized by the node-level processing in the F1
layer; the result is then correlated with stored long-term memory (LTM)
patterns in the F2 layer. If the resultant correlation is not large enough
with respect to the vigilance parameter, a reset signal is propagated as
feedback down to the F1 layer. If none of the LTM patterns are sufficient,

then a new LTM pattern is formed.

stored memory patterns, or long-term memory (LTM)
traces. If the degree of match between the normalized
input STM trace and the I'TM trace associated with
the most highly activated node in F2 passes a vigi-
lance parameter, the STM trace in F1 is learned onto
the LTM trace, thus storing the differences between
these memory traces. Should a mismatch occur, a
reset signal causes the input pattern to select another
LTM category. If no existing LTM category can be
found that matches the input pattern, a new category
is created, which illustrates the ability of the ART-2
network to respond to a novel signal. Generally, simi-
lar patterns are categorized together because of high
interpattern correlation, and these patterns continu-
ally activate the same category node in F2.

The final step of the classifier training is to associ-
ate target labels with I'TM traces. Each LTM rtrace for
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an individual rarget is provided a label unique to that
target. Multiple LTM traces for an individual rarger
are formed because of either different views or staristi-
cal variability of the target. For example, a rank at a
head-on perspective looks different from a tank at a
broadside perspective, and thus would form two dif-
ferent categories. Also, at a low SNR the signal could
change significantly enough to cause the dassifier to
form a new category if it is presented with 2 new noise
structure.

Interpretation of Results

The performance of an ATR system can be indicated
either by the score of each individual processing mod-
ule or by the overall system score. This article uses the
overall system score as a measure of results, with a
higher concentration on the capabilities of the classi-
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fier. For supervised classifiers, the performance is com-
monly measured by the number of correct responses
of the system when it is given a test set of input
images. The ATR system presented here incorporates
an unsupervised classifier, which uses a larger variety
of performance measures. This article uses a scoring
method based on the number and population distri-
bution of categories created by the classifier during
training.

Unsupervised classifiers are generally clustering al-
gorithms that group input feature vectors into a finite
number of categories. A user-defined distance metric
is used to determine whether an input vector is to be
clustered, or matched, with an existing category. The
number of categories produced (given a specific train-
ing set) indicates the ability of the classifier to general-
ize. A classifier responding with more than one cat-
egory for an object is not unreasonable if the features
the ATR is extracting change significantly. For the
ATR system presented here, this change in features
occurs for the log-polar map when the vehicles are
rotated out of plane. A classifier that requires only a
few categories to perform recognition is desirable.

Two measures of a classifier’s ability to generalize
are currently being used: (1) the number of categories
required for a given training set, and (2) the number
of populated categories formed for the same training
set. The differences between these two measures are
found in the interpretation of sparsely populated clus-
ters or categories. For example, if 100 inputs produces
five categories populated by 95, 2, 1, 1, and 1 ex-
amples, respectively, then either five separate catego-
ries or one single category with five incorrect re-
sponses are necessary.

The trade-offs of these measures are identical to
those for fielded ATR systems: performance versus
hardware requirements. If every vehicle needs to be
recognized, then all possible variations, including those
categories individually populated, or outliers (those
variations whose characteristics are rarely viewed), are
required to be modeled and retained in the ATR
system. It is possible, as shown by the 100 input
examples above, that a significant reduction in the
hardware requirements (i.c., memory) of the system
can be obrained by allowing a cerrain reduction in
recognition capability.

Evaluations Using Laser Radar Imagery

We have investigated the ability of this ATR system to
classify laser radar range imagery of various military
targers correctly. This system has been tested on a
limited amount of imagery obrained with ground-
based sensors built by the Opro-Radar Systems group
at Lincoln Laboratory. The results of these tests are
presented below.

The full capabilities (and deficiencies) of an ATR
system, however, must also be determined, and this
determination is possible only through exhaustive test-
ing requiring large amounts of sensor data. Many
conditions can be tested to determine the capabilities
of the ATR system; we used three conditions: (1)
CNR, (2) out-of-plane rotation, and (3) number of
pixels on target. Unfortunately, the amount of sensor
data required to test these three conditions thoroughly
by using real sensor data is prohibitive in both time
and cost. The use of synthetic imagery to place bounds
on system capabilities is the logical alternarive.

Synthetic laser radar range target imagery was gen-
erated by using Environmental Research Institute of
Michigan (ERIM) wire-frame models of a variety of
military and non-military vehicles. Background im-
agery was generated by using a flat ground plane
projected with the attack angle of the sensor. Perfect
object extraction from the ground plane was assumed
for this study. Sensor statistics (e.g., noise) were added
by using the laser radar range and intensity models
developed by ]. Shapiro ecal. [18, 3 , 4]. This proce-
dure was used to generate targets for the three test
conditions listed above.

Ground-Based Sensor Data and Results

In 1981 at Camp Edwards, Massachusetts, the Opto-
Radar Systems group recorded a large database of
laser radar imagery of three vehicles—an M-48 tank,
an M-113 armored personnel carrier (APC), and an
M-110 howitzer. These vehicles were recorded at five
orientations with five range backgrounds by using a
transportable ground-based laser radar sensor that was
the forerunner of the airborne IRAR system. This
ground-based sensor allowed us to create a versatile
database for testing ATR system performance. Each
of the five background scenes consisted of sky, trees,
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Table 5. Classification Results for Three-Target Database of 18 Images

Number of Categories

Formed
BCS filled silhouettes 5
BCS maximum edge strengths 5
BCS summed edge strengths 4
Raw extracted target silhouette 3

or hillside, which we created by changing the locarion
of the ground-based sensor relative to the target.

We selected an 18-frame image subset of the Camp
Edwards darabase and processed this image subset
through the ATR system. This image subset consisted
of three frames of three targets at 750 m and 1000 m
in range. The 750-m imagery had a sky background

RANGE IMAGE PROCESSING

False ART-2
Alarms Vigilance
1 0.785
0 0.694
0 0.718
2 0.790

that provided infinite range contrast between the tar-
get and background. The 1000-m imagery had a
hillside background that had almost no range con-
trast because of the high depression angle between the
sensor and the target; many pixels in this imagery
were only one range count different from the target.

The detection algorithm of the ATR system lo-

ART2 NETWORK LTM TRACES

EDGE
DETECTION

LOG-POLAR
HAPPING

RANGE BCS
SILHOUETTE SEGMENTATION HOWITZER

=

e

FIGURE 15. Classification of laser radar range imagery into stable recognition categories by using the ART-2
neural network. The range silhouette is shown for three input images—a tank, armored personnel carrier
(APC), and howitzer—followed by the resultant image from the segmentation stage. The edge image is then
computed, followed by the result of the log-polar mapping. The right side of the figure shows the three LTM
patterns with a red box outlining the matched LTM category for the corresponding input. Note that the LTM
patterns are not identical to the input log-polar patterns, because they are an aggregate of all the inputs
classified with an individual LTM.
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cated and extracted 100% of the targets in the test set.
This result was not unexpected for the 750-m imag-
ery. There was significant range contrast in the scene,
so verticality measurements alone could be used for
detection and the size filter was not required to ex-
tract the target. In the 1000-m imagery, however, the
background was often only one range count different
from che target, which required the size filter to ex-
tract accurately the region of interest defined as the
target. A derection rate of 100% for the 1000-m
targets demonstrated the robust behavior of the de-
tection stage of the ATR system.

The ART-2 neural-network classification stage of
the ATR system properly classified 95% of the targets
into five stable recognition categories, as listed in
Table 5. Sixteen targets formed four categories (spe-
cifically, six tanks, five APCs, three 750-m howitzers
and two 1000-m howitzers), one 1000-m howirtzer
formed its own category, and one 1000-m APC was
erroneously classified as a tank and counted as a false
alarm. This performance is acceptable after careful
examination of the imagery. The tanks and APCs
formed relatively consistent invariant patterns for clas-
sification. The detected howitzers, however, were not

classified consistently because the detection stage ei-
ther included part of the ground plane or it removed
part of the targer body.

Figure 15 shows a sample classification result. The
images in the left column of the figure are the de-
tected silhouettes determined by using the range im-
agery of a tank, APC, and howitzer from the detec-
tion stage of the ATR system. These silhouettes are
processed by the segmentation stage, the edge strengths
are computed, and then the edge-strength images are
transformed into the log-polar domain, as shown in
the next three columns of the figure. The right side of
the figure indicates the three LTM traces created by
the ATR system after processing the nine 750-m im-
age frames. The red-box highlight indicates the LTM
trace with which that particular input image on the
left is matched.

Classification performance was investigated for a
set of variations to the baseline ATR system. The
baseline system uses the edge images computed from
the filled silhouettes produced by the segmentation
stage as the input to the log-polar map. The filled
silhouettes are produced by using the summed-edge
compression method. The variations investigated were

Table 6. The Effect of CNR on the Number of Categories

Formed for ATR System*
CNR (dB) Percent With Without
Anomalies Image Cleanup Image Cleanup

100 0.0 8 8

35 0.2 8 8

30 0.6 8 17

25 19 8 26

19 7.3 8

16 13.9 8

13 25.2 8

10 423 8

7 63.1 26

* Tests included eight vehicles (jeeps, trucks, armored personnel carriers, and tanks)

both with and without image cleanup
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the use of the maximum-edge image, the summed-
edge image, and the edge image computed from the
target silhouette produced by the derection stage. Each
of the variations is related to a reduction of processing
by either eliminating part of or the entire segmenta-
tion stage.

We describe the results of these variations to the
baseline system in terms of the number of categories
formed and the number of false alarms (false classifi-
cations) produced. The goal is to reduce both the
number of categories (i.e., produce better generaliza-
tion of the dara) and the number of false alarms. The
results given in Table 5 indicate that both the maxi-
mum-edge-strength image and the summed-edge-
strength image eliminate the false alarms while the
summed-edge-strength image also reduces the num-
ber of categories. The target-silhouette image further
reduces the number of categories while sacrificing
false-alarm performance.

These preliminary results indicate thac the classifi-
cation results are sensitive to the algorithms used in

the processing stages prior to the classification stage.

Additional results of tests using a larger database are
required before we can conclude that summed edge
strengths should be used exclusively as che input o

the log-polar map.

Effect of CNR on Synthetic Broadside

Target Recognition

In the first test we evaluated the effect of CNR on the
recognition of broadside targets. We performed two
individual experiments to determine the number of
categories formed without image cleanup and the
number of categories formed with image cleanup.
Table 6 shows the results of recognizing eight broad-
side vehicles (two jeeps, two trucks, two tanks, and
two APCs) that are synthetically generated with a
sensor of 100-urad angular resolution imaged at a
distance of 750 m.

Without image enhancement, a high ART-2 classi-
fier vigilance value was required to separate the eight
vehicles. This high value forced the classifier to form
multiple categories for each vehicle at a CNR value of

30 dB. The same result is obtained when image en-

FIGURE 16. Log-polar maps of tanks and APCs rotated out of plane. The log-polar map of the two tanks are similar
for the hroadside and near-broadside views but different for the head-on view. The same similarities and differ-

ences exist between the log-polar maps for the two APCs.
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(a) (b)

(c) (d)

FIGURE 17. Approximate angular extent of each category for recognition of log-polar maps of eight vehicles with out-of-
plane rotation; the vehicles are (a) two jeeps, (b) two trucks, (c) two tanks, and (d) two APCs. A total of 31 categories are
formed. Each category and its angular extent is depicted by the shaded patterns in the figure. Each vehicle requires only a
single category from the broadside view up to 45° of head on or greater. The majority of the categories are in the last 15° from
near head on to head on because the log-polar maps change the greatest in that region.

hancement is included, in the form of the Bayesian
preprocessor, at a CNR value of 7 dB. A typical
operational sensor value of 19 dB ar a distance of
1000 m indicates that image cleanup is a necessity.
For further details of the experiment and results, see

the report by S. Rak [19].

Out-of-Plane Rotation Recognition

A second test was performed to provide insight into
the number of independent categories necessary to
distinguish eight vehicles rotated out of plane from
broadside to head on (a 90° rotation) [20]. When
matched filters are used for recognition, we com-
monly create filters for every 5° of arc. This test was to
provide experimental evidence for the number of cat-
egories necessary for recognition. Again, we used the
same ATR system with the log-polar maps that we
used with the ground-based sensor data.

A visual depiction of the information passed to the

classifier indicates that inpurt to the log-polar maps
from broadside to 50° of head on are similar, whereas
the maps near head on change radically. Figure 16
shows the log-polar maps for two ranks and two
APCs at broadside, 50°, and head-on orientations.
Visually, Figure 16 indicates that more categories are
necessary for the near head-on orientations while only
a few categories are needed for the near-broadside
orientations.

The same test was performed with the eight ve-
hicles rotated from broadside to head on in 1? incre-
ments, which created 90 inputs per vehicle. The 720
aggregate inputs were then used to train the classifier,
which determined that only 31 categories were neces-
sary to distinguish the eight vehicles at any orienta-
tion from broadside to head on. Figure 17 indicates
the approximate angular extent of each of the 31
categories. Some vehicles require more categories than
others. A general trend seen in this figure is that only
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one category is necessary for each vehicle to distin-
guish the vehicles from broadside to approximately
45° of head on. This result agrees with the intuitive
understanding we have when viewing the log-polar
maps.

Resolution Requirements and the Johnson Criterion

A final test of the ATR system is the comparison
between the criteria indicated by J. Johnson [20] and
the resolution requirements for recognition and iden-
tification. Johnson’s work focused on determining the
imaging requirements of a sensor to produce a level of
discrimination and recognition for human observers.
The work consisted of psychovisual experiments on
U.S. Army personnel by using image intensifier imag-
ery that is similar in quality to passive-IR imagery.
The personnel were shown images of various vehicles
at various resolutions and asked to identify the ve-
hicles. The Johnson criterion is the number of pixels in
a vehicle’s minimum dimension (usually height) that
is required for a 50% probability of correctly identify-
ing the vehicle.
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FIGURE 18. Johnson-criterion test to indicate the number
of pixels necessary for identification of a target. In this
case the targets are two jeeps and an APC. The number of
cumulative categories formed for a set of training patterns
at each object height in pixels is shown for object heights
from 13 to 23 pixels. The increase in the number of catego-
ries from the baseline case height of 23 pixels indicates the
inability of the classifier to generalize the patterns. The
results shown in the figure indicate that the classifier per-
forms well up to 20% above the Johnson criterion of 13
pixels, as indicated by the dashed line in the figure.
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We performed an experiment with the spatial ex-
tent of each pixel as the variable; this experiment was
identical to the one on the effect of CNR described
above. Three broadside vehicles were used (two jeeps
and an APC) for the training, and the number of
pixels in the minimum dimension were varied from
13 to 23. Figure 18 indicates the number of catego-
ries formed as a function of the number of pixels in
the minimum dimension. For complex vehicle out-
lines such as the jeeps, the classifier performs well up
to 20% greater than the Johnson criterion for identi-
fication. For a much simpler vehicle such as the APC,
the classifier is more robust and can still identify the
vehicle at the Johnson criterion. For more details on
the methodology and interpretation of results, see the

report by Rak [19].

The ATR Evaluation Facility

Military applications require the use of ATR systems
in both semi-autonomous and autonomous modes
(in a semi-autonomous mode we believe in the recog-
nition capabilities of the ATR system enough for a
user to apply the results, while in autonomous mode
we let the system act on the results on its own). The
testing and acceprance of ATR systems for these mili-
tary applications has proven to be difficult. The re-
sources necessary to provide useful test results are
usually overburdening. Either we must use large
amounts of real sensor imagery, sometimes in mul-
tiple sensor modalities, for each given mission sce-
nario, or we must use synthetically generated dara.
The real sensor imagery requires expensive and time-
consuming efforts to gather the darta, while the syn-
thetic imagery places an inherent trust in the validity
of the sensor and target models used to generate the
synthetic data. The recent development, however, of
inexpensive computer graphics workstations and data-
processing engines has begun to change the emphasis
from measurement missions to computer-generated
data.

We are currently developing an ATR evaluation
facility (AEF) that exploits the recent developments
in computer graphics and data processing to provide
an effective test environment. This facility merges
high-resolution data, an electronic terrain board (ETB)
that combines sensor dara with synthetic rargets and
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sensor models, and an ATR system that is under
evaluation. The high-resolution data are taken in the
modalities of interest (laser, passive IR, and visible)
and stored in databases. The ETB uses the darabases
along with the sensor and target models to modify the
measured imagery for ATR-system sensitivity analy-
ses. This section describes the facility as well as cur-
rent research on its development.

Sensor

Description of the ATR Evaluation Facility

The AEF merges existing sensor data in multiple
modalities with synthetic data from sensor and target
computer models. Figure 19 shows the conceprual
flow of information in the AEE. The airborne IRAR
sensor suite, which is described earlier in this article,
collects high-resolution imagery in laser intensity,

Databases

MMW

Forward-looking laser radar

(intensity, range)
Passive IR
Down-looking laser radar |
(0.8-pm intensity, relative range)
Down-looking laser radar |l
(10.6-pm intensity, relative range)
Passive IR

Cleanup

o : :
r Detection

Segmentation

I Feature extraction

Invariant maps

Classification

ATR algorithms

Tactics, site,
sensors

|

Electronic terrain board

FIGURE 19. The ATR evaluation facility incorporates the down-looking and forward-looking sensor imagery databases,
sensor and target models, the electronic terrain board (ETB), and the ATR algorithm suite. Image databases and sensor
and target models are fused within the ETB, which allows us to modify target models and vary the measured backgrounds.
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range, passive IR, and MMW in a variety of wavebands
and view aspects. These data are stored in large data-
bases thart are used to refine the synthetic data created
from sensor and targer models.

The modeling efforts and the databases are merged
in the ETB. Most false alarms and missed detections
as well as missed classifications of targets are due to
the variability of background clutter signals. Model-
based systems and trainable recognition systems are
developed by using limited rtarget signatures only;
unfortunately, these systems do not develop internal
models for backgrounds as well. Therefore, we must
find a way to merge target signatures, which are pre-
dominantly models, with background clutter.

It is difficult, however, to model background sig-
nals because of their variable and unpredictable na-
ture. The background models are therefore the weak-
est link of a completely synthetic sensor image. The
combination of measured background imagery with
the more well-defined synthetic target models cir-
cumvents this problem.

Terrain Database

The down-looking laser radar sensor described earlier
provides high-resolution range imagery. This imagery
is a 2%-D representation of the actual terrain and
precludes the existence of speckle noise indicative of
intensity images. The 2%-D imagery contains the
range of the first object or part of object that is
interrogated for each pixel. Therefore, any part of an
object at a further range or area occluded is not
represented in the data. The 2%2-D notation indicates
that a ful! 3-D image is produced, although the way
we view the scene from above appears as if a blanket
were covering the objects in the scene. Only the high-
est point of a pixel that is interrogated is recorded;
any part of an object at a longer range or in an
occluded area is not represented in the data. For
example, a ball in midair viewed from above is repre-
sented as a hemisphere on top of a cylinder because
no information is available on the space below the
ball. Techniques for combining multiple views are
being investigated to alleviate this current limitation.

The down-looking sensor simultaneously measures
range as well as laser intensity and passive IR. The
existence of 2%4-D range imagery lends each of the
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sensor domains to coordinate transformations. As de-
scribed earlier, the ability to transform the range data
and subsequent pixel-registered passive-IR data al-
lows the sensor imagery to be used to train and test
ATR systems with many viewing aspects. The specific
method used for the coordinate transformation can
have a dramatic effect both on the requirements for
computation and, more importantly, on the quality
of the resultant image.

Traditionally, Euler angles have been used to repre-
sent coordinate transformations, and these coordinate
transformations can be expressed as 3-by-3 rotation
matrices. Because the computer graphics community
commonly uses rotation matrices, most of the special-
ized hardware developed to perform coordinate trans-
formations employs this method. This choice has been
motivated primarily by the fact that translation and
scaling as well as rotation can be represented by one
matrix. The same transformations, however, thar can
be performed by a matrix can be performed with
fewer operations by using quaternions [21]

An important consideration in the choice between
matrices and quaternions for coordinate transforma-
tions occurs when we interpolate between two orien-
tations. Rotation matrices are not well defined for
interpolations, because rotations are carried out by
three successive rotations about three fixed axes. Be-
cause these successive rotations are not commutative,
changing the order of the rotations produces different
results, which introduces a significant problem known
as gimbal lock. This problem occurs when the interac-
tion of two rotations aligns two of the three rotation
axes and causes a loss in one degree of rotational
freedom. Quaternions are free of this problem be-
cause the cross-product interaction between succes-
sive rotations is preserved [21]. Because of this rota-
tional stability, the aerospace industry for many years
has preferred quaternions over matrices defined by
Euler angles for spacecraft applications.

Because most compurter graphics workstations have
hardware that is specifically designed to implement
matrix transformations, we must continue to main-
tain all viewing parameters in marrix form. The AEF
system is designed to perform all interpolations by
using quaternions, which are then converted to ma-
trix form for rendering.
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To illustrate the use of quaternions for interpolat-
ing rotations we must first define whar a quaternion is
and how it is used to perform a rotation. A quater-
nion consists of two components—a scalar part and a
vector part. Consider a quaternion g = [, v], where s
is a scalar, and v is a vector of three elements. In
quaternion algebra, addition is defined as

Gtq = [(‘1 +5), (v, + vz)].

and multiplication is defined as

h2 = [(‘:‘2 =V V) gy + 55vp + v x "2)]-

where v, * v, is the vector dot product and v; x v, is
the vector cross product.

Before we can define rotations using quaternions
we need to define the inverse operation

q-i = —l_[-"! -v],

I’

where

g -

To rotate a point p we embed it into a quaternion as
(0,p]. Rotation is then defined as

v' = Rot(v) = qug™",

where g and g are unit quaternions.

One consideration associated with the use of quater-
nions for coordinate transformations is that rotations
are performed on the unit four-dimensional hyper-
sphere, so that, as a result, simple linear interpolation
berween two orientations gives unequal rotations
through the range of orientation values. The unequal
rotations occur because the great arc of a unit
hypersphere is the spherical equivalent of a line, and
the linear interpolation steps fall on unequal portions
of the line. These unequal rorations must be compen-
sated for to give a smooth set of intermediate trans-
formations. All of the interpolations between speci-
fied positions are performed by using unit quaternions
and spherical linear incerpolations, and then compen-

sating for unequal rorations [21].

Figure 20 shows an example of the transformation
of down-looking range data into various viewing per-
spectives. Starting with the range data shown in Fig-
ure 4, the range data are transformed and displayed as
sand-colored video data and synthetically generated
laser radar range dara in a viewing sequence typical of
a target interrogation. In effect, this series of transfor-
mations is like an observing eye on a flying carpeg; it
begins at a long standoff distance ar a high altitude, it
detects a possible target, it dives to a lower altitude,
and it flies along the road to the target. This series of
transformations demonstrates how down-looking im-
agery can be used to train and test an ATR system
with many viewing aspects.

Synthetic Laser Radar Imagery

An important element in the ETB is the combination
of synthetic imagery and modified sensor imagery.
Synthetic imagery is derived from targer and back-
ground models applied with the appropriate sensor
statistics. In some cases, actual sensor imagery can be
modified to degrade the quality of the imagery for
test purposes. Both of these cases provide the addi-
tional flexibility necessary for ATR evaluation. This
section describes the methodology used in creating or
modifying laser radar imagery.

The statistics describing a monostatic pulsed rang-
ing laser radar employing heterodyne detection are
described by Hannon and Shapiro [3], and were used
to develop a model for laser radar range data. This
laser radar model requires that we select the range and
CNR value for every pixel as well as the number of
range bins Q available to the signal processor. The
probabilities of an anomaly (equally distributed across
Q ~1 range bins) and for the correct range value are
given by

2
- fl'
P, =1- ¢ cnrel
(3

and

B, ==

*

where F; and 7} are the detected intensity prob-
abilities from the correct range bins and the wrong
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FIGURE 20. Down-looking laser radar data is transformed into a three-dimensional
terrain-map view. (a) Photographic ground truth of a camouflaged truck, (b) down-
looking laser radar image, and (c) a sequence of four views that were formed by
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Polygonal/planar
background models

Geometric target models

Sensor image

Synthetic range image

Statistical/chaotic
background models

Background CNR

A rr ¥ P T

Target CNR
Physical target models

FIGURE 21. Scene decomposition and synthesis of a laser radar range image. The original sensor image (upper center) is
decomposed into polygonal background (upper left); statistical, chaotic, or fractal background (upper right); facet target
models (lower left); and physical target-background parameters (lower right). A new laser radar image is then synthesized

(lower center).

range bins, respectively. These two probabilities are
used in conjunction with a random-number genera-
tor to provide two random draws. The maximum
value of the two random draws is selected as the
intensity /.

The application of the described statistics can be
demonstrated through an example. Figure 21 depicts
the decomposition of a sensor laser radar range image
into four primary parts. The background and rarget
models constitute three parts: polygonal background
models for relatively uniform terrain; statistical, cha-
otic, or fractal models for fragmented terrains such as
foliage: and the geometric target models generated

from wireframe or facer libraries (ERIM) or solid

geometry libraries (U.S. Army Ballistic Research Labo-
ratory). The physical target models, which are de-
scribed by the CNR for each pixel, are used to com-
pute the intensity and range value by using the Hannon
laser radar model [3]. In the example shown, a variety
of fractal dimensions were attempted and a best visual
fic was selected for the foliage. A uniform CNR value
of 17 dB (which is a typical value for imaging generic
terrain by the IRAR sensor at 700 m) was used to
generate the synthetic range image. The generated

image is visually similar to the original sensor image.

Summary

A flyable, multisensor system has the ability to mea-
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sure a combination of range, Doppler, laser intensity,
and thermal signatures in both the forward-looking
and down-looking aspects. Statistical advantages for
incorporating multidimensional information exist for
target-detection applications using theoretical analy-
ses and heuristic algorithms. The use of multiple sen-
sor modalities also provides some hope to address the
vexing issues of ATR.

A modular, hybrid ATR system has been described
that fuses statistical, model-based, and neural net-
work processing structures. The system has been tested
on laser radar range imagery as well as synthetic range
imagery incorporating pulsed laser radar statistics.
Results created by using the synthetic imagery indi-
cate that target identification can occur in imagery
with over 50% of the pixels corrupted by noise. Tests
with out-of-plane rotated vehicles indicate that a fi-
nite number of nonuniform angularly spaced projec-
tions can be learned by the system to provide target
identification. The current system can also provide
identification with sparial resolution as low as 20%
above the Johnson criteria.

To continue to test and evaluate complicated ATR
systems, an ATR evaluation facility is being constructed
to provide real, synthetic, and hybrid sensor image
input to a selected ATR. This facility uses the avail-
able high-resolution down-looking laser radar range
imagery and high-fidelity rarger models to generate
the various operational scenarios.
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