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• We are developing an evaluation facility that includes an electronic terrain
board (ETB) to provide an effective test environment for automatic target
recognition (ATR) systems. The input to the ETB, which is a high-performance
computer graphics workstation, is very high-resolution data (15 cm in 3-D)
taken with pixel registration in the modalities of interest (laser radar, passive IR,
and visible). The ETB contains sensor and target models so that measured
imagery can be modified for sensitivity analyses. In addition, the evaluation
facility contains a reconfigurable suite ofATR algorithms that can be interfaced
to real and synthetic data for developing and testing ATR modules.

A first-generation hybrid-architecture (statistical, model based, and neural
network) ATR system is currently operating on multidimensional (laser radar
range, intensity and passive IR) sensor, synthetic, and hybrid databases to
provide performance and validation results. A recent study determined the
sensor requirements necessary for target classification and identification of eight
vehicles under various view aspects, resolutions, and signal strengths.

This article presents a description of the infrared airborne radar used to
gather sensor data, a discussion of sensor fusion and the hybrid ATR measure­
ment system, and a review of the ATR evaluation facility. This article also
discusses the computer manipulation and generation of laser-radar and passive­
IR sensor imagery and the processing modules used for target detection and
recognition. We give results of processing real and synthetic imagery with the
ATR system, with an emphasis on interpreting results with respect to sensor
design.

T
HE BATTLEFIELD SCENARIO continues to grow
in complexity as the use of high-resolution
sensors and precision strike weapons has forced

the increased use ofconcealment and camouflage tech­
nology to improve vehicle survivability. The advent of
multidimensional sensors that trade individual sensor
performance for aggregate system performance and
automatic target recognition (ATR) systems that can
assist in or automatically identify targets also are a
threat to vehicle survivability. The understanding of
multidimensional sensors, the algorithms that are used

to process their data, and the manner in which they
are evaluated is necessary to determine their suitabil­
ity for military applications.

Unfortunately, the testing and acceptance of ATR
systems for military applications has proven elusive.
On one hand, many researchers are concerned that
not enough information exists in one sensor modality
to build an ATR system that performs effectively
against targets in natural and man-made dutter. On
the other hand, the use ofmultisensor information to
solve this vexing problem is relatively recent, and the
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results are limited. Although we have strong indica­
tions that several sensor modalities are bener than one
for target identification, no convincing database of

evidence exists.
At Lincoln Laboratory we have constructed a fly.

able muldsensor measurement system to tvaluate the
use ofsingle and multiple sensor modalities for search·
and-identification applicltions. This artide describes
the measurement system, which includes a fOrw2rd·
looking suite ofsensors, a down-looking suite of sen­
sors, and an MMW sensor. We also describe an ATR

system for processing laser radar range and intensity
imagery as well as other sensor modalities.

Testing the ATR system to quantify the perfor­
mance limits of the multisensor me:asurement system
is an important step in the development of useful
benchmarks and the: definition of radar requirements.
This article examines the performance tests we have
developed and provides a summary of test results for

spatial extent, image quality, and 3-D recognition
requirementS. An ATR evaluation facility is currently
under devdopmelH to provide an effective test envi-

ronmelH for ATR systcms. The inpulS to the facility.
which is a high-performance computer graphics work­
scnion and data-processing engine, are very high­
resolUlion data (15 em in 3-D) taken with' pixel regis~

tration in the modalities of inrerc,Sl (laser range,
ime:nsiry passive IR. and visible) and stored in data·
bases. An electronic terr;J.in board (ErB) combines
the datab~with sensor and rarget models to modify
the mC2Sured imagery for ATR sensitivity analyses_

The: Infrared Airborne Radar

The Infrared Airborne Radar (lRAR) is a flyable

multisensor measurement system (hat consists ofa set
ofactive and passive: infrared (lR) and active millimc=­
ter-wavc= (MMW) sensors. This system is installed in
a Culfsrream C-I twin turboprop tcst aircraft used by
uncoln Laboratory; Figure I illustratcs the locations

ofthese: sensors in the aircrarr. We are especially inter­
csted in the ability of the multisensor measurement
system to detect targers aUlonomously (i.e., without
human interaction with dle measurement system).

In the forward-looking sensor suire. the active laser

85.5-GHr MMW radar

~

Recording devices

.J

.""

Sensorconlrol panels Forward-looking radar
10.6-J1m active laser radar
8-to-12-pm passive IR

t
Down-looking radar

10.6-pm actIve laser radar
8-to-t2-pm passive IR
O.8-pm active laser radar

FIGURE 1. Schematic diagram 01 the multisensor measurement system on the Gullstream G-l
aIrcraft, showing the location of each individual sensor system. The two sensor sUltes-forward­
looking and down-Iookmg-are located in the aft section of the aircraft, the recordmg system and
electronic racks are located in the midsection, and the antenna lor (he MMW radar is located m the
nose. The forward-looking sensor suile is mounted on an opticallable and then relayed through a
pod on the fuselage, The down-looking sensor suite is housed enllrely 10 the pod aft of the forward­
lookmg sensor system.
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radar sensor measures absolute range widl a precision
of J m while the passive~IR sensor measures the ther~

mal intensity of the target and scene in the 8~to-12­

11m band. The down-looking sensor suite, which is a
multispectral active-passive sensor, has the ability to
measure relative range with a precision of 15 cm. as
well as the ability to measure passive-IR thermal in­
tensity. In addition, an MMW real-aperture measure­
ment system developed by General Dynamics of
Pomona, California, is installed in the aircraft. This
MMW sensor measures absolute range with a resolu­
tion of 0.5 m. and is slaved to cover the same search
area as the forward-looking sensor.

All the IRAR sensors reside on board the aircraft
platform. The heart of the IRAR system is located in
the center secrion of the aircraft. A radome cxtends
down from the center of the aircraft, allowing the
laser beam of the forward~looking sensor to exit
through a germanium window on the lefr side of the
radome. An additional window immediately to the
right of the germanium window is used by the mea­
suremellf system's boresigllled color television cam­
era, which is used to point the laser beam manually
and ro record a live sequence of the measured scene.

The radome was modified so that the down-look­
ing sensor could be placed immediately behind the
forward-looking laser-radar pointi ng-mirror assembly
and look straight down; the scan direction of the
down-looking sensor is therefore always perpendicu­
lar to the longitudinal axis of the aircraft. The MMW
system is sufficiendy small so that the I-Fr diameter
radar dish and the gimbal mount are mtally enclosed
within the nose cone of the aircraft.

F()rwnrd~L()oking Lma &dAr

The transmitter in the forward-looking sensor IS an
RF-excited, water-cooled. CO2 waveguide laser oper~
ating at 10.6 .um. In dle pulsed mode, the transmitter
laser provides a nominal 25-l1sec pulsewidth :u ap­
proximately 3-W average power at a pulse-repetition
frequency of20 kHz. In CW operation, the laser can
provide power in excess of30 W.

A 5-in di:unc{er, :lfocal, Ritchey-Chretien telescope
functions both as rhe transmit and receive aperture of
the sensor 10 produce a 200-wad diameter beam
(100-wad n:solution). The sensor uses twO linear J 2-

element arrays of HgCdTe photovolraic detectors:
one array for the active measurements and one for the
passive measurements. Registration of the active and
passive measurements is always assured because: both
arrays share the common telescope.

In the present configuration, the twO arrays are
oriented vertically to provide a 10° azimuthal cover~

age at 2.5 scans/sec in linescan mode. In a separate
framing mode (25.6 mrad by 12.0 mrad). the scan­
ning mirrors operate at 20 framesfse:c; when the pas­
sive channel is enabled. however, the recording rate is
reduced to 10 frames/sec because of recorder limita­
tions. Television images from dle boresighted TV cam­
era are digitized and stOred on computer tapes. Table
I shows selected system parameters for the forward­
looking sensor.

Figure 2 is an example of a laser radar range image
and a passive~1R image made simultaneously by the
forward-looking sensor. Two features in these images
arc panicularly interesting with respect to data fusion
and scene understanding: (I) the road that traverses
vertically in dle center of the scene is dearly visible in
rite passive-IR image in Figure 2(b) but invisible in
the range image in Figure 2(a) because the road is:u
the same elevation as the local ground plane. and (2)
although a tank (at the center left of the scene) has a
negative passive-IR contrast with the background, it
has positive range contrast in the active laser radar
image. We can overcome the measurement limita-

Table 1. Forward-looking Laser Radar
System Parameters

CO2-laser

Wavelength to.61lffi

Nominal power, CW 3fjW

Pulsed, average 3W

Number of detectors 12

Telescope aperture t3cm

Instantaneous field of view 0.2 rnrad

Range sampling interval Urn

VOIUIoI( r, ~Uln{ll InJ INtlINr.OlN tUORllOQl JOURUl 11')
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(.)

(b)

FIGURE 2. (a) Passive-IR imagery and (b) laser radar range imagery taken simultaneously al Stockbridge, New
York, by the forward-looking sensor. The passive·IR image in pan a is coded by thermal intensity, so that
warmer objects such as vehicles are brighter than cold objects. The range image in part b is coded by color to
distinguish objects at different distances from the viewer.

lions ofeach individual sensor by fusing the informa·
tion from the cwo sensors [Q provide enhanced detec­

tion capability.

Mi"im~ur-W1alJe Radar

To investigate the advantages of combining the out­
pur of cwo or more diverse sensors, we added the
General Dynamics 85.S·GHz real-apenure MMW
radar to the forward-looking sensor suite. This radar
has low cross-range resolution and high line~of~sight

resolution, and operates at 3.5 mOl. Table 2 lists the
operating characteristics of this radar. The MMW
antenna is mounted in the nose section of the aircraft

and is boresighted to the IRAR sensor suite during
pointing-mode operation.

The cross-range resolution of the MMW radar is
such that a 10° azimllthal field of regard is stored as
15 intensiry-versus-range profiles on each scan. The
oversampling that occurs in the down-range dimen­

sion is then used to enhance the processing statistics
for detection. The modulation characteristics of the
sensor are such that the line-of-sight range resolution
is 1.7 ft, while data are sampled at approximately half
this value, rhus providing the potclHial for excellent

range resolution on lhe target.

120 U[ II~COI~ liBOU10U J' "~·.II ~I' "I t ... tr~ 1 ,t'.l!

Figure 3 illustrates the range resolution of the
MMW radar in combination with a passive-IR imag­
ing sensor. Three logging trucks in the passive-IR

image in Figure 3(a) are each highlighted by a box.
The environmental conditions at the time the dam
were laken are responsible for the low passivc-IR con-

Table 2. Millimeter-Wave Radar
System Parameters

Operating frequency 85.5 GHz

Transmitter power 15mW

Modulation format FMCW

Antenna diameter 12 in

Antenna beamwidth 0.76°, one way

0.57" t two way

Range lesolution 1.67 h

PRF 1600 Hz

Noise figure 20 dB. including

system tosses
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FIGURE 3. (a) Passive-IR imagery and (bl boresighted MMW radar imagery. The MMW radar data are
displayed as a 3-0 plot of down-range, cross-range, and thermal-intensity values. The three logging
trucks indicated by boxes in the passive-IR image correspond to four of the five highest MMW radar
intensity peaks. Part b shows two peaks for the one truck in the center of part a because distinct returns
were obtained from both the truck cab and the truck bed.

[rast. If the MMW radar signal is displayed as a 3-D
image (cross~range. down-range, and intensity), how­
ever, as shown in Figure 3(b), then four of the five
highesl inrcnsiry peaks shown in rhe figure corre­
spond [0 radar returns from target locations. Two
peaks are determined in Figure 3(b) for the truck in
the center of Figure 3(a) because we obtained strong
distinct returns from both the truck cab and the truck
bed.

Down-Looking Ltu~r Radar

The multispecrral active-passive down-looking sensor
is a compact llIultiple-channel system that employs
two lasers for ;lctive detection and 3 single passive

detection channel. This sensor is configured with a
10.G-lllll amplitude-modulated continuous wave
(AMC\X') CO2 laser and a O.8-11l1l AMCW AJGaAs
diodc laser for the tWO active channels, which are.
corcgistcred with an 8-10-12-/1111 passive detection
channel.

The system W;lS designed with I-mrad ;lllgular reso­
lution to provide a 15-cl1l cube on the targer from an

optimal measuremenr heighr of 150 Ill. The act;ve­
channel lasers are modulated at IS MHz to provide
an AMCW waveform that translates to a IO-m range
ambiguity but provides IS-cm precision (i.e., the range
values are produced from 0 to 10 III in IS-cm incre­

ments and they fold over at the range boundaries).
Thus these measuremelltS are relarive range measure~

mentS with IS~cm precision, as compared with the
absolure range measurements of the forward-looking
sensor. Table 3 lists selected parameters of the multi­
spectral active-passive down-looking sensor, and Fig­
ure 4 shows five separate images produced by this
sensor during a flyover of the USS Connok.

The multispectral down-looking scnsor has rwo

characteristics of interest for the development and
testing of ATR systems: (I) the viewing aspecr allows
the imaging ofobjecrs in clutter rhat arc nor genenzlly
seen by forward-looking scnsors, and (2) the highly
precise range imagery gives us the capability to trans­
form ,he observed scene to :l variety of viewing ;lS­

pects. Figure 5 illustrates this process. Figure Sea)
containS;l phol'Ogr;lph of a rruck r11;lr is camouflaged

h ~Ull!!. I. 11~' lHt \l~COI~ lUORllon JOURNl( '21
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Table 3. Down-looking laser Radar
System Parameters

by ncning and parked on a dirt road in a forest.
Figure 5(b), which is the down~looking range image,
dearly shows lhe road and the truck, with the height
of the truck above the road encoded in color. Figure
5(c) is a computer-transformed Forward-looking range

Angular resolution

Range precision

Range ambiguity interval

Altitude range

Ground coverage

0.5 mrad, xand y axes

15cm

10m

400ftt01300ft

2000 ft al1000 ft

image of the camouflaged truck (rom a viewpoinr
that is juSt above the road. In this way. a down­
looking view can be used to develop or test algo­
rithms for a forward-looking or near-forward-looking
sensor through the use ofcoordinate transformations.
A more derailed description of how down-looking
data can be utilized for a variery of ATR evaluation
tasks is given in the section entitled "The ATR Evalu­
ation Faciliry."

Sensor Fusion

Figure 3 illUStrates the possible benefits of fusing
MMW radar imagery and passive-IR imagery. This
figure demonstrales that the MMW radar image can
be used to indicate areas o( interest in a co registered
passive-IR image. Other techniques that incorporate
the detection lists (rom both sensors usually fuse the
liSts by an OR or AND procedure; i.e., the target

10.6-pm laser radar

8-to-12-pm passive IR

_----- Intensity -------i...

~••ol------ Range ------l....

FIGURE 4. Example of imagery produced by the multispectral active-passive down-looking sensor during a flyover of the
USS Connole. This sensor produces co registered laser radar range and laser intensity images for wavelengths of 0.8 pm
and 10.6/lm, as well as an 8-tO-12-/lm passive-IR thermal-intensity image. Note the parked helicopler near the stern of the
ship in each of the sensor domains as well as the depiction of the ship's wake.

122 lHlll~COI~1l8DAllaRYJa~R~11 VQlUlJfC ~UYlrRI Iq~l
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(,) (b) (e)

FIGURE 5. (a) Optical photograph 01 a truek covered with camouflage netting on 8 road in a forest. (b) The relative range
image of the truck as determined by the multispectral down-looking sensor. (c) The 3-D spatial transformed image
illustrates the relative range image data in pan b as viewed from a depression angle similar to that of the optical photograph

in pan a.

and where R(nz, (!I) is the absolute range of that pixel.
and mg is the specific range value. Peaks in (he: 3-D
range-only hiStogram indicate regions of significant
verrical extent, or v(!rticnliry. in the image, and the
magnitude of the peak represents the vertical surface
area of an object in Ihe image. The property of verti~

cality is dTective for finding targets in open terrain; it
produces a large number of false alarms, however,
when applied in wooded areas.

The passive-IR rhermal intensity can be used as a
discriminant to separate trees from man~made targets
that have a significanr positive thermal signature. Pixel~

level fusion of the range image data and the passive­
IR image data is possible because each pixel of the
range and passive~1 R images is collocated. Each pas­
sive-Ill. pixel can be registered, according ro irs associ­
ated range value, to compute what we define as a
rfl1lgt-passivl!-IR histogmm.

The range-passive-IR hiStOgram is a 3~D mapping
of the sum of the passivc-IR intensities plotted in
cross-range versus down-range coordinates derived
from the pixel-registered r:tnge image. Figure 6 shows
an example ofa range-passive-l R histogram. In Figure
6(a), a passive-I R. imcnsity hist'Ogram is calculated for

must be detected at least on one list (OR) or on all
lislS (AND). The OR procedure produces a higher
likelihood of detection at d,c expense of a high false­
alarm rate. On the other hand, the AND procedure
has a low false-alarm rate at the expense of a lower
likelihood of derection. The next section describes an
AND procedure thal fuses sensor data (Q create a
range-passive hiswgram, and the following section
describes a maximum-likelihood fusion estimate for
object detection.

Rl1llgr-Pnssive-IR Histogrnm

Target cueing and detection can be accomplished
with range data alone, with a ..mge-only histogram,
or with a range-passive-IR histogram (which is cre­
ated by using an AND operation to fuse range and
passive-Ill. data registered:n the pixellevcl) [1\. The
range-only histogram is a 3-D mapping of the num­
ber of occurrences of a range value ploned in a coor­
dinate system of cross-range versus down-range. The
histogram is calculated by scanning the range image
pixel by pixel and adding one coum to the histogram
bin that corresponds to the pixel azimuth and the
pixel down-range value:

U(az,,/) - { ~
if R(az. tl) .. mg

otherwise
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each column, which corresponds to:l. particubr cross­
range value that uses bOth the: range: image to provide
the: coordinates for the histogram and the pixd-regis­
te:red passive:~[R image: for the: imcnsity values. An
azimUlh value: is sdcxte:d, and then we: scan the range

image pixel by pixd along th:\( az.imuth column, where
the range value for each pixd selects the histogram
range bin. The corresponding passive-IR intensity
vaille in Figure 6(b) is then added to that histogram

bin. In this way, a thre:c-dimcnsional histogram (cross­
range, range, passive-IR intensity) is created, as shown
in Figure 6(c). Peaks in the: histogram indicate objects
with venical extent (i.e:., lTees, buildings, and ve­
hicles) and with sufficient thermal conrrast with re~

spect to the background (i.e., running engines, heated

buildings).
This calclllation is wrinen as

HRP(nz,rng) - 2: P(ru,~1) x U(az,e/) ,
rl

Azimuth
(b)

Passive-IR Image

-"--..
~w --------.

Theoretical Study ofActive-Passive Detection
ofMlIltipixel7ilrgets

Research into thc development of a quasi-optimal,
singlc-sclISor dctcxtion processor for multi pixel laser
radar was done by M. Mark [2] and resulted in the
generation of receiver operating-characteristic curves
for this processor. Mark used a generalized-likelihood
ratio tCSt to estimate unknown parameters for a maxi­

mum-likelihood estimate. Complller simubtions with
benign synrhelicscclles, generated with uniform laser
intensity, range, and passive-IR v,llucs (or targel and
backgrollnd, were llsed to provide performance mea­
sures. Recent extensions of this work to mulriplc sell­
sor modalities (laser r;ltbr range and bscr intensity,

where U(nz, ef) is as defined previously and P(az,ef)
is its processed passive~IR intensity. Pcaks in the range­
passive histogram indicate regions o( vertical extent
that have positive thermal contrast.

Figure 7 shows how the r:tnge-passive histogram

algorithm was applied to an IRAR lincscan scene
takc=n at Fort Devens, Massachusclts. The linescan
scene contains the passive-IR image and laser radar
range image of three trucks and a motor generalor SCI.

The vehicles were not in ope:ration; their thermal
signature is due entirely [Q sobr headng. Figure 8
shown the resulting r:tnge-passivc histogram. The duec
largest peaks correspond to the three trucks in the

scene. For each peak, the truck posirion is now local~

i7.cd in cross+range and down-range. This example

dearly shows the value of fusing multiple sensor do~
mains at the pixel level with an AND operation,
which improves the probability o( delection and low~

ers the probability of false alarms.

Azimuth
(a)

Cross range (m)
(0)

Range/passive-IR histogram

1.2km

o =1.2kmrange

FIGURE 6. Schematic diagram of how the range image and
passive-IR image are mapped into a range-passive-JR his­
togram. (a) An azimuth value is selected, and the range
image is scanned pixel by pixel along that azimuth column;
the range value for each pixel selecls the histogram range
bin. (b) Thepassive-IR intensijyvalue from thecorrespond­
ing passive-IR image column is then added to the histo­
gram bin. (cl In this way a three-dimensional range-pas·
sive-IR histogram (cross·range, range, passive-fR inten­
sity) is created.

Range image

1_---------.
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FIGURE 7. A scene containing three trucks and a motor generator as imaged by (a) the
passive-IR sensor and (b) the laser radar range sensor in the forward-looking sensor suite.
The trucks and generator are clearly visible in Ihe center of the passive-IR image. The laser
radar range image depicts the objects as silhouettes standing out of the sloping terrain and
in the same location as in the passive-IR image.

FIGURE S. The result of processing Ihe data in Figure 7
With the range-passive-IR histogram. The down-range val­
ues are color coded in the same manner as lhe laser radar
range image In Figure 7. The four highest peaks corre­
spond fa the lhree tlUcks in the scene. These peaks would
cuo a classilicatlon processor 10 a region 01 interest.

p3ssive-IR rherr1l31 inrcnsilY) were accomplished by
S. Hannon and J. Shapiro [3J. The results of these
com pUler simulations, which were bIer confirmed by
cxperimenral data, indicate thal for a specified oper:n·
illg power such as rhe probabiliry ofdetection and the
probabiliry of false alarm. the required sensor sign31­
La-noise ratios were relaxed for a multisensor mea­
surement systcm over a single sensor systcm.

Figure 9 depicts lhe sensorltarget requirements for
a IO-pixel target (2 pixels by 5 pixels) on a 1000-pixel
image (20 pixels by 50 pixels). The target size can be
scaled to simulate a tank-siz.ed vehicle at a distance of
approxim:uely 5 km with a sensor field ofview (given
a 6° depression angle) of 15.000 m2. Figure 9 indi­
C:Hes the sensor requirements for deTecting 99% of
lank-sized vehicles at 5 krn with a false-alarm r.ue of
10-3, or of 0.1 km-z. Because the simulations were
done on idealized scenes, however, the results are not
directly transferable TO a specific sensor design. The
trends still indicare a reduction for either passive-! R
signal-to-noise ratios (SNR) or laser radar carrier-to­
noise ralios (CNR) when :l combination of rwo sen­
sors is employed.

¥O\U~1 G NUIlU~ 1 \:193 lHlllHCOIH tnOHll0RY JOUUIt 125
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4.0 12.0 15.0

Active system (CNR in dB)

Sensorltarget requirements
Probability of false alarm:: 10-.3

Probability of detection:: .99
10.0 r------'-----.------,

Modular ATR Sysum Conap'

The unambiguous range image is first proces~d by
[he cleanup stage to reducc drHa anomalics and en­
hance the image. The cleanup stage :mempts to rc-

construct the most probable input image that would
produce the measured sensor imagc. This reconstruc·
tion clarifies the image appearancc, and makes the
returns from the various objccts in the scene appear
more cominuous and complete by reducing sensor
and scenc artifacts such as dropoutS and anomalies.

Next, the enhanced image is processed by the de­
tection stage to identify corrcctly sized regions of
constant range as poremial targcts. The detection stage
extracts these regions from the background clutter
and removes the ground plane. TIle detectcd target at
the OUtput of this smgc is a silhouette consisting of
multiple fragments and rough boundaries.

The multiple fragments arc combincd by the seg­
mentation stage inro a complete, smooth, filled sil­
houcttc. The completed silhouette is then separated
by the feature extraction stagc into feature regions
(c.g., barrel, turret, body, and tread for a tank). For
this article, lhe entire targct silhouette is considcred
the singlc feature. The silhouenc is then mapped by
the invarialll-mapping stagc into an abstract pattern
that is invariant to translation, roralion, and scale
within the sensor field of view. This invariant pattern
is processed by thc classification srage, which inirially
learns to clUSter the invariant maps into groups and
then, after the training cycle, classifies the input data
with respcct to its learned categories.

Imag~ Ckmlllp

To provide adequate recognition performance in a
noisy environmcnt, the cleanup stage must be capable
of using prior knowledge to rcstore measured images.
We present here an image·restoration modellhat quan­
titatively incorporates prior knowledge of the mea­
surement process and scene. The model is based on a
Bayesian formulation using Markov random fields, as
introduced by S. Cernan and D. Cernan [4]. The
proccssing is massively parallel because the Markov­
random-field assumption allows the image to bc
decoupled into a large number of connected local
neighborhoods, cach of which can be proccssed inde·
pcndently. The local-neighbor information is spread
out in time such lhal a global image rcstoration is
effecled when the image-restoration system reaches a
steady state.

Real-lime image restoration is possible by using

Range only

Passivelrange

Passivelrange/
intensity

Hybrid ATR System

We have developed ATR processing modules for the
primary sensor groups described previouslYi these
groups are laser radar imensiry, range, passive-I R ther­
mal intensity, and MMW. Although the individual
processing modules ca.n vary among sensor groups,
the general processing structure has the same sequence
of stages: cleanup, detection, segmentation, feature
extraction, invariant mapping, and classification. The
general ATR system was originally developed to oper­
atc on laser radar range and intcnsity imagcry, and [he
results presented in this article are based on this imag­
ery. Figure 10 illustrates thc processing modules for
the range-imagery recognition system; lhis systcm is
described in morc detail below.

FIGURE 9. Sensor/target requirements for multipixel tar~

get detection using the generalized likelihood ratio test for
single and multiple sensor modalities to detect a tank-size
target at 5 km with a probability of detection of 0.99 and a
false-alarm rate of 10-3 per image or 0.1 km...:<' [3]. A 7-db
SNR is required for a passive-only sensor system, and a
12-dB CNR is required for a laser radar range-only sensor
system. The SNR and CNR requirements are relaxed for a
combined passive-range sensor system or a passive-range­
intensity sensor system.

iil Passive only
~ 7.0 """=:---'-'=-'-':.:.::.:.:---1-----1
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Detection

Invariant maps

Classification

FIGURE 10. The si. processing modules of the range Imagery-re<;ognilion system: cleanup 01
sensor artifacts, detection of potential targets, segmenting targets to improve image characteris­
tics, elttraction of relevant features, invariant mapping ofleatures to remove translation and rotation

elle<;ts, and the classification of features into target categories.

the model wid, a massively parallel sinl;le-insrrucrion
muhiple-dara (SIMD) cam pUler such as the Connec­
tioll Machine or a direct hardware implcmenr:l.lion
on a custom microprocessor. A more derailed descrip­
tion of the image-cleanup process is given in this issue
in the ;micle by Murali M. Menon entitled "An Effi­
cient MRF Image-Restoration Technique Using De­

rerministic Scale·Based Optimization."
We applied the image-cleanup process to a simple

synthetic image corrupted with noise according to a
measurement model described in the liter.l.ture [3].
The noise docs not have a Gaussian distribution and
is based on realistic sensor measurements. The origi­
nal noise·free synthetic image has a simple geometric
shape at a consrant pixel value, with a background
that linearly increases in pixel value from the tOP of
lhe image lO the bottom. Figure II (a) shows lhe
uncorrupled image, while Figure 11 (b) shows lhe
image with 70% of the pixels corrupted with noisc.
The origmal image has 256 gray levels. :md the noise

spans rhe entire r:lIlge of possible pixel values. Except
for a few discrepancies at the boundary, lile reStOra­
tion shown in Figure 11 (c) is Ilearly perfect, especially
the recovery of the siopilll; background.

Tttrgu D~UClioll

The detection stage of the ATR processing SySl'em
extracts target-like regions from me enhanced range
image produced in lhe deanup stage. The process
occurs in three phases: (1) regions of imerest arc
selecu:d, (2) clfget-Iike objects are detected, and (3)
objccts arc extracted from the scene. Regions ofimer­
CSt arc located by using range-only or range.passive­

IR histograms, as previously described in the article.
The peaks of these histograms indicate regions of
signiflcant vertical extent {i.e., constant r.l.nge: with
varying elevation}, or a significant thermal signature
with some vertical extent. 111e selected regions arc
searched for areas of constant r.l.nge that have range

contrast with their neighbors and 3re similar in size

, 127
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FIGURE 11. The effect of processing a synthetic laser radar range image of a geometrical object with Ihe image-cleanup
neural network. (a) The original noise-free image, (b) the image with 70% of the pixels corrupted with noise, and (c) the
restoralion of Ihe original image from the corrupted image with only a few discrepancies at the image boundary.

(both in absolute height and width) [0 a target of
interest. The target.like region is then separated from
the background by selecting only the pixels with lh:u
range value. The object is then enracted from this
selected image by computing and removing the ground

plane.
Figure J2(a) shows the initial range image of an

M48 tank at 700 m and the subsequcnt dctection
result rhat was formed by llsing the previously de­
scribed range-only histogram and removing the ground
plane=:. Figure 12(b) shows the M48 rank afrer the
cleanup stage and detccrion stage of processing.

(al

S~gmmtatjoll

The segmentation stage of [he ATR system smooths
[he boundaries and comple=:tes the fragme=:n(s of [he
detected potential target. The boundary-contour sys­
tem (BCS), a subsystem of a visual processing theory
developed by S. Grossberg and E. Mingolla [5], is
used to gene=:rate the perceived segmentation of the
potentiallarget, with respect to illuminance conwms.
The BCS system consists of twO stagc=s: an oriemed­
contrast (OC) filter and a cooperative-competitive
(CC) loop. The=: OC filter measures local luminance

(bl

FIGURE 12. (a) The initial range image of an M48tank; (b) the subsequent detection result that was
formed by using the range-only histogram and removing the ground plane.
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differences, or edges, within an image at a number of
differe=:nt orientations. This filter models the orie=:nta­
tion-sdective cells discovered by O. Hubel and T.
Wiesel (6] in the human visual system. These ori­
ClUed edge strengths are then allowed to compete and
coope=:rate=: with one anocher in the CC loop to gener­
ate the perceived boundary contours.

The four layers of the CC loop consist of twO
competitive layers, one cooperative layer, and a fee:d~

back layer. The first competitive layer thins and sharp­
ens boundaries within the image by allowing compe­
tition fot dominance in the final boundary
segmentation be[Ween neighboring edge strengths of
the=: same orie=:ntation. The second competitive=: layer
straightens jagged or noisy boundaries by allowing
competition be=:rween edge-contrast strengths with dif­
fering orientations at the=: same location. The=: coopera­
tive layer completes and connec[S boundaries by al­
lowing edges of like=: orientation to cooperate over a
distance in the image. The feedback laye=:r introduces
into the system any new boundaries formed by the
cooperative layer.

The=: OC filter is implemented by convolving a set
of orienrationally tuned digital filters with the inpur
image. The CC loop is modele=:d by using a set of four
coupled nonlinear differential equations for each ori­
entation and location within an image. Input to the
CC loop is static; therefore, the boundary is com­
plete when the system of differential equations is in
equilibrium.

The BCS algorithm has been previously applied to
laser radar imagery as reported by Kolodz.y et al. [7]
and by E. Van Allen [8, 9]. Figure 13 shows an
example of BCS processing on the range image of an
M48 tank. The inpur range silhouette in the uppe=:r
left of the figure is the input to the segmentation
stage. The range-silhouerce image is sampled lO ob­
tain the oriented connasr strengths by using the OC
filter in each of rwdve orientalions. These oriented
concrast strengths are then processed by the CC loop
to produce rwelve new images, which are compressed
into a single image by using one of nyo methods: (I)
compute the maximum COntrast strength of any ori­
emation at each pixel loc:nion (upper right of Figure
13), or (2) sum the contrast strengths across all the
orientationS:ll each pixellocatioll (lower lefl of I~igllre

13). The compressed image is then filled to form a
completed and smoothed silhouette of the potential
target forclassificarion. The specific filled image shown
in the lower right of Figure 13 is the result of using
the summing method for compressing the results of
the CC loop.

Ftiltur~ Extraction

In general, the filled and smoothed image provided
by the segmentation stage of the ATR system is then
used to extract relevant features for classification. Many
different feature domains (images or vectors) such as
image geometry, object pares, fractal dimensions, dis­
tance of hot spotS from the central locations, and the
Hough transform can be used and are part of on­
going research.

In particular, model-based systems have bee=:n de=:­
veloped at Lincoln Laboratory to parse images inco
geometric features (such as circles, squares, rectangles)
and subsequently classify those features into target
features (such as barrel, hull, turret). These model­
based systems are discussed in the=: article by]. Verly et
al. entitled "Machine Inrelligence Technology for Au­
tOmatic Targer Recognition" [10]. The use of model­
based systems for feature extraction in this ATR sys­
tem has been evaluated previously by D. Dudgeon et
al. [11], and they are not discussed further in this
anicle. For our purposes, Ihe pixd image proyided
by the segmentation Sl'age is used as the fearure for
classification.

Invariance. Mapping

The segmented silhouette is spatially mapped to elimi~

nate translation, rotation, and scale variations prior to
classification. An invarianc silhouette is therefore built
directly inca the classifier memory to form a single
compact represenration for the target. This invariance
reduces the number of stOred patterns from one pat­
tern for each of several terrain angles and ranges to a
single stored pattern, which reduces memory require­
ments and search times and improves efficiency. In­
variance can be obtained by using the following pro­
cess: (1) locale lhe segmented silhouette in the field of
view, (2) detect the silhouette edges, and (3) spatially
map the silhouette edges. The resultant absrr:Ict pat­
tern has the desired invari:mce and is processed di-
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FIGURE 13. Segmentation of a laser radar image of an M48 lank with the boundary-contour system (BCS)
showing smoothed boundaries and connected segments. The image in the upper lett is the original segmented
range silhouette. The result of applying the BCS using the maximum-contrast edge-strength method is shown in
the upper right and the result using the summed-contrast edge-strength method is shown in the lower lett. The
summed-contrast edge-strength result was then filled and is shown in the lower right.

rectly by rhe classifier in the next stage.
The target silhouette is loCi ted in the plane of the

field of view by calculating a position-weighted sum,
or umro;d, of its pixel intensities. The cenrroid of the

segmented silhouette is then used as the origin in the
spatial mapping that follows.

The silhouette is next detectcd for edge strengths.
The edge-dctection algorithm uses comrasHensitive
orienred clliptical receptive fields. In this approach,
the receptive fields are passed over the image to sum
the pixel cnergy present in the area centcred around
each pixel. The major axes of the elliptic.'ll receptive
fields are oriented in as rmll)' as twelve directions to

calculate edge suengrh as a funcrion of orientation.
The outpUt at e3ch pixel in the edgc image is the
output value of the Strongest receptivc field orienta­
rion at that pixel. Because edge detection by reccptive
field processing is comput3fionally intensive, there is
,I trad<:-offberwecn oricm:Hion :lCCllraey and proccss-

1JU I " .n: '; j ,!UU!O~, JOIIJUL ~mU\ll 6 ~ul·!r. 1 1'93

ing time. The work described in this :mide was satis*
facwrily accomplished by using four oriclHadons for

the receptive fields.
The spatial-mapping function provides target rota­

tion and scale invariance within the plane of the field
of vicw. The function used in this work is a log.polar

mapping of the edge-strength image about its cen­
troid, as shown in Table 4. The log-polar mapping is
biologically inspired by the visual field mapping of
the human visual cortex, as dcmonstrared by E.
Schwartz [12].

The log-polar mapping transforms the edge-de­
rected range slice to a log-radius, polar-angle coordi­

natc systcm by using dle cenrroid of the silhouene as
its reference poinr. Determining Ihe locadon of the
image centroid is important because the accuracy of
the log-polar mapping is often highly sensirive to
errors ill the position of the centroid. Tests using
noisy silllu!:Hed imagery, however, have shown the
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Table 4. Invariant Mapping of Silhouette Edge Strengths for Translation, Rolation,

and Scale Invariance in the Sensor Field of View

Translation

Rotation

Scale

Pixel centroid locates origin lor

mapping log radius and polar angle

Rotation in field of view is mapped

to shift in polar angle

Scale (or range) is mapped to

shift in Jog radius

.2 ~po".~.,ng,.
"'tl ... ~ " '.,
<tI '" ,
;;''''\',,/
.3 '. : :

•V\npo""og,.,
~ / ,'_.',

~ ..,/ , ..
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centroid calcularion and log~polar mapping to have
robust behavior,

The log-polar mapping around the centroid of the
target maps rorarion in rhe field of view to a shift in
polar angle, while it maps range to the target as a shift
in log radius. This mapping is insensitive to rotarian
and scale variations; cross~corrclation with an un­
rotated, unsealed log-polar mapping gives an estimate
of rhe amounr of rotarron and scaling presenr in the
detected silhouette.

Another method far making the log-palar map­
ping invariant ta rot:llion and scale in the field of
view is to calculate the magniwde of its Fourier trans­
form. The shift property of the Fourier transform
eliminates the rotation and scaling shirrs of the log~

polar mapping by treating the mapping as a periodic
functioll, as reponed for laser radar range imagery by
Kolodzy et aL {71. While this method has merit, it
will not be discussed funher here; it is the subject of
other research li 3],

Cbmifimtion

In the final stage orthe ATR system,:l neuralnetwark
is llsed ro cl:lssify the abstract invariant lllaps into
potcmi:ll target categories. The adaptive resonance
Iheory (ART) developed by G. Carpemer and S.

Grassberg 1141 defincs a cla.~s of unsupervised neural
network classifiers that cluster an N·dimensional in­
put vecror into a finite nUlllber af stable categories.
This clustering is a necessity ir large training sets are
ro be used.

Supervised nctworks :Ind/ar model-based sysrcms
require exact knowledge of rhe target, or ground trllth,
ror each exemplar. For IllOSt large systems, thousands
(or millions) of training rrames would need to be
ground trmhed, which is a daunring if not impracti­
cal task. The ART-2 network, which is illustrated in
Figure 14, is basically a two-level correlation classifier;
this algorithm has been discussed by R. Lippmann
(151 and Menon and Kolodz)' [16] to be similar (Q

the K-means clustering algorithm.
The ART-2 network is different from early ART

structures because it is designed to classify analog,
rather than binary, inpur patterns (17]. This analog
capability requires a robust structure that pays Strict
attention to memory stability, The ART-2 network
classifies and stores patterns in the following manner,
The firSt byer (F1) normalizes the input with respect
[0 the feedback signal rrom the second layer (F2),
becoming a l!Jo/'t-urm mnllo1y(STM) trace, This trace
activates nodes in the second byer proponianal to the
magnit'Ude of itS corrcl:ll;an wirh the corresponding
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...... ;.;. Vigilance
F' '~.~~--:~o-~' reset

l TM traces
-;~l;(... /

Fl

Stabilization

Input ..

• Generalized mean processing nodes

• Normalization nodes

lTM
feedback

FIGURE 14. Processing diagram of the ART-2 neural network. The input
image is presented and stabilized by the node-level processing in the FI
layer; the result is then correlated with stored long-term memory (lTM)

patterns in the F2 layer. If the resultant correlation is not large enough
with respect to the vigilance parameter, a reset signal is propagated as
feedback down to the Fl layer. If none of the l TM patterns are sufficient,
then a new l TM pattern is formed.

stored memory patterns, or long-unn m~mory (LTM)
traces. If thc degree of match bet'\veen the normalized
input STM trace and the LTM trace associared with
the most highly activated node in F2 passes a vigi·
lance parameter, the STM trace in FI is learned onto
the LTM tra~. thus sroring the differences bClWeen
these memory traces. Should a mismatch occur, a
reset signal causes the input pattcrn to select another
LTM catcgory. If no cxisring LTM arcgory an be
found that matches rhc input pattern, a new cucgory
is creatcd, which illustrates thc ability of the ART-2
net'\vork to respond to a novel signal. Gencrally, simi­
lar patterns arc categori7.e:d togcther because of high
imcrpattern correl.:uion, and these patterns cominu­
ally activate the samc Cltegory node in F2.

The [mal step of the classifier training is to associ­
:lIe target labels with LTM tt:lces. Each LTM trace for

an individual target is provided a labc! unique to that
targer. Multiple LTM traces for an individual target
are formed because ofcither different views or statisti~

al variability of the target. For examplc, a rank at a
head--on perspective looks differem from a rank at a
broadside perspeaivc, and thus would form twO die·
ferenr cHcgories. Also. at a low SNR the signal could
change significantly enough to cau.sc the classifier to
form a newatcgory ifit is presented with a new noise
structure.

Interpretalion of ResultS

The performance of an ATR system can be indicated
either by the score ofeach individu31 processing mod­
ule or by the overall system score. This article uses the
overall system score as a measure of results, with :t.

higher concentration on the capabilities of the c1assi-
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fier. For supervised classifiers, the performance is com­
monly measured by the number of correct responses
of the system when it is given a resr ser of input
images. The ATR sysrcm presented here incorporates
an unsupervised classifier, which uses a larger variety

of performance measurcs. This article uses a scoring
method based on the number and population distri­
bution of categories created by the classifier during

ttaLllmg.
Unsupervised classifiers are gcnerally cluslering al­

gorirhms rhat group input feature vectors into a finile
number of categories. A user-defined distance metric
is used to det'C:rmine whether an inpUi veClor is to be
clustered, or matched, with an existing category. The
number ofcategories produced (given a specific rrain­
ing set) indicates the abiliry of the classifier to gnurnl­
iu. A classifier responding with more lhan one cat­

egory for an object is not unreasonable if the features
the ATR is extracring change significantly. For lhe
ATR system presented here, this change in features
occurs for the log-polar map when the vehicles are
rotated out of plane. A classifier that requires only a
few categories to perform recognition is desirable.

Two measures of a classifier's ability to generaliu:
are currently being used: (I) the num~erofcategories
required for a given training set, and (2) the number

of populated categories formed for the same training
set. The differences between these twO measures arc
found in the interpretation ofsparsely populated dus­
ters or categories. For example, if 100 inputs produces
five categories populated by 95, 2, I, I, and 1 ex­
amples, respectively, then either five separate catego­
ries or one single category with five incorrect re­
sponses are necessary.

The trade-offs of these measures are identical ro
those for fielded ATR systems: performance versus
hardware requirements. If every vehicle needs to be
recognized, then all possible variations, including those

categories individually populated, or out/im (those
vari:nions whose characlerisrics are rarely v;ewcd), are
required to be modeled and retained in the ATR
system. It is possible. as shown by the 100 input
examples above, that a significant reduction in the
hardware requircments (i.e.. memory) of the system
can be obtained by allowing a certain reduction in
rccognil'ion capabilily.

Evn/untiom Using Laser Rndnr/mllgcry

We have investigaled Ihe ability of this ATR system to

classify laser r:ldar l'ange imagery of v:lrious military
targets correctly. This system has bcen tcsted on a

limiled amount of imagery obtained with gl'ound­

based sensors buill by the 0plO~lhd:l.rSystcms group
at Lincoln Labor:uory. Thc results of these tests are
presented below.

The full cap:l.bilities (and deficiencies) of an ATR
system, however, must :t1so be determined, and this
dererrnin:ltion is possible on I)' th rough exhaustive teSI~

ing requiring large amountS of sensor d:lla. Many
conditions can be tested to determine the capabilities
of the ATR system; we lIsed three conditions: (I)
CNR, (2) our-of-plane rotation, and (3) number of
pixels on targel. Unfortunately, the amoum of sensor
data required to test these three conditions thoroughly
by using real sensor data is prohibitive in both time
and COSt. The usc ofsynthctic ill1agery to place bounds
on system capabilities is the logical allernativc.

Synthetic laser radar rnnge target imagery was gen­
erated by. using Environmental Research Institute of
Michigan (ERIM) wire-frame models of a variety of
military and non-military vehicles. Background im~

agery was generated by using a nat ground plane
projected with the attack angle of the sensor. Perfect

object extraction from the ground plane was assumed
for this study. Sensor statisrics (e.g., noise) were added
by using the laser radar range and imens;ty models
developed by J. Shapiro et al. {18, 3 ,4]. This proce­
dure was used to generate targets for the three test
conditions listed above.

Ground-Based Sensor DII/a and Results

In 1981 at Camp Edwards, Massachusetts, the OptO­

Radar Systems group recorded a large database of
laser radar imagery of three \'ehicles-an M~48 tank,
an M~113 armored personnel carrier (APC). and an
M-IIO howitzer. These vehicles were recorded at five

orientations with five range backgrounds by using a
transportable ground-based laser radar sensor that was
rhe forerunner of lhe airborne lRAR system. This
ground-based sensor allowed us ro create a versatile
database for tesling ATR system performance. Each
of the five background scenes consisted of sky. trees,

13,"}
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Table 5. Classification Results for Three-Target Database of 181mages

Number ofCategories False ART-2
Formed Alarms Vigilance

BCS filled silhouet1es 5 0.785

BCS maximum edge strengths 5 0 0.694

BCS summed edge strengths 4 0 0.718

Raw extracted target silhouette 3 2 0.790

or hillside, which we created by changing the location
of the ground-based sensor relative to the target.

We selected an IS-frame image subsct ofdte Camp
Edwards database and processed this image subset
through the ATR system. This image subset consiSted
of three frames of three targets at 750 m and 1000 m
in range. The 7S0-m imagery had a sky background

that provided infinitc range contr:1.SI between the tar­
gel and background. The 1000-m imagery had a
hillside background that had almost no range con­
trast because of the high depression angle betwecn rhe
scnsor and the target; m:lny pixels in this imagery
were only one range COUIH difl"crcm from rhe mrget.

The detection algorithm of the ATR system 10-

FIGURE 15. Classification of laser radar range imagery into stable recognition categories by using the ART~2

neural network, The range silhouette is shown for three input images-a tank, armored personnel carrier
(APC), and howitzer-forrowed by the resultant image from the segmentation stage. The edge image is then
computed, followed by the result of the log-polar mapping. The right side of the figure shows the three LTM
patterns with a red box outlining the matched LTM category for the corresponding input. Note that the LTM
patlerns are not identical to the input log-polar pallerns, because they are an aggregate of all the inputs
claSSified with an individual LTM.
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cated and eX[racted 100% of the targets in dle test set.
This result was not unexpected for the 750-01 imag­
ery. There was significant range contrast in the scene,
so verticality measurements alone could be used for
detection and the size filter was not required to ex­
u<l.cr the target. In the 1000-m imagery, however, the
background was often only one range count different
from the target, which required the size filter to ex­
tracr accurately the region of interest defined as the
target. A detection rate of 100% for the IOOO~m

targets demonsuated the robust behavior of the de­
tection stage of the ATR system.

The ART-2 neural-network classification stage of
the ATR syStem properly classified 95% of the targets
imo five stable recognirion categories, as listed in
Table 5. Sixteen targets formed four categories (spe­
cifically, six tanks, five APCs, thtee 750-m howitzers
and twO 1000-m howincrs), one 1000-m howincr
formed its own category, and one IOOO~m APC was
erroneously classified as a tank and counted as a false
alarm. This performance is acceptable after careful
examination of the imagery. The tanks and APCs
formed relatively consistent invariant patterns for clas­
sification. The detected howitzers, however, were nm

classified consistendy because the detection stage ei­
ther included parr of the ground plane or it removed
part of the targct body.

Figure 15 shows a sample classification result. The
images in thc left column of the figure are the dc­
tec['ed silhouettes determined by using the range im­
agery of a tank, APC, and howit'zer from thc detec­
tion stage of the ATR system. These silhouettes are
processed by the segmentation stage, the edge strengths
are computcd, and then the edge-strength images are
transformed into the log-polar domain, as shown in
the next duce columns of the rigure. The right side of
rhe figure indicates rhe three LTM traccs created by
the ATR system after processing the nine 750-m im­
age frames. The red-box highlight indic:ues the LTM
trace with which thar particular inpul image on the
lefr is matched.

Classification performance was investigated for a

set of variations ro the baseline ATR sysrem. The
baseline system uses the edge images computed from
the filled silhouettcs produced by the segmentation
stage as the input [Q the log-polar map. The filled
silhouenes arc produced by using the summed-edge
compression method. The variarions ilwestigated were

Table 6. The Effect of CNR on the Number of Categories
Formed for ATR System-

CNR(dB)

100

35

30

25

19

16

13

10

7

Percent With Without
Anomalies Image Cleanup Image Cleanup

0.0 8 8

0.2 8 8

0.6 8 17

1.9 8 26

7.3 8

13.9 8

25.2 8

42.3 8

63.1 26

• Tests Included eight vehicles (jeeps, trucks. armored personnel carriers, and tanks)
both with and without image cleanup
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the usc of the maxirnulll-edge image. {he summed­
edge image, and the edge image compmed from the
targcl silhouette produced by the detection stage. Each
of the variations is related to:I reduction of processing
by eithcr eliminating pan of or the entire segmenta­
non stage.

We describe the results of these variations to the
baseline system in terms of the number of categories
formed and the number of false alarms (false classifi­
cations) produced. The goal is to reduce both the
number of categories (i.e., produce better generaliz.a­
tion of the data) and the number of false alarms. The
resultS given in Table 5 indicate that both the maxi­
mum-edge-strength image and rhe summed-edge­
strength image eliminate the false alarms while the
summed-edge-st{ength image also reduces the num­
ber of categories. The rarget-silhouerre image further
reduces the number of categories while sacrificing
false-alarm performance.

These preliminary results indicate that the classifi­
cation results arc sensitive to the algorithms used in
the processing stages prior to the classification stage.

Addirional results of tests using a larger database are
required before we can conclude that summed edge
strengths should be used exclusively as the input to

the log-polar map.

Effict ofCNR on Synthetic Broadside
"[;zrget RUO~litioll

In (he fim (CSt we evaluated the effect ofCNROll (he
recognition of broadside targets. We performed tWO
individual experiments to determine the number of
categories formed without image cleanup and the
number of categories formed wirh image cleanup.
Table 6 shows the results of recognizing eight broad­
side vehicles (tWO jeeps, tWO tfucks, twO tanks, and
two APCs) (hal are symhetically generated with a
sensor of 100-wad angular resolmion imaged at a
distance 0(750 m.

Without image enhancement, a high ART-2 c1assi­
fief vigilance value was required to separate the eighf
vehicles. This high value forced rhe classifier to form
multiple categories for each vehicle at a CNR v-.due of
30 dB. The same result is obtained when image en~
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FIGURE 16. Log-polar maps 01 tanks and APCs rotated out of plane. The log-polar map of the two tanks are similar
for the broadside and near-broadside views but different for the head-on view. The same similarities and differ­
el1ces eltist between the log-polar maps for the two APCs.

1.1(, .'.' .'.II~~UIQI'JOURUI 'OlUUI~~UUIIII,lnJ



• KOLOOZY
/l1,,!tid;mrus;ol1l.! A,,,omllt;r T"rgrr RUOl"itit/tl S,ur", EPl/I"",i/11t

...
, .

.... "

la} (b) (e) (d)

FIGURE 17. Approximate angular extent of each category for recognition of tog-polar maps of eight vehicles with out-of·
plane rotation; the vehicles are (a) two jeeps, (b) two trucks, (c) two tanks, and (d) two APes. A total of 31 categories are
formed. Each category and its angular extent is depicted by the shaded patterns in the figure. Each vehicle requires only a
sing Ie category from the broadside view up to 45° of head on or greater. The majority of the categories are in the last 15° from
near head on to head on because the log-polar maps change the greatest in that region.

hancemem is included, in the form of the Bayesian
preprocessor, at a CNR value of 7 dB. A typical
operational sensor value of 19 dB at a distance of
1000 m indicates that image cleanup is a necessity.
For further details of the experiment and results, see
the report by S. Rak [19].

O/il~ofPlant Rotmion RtCognitioll

A second rest was performed to provide insight inco
the number of independent categories necessary to
distinguish eight vehicles rotared our of plane from
broadside to head on (a 90° rotation) l20]. When
matched fillers are used for recognition, we com~

manly create filters for every 5° ofarc. This test was ro
provide experimemal evidence for the number of cat~
cgories necessary for recognilion. Again, we used the
same ATR system with the log-polar maps that we
used wirh rhe ground-based sensor data.

A visual depiction of the information passed lO rhe

classifier indicates thal input to the log-polar maps
from broadside to 50° of head on are similar, whereas
rhe maps near head on change radically. rigure 16
shows the log-polar maps for two tanks and lWO

APCs at broadside, 50°, and head-on orientations.
Visually, Figure 16 indicates that more categories arc
necessary for the near head-on orientations while only
a few categories are needed for the ncar-broadside
orientations.

The same test was ;:>erformed with the eiglll ve­
hicles rotated from broadside to head on in 1° incre­
ments, which created 90 inpurs per vehicle. The 720
aggregate inputs were then used to train the classifier,
which determined that only 31 categories were neces­
sary ro disringuish the eight vehicles at any orienta­
tion from broadside [Q head 011. Figure 17 indicates
the approximate angular extent of each of the 31
categories. Some vehicles require morc categories than
others. A gener:!.l uend seen in this figure is thaI only

VQlUUI~. IUIlBlR I 1993 l~IIl~CQlI 1I1QU1QRl JQUUI\ 137
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one category is necessary for each vehicle to distin­

guish lhe vehicles from broadside to approxim,Hdy

45° of head on. This resulr agrees with the intuitive

undersranding we have when viewing the log-polar

maps.

R~!o'utiO!l R~quir~memsmid tht johnso1l Criurio1l

A final test of the ATR system is the comparison

berween the critetia indicated by J. Johnson [201 and

the resolution requirements for re:cognition and ide:n­

lification. Johnson's work focused on determining the:

imaging requirements ofa sensor lO produce a level of

discrimination and recognition fot human obse:rvers.

The work consisted of psychovisual experime:nts on

U.S. Army personnel by using image intensifier imag­

e:ry that is similar in quality to passive-lR imagery.

The personnel were shown images of various vehicles

:H various resolutions and asked to identify the ve­

hicles. The johmon criterion is the: number of pixels in

a vehicle's minimum dimension (usually height) that

is required for a 50% probability ofcorrectly identify~

ing the vehicle.

15 r------,--~--r_--___,
Jeep 1

Jeep 2

5

APC

oL-~~I:::==::::::l
8 13 18 23

(0.6) (1.0) (1.4) (1.8)

Object height in piJ(els
(Johnson criteria ratio)

FIGURE 18. Johnson-criterion test to indicate the number
of piJ(els necessary lor identification of a target. In this
case the targets are two jeeps and an APe. The numberof
cumulative categories formed for a set of training patterns
at each object height in piJ(els is shown for object heights
from t3to 23 piJ(els. The increase in the number of catego­
ries from the baseline case height of 23 piJ(els indicates the
inability of the classifier fa generalize the patterns. The
results shown in the figure indicate that the classifier per­
forms well up to 20% above the Johnson criterion of 13
pixels, as indicated by lhe dashed line in the figure.

We performed an experiment wirh rhe sp:1[ial ex­

tem of each pixel as the variable; this experiment was

identical ro the one on tbe effect of CNR described

above. Three broadside vehicles were used (rwo jeeps
and an APC) for the training, and the number of

pixels in the minimum dimension were varied from

13 to 23. Figure 18 indicates the number of catego­

ries formed as a function of the number of pixels in

the minimum dimension. For complex vehicle out­

lines such as the jeeps, the classifier performs well up

to 20% greater thal1 the Johnson criterion for identi­

fication. For a much simpler vehicle such as lhe APC,
the classifier is more robust and can still identify the

vehicle at the Johnson criterion. For more derails on

rhe methodology and interpretation of results, see rhe

report by Rak [19].

The ATR Eva.lual'ion Facility

Military applications require tbe use of ATR systemS

in both semi~autOnomous and autOnomous modes

(in a semi-amonomous mode we believe in the recog­

nition capabilities of the ATR system enough (or a

user to apply the results, while in autonomous mode

we let rhe system act on the results on its own). The

resting and accept:lIlce ofATR systems for these mili­

rary applicarions has proven to be difficult. The re­

sources necessary 10 provide useful test results are

usually overburdening. Either we must use large

amOuntS of real sensor imagery, sometimes in mul­
tiple sensor modalities, for each given mission sce­

nario, or we must use synthetically generared data.

The real sensor imagery requires expensive and time­

consuming effortS to gather rhe data, while the syn~

thetic imagery places an inherellt trust in the validity

of the sensor and target models used 10 generate the

synthetic dara. The recent development, however, of

inexpensive computer graphics workstations and data~

processing engines has begun to change the emphasis

from measurement missions to computer-generated

data.

\Y/e arc currently developing an ATR evaluation

facility (A.EF) that exploits rhc recenr developments

in computer graphics and data processing to provide
an efTcctive test environment. This f.,citity merges

high-resolmioll data, an electronic lerr:lin board (ETB)

that combines sensor data with symhctic targets and
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sensor models, and :I.ll ATR system that is under
~aluation. The high-resolution data are t3ken in the
modalities of inter~t (b~r, passive IR. and visible)
and stored in darabases. The ETB uses the databases
along with (he sensor and target models to modify the
measured imagery for ATR*system sensiciviry analy*
.ses. This section describes the faciliry as well as CUf*
rem rCSCOlrch on irs development.

Sensor

Dtscr;ption oftht ATR Evaluation Fad/;ry

The AEF merges existing sensor data in multiple
modalities with synthetic data from sensor and target
computer models. Figure 19 shows the conceptual
flow of informalion in the AEF. The airborne IRAR
sensor suite, which is described earlier in this anicle,
collects high-resolution imagery in laser imcnsiry,

Databases

•

MMW
Forward-looking laser radar
(intensity, range)
Passive IR

Down-looking laser radar I
(O.8-pm intensity, relative range)

Down-lOOking laser radar II
(10.6·pm intensity, relative range)

Passive IR

ATR algorithms

Sensor and target models 1

Electronic terrain board

Tactics, site,
sensors

FIGURE 19. The ATR evaluation facility incorporates the down-looking and lorward-looklOg sensor imagery databases,
sensor and target models, the eleclronic terrain board (ETB), and the A TR algorithm suite. Image databases and sensor
and target models are fused Within the ETB, whIch allows us to modify target models and vary the measured backgrounds.
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range, passive IR, and MMW in a varicryof wavebands

and view aspects. These data arc stored in la.rge data~

bases that are used to refine the synthetic data created

from sensor and target models.

The modeling effortS and thc databases are merged

in the ETB. Most false alarms and missed detecrions

as well as missed classifications of targets arc due to

(hc variability of background cluner signals. Model­

based systems and trainable recognition systems are

developed by using limited target signatures only;

unfortunately. these systems do llOt develop internal

models for backgrounds as well. Therefore, we must

find a way ro merge target signatures, which are pre­

dominantly models. with background clutter.

It is difficult, however, ro model background sig­

nals because of their variable and unpredictable na­

rure. The background models are therefore the weak·

est link of a complctely synthetic sensor image. The

combination of measured background imagery with

the more well-defined synthctic target models cir­

cumvents this problem.

Urrnil1 Database

The down~lookinglaser r<ldar sensor described earlier

provides higlHesolutiol1 r<lnge imagery. This imagery

is a 2Y.t-D rcpresentation of the actual [err<lin and

precludes the existence of speckJe noise indicative of

intensity images. The 2!h.-D imagery contains the

range of the first object or parr of object that is

interrogated for each pixel. Therefore, any part of an

object at a further range or area occluded is not

represented in the data. The 2Y.t-D notation indicates

that a fu!! 3-D image is produced, although the way

we view the scene from above appcars as if a blanket

were covering the objccts in [he scene. Only the high~

est poinr of a pixel that is interrogatcd is recorded;

any parr of an object at a longer range or in an

occluded area is not represerned in the data. For

example. a ball in midair viewed from above is repre~

sented as a hemisphere on top of a cylinder because

no information is avaibble on the space below the

ball. lechniques for combining multiple views are

being investigatcd to alleviate this current limitation.

The down-looking sensor si l11ulrancollsly measures

range as well as laser intensity and passive IR. The

existence or 2Y.t·D range Imagery lends each of [he

140 l"llI~CGI~UIOUWR' ,1IUINAI IOIU~1 ~ ~Ulol!l. 1 \993

sensor domains to coordinate transformations. As de­
scribed earlier. rhe ability ro transform the range data
and subsequent pixcl-rcgisrcrcd passivc=-IR dara al­
lows the sensor imagery to be used ro train and (CSt

ATR systems with many viewing aspects. The specific

method used for tht: coordinate transformation can
have a dramatic effect both on the requirements for
computation and. more importantly, on tho=: quality

of the resultant image.
Traditionally, Euler angles have been used to ~pre­

sent coordinate transformations, and these coordinate

transforrn:l.{ions can be expressed as 3-by-3 Toration

matrices. Because the computer graphics community
commonly uses Toradall m,miccs, most of the special­

ized hardware developed La perform coordinate trans­

formations employs this method. This choice has been

mmivated primarily by the fact that translation and

scaling as well as rmation can be represented by one

matrix. The same transformations, however. that can

be performed by a matrix can be performed with

fewer operations by using quaternions [21 ]
An important consideration in the choice between

matrices and quaternions for coordinate transforma­

tions occurs when we interpol:ne benyeen nvo orien­

tations. Rotation matrices arc not well defined for

interpolations, because rotations are carried out by

three successive rotations about three fixed axes. Be­

cause these successive rotations are not commutative,

changing the order of the rmarions produces different

results. which introduces a significant problem known

as gimbal lock. This problem occurs when the interac­

tion of two rotations aligns nyo of the three rotation

axes and causes a loss in one degree of rotational

freedom. Quaternions are free of this problem be­

cause the cross-product interaction between succes­

sive rotations is preserved 121 J. Because of this rora­

tional stability, the aerospace industry for many years

has preferred qualernions over matrices defined by

Euler angles for spacecraft applications.

Because most computer graphics workst;uions have

hardware that is specifically designed to implement

marrix rransform:uions, we must continue to main~

rain all viewing parameters in matrix form. The AEF

system is designed to perform all interpolations by

using quaternions. which arc then convened to ma­

trix form for rendering.
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•md multiplication is defined as

v' _ Rot(v) _ qvq-1,

and

where I~ and ~ :l.re Ihe delected inrensity prob., .
abilities from Ihe corrCCt range bins and the wrong

Synlh~licwn- Radar Imagoy

An imponant element in the ETB is the combination
of synthetic imagery and modified sensor imagery.
Synthetic imagery is derived from [.arget and back­
ground models applied with the appropria[e sensor
statistics. In some cases, .actual sensor imagery can be
modified to degrade the quality of the imagery for
ICSt purposes. Both of these cases provide the addi~

tional flexibility necessary for ATR evaluation. This
section describes the methodology used in creadng or
modifying laser radar imagery.

The statistics describing a monostatic pulsed rang~

ing laser radar employing heterodyne detection are
described by Hannon and Shapiro {3J. and were used
to develop a model for laser radar range data. This
laser radar model requires that we select me range and
CNR value for every pixel as weU as the number of
r::tnge bins Q available to the signal processor. The
probabilities ofan anomaly (equally distributed across
Q-I range bins) and for the correct r::tnge value are
given by

S3ting for untXIual rotations [21].
Figure 20 shows an example of the transformation

ofdown-looking range data into various viewing ~r~

speetives. Starting with the range data shown in Fig­
ure 4. the range data are transformed and displa~d .as
sand-colored video data and synthetica.lly generated
laser radar range data in a viewing sequence typical of
a target interrogation. In effect. this series of transfor­
nurions is like an observing eye on a flying carpeti it
begins at a long standoffdistance at a high altitUde. i[
detects a possible target. it dives to a lower alrirude•
and i[ flies along the road to [he target. This series of
transformations demonstrat'cs how down-looking im­
agery can be used to tr::tin and test an ATR system
with many viewing aspects_

2
"$ + v·v.

I
- -I, -vI2' •Iqi

-Iq

where

To illu$lrate the use of quatcrnions for ilHerpolat~

ing rotations we must firSt define what a quaternion is
and how it is used to perform a rotation. A quater­
nion consists of twO components-a scalar part and a
veCl'or part. Consider a quaternion q:: [s. vI. where $

is a scalar, and v is a vector of mree=: dements. In
qwternion algebra. addition is defined as

To rotate a point p we embed it into a quaternion as
[O,p]. Rotation is then defined as

where VI • V2 is the vector doc produa and VI x v2 is
the vector cross product.

Before we can define rotations using quaternions
we ntt<!. to define the inverse operation

where q and q-I are unit quarernions.
Oneconsidemtion associated with rhe use of quarer~

nions for coordinate transformations is that rotarions
are performed on the unit four-dimensional hyper~

sphere. so that, as a result, simple linear interpolation
between twO orientarions gives unequal rotations
through the mnge of orienration values. The unequal
rotations occur because the great arc of a unit
hypersphere is the spherical equivalent of a line. and
the line:u interpol:l.lion steps fall on unequal portions
of the line. ThC'S(' unequal rotations must be compcn~
sated for to gi\"e a smooth set of intermediate trans~

formations. All of the interpolations between speci­
fied positions are performed by using unit quaternions
and spheriollinear imcrpol:uions. and then com pen-

.1 ~ 1I1U .4\
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(0) (b)

(e)

FIGURE 20. Down-looking laser radar data is transformed into a three-dimensional
terram-map view. (a) Photographic ground truth of a camouflaged truck, (b) down­
lookmg laser radar Image, and (cl a sequence of lour views that were formed by uSlO9
3-0 transformed laser radar Imagery to "fly ove," the target.
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Stati sticalfchaotic
background models

Target CNR

Physical target models

~-
> ....

I
Sensor image

Synthetic range image

Polygonal/planar
background models

Geometric target models

fiGURE 21. Scene decomposition and synthesis of a laser radar range image. The original sensor image (upper center) is
decomposed into polygonal background (upper left); statistical, chaotic, or fractal background (upper right); facet targel
models (lower lelt); and physical target-background parameters (lower right), A new laser radar image is then synthesized
(lower center).

range bins, respectively. These rwe probabilities are
used in conjunction with a random-number genera­
(or to provide twO random draws. The maximum
value of the (WO rnndom draws is selected as the

imensicy I.
The application of the described statiStics can be

demonstrated through an example. Figure 21 depicts
the decomposition ofa sensor laser radar range image
imo four primary parts. The background and target
models constitUle three: pam: polygonal background
models for rehnivel)' uniform terrain; statistical, cha­
mic. or fract31 models for rragmemcd terrains such as
foliage; 3nd the geometric target models gcner:ucd
from wircframe or facet libraries (ERIM) or solid

geomcrry libraries (U.S. Army BalJisric Research Labo­
rarory). The physical target models, which arc de­
scribed by the CNR for each pixel, are used to com­
pure thc inrensity and range value by using the Hannon
laser radar model [31. In the example shown, a variecy

offractal dimensions were attcmpted and a besr visual
fit was selected for rhe foliage. A uniform CNR value
of 17 dB (which is a t)'picaJ value for imaging generic
terrain b)' rhe lRAR scnsor at 700 m) was used to

geiler-lie thc synthetic range image. The generated
image is visually simil:u to rhe original sensor image.

Summary

A flyable, muhiscnsor system has the abiliry to mea-
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sure a combination of range. Doppler. laser intensity.
and thermal signatures in both the forward~looking

and down-looking aspecrs. Statistical advantages for
incorporating multidimensional information exist for
target-detection applications using thwretical analy­
ses and heuristic algorithms. The use of multiple sen­
sor modalities also provides some hope to address the
vexing issues ofATR.

A modub.r. hybrid ATR system has bec:n described
that fuses stadstical, modd-based. and neural net­
work processingstruaures. The syStem has bec:n testro
on laser n.dar n.nge imagery as well as symhedc n.nge
imagery incorporating pulsed laser n.dar S[dtinics.
Results created by using the synthetic imagery indi­
cate that target idemification ca.n occur in imagery
with over 50% of the pixels corrupted by noise. Tests
with out.o()f-plane rotated vehicles indicate that a fi­
nite number of nonuniform angularly spaced projec­
tions can be learned by the system 1'0 provide target
identificalion. The current syStem can also provide
identification with spatial resolution as low as 20%
above the Johnson criteria.

To cominue 10 test and evaluate complicl.led ATR
systems, an ATRevaluation f'3ciliry is beingconsrructed
to provide real, sylHhetic, and hybrid sensor image
input to a selected ATR. This facility uses the avail­
able high-resolution down-looking laser radar range
imagery and high-fideliry target models to generate
the various operational scenarios.
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