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II We have designed and implemented several computational neural systems for
the automatic learning and recognition of targets in both passive visible and
synthetic-aperture radar (SAR) imagery. Motivated by biological vision systems
(in particular, that of the macaque monkey), our computational neural systems
employ a variety of neural networks. Boundary Contour System (BCS) and
Feature Contour System (FCS) networks are used for image conditioning.
Shunting center-surround networks, Diffusion-Enhancement Bilayer (DEB)
networks, log-polar transforms, and overlapping receptive fields are responsible
for feature extraction and coding. Adaptive Resonance Theory (ART-2)
networks perform aspect categorization and template learning of the targets.
And Aspect networks are used to accumulate evidence!confidence over temporal
sequences of imagery.

In this article we present an overview of our resellrch for the past several
years, highlighting our earlier work on the unsupervised learning of three
dimensional (3-D) objects as applied to aircraft recognition in the passive visible
domain, the recent modification of this system with application to the learning
and recognition of tactical targets from SAR imagery, the further application of
this system to reentry-vehicle recognition &om inverse SAR, or ISAR, imagery,
and the incorporation of this recognition system on a mobile robot called the
Mobile Adaptive Visual Navigator (MAVIN) at Lincoln Laboratory.

F
ROM THE STUDY of biological vision systems,
we can learn much that applies to the design
ofcomputational neural systems for target rec

ognition. These insights are most relevant to passive
vision systems, such as visible and multispectral infra
red imaging systems, but similar organizing principles
are also useful in the radar imaging domain. In the
next section, we summarize the primary lessons that
have been learned from the anatomical, physiological,
and psychophysical study of vision systems in the
macaque monkey and man. These insights are then
applied throughout the remaining sections of this
review. (Note: An introduction to biological vision,
learning, and memory can be found in the September
1992 special issue of Scientific American, which is
entitled "Mind and Brain.")

Design Constraints from Biological Vision

The vision systems of primates contain two primary
processing streams: the parvocellular stream, which
processes shape information, and the magnocellular
stream, which processes motion information (see Ref
erences 1 and 2, and the references cited therein).
Both streams begin in the retina and culminate in the
parietal and temporal lobes of the cerebral cortex.
Our automatic target recognition (ATR) systems have
focused on the modeling of the parvocellular stream
for the learning and recognition of three-dimensional
(3-D) objects, although we have utilized image se
quences to accumulate evidence over time. The image
motion of objects can also be useful for recogniz
ing potential targets, and we have developed
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neurocomputational systems [3] to extract such infor
mation in real time (30 velocity fields per second) on
the Pipelined Image Processing Engine (PIPE), a video
rate parallel-processing computer. The integration of
an object's image motion with its shape information
can potentially enhance the ATR process, and is a
topic we are currently investigating.

The early visual processing that takes place in the
retina, lateral geniculate nucleus, geniculo-cortical con
nections, and visual cortical areas VI, V2, and V4 of
the occipital lobe are responsible for
1. conditioning imagery so as to render it invari

ant to the prevailing illumination (while pro
ducing smoothly shaded percepts of objects),

2. localizing features (such as edges, high-curva
ture points, and high-contrast points) that de
scribe 2-D shapes, and

3. transforming the resulting feature pattern so as
to render it invariant to object location, scale,
orientation around the line of sight, and small
deformation due to any foreshortening resulting
from a rotation in depth (i.e., a totation around
an axis perpendicular to the line of sight), while
still retaining measurements of these spatial at
tributes.

These invariant representations of 2-D object shapes
make their way to the inferior temporal cortex via
connections between the occipital and temporal lobes,
whereas the location/scale/orientation information is
relayed to the posterior part of the parietal lobe via
connections between the occipital and parietal lobes.
Object-location information is conveyed to the pari
etal lobe also via the superior colliculus, which re
ceives direct connections from the geniculate nucleus
and is intimately involved in attentional processes.
These two cortical pathways-one subserving object
vision (in the temporal lobe) and the other subserv
ing spatial vision (in the parietal lobe)-have come to
be known as the what and where systems [4]. Fusion
of the what and where information is achieved via
reciprocal connections between the temporal and pa
rietal lobes, as well as by indirect connections be
tween other regions of the brain such as the hip
pocampus, although the details are not yet
understood.

Insight into the later stages ofvisual processing and
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3-D object representation can be gained by studying
the superior temporal sulcus (STS) in the temporal
lobe of the macaque monkey. This area is known to
be the site of cells tuned for the recognition of faces
and other body parts. Of course, the faces that a
monkey recognizes are indicative of the monkey's
visual experiences, and reflect the visual learning pro
cess itself We have learned much from the work of
D.1. Perrett and his colleagues at the University of
St. Andrews in Scotland [5-8].

The notion of cells specifically tuned to the recog
nition of certain objects (analogous to the orienta
tionally tuned edge sensitive neurons in VI discovered
by D. Hubel and T. Wiesel in 1959) was popularized
by H. Barlow in 1972, and became known as the
grandmother-cell hypothesis, as if to emphasize that a
single neuron becomes active to signal the recogni
tion of one's grandmother. And, for the past 20 years,
a debate has raged over this notion of single-cell ver
sus distributed-network coding of visual objects. In
fact, this seemingly absurd notion of single-cell cod
ing seems to have much supporting evidence, as illus
trated in Perrett's work below (and confirmed by
other investigators). The strict notion ofgrandmother
cells, however, must be reinterpreted in light of the
fact that many layers of processing precede the view
specific coding of objects, and a hierarchical pooling
of cells is required to influence the object-specific cell.
Moreover, many visual objects may activate this cell,
although it is maximally active for a specific ob
ject, whereas other cells are more active in the case
of the other objects. Hence, a recognition decision
must follow a neural competition between grand
mother cells, and possibly an evidence-accumulation
phase among multiple views when such views are
available.

Figure 1 (from Reference 5) illustrates the STS area
in the macaque monkey brain. The figure shows the
locations ofneurons detected by Perrett that are highly
tuned to the face and profile views of heads, rotations
of heads between specific views, and conjunctions of
face views with up/downlleftlright motions. Perrett's
subsequent work [7] indicates the existence of view
specific cells, each one tuned for a particular view
around a certain class of heads, and still other cells,
called view-general cells, that respond to any view ofa



• WAXMAN ET AL.
Neural Systems for Automatic Target Learning and Recognition

Section through A

(b)

A

I" -I
5mm (c)

FIGURE 1. View-based coding of faces in the temporal cortex of the macaque monkey: (a)
lateral view of the monkey brain, (b) coronal cross section with a red box around the
superior temporal sulcus (STS), and (c) serial sections ofthe STS area investigated. From
left to right, the sections illustrate the electrode tracks, cells selective to face views, cells
selective to profile views, cells selective to transitions between views during head rotations,
cells selective to faces moving left/right, and cells selective to faces moving up/down.
(Adapted from 0.1. Perrett et al. [5], with permission from Trends in Neurosciences, Elsevier
Science Publishers B.V.)

specific head (as if the view-general cells were con
nected to all of the corresponding view-specific cells).
View-specific cells respond to the same face views
with similar activity levels, regardless of the illumina
tion strength or color, the size or 2-D orientation of
the face, and the position of the face in the field of

view. Such cells have apparently learned 2-D-invari
ant shape codes.

Figure 2 (from Reference 6) provides a striking
example of view and identity coding in the macaque
temporal cortex. In the experiment, a monkey was
shown different views of the faces of two familiar

VOLUME 6, NUMBER I, 1993 THE LINCOLN LABORATORY JOURNAL 79



• WAXMAN ET AL.
Neural Systems ftr Automatic Target Learning and Recognition

o 10
I ,

Spikes/sec (a) Spikes/sec (b)

FIGURE 2. View and identity coding in the macaque temporal cortex for (a) subject 1 and (b) subject 2. In the experiment, a
monkey was shown different views of the faces of two familiar people (subjects 1 and 2), and the activity of a single STS
neuron in the monkey's brain was monitored with an electrical probe. The results are plotted in spikes/sec radially from the
"+" symbol; the black solid circle denotes the spontaneous background activity level. The experimental measurements are
represented by the large red dots with error bars indicating standard deviations over several repeated trials. Note that the
neuron has a clear preference for the right profile view of subject 1, and no significant response to any view of subject 2.
(Adapted from Perrett et al. [6], with permission from the Journal ofExperimental Biology, the Company of Biologists Ltd.)

people, while an electrical probe monitored the activ
ity of a single STS neuron in the monkey's brain. The
results are shown in Figure 2, in which cell activity is
plotted radially from the "+" symbol and the solid
circle denotes the spontaneous background activity
level. The expetimental measurements are represented
by the large dots with error bars indicating standard
deviations over several repeated trials. Figure 2(a) shows
that the neuron is highly tuned for the right profile
view of subject 1. Nearby views (some at a 45° angle
from the right profile) still generate cell activity, though
at a much reduced rate. All views ofsubject 2 (a rather
different-looking face) generate no significant activity
above the background level, as shown in Figure 2(b).
Thus this neuron might someday become a grand
father ceIL!

In summary, monkeys learn to recognize faces by
employing a view-based strategy. Representations of
2-D shapes are learned and stored in view-specific
STS cells. These cells code shape information that is
invariant to illumination, position, scale, orientation
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around the line of sight, and small foreshortening
deformation. Other cells code transitions between
neighboring views that have been exposed by the
rotations of a subject's head. A hierarchical combina
tion of the two types of cells allows the construction
of view-general cells that are selectively activated by
specific heads regardless of the viewing direction. This
same strategy for the learning and recognizing of 3-D
heads (and, possibly, other objects) can be applied
usefully to the design of artificial neural systems for
ATR.

Aircraft Recognition from
Visible Image Sequences

We designed our first end-to-end ATR system for the
passive visible domain, and applied the system to
high-contrast imagery of model F-16, F-18, and HK
1 (Spruce Goose) aircraft moving against textured
backgrounds. (Note: Detailed descriptions of this neu
ral system are contained in several papers by M. Seibert
and A.M. Waxman [9-11].)
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Figure 3 provides a conceptual overview of the
system, in which a temporal view sequence of an
object leads to the learning of an aspect graph [12]
representation of that 3-D object. We can divide the
system into three main functional stages, the first of
which performs 2-D view processing to extract fea
tures (invariant to illumination) from the individual
images, group these features to locate object position,
and transform the features to render the pattern in
variant to scale, orientation, and small deformation.
The second stage takes these invariant feature pat
terns and clusters them into categories ofsimilar views,
or aspects. This 2-D view classification is done in an
unsupervised way; i.e., it is strictly data driven with
out any category definition by a human. Along with
the learning of these aspect categories, a prototype

Temporal view sequence

Ca)

feature-pattern template is established for each cat
egory. The aspect categories correspond to the nodes
of an aspect-graph representation of the target; they
also play the role ofview-specific cells for aircraft. The
third stage detects the transitions over time berween
aspect categories (while the target is tracked in relative
motion), learns these transitions, and accumulates
evidence for possible targets. The learned transitions
are like the arcs that connect the nodes in the aspect
graph concept, and are reminiscent of the STS neu
rons that are activated by the rotation of the heads
berween views in Figure 1. The ability to accumu
late evidence over time is significant, for there are
often cases in which a single view of a target is not
sufficient to identify the target unambiguously; more
over, this fusion of evidence leads to a notion of

Aspect graph

2-D view
processing

2-D view
classification

3-D object
hypotheses

View
sequence

-Feature -Pattern -Transition
extraction encoding detection

.....
-Position,

..... .....
-Transition

~...... ..... -Aspect ...... ......
scale, learning learning
orientation, and and
deformation recognition -Evidence
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Object
recognition

FIGURE 3. Conceptual approach of ATR neural system for passive visible image sequences: Ca) temporal view sequence of
images and corresponding aspect graph, and Cb) functional block diagram of system. As a target moves relative to an
observer, qualitatively different views are exposed in a temporal view sequence. The views unfold in an orderly fashion that
is represented in the aspect graph. Each image in the sequence is processed by three stages of networks performing
feature extraction and invariant mappings, classification of feature maps into aspect categories, and 3-D object evidence
accumulation from the recognition of categories and transitions. The learned categories and transitions are analogous to
the nodes and arcs, respectively, of an associated aspect graph.
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confidence in the recognition decision.
These three processing stages can each be realized

with multiple neural networks, and together the net
works comprise a neural system architecture, as shown
in Figure 4. Here, each module is an individual net
work that is annotated by the module's functional
role in the system. Two processing streams are shown:
the gray modules form a parvocelLular stream, and the
red modules form an attentional stream.

In the system, images are captured with a conven
tional CCD camera (which could be replaced by an
infrared imaging system), and objects are segmented
from the background by using a combination of mo
tion and contrast information. Next, a shunting cen

ter-surround network enhances the edges of the seg
mented object, and a DiffUsion-Enhancement Bilayer

(DEB) extracts and dynamically groups the feature
points of high edge curvature into a position cen
troid, as shown in Figure 5. These networks form
nonlinear dynamical systems in which individual nodes
are governed by (Hodgkin-Huxley-like) cell-mem
brane equations that resemble the charging dynamics
of coupled resistor-capacitor networks. (See Refer
ence 13 by S. Grossberg for a review of his pioneering
work on dynamical neural networks, including shunt
ing center-surround networks. Also, see References
14 and 15 for a reformulation of the DEB in terms of
coupled dynamical layers of astrocyte glial-like diffu
sion cells and neural-like contrast-enhancing cells, all
inspired by biology and applied to the psychophysical
percept oflong-range apparent motion.)

The centroid determined by the DEB network is
used to track and fixate the object, and serves as the
origin of a log-polar transform of the extracted-fea
ture map. This transformation is very closely approxi
mated by the axonal connections between the lateral
geniculate nucleus and the primary visual cortex VI
[16J. In our system the transformation serves to con
vert changes in 2-D scale and 2-D orientation of the
visual-feature map into a translation along new or
thogonal axes. These processing steps are illustrated
for an F-18 silhouette in Figures 6(a), (b), and (c).
The log-polar feature map (periodic in orientation
angle e) is then input to a second DEB to determine
a new feature centroid in the transformed coordi
nates. The spatial pattern of features now represents
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the original view of the F-18 invariant to illumina
tion, position, scale, and orientation.

The next layer of processing indicated in Figure 4
consists of overlapping receptivefields; the processing is
aligned with the centroid that was detected on the
log-polar map, and serves to render the feature pat
tern somewhat insensitive to nonlinear spatial defor
mation. In the processing (Figure 7), a small array of
Gaussian-weighted overlapping receptors are excited
by the underlying features in the log-polar map, and
the output of the array provides a much compressed
code of the spatial feature pattern. (An individual
receptor is activated by the feature within the receptor's
field that lies closest to the field's center, and the
feature's distance is coded according to a Gaussian
falloff.) This compressed code is illustrated for the
F-18 in Figure 6(d) for the case of a 5 x 5 array of
overlapping receptors. In the figure, the sizes of the
dots correspond to the receptor activation level: the
larger the dot, the greater the activation. This coarse
coding of spatial feature patterns simultaneously pro
vides for enormous data reduction from the original
target image (compared, for example, with a direct
template-matching approach), leads to a tolerance for
small deformations due to rotations in depth and
inaccurate feature extraction, and yields an input vec
tor for the classification network that forms the next
system module.

The later stages of vision support the learning and
recognition process. In our system, learning and rec
ognition are realized by two modules consisting of an
Adaptive Resonance Theory network (cf. several papers
on various ART networks in Reference 17) and an
Aspect network [10, 11].

Figure 8 illustrates the ART-2 architecture for un
supervised category learning and recognition. (Note:
ART-2 is one implementation ofAdaptive Resonance
Theory for patterns consisting of real numbers.) The
ART-2 network takes an N-dimensional input vector
(in our case, the overlapping receptive field pattern
with dimension of order 10 to 100) and first pro
cesses it through circuitry that contrast-enhances and
normalizes the input as a short-term memory (STM)
pattern. ART-2 then passes this pattern through a
bottom-up filter (or template) stored in long-term
memory (LTM) to excite a field of STM category
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FIGURE 4. Modular system architecture for the learning and recognition of 3-0 targets from visible imagery. The system is
organized into two streams of neural network modules: the gray parvoce/lular stream for invariant shape learning and
recognition, and the red attentional stream. The functional role of each module is indicated along with the type of
network.
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FIGURE 5. Diffusion-Enhancement Bilayer (DEB) for feature extraction and grouping: (a) architecture diagram and (b)
evolving map of high-curvature points. The first stages of processing are accomplished by center-surround networks to
edge-enhance the segmented object, and a diffusion-enhancement network to isolate points of high curvature along the
silhouette. These feature points are dynamically grouped into a centroid (providing a focus of attention) by another DEB,
which couples a diffusion layer to a contrast-enhancing layer in a feedforward and feedback configuration. (For a detailed
description of DEBs, see References 9,14, and 15.)
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FIGURE 6. Stages in the processing of a 2-D view of a model F-18 aircraft: (a) the original image, (b) the edge-enhanced
silhouette with DEB features superimposed and the centroid indicated with a "+," (c) log-polar mapping of the image in
part b, with the new centroid indicated with a "+," and (d) the resulting output of a 5 x 5 array of overlapping receptive fields
(see Figure 7) that forms the pattern fed to the Adaptive Resonance Theory (ART-2) network. In the image in part d, larger
dots represent greater activity in the corresponding receptive fields.

nodes (our view-specific cells, or aspect nodes). These
category nodes compete among themselves to choose
a maximally activated winner, which in turn activates
top-down feedback of a learned template also stored
in LTM. This feedback represents the network's ex
pectation of a specific input pattern. A vigilance pa
rameter p (in the interval 0 to 1) that is set in advance
by the user mediates the matching of the enhanced
input pattern with the top-down template. Thus,
simply having a best match among already established
categories is not enough; rather, the best match must
satisfY the established vigilance. When the match does
satisfY the vigilance criterion, the network goes into a
state of resonant oscillations between layers, and the
bottom-up and top-down filters adapt slightly for
better representation of the recent input pattern. When
the vigilance criterion has not been met, the network
generates a reset signal that flips the category field,
thus suppressing the recent winner and reactivating
the former losers. In this way, an uncommitted cat
egory node can establish a new category and a new
template can be learned. ART-2 has several important
attributes that make it particularly well suited to ATR
applications: it supports on-line, real-time, unsuper
vised, stable category learning and refinement. We
have utilized ART-2 successfully in a number of
applications.

To present our results for the ART-2 classification
of different aircraft, we introduce the concept of a
viewing sphere, as illustrated in Figure 9. Note that a

Output of
3 x 3 array below

3 x 3 array of
overlapping

receptive
fields

Point features

FIGURE 7. Spatial coding of features by overlapping re
ceptive fields. Each circular field is activated according to
a Gaussian-weighted distance to the point feature that is
closest to the receptor center. (Note: Lighter colors in the
figure represent closer distances.) These receptors pro
vide enormous data compression, and they code spatial
relations of features robustly with respect to deformations
due to foreshortening. The fields convert a binary feature
map to an analog pattern that is then suited for ART-2
classification.
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location on the viewing sphere for an example aircraft
corresponds to the view of that aircraft as seen from
that particular direction. Using this viewing-sphere
concept, Figure 10 summarizes the results of feature
extraction, coding, and ART-2 classification for an F
18 model aircraft. With 535 input views of the F-18
and a vigilance p of 0.93, ART-2 generates 12 catego
ries of the aircraft. In Figure 10(a), the categories, or
aspects, are shown color coded on an aspect sphere
with 12 different untelated colors (i.e., a dark blue
has no relation to a light blue). Note that the aspects
subtend finite solid angles on the sphere (the target is
oriented with its nose to the left). Because of object
silhouette symmetry, only one quadrant of the sphere
is shown. We can visualize example silhouettes that
correspond to the 12 categories by selecting locations
on the aspect sphere falling at the centers of each of
the established categories, as shown in Figure 10(b).
The corresponding silhouettes (numbered 1 through
12 in Figure 10[c]) represent prototype views that the
system has created in an unsupervised manner. No
tice the variety ofsilhouettes selected: some prototype
views capture the wing shapes, some capture the double
tail fins, some capture the dual exhausts, while others
emphasize traditional top and side views. Also note
the similarity between silhouettes 2 and 5, given the
proximity of their corresponding centroids in Figure
10(b). Yet, although similar, silhouettes 2 and 5 do
exhibit subtle differences, e.g., the differing slopes of
the top portion of the visible tail fin. All of the views
in Figure 10(c) were selected automatically. When the
vigilance p was increased from 0.93 to 0.95, the
ART-2 network generated 24 categories.

In addition to the F-18, we have also investigated

FIGURE 8. ART-2 network: (a) architecture and (b) circuit
model. ART-2 takes analog input patterns and clusters
them into categories by using unsupervised competitive
learning. ART-2 can be trained on a dataset, then used to
recognize data patterns in the field while continuing to
refine its learned category representations (Le., templates)
stored in its adaptive synapses. The vigilance parameter p
mediates the matching ofthe enhanced input pattern stored
in short-term memory (STM) with a learned template from
long-term memory (LTM). (Adapted from G.A. Carpenter
et al. [17], with permission. This reference also contains a--detailed description of ART.)
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FIGURE 9. Example viewing sphere for a fighter aircraft. Note that a location on the sphere corresponds to the view of the
aircraft as seen from that particular direction. Silhouettes of the aircraft are shown from different viewing directions. The
silhouettes were obtained by applying thresholds to imagery that was captured with a charge-coupled device (CCD)
camera and frame grabber. (The jagged contours reflect the finite pixel sizes ofthe CCD imager.)

ART-2 classification for an F-16 and HK-l (Spruce
Goose) model aircraft, as shown in Figure 11. Ap
proximately 500 views of each aircraft were collected
and processed with a single ART-2 module. (The next
section, "Tactical Target Recognition in the Synthetic
Aperture Radar [SAR] Spotlight Mode," presents an
alternative strategy of using one ART-2 module per
target for the SAR application.) All the views together
resulted in only 41 independent categories at a vigi
lance p of 0.93. (Note: Figure 10 investigated the
categorization of a single target by using views of just
that target. Thus, at the same vigilance setting of
0.93, ART-2 generated only 12 categories, in contrast
to the 26 categories of Figure 11 [a].) The individual
aspect spheres show the similarity in category layour
between the two fighter aircraft, and the obvious
differences between fighter and transport-like aircraft.
The spheres also indicate how certain views of the
two fighters are ambiguous, at least in terms of the
features extracted by the system. The individual 3-D

targets are represented by roughly 25 categories each.
Note in Figure 11 that some of the categories are
common to two or more of the targets; i.e., the light
yellow in Figure 11 (a) corresponds to the same cat
egory that is represented by the same light yellow in
Figure l1(b).

The aspect spheres in Figure 11 also illustrate the
neighbor relations among categories as one rotates or
explores a target in 3-D. These neighbor relations
correspond to permitted transitions among catego
ries, and are learned and exploited by our Aspect net

work. Much like the STS cells that code view transi
tions, and the hierarchical pooling of view-specific
cells to form view-general object-specific cells, our
Aspect networks self-organize into connections among
aspect category nodes that preferentially channel ac
tivity into corresponding 3-D object nodes when suc
cessive aspects occur in a permitted sequence. The
Aspect networks learn these aspect transitions incre
mentally during controlled training sessions, or ini-
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FIGURE 10. Results of feature extraction, coding, and ART-2 classification of an F-18 model aircraft alone at a
vigilance p of 0.93: (a) aspect sphere showing the 12 aspects (color coded) generated by ART-2, (b) centroids of

the largest regions ofthe 12 aspects, or categories, and (c) corresponding example silhouettes ofthe regions in

part b. These views have been selected automatically by the system. (Note: The 12 colors used for the aspect

sphere have been selected arbitrarily; i.e., a dark blue has no relation to a light blue.)

tially in the field after the aspect categorization has
stabilized (i.e., after repeated exposures to the training
data yield the same categorization). Then, during the
imaging of a target in motion, multiple viewpoints
are experienced, leading to recognition of multiple
aspects by the ART-2 network, followed by evidence
accumulation by the object nodes in the Aspect net-

work. Target trajectories are realized as a set of aspect
categories linked together by aspect transitions. Much
more information becomes available when we con
sider the aspect transitions among ambiguous views.
For example, even if both views of a two-aspect se
quence are each ambiguous among potential targets,
the additional aspect-transition information is often
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sufficient for the preferential activation of the correct
target node in the Aspect network.

Figure 12 illustrates an Aspect network for a single
object, along with an enlarged view of the network's
adaptive axo-axo-dendritic synapse. This synapse brings
together in close physical proximity projections from
pairs of aspect nodes onto a branch of the dendritic
tree leading to an object node. When ART-2 catego
ries are excited in temporal succession, the aspect
nodes shown charge or discharge exponentially like
capacitors, and their temporal overlap of activity sup
ports a Hebbian form of correlational learning on the
connecting synapse (cf. Reference 13 for a discussion
of modified Hebbian learning with gated decay). The

synaptic weights lie in the interval [0,1], and, as cat
egory transitions are experienced, the weights asymp
totically approach the extreme values of°(implying
no allowed transition between corresponding catego
ries) and 1 (indicating a permitted transition). These
values correspond to the absence or presence of an arc
in the associated aspect-graph representation. The den
dritic tree with its synaptic connections resembles the
symmetric state-transition matrices that are commonly
used in system-modeling techniques.

Extending the Aspect-network concept to multiple
targets leads to the network architecture shown in
Figure 13. In this design we consider all aspect cat
egories of all targets as belonging to the same ART-2

(a) (b) (c)

FIGURE 11. Aspect spheres for the (a) F-18, (b) F-16, and (c) HK-1 (Spruce Goose) have been generated from 535, 530, and
423 views, respectively, of each aircraft. Feature extraction, invariant mappings, and ART-2 categorization of all 1488 views
generate a total of 41 aspects, or categories, at a vigilance p of 0.93. The number of categories generated for the individual
aircraft is 26 forthe F-18, 24 for the F-16, and 28 for the HK-1. Note that many categories are common to more than one target;
i.e., the light yellow in part a corresponds to the same category that is represented by the same light yellow in part b. Also
note the resemblance of the aspect spheres for the two fighter aircraft, in contrast to the HK-1 aspect sphere.
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·0 Object node

1
Adaptive weights

~ wt =0

wt = 1

Aspect nodes

(a)

Aspect node activity
Xj+E

To object
node Yk

Aspect node activity
Xi+E

(b)

FIGURE 12. Aspect network for the single-object case: (a) network and (b) enlarged view of one synapse of the network. The
aspect nodes (blue) are each coupled to corresponding categories allocated by the ART-2 network; the nodes charge and
decay like capacitors. Axons (wires) emanating from each aspect node cross each other to form a transition matrix, and
each crossing has an associated axo-axo-dendritic synapse (red) onto the dendritic tree (orange) ofthe object node. When
two aspect nodes are simultaneously active (during view transitions), they strengthen the synapse (red) via modified
Hebbian learning, and conduct activity onto the dendrite toward the object node. Object nodes thus pool activity from
aspect nodes, exploiting transition information to amplify this activity, thereby accumulating evidence over time. In the
enlarged view, the synapse brings together activity from aspect nodes Xi and Xj (as well as a background-noise level E) and
channels it onto the dendritic tree. (Note: The box "Aspect Network Learning Dynamics" contains a description of the
equations that govern the aspect nodes, object nodes, and synaptic weights. For further details of Hebbian learning and
Aspect networks, see References 10, 11, and 13.)

network. The aspect categories of the ART-2 network
drive a single set ofaspect nodes that fan out to all the
synaptic arrays of possible targets. Activity (i.e., evi
dence) is then channeled into the object nodes, which
compete to select the target with the maximum evi
dence at that moment. The winning object is then
able to modifY its own transition array. Sudden sac
cadic eye/camera motions to other locations in a scene
initiate a reset ofobject-node activities to zero; smooth
tracking motions do not cause such resetting.

Figure 14 contains an example of aircraft recogni
tion by the Aspect network. In the training sequence,
each of the three model aircraft experiences an identi
cal trajectory of 2000 views covering one quadrant of
the viewing sphere. Then a test sequence of 50 F-16
images is generated, and evidence is accumulated for
each of the three targets as well as for an unlearned
other target representing a none-of-the-above category.
The graphs shown in the figure illustrate the corre
sponding category (and transition) sequence, the evi-
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dence accumulation and decay for each possible tar
get, and the winning object with the instantaneous
maximum evidence. Note that initially the system
begins selecting the "other" target until sufficient evi
dence accumulates to declare the F-16 the winner,
and it remains so. Reference 11 contains further de
tails of this experiment.

At this point we have the basic design of a neural
ATR system. The system has a number of definite
strengths, bur it also suffers from a few shortcomings.
For example, a difficulty exists in adding new targets
once the system has stabilized, because new data may
modifY the existing ART-2 category templates and
lead to the need to retrain the Aspect network. A
more efficient design is to assign a separate ART-2
network and (much compressed) Aspect network to
each potential target, but allow the unsupervised as
signment of aspect categories during the controlled
exposure in a training session. By doing so, we can
add new targets at a later time by simply adding new
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ASPECT NETWORK LEARNING DYNAMICS

WE DEVELOPED the Aspect netWork
(Figures 12 and 13) as a means to
fuse recognition events over time.
The network embodies a hierar
chical pooling ofview-specific as
pect categories so as to exploit the
additional information associat
ed with permitted category tran
sitions. These transitions are
learned by exploring the object.

The dynamics of Aspect net
works is in the form of differen
tial equations (shown below) gov
erning the short-term memory
activity of the aspect nodes~ and
object nodes J'k, and long-term
memory of the adaptive axo-axo
dendritic synapses ~f Aspect
nodes are excited by their corre
sponding ART-2 category nodes
Ii (with rate constant K) and pas
sively decay back to their resting

state (with rate constant A).
Object nodes accumulate evi

dence for each object by sum
ming the activity (with rate con
stant KYJ entering from the aspect
nodes on the dendritic tree. Ac
tivity riding atOp background
noise E enters via the learned syn
apses corresponding to permitted
transitions, and activity is chan
neled most effectively by paired
aspect nodes in a permitted se
quence. The function <I>ItA) is a
threshold linear function that
passes activity levels when A >

O(B). Similar to the aspect nodes,
the object nodes also decay pas
sively to their resting state (with
rate constant AYJ.

The synaptic weights learn as
pect transitions by experiencing
correlated activity from two as-

pect nodes, as long as the object
node activity is changing (i.e.,
Yk ¢ 0) for the winning object
Zk- The function 8.(C) is a bi
nary threshold gate that equals
unitywhen C> O(E). The weights
approach asymptotes toward the
fixed points of0 and 1 because of
the quadratic shunting terms that
modulate the rate constant Kw.
For further details ofAspect net
works, see References 1 and 2.
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ART-2 and Aspect networks, without any modifica
tion to the existing networks. Moreover, separate ART
2 networks for each target better support the ATR
task given only a single view (as opposed to a se
quence ofviews), because each target will have gener
ated its own set oflearned templates within its ART-2
module. This design has been adopted for the next
application-target recognition ftOm SAR spot
light sequences. For this application we also intro-

duce a measure of recogmtzon confidence derived
from the accumulated evidence.

Tactical Target Recognition in the Synthetic
Aperture Radar (SAR) Spotlight Mode

High-resolution radar imaging of a scene can be ac
complished by flying a radar that is transmitting chirp
pulses from many closely spaced look angles (Figure
15). The moving radar thus synthesizes a long aper-
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ture, and the rerum pulses determine a reflectivity
image of the scene as projected into the range and
cross-range coordinates of the plane formed by the
synthetic aperture and the radar line of sight. (This
plane is referred to as the synthetic-aperture radar [SAR)
slant plane.) The range resolution is proportional to
the bandwidth of the chirp pulse; the cross-range
resolution is proportional to the angle subtended by
the synthetic aperture. As the radar moves along the
flight path, it can be "squinted" so as to track a fIxed
location on the ground. Hence, the radar beam
spotlights a particular scene, and a sequence of SAR
images is obtained of that scene from multiple
VIews.

The reader may look ahead to Figure 26(a) to
view a typical clutter scene-an overpass that crosses
the New York State Thruway-obtained from the
Lincoln Laboratory Advanced Detection Technology
Sensor (ADTS), a millimeter-wave radar, operating in
the SAR mode. (In our work, only single-channel
vertical-vertical [VV] polarization imagery is used.)
Note that the image is quite speckled, a consequence
of the coherent imaging method. Nonetheless, at fIrst
glance this scene has a rather natural appearance.

To illustrate here the appearance of objects such as
ground vehicles, we refer to the inverse SAR, or ISAR,
images shown in Figure 16. Three tactical targets are
shown at a radar depression angle (or slant-plane

Synaptic arrays of
learned view transitions

Adaptive weights
k_

Wij-O

" Wt=1

Aspect nodes

Input view categories

1 234 N

Object competition layer

View transition

~
t Time

FIGURE 13. Aspect network for the multi-object case. Input aspect categories from a single ART-2 network (coding all
aspects of all targets) excite aspect nodes that fan out to all synaptic arrays of learned view transitions, each of which
conducts activity (Le., evidence) to its corresponding object node. A competition layer (created from self-excitation and
collective inhibition) determines the target of maximum evidence at any moment, and allows the corresponding synaptic
array to be refined. Sudden eye/camera motions can cause the object nodes to reset their evidence to zero, (For a detailed
description of Aspect networks, see References 10 and 11.)
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FIGURE 14. Example of training and recognition by evidence accumulation: (a) view sphere showing the trajectory
from which 2000 views of each aircraft were used for training the system, (b) view sphere showing the trajectory from
which 50 views of an F-16 were selected for testing the system, and (c) graphs showing the recognition test results. In
part c, the first graph plots the sequence of aspects that were recognized by the system (note the transitions). The
second graph shows the activity (i.e., evidence) of the aspect node for each aircraft target, including an unlearned
target (referred to as "other"). And the final graph shows the "winning object," or target of maximum evidence at each
moment. Note that the system first declares the target as "other," but then generates sufficient evidence to declare it
correctly as an F-16, and that correct recognition response is maintained.

slope) of 15° and three azimuthal angles correspond
ing to front-on, intermediate, and broadside views.
The images were obtained by rotating each target on a
turntable in front of a stationary radar. Unlike with
Figure 26(a), the man-made metallic objects in Figure
16 do not yield radar images that resemble their
visible counterparts. The ISAR images are dominated
by strong returns from select scattering centers on the
target, sidelobe responses, and speckle noise. Both
Figures 16 and 26(a) possess I-ft resolution in range
(oriented vertically) and cross-range (oriented hori
zontally), with the near-range (closest to the radar)
located at the top of the image.

To build an ATR system that exploits spodight-

mode SAR sequences, we can utilize many of the
ideas and neural modules developed for the visible
imaging domain, as presented in the preceding sec
tion. The different sensing modality of radar, how
ever, provides us with direct range and cross-range
information, and hence object size, which can be
exploited in the grouping process that is used to

detect potential targets. On the other hand, our ear
lier methods of invariant processing must be altered.
In particular, the log-polar transform must be dis
carded because the slant-plane image is not an angle
angle image (as is obtained in passive visible or infra
red imaging).

Borrowing heavily from our work in the passive
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FIGURE 15. Imaging geometry for spotlight-mode synthetic-aperture radar (SAR). A radar on board an aircraft illuminates
an area of interest on the ground by pointing at a depression angle 8and squint angle ¢. As the aircraft flies along a straight
path at altitude h, the radar transmits chirp pulses from many closely spaced look angles, and the return pulses determine a
reflectivity image of the ground patch and objects of interest. Progressing along the flight path, the radar is steered to
illuminate the same area of interest, and thus obtains a sequence of SAR images from multiple look angles.

visible domain, the conceptual approach to SAR tar
get learning and recognition is summarized in Figure
17 (compare to Figure 3). Again, each image of the
spotlight sequence is processed through three stages.
The first stage extracts features, detects potential tar
gets by grouping the features, and estimates the orien
tation of each potential target. The second stage is
again responsible for the adaptive categorization of
feature patterns into aspects, or categories (leading to
an aspect-sphere representation of the targets). And
the third stage detects aspect transitions (analogous
to the arcs of a corresponding aspect graph), ac
cumulates evidence over time, and generates a recog
nition decision as well as a dynamic confidence
measure.

Figure 18 shows the end-to-end neural system that
we have developed. A quick inspection of the mod
ules, which are organized into three rows representing
the three stages of processing of Figure 17, reveals
many of the same neural networks that were used for
the passive visible domain. It is also evident that we
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have learned from our work in that area: we now
utilize a separate ART-2 network for each target, and
a separate Aspect network connected to each of these
ART-2 networks. The following figures illustrate the
various processing modules shown in the system
diagram.

Each SAR image of the spotlight sequence is pro
cessed by the entire chain of neural modules. There
are, however, several opportunities to exploit the tem
poral flow of information inherent in the processed
data. The very first module uses shunting center
surround networks, either in isolation or as part of
the Boundary Contour System (BCS) and Feature
Contour System (FCS) networks for image condi
tioning. (BCS/FCS networks are discussed in the fol
lowing section, "SAR Image Conditioning Using BCS/
FCS Networks.") Figure 19 provides some details on
shunting center-surround networks, as applied to SAR
imagery for feature extraction. In this application, the
shunting center-surround network converts the slant
plane reflectance image into a locally normalized con-
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(a)

(b)

(c)

FIGURE 16. Examples of inverse SAR, or ISAR, imagery of three tactical ground vehicles: (a) target 1, (b) target 2, and (c)
target 3. The three targets are shown at three different orientations: the left, middle, and right columns of images are for
azimuth angles of 0° (front-on view), 45° (intermediate view), and 90° (broadside view), respectively. The images are for a
radar depression angle of 15° and vertical-vertical (VV) polarization.

trast image. Thresholds are then applied to the value
at each pixel of the locally normalized contrast image,
and an AND operation is used to combine the result
ing image with a low-threshold version of the log
reflectance input image to obtain a set of high-con
trast feature blobs that can then be projected from the
slant plane to the ground plane by using the known
radar imaging geometry.

In the locally normalized contrast image, the local
contrast is dependent on the choice of spatial scales
for the excitatory-center and inhibitory-surround ar
eas of the receptive field, as shown in Figure 19. These
scales are chosen so as to capture the texture of scat
tering centers on a vehicle as compared to the vehicle
as a whole. (Note: The network does not try to detect
bright pixels on the target as compared with the sur-
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rounding clutter, as is typical of constant false-alarm
rate [CFAR] filtering methods.) Another advantage
of using shunting networks here is that they perform
an automatic gain-control operation, and, as a result,
the large dynamic range of radar reflectances collapses
into a predefined range in a locally adaptive fashion.
These networks are modeled as dynamic membranes
[13] and resemble bipolar and ganglion receptive fields
in the retina.

Figure 20 illustrates the four steps involved in pro
cessing an ISAR image that contains four targets. The
input image is shown in the upper left quadrant, and
the result of feature-blob extraction is shown in the
upper right. The spatial patterns of the extracted fea
ture blobs show strong resemblance to the scattering
patterns obtained from SARTOOL simulations of
radar imagery. (SARTOOL decomposes a target ob
ject into its principal scatterers and then combines the
radar signatures of those scatterers.) Note that we

Spotlight sequence

have discarded the original reflectance values of the
feature blobs because, in practice, they can vary
considerably from one instance of a target to another.
In the more realistic case of targets in clutter, feature
blobs generated by nontargets will also be extracted
from the clutter. Thus, to simulate clutter, we added
2% random noise to the feature-blob image before
proceeding with the processing. (In Figure 20 the
feature-blob image is shown without the superimpo
sition of any noise so that we could illustrate clearly
the target feature blobs that emerge from the extrac
tion process.)

Because the image axes are measured in units of
physical size, we can use the images directly to detect
potential targets and discriminate them from clutter
and nontarget objects by grouping the feature blobs
into clusters of approximately the same image size as
the targets of interest. This grouping is performed in
the ground-plane coordinates, first by using an iso-

(a)

2-D view
processing

Aspect sphere

2-D view
categorization

3-D target
hypotheses

Aspect graph

Spotlight
sequence

• Featu re • Pattern • Transition
extraction encoding detection

..... • Target ..... • Aspect ~ • Transition
I..........ao....... ..... .... rdetection learning learning

and
• Orientation recognition • Evidence

estimation accumulation

(b)

Target
ecognition

FIGURE 17. Conceptual approach of ATR neural system for SAR image sequences: (a) spotlight sequence of SAR images
and corresponding aspect sphere and aspect graph, and (b) functional block diagram of system. Note that the approach is
analogous to the approach for passive visual imagery shown in Figure 3.
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FIGURE 18. Modular system architecture for the learning and recognition of 3-D targets from SAR imagery. The three rows

of modules represent the three stages of processing shown in Figure 17. Each individual module is a neural network that

transforms the imagery as indicated. From a sequence of SAR images the recognized targets generate a dynamic measure

of confidence.

Normalized
contrast image •

Input SAR image
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FIGURE 19. Shunting short-term memory model for feature extraction from SAR imagery: (a) center-surround feedforward

architecture and (b) center-surround receptive field. The model is implemented as a feedforward dynamical system with an
excitatory-center/inhibitory-surround receptive field. In equilibrium the resulting image represents locally normalized

contrast. The scales of the receptive field-5 x 5 for the center region and 21 x 21 for the surround region-are chosen to

capture the contrast between scatterers and target objects. (Note: A description of the equations that govern shunting

short-term memory and the equilibrium condition are given in the box "Shunting Short-Term Memory" on page 98. For

further details, see Reference 13.)
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SHUNTING SHORT-TERM MEMORY

THE FULL DYNAMIC range radar
image ~serves as input to a shunt
ing short-term memory (STM)
network (Figure 19), as governed
by the dynamics of a charging
membrane (essentially Ohm's
law). Excitatory input from a
Gaussian center C, shunted in-

hibitory input from a Gaussian
surround S, and passive decay
(with rate constant AA) yield an
equilibrium contrast measure Ai
that is normalized with respect to
the local mean amplitude. The
Gaussian center is weighted by
Gij C , and the Gaussian surround

is weighted by Gil/. More gener
al shunting networks are described
in Reference 1.

Reference
1. S. Grossberg, «onlinear eural

erworks: Principles, Mechanisms,
and Architectures,» Neural Networks
1, 17 (1988).

Activity dynamics:

Equilibrium contrast:

tropic receptive field (shown as circular areas in the
lower left quadrant of Figure 20), and then by using
oriented rectangles in the vicinity of the isotropic
groupings. The rectangles are constructed from in
hibitory-centerlexcitatory-surround receptive fields,
motivated by the scatterer distributions that are typi
cal of the targets of interest. Given a view sequence
in which targets may be considered stationary as com
pared to the moving and squinting radar, Adaptive
Linear Neurons (ADALINES) [18] performing a re
cursive least-squares estimation from the measure
ments can be used to estimate and refine the target
locations and orientations. After a target has been
detected and localized, it can then be segmented from
the scene, rotated into a reference frame aligned with
the target (with an ambiguity between whether the
target is facing forward or backward), and processed
by the remaining modules. The oriented feature blobs
for each detected target are shown in the lower right
quadrant of Figure 20. Note that sidelobe responses
outside the targets have been discarded.

Figure 21 illustrates the processing ofan individual
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target. The input slant-plane imagery is shown in the
upper left quadrant of the figure, and the localized
target feature blobs are shown in the upper right.
After the features are reoriented in a frame of refer
ence with respect to the target, a DEB network is used
to reduce the features to points, as shown in the lower
left quadrant. This oriented spatial pattern of feature
points covers an extent of approximately 20 x 30
pixels at I-ft resolution. Moreover, as the target orien
tation and radar depression angle change, this pattern
must change quickly, too. Of equal importance is the
deformation of this feature pattern with varying radar
squint angle (given an identical depression angle and
target orientation with respect to the radar). For these
reasons, a template constructed from this feature pat
tern (no less a template that incorporates the original
reflectance values) is both memory intensive and
fraught with difficulties. Thus we can again utilize the
large overlapping receptive fields (cf Figure 7) to
reduce this binary feature pattern to a 9 x 9 array of
analog numbers that code the spatial distribution of
features in a compressed manner that is robust ro
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FIGURE 20. Multitarget localization and orientation estimation is illustrated for the case of four tactical targets. The upper
left quadrant shows the input slant-plane imagery for the composite of four targets at a depression angle of 15°. (Note: In
each of the four quadrants, the four targets are arranged with target 1 in the upper left, target 2 in the upper right, target 3 in
the lower left, and a modified version of target 1 in the lower right.) The upper right quadrant contains the feature blobs that
have been extracted and projected in the ground plane. Each target is then grouped with a circular mask, and the target's
orientation is estimated with an inhibitory-centerfexcitatory-surround oriented rectangular mask, as shown in the lower left
quadrant. This processing allows the detected targets to be reoriented in a target frame of reference, as has been done in
the lower right quadrant. The color bar atthe bottom of the figure denotes increasing (from black to white) reflectivity forthe
imagery in the upper left quadrant.
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spatial deformation. Such a coding is illustrated in the
lower right quadrant of Figure 21.

The 9 x 9 array of 81 numbers forms the input to
an ART-2 network that is dedicated to the learning of
a particular target. The target is learned during a
training session in which the target exposure is con
trolled. In a testing session, the system is run in
recognition mode, and the 81-member spatial code
vector is fed to all ART-2 networks representing all
targets of interest. Figure 22 illustrates the results of
training independent ART-2 networks on each of the
three ISAR targets of Figure 16. The resulting aspect
categories that were established are shown color coded
on aspect spheres seen both from the side with the
targets facing left, and from above (compare to Figure

FIGURE 21. Target feature extraction and spatial coding
for a single target. The upper left quadrant shows the
input slant-plane image of a target at a depression angle of
15°. In the upper right quadrant, feature blobs have been
extracted from the input image and projected in the ground
plane. After the feature blobs are reoriented in the target
frame of reference, a DEB network is used to reduce the
blobs to points, as shown in the lower left quadrant. The
feature points are then coarsely coded by a 9 x 9 array of
overlapping receptive fields (ct. Figure 7), as shown in the
lower right quadrant. The color bar at the bottom of the
figure denotes increasing (from black to white) reflectivity
for the upper left image, and increasing receptive-field
activity for the lower right image.
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11). The data consisted of ISAR images created at all
even azimuths 360° around each target, for radar
depression angles between 15° and 32°, comprising
approximately 3000 views of each target. (Note the
missing data at a few intermediate depression angles
for targets 2 and 3.) The resulting unsupervised classi
fication generated islands of common category that
extended over large azimuthal extents and many de
pression angles. We purposely changed the vigilance
parameter setting between targets to emphasize the
user's control over the fineness ofcategorization. With
a finer categorization, more details survive the learn
ing process. The roughly 3000 views of each target
have been compressed into only 34 categories for
targets 1 and 2, and 75 categories for target 3, for
which we used the highest vigilance setting.

Associated with each category allocated by each
ART-2 network is a template of the prototype 9 x 9
array (contrast enhanced and normalized) that was
learned by the synapses (the adaptive LTM sites) in
the network, as shown in Figure 8. Eight of the prin
cipal templates for target 1 are illustrated in Figure
23, along with sample slant-plane images from the
corresponding viewing directions. Note that the
learned templates include two broadside views, fron
tal and end-on views, and the characteristic L-shapes
near the four corner views. These color patterns code
prototype spatial feature patterns (not reflectance
patterns).

To complete the learned description of each target,
the permitted transitions among aspect categories must
be detected and imposed on the synapses of each
Aspect network. The result of this process is con
tained in the last row of photographs in Figure 22.
The photographs show the transition matrices for
each target (cf. Figure 13). In the matrices, a red pixel
corresponds to a permitted transition while a green
pixel codes the absence of such a transition.

Figure 24 contains an example of our ATR system
running in recognition mode. We used an ISAR im
age sequence that consisted of 45 views of target 1
(only the odd azimuths in the interval 67° to 157°) at
a depression angle of21 0. (Note: Although this dataset
was not part of the original training set, it was admit
tedly not very different from the training data. This
lack of adequate training and test datasets is a prob-
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(a) (b) (c)

FIGURE 22. Aspect spheres and transition matrices for (a) target 1, (b) target 2, and (c) target 3. The spheres were generated
with independent ART-2 networks. For each target, approximately 3000 views, collected for even azimuths 360° around and
depression angles from 15° to 32°, have been compressed into 34, 34, and 75 categories for targets 1, 2, and 3, respectively.
The categories, or aspects, have been assigned colors and are shown on a viewing sphere from the side with the target
facing left (top row of photographs), and from above (center row of photographs). Note the category islands that emerge
over large viewing extents, particularly for target 1. The fineness of categorization is controlled by the vigilance parameter of
the ART-2 network, and can be chosen to be more or less sensitive to variations in the feature patterns. The vigilance p is
0.97,0.98, and 0.99 for targets 1,2, and 3, respectively. The last row of photographs shows the category transitions that were
learned for each target by independent Aspect networks coupled to each ART-2 network. Each transition matrix codes
possible category transitions in red, while green denotes the absence of such a transition (d. Figure 13). Note that the
transition patterns are quite different among the targets. Detected transitions between categories contribute to the
evidence accumulation during the recognition process.
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lem with many ATR studies.) The test imagery was
passed through the early modules of our system, and
then to four ART-2 networks (with learning turned
off) coupled to four Aspect networks corresponding
to the training targets 1, 2, and 3, in addition to a
fourth unlearned target (referred to as "other") that
was represented by random synaptic weights. Each
ART-2 network determined the best matching aspect
category for the test target, and each ART-2 network
activated its corresponding Aspect network to accu
mulate evidence over the test view sequence. A com
petition between the object nodes in the different
Aspect networks then selected the target with the
instantaneous maximum evidence.

In Figure 24, the category sequence recognized by
the ART-2 network for target 1 is illustrated both on
an aspect sphere seen from above, and as a graph of
category versus view number. The second graph in
Figure 24(b) plots the accumulation of evidence for
each target, while the third graph indicates the se
lected target with the maximum evidence accumu
lated at each view. Although the selected target is
target 1, we can see that target 3 also accumulates a

significant amount of evidence. Thus selecting target
1 solely on the basis of maximum evidence can be
risky because the evidence for target 1 may exceed
that for target 3 by only a slight amount. This possi
bility suggests looking at the differential evidence be
tween the two targets of highest accumulated evi
dence, as illustrated in the fourth graph. The
differential evidence may be small for some views, but
it too can be integrated along the temporal view
sequence, giving rise to a dynamic confidence measure.
As shown in the bottom graph of Figure 24, the
confidence measure increases monotonically along the
view sequence in this example. It is a matter ofprefer
ence to select the threshold level of confidence that
the system should use in declaring a target as recog
nized. Clearly, the number ofviews required to reach
this confidence threshold will depend on the target
itself, as well as the starting view in a sequence.

SAR Image Conditioning Using
BCS/FCS Networks

We have already noted that single-channel SAR imag
ery is characterized by a very large dynamic range and

FIGURE 23. Aspect sphere, example typical views, and corresponding learned templates for
target 1 of Figure 22(a). The learned templates include two broadside views, frontal and
end-on views, and the characteristic L-shapes near the four corner views. Note the ability of
the ART-2 network to quantize the viewing space around a target in an unsupervised
fashion. The learned templates are then used for the recognition process.
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excessive speckle noise, and man-made objects possess
ramer broken signatures that vary rapidly with small
changes in viewing angle. To a great extent, we can
alleviate these problems by nrst conditioning the im
agery with the Boundary Contour System and Feature
Contour System (BCS/FCS) network paradigm devel
oped by S. Grossberg, E. Mingolla, and D. Todorovic,
(see chapters 1 to 4 in Reference 19). This neural
processing architecture is strongly motivated by the
known anatomy and physiology of the early visual
processing stages, including that of me retina, LGN,
VI, V2, and V4. The architecture, which essentially
incorporates a general theory of preattentive vision,
has also been quite successful in explaining a very

large body of psychophysical perceptual data.
The BCS/FCS networks are shown as an alter

native first module in the ATR system of Figure
18. Our preliminary work indicates that the initial
processing of SAR imagery with BCS/FCS networks,
in lieu of a shunting center-surround network, im
proves the target detection (and false-alarm rejection)
process.

Preattentive vision, in its simplest form, is a com
putational process in which contours are contextually
established and the perceived brightness (and color) is
generated primarily from local-contrast information.
In BCS/FCS theory, the role of the BCS network is to

establish such contours in the context oflocal fields of
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FIGURE 24. Example of target recog
nition by evidence accumulation: (a)
aspect sphere and (b) recognition re
sults. The ISAR image sequence
used consists of 45 views of target 1
(only the odd azimuths in the inter
val 67° to 157°) at a depression angle
of 21°. The category sequence rec
ognized by the ART-2 network for

target 1 is represented both on an
aspect sphere seen from above in
part d, and as a plot of category ver
sus view number, as shown in the
first graph of part b. The next graph
shows the evidence generated by the
resulting category matches for the

training targets 1, 2, and 3. The third graph indicates the "winning object," i.e., the selected target with the maximum
evidence accumulated at each view. The target with the instantaneous maximum evidence is consistently target 1,
although target 3 also has a strong response. The differential evidence between those two targets is plotted in the
fourth graph, and integrated across view numbers in the fifth graph to generate a monotonically increasing confidence

measure.
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Legend

Cooperative-competitive (CC) loop

FIGURE 25. Architecture ofthe (a) Boundary Contour Sys
tem (BCS) of S. Grossberg and E. Mingolla and the (b)
Feature Contour System (FCS) of Grossberg and D.
Todorovic. The BCS architecture in part a models the
neurodynamics of preattentive visual processing in the
LGN, V1, and V2 visual areas of the brain. Shunting cen
ter-surround receptive fields provide input to oriented
contrast, or edge, detectors that compete across position
and orientation. The resulting local edge fragments are
grouped over large distances by oriented bipole receptive
fields that feed back to the oriented-contrast detectors to
complete broken boundaries comprising the edge frag
ments. The boundary contours obtained from the BCS
network provide input to the FCS network, which uses the
information to modulate the local diffusivity between com
partments, as shown in part b. The local diffusivity be
tween compartments affects the FCS diffusion layer, where
the contrast signals from the shunting center-surround
network spread laterally in two dimensions. In the diffu
sion layer, strong boundary contours inhibit diffusion
across the boundaries. The FCS architecture models hy
pothesized filling-in interactions in the V4 visual area of
the brain. (Adapted from Figures 15 and 17 of chapter 1 in
Reference 19, with permission. This reference also con
tains a detailed description of BCS/FCS networks.)

edge fragments, or oriented contrast. Although such
boundary contours are themselves invisible, they modu
late the dynamics of a diffusive filling-in process in
the FCS network whereby local contrast and bright
ness information mix and spread within such bound
aries to create a smoothly shaded figure.

The architecture of the BCS network is illustrated
in Figure 25(a). Beginning with monocular prepro
cessing in the form of shunting center-surround re
ceptive fields, local measures of normalized isotropic
contrast are made. An oriented-contrast filter then
derives evidence for local edge fragments, which are
then used as input to a cooperative-competitive (CC)
feedback loop. The CC loop performs long-range
completion of contours in the context of the local
edge statistics. We have found that one pass through
the CC loop is typically sufficient for our purposes.
The boundary contours obtained from the BCS net
work provide input to the FCS filling-in network,
along with the center-surround contrast signals, as
shown in Figure 25(b). Essentially, the contrast sig
nals try to spread diffusively to neighboring nodes,
but the BCS signals modulate the local diffusivity
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such that strong boundary contours inhibit diffusion
across the boundaries. Thus the boundary contours
impede the spreading contrast signals. In the presence
of a dense web of boundary contours of varying
strength, the FCS diffusion process results in smoothly
shaded images while retaining sharp transitions in
brightness.

In applying BCS/FCS processing to SAR imagery,
various parameters in the governing dynamical sys
tem need to be selected so that the pixel values are not
discounted completely (because the original SAR im
age brightnesses are actually reflectance measures).
We can then preserve the ordering of the resulting
brightnesses in fairly uniform areas so as to mimic the
ordering of the initial reflectance values. In nonuni
form areas, however, the resulting signals indicate a
mixture of reflectance and local contrast. The overall
effect is SAR imagery with significantly less speckle
noise, darkened and sharpened shadows, and more
smoothly shaded signatures. Figure 26(a), obtained
with the Lincoln Laboratory ADTS SAR, illustrates a
clutter scene of trees, roads, and an overpass that
crosses the New York State Thruway. The image was
obtained with single-channel W polarization at 1-ft
resolution. Because of the large dynamic range, the
scene is displayed as a log-amplitude image. Fig
ure 26(b) shows the same scene after BCS/FCS
processing of the full-dynamic-range SAR image.
Note the dramatic reduction in speckle, the darken
ing of shadows, the sharpening of shadow contours,
and the smooth shading of the treetops, roads, and

grass.
Figure 27 illustrates the various stages of process

ing for the three ISAR targets oriented at a 45° azi
muth and a 15 0 radar depression angle. The log
amplitude ISAR imagery is shown in the first column,
the contrast-enhanced output of the shunting center
surround network is contained in the second column,
the boundary contours derived from the BCS net
work are given in the third column, and the smoothly
shaded signatures obtained from the FCS network are
in the fourth column. An important attribute of the
FCS filled-in signatures is that they are quite stable
with respect to small changes in target orientation.

For ATR applications involving SAR imagery, BCSI
FCS processing is a useful image-conditioning proce-

(a)

(b)

FIGURE 26. SAR image conditioning with BCS/FCS net
works: (a) original SAR image of an overpass that crosses
the New York State Thruway and (b) image after BCS/FCS
processing. The original single-channel VV-polarization
image (shown as log amplitude of the reflectance) is cor
rupted by speckle noise, which results in many false alarms
making target detection difficult. In the BCS/FCS-pro
cessed image, note the reduction of speckle noise, the
darkening of shadow areas, and the crispness of the
shadow contours. Such image conditioning improves tar
get detection while reducing false alarms. The SAR image
was obtained with the Advanced Detection Technology
Sensor (ADTS), a Lincoln Laboratory millimeter-wave
radar.
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dure. We expect it to improve both the target detec
tion and recognition stages of our ATR system.

Reentry-Vehicle Recognition
from ISAR Sequences

We have also applied our SAR target-recognition sys
tem to the identification of reentry vehicles imaged
by a ground radar while the vehicles were spinning
and traveling along a trajectory. The resulting reentry
vehicle images are thus ISAR imagery, although they
are in general simpler than that obtained with tactical
targets in clutter. Radar processing is typically done in
the range-Doppler domain to extract peaks corre
sponding to isolated scattering centers on the vehicle's
shroud. We can then apply to these data the same
three stages ofprocessing that we applied to the ISAR
tactical-target imagery: the range-Doppler peaks can
be used as point feature patterns, the patterns can be
encoded by overlapping receptive fields followed by
classification with ART-2, and evidence and confi
dence can be accumulated with the Aspect network.
(Note: An alternative approach to the learning and
recognition of reentry vehicles has recently been re
ported by A.M. Aull et al. [20].)

With this approach in mind, we have constructed
ISAR imagery of point scatterers for three reentry
vehicles over several rotations at a single angle of
attack (i.e., a single depression angle). The vehicles
are designated as RV-1, RV-2, and RV-3. Figure 28
illustrates the result of coding and ART-2 category
learning for vehicle RV-2 at a vigilance setting of
0.95. Aspect categorization over multiple rotations
are shown on an aspect sphere, along with the learned
templates and typical feature patterns for the six cat
egories that ART-2 established. Figure 29 shows the
results of separate ART-2 categorizations for all three
reentry vehicles over multiple rotations, as well as the
learned transitions among aspect categories used by
the Aspect network. The three vehicles differ in their
complexity, which is reflected by the number of cat
egories required by ART-2 to cluster the data: 3, 6,
and 16 categories for RV-1, RV-2, and RV-3,
respectively.

The results of a recognition experiment are shown
in Figure 30 (compare to Figure 24). In the experi
ment, a sequence of views of vehicle RV-3 was input
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to the system. (Note: This sequence was not part of
the data used for training the system.) Again, evi
dence was accumulated for all three targets in addi
tion to an unlearned target, the target of maximum
evidence was chosen, differential evidence was com
puted from the two targets of highest evidence, and
the difference was integrated along the view sequence
to generate a confidence measure. In Figure 30 we see
an example of the system changing its selection. The
system first (correctly) chooses RV-3 although the
confidence is still relatively low, then the system gets
confused and switches between the other two ve
hicles. The switching resets the confidence to zero,
and it remains very small due to the small differential
evidence generated. Finally, the system locks back
onto the correct decision, and confidence builds
monotonically.

Table 1 (page 109) summarizes the results of pre
liminary recognition experiments on these three reen
try vehicles. In each case the test sequence consisted
of 90 images starting at randomly selected azimuths.
In all cases the correct vehicle was recognized, and
fewer than 25 images were required in each sequence
to converge to a high-confidence correct decision. By
converting this result to the fraction of each vehicle's
rotation cycle that is required to achieve such recogni
tion, we find that fewer than two revolutions were
required in each case.

Learning and Recognition Using
Salient Object Parts

The 3-D object learning and recognition system de
scribed thus far processes the views of objects as a
whole. But this approach can lead to a decline in
recognition ability when an object is partially oc
cluded or disguised, or when a part of the object is
articulated or variable (removed or replaced). To
deal with these situations, we return to biology for
guidance.

The brain processes information by using a prin
ciple ofcontrast. Many operations seem to be cast in
terms of differences, or in terms of the detection of
novelties or transitions in space, time, or patterns.
Mechanisms exist that detect novel changes, as re
flected by the peak in EEG measurements that occurs
300 msec after the introduction of an unexpected
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(a)

(b)

(c)

FIGURE 27. BCSjFCS processing applied to the ISAR images of (a) target 1, (b) target 2, and (c) target 3. From left to right,
the columns show different stages of the BCSjFCS processing. The ISAR imagery (first column) is contrast enhanced by a
shunting center-surround network (second column) and boundary contours are extracted (third column). The contrast
enhanced imagery diffuses within the boundary contours to produce filled-in target signatures (fourth column). All three
targets are oriented at a 45° azimuth and a 15° radar depression angle.
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FIGURE 28. Learned categories for reentry vehicle RV-2 are plotted on an aspect sphere over four rotations of the target.
(For convenience, the data for each of the four rotations have been plotted on the aspect sphere at different shifted
depression angles. Note the four rounds of colored dots on the sphere.) During the learning process, ART-2 generated
only six categories (at a vigilance setting of 0.95). The learned templates along with the representative scatterer patterns for
the six categories are shown. From the upper right corner of the overall figure, the corresponding colors for the learned
templates are dark brown, dark blue, green, light blue, white, and light brown.
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(a) (b) (c)

FIGURE 29. Learned categories (aspect spheres) and transition matrices for the (a) RV-1, (b) RV-2, and (c)
RV-3 reentry vehicles over multiple rotation cycles. The vigilance setting is 0.95,0.95, and 0.96 for the three
reentry vehicles, respectively, and the resulting number of categories established is 3, 6, and 16, respectively.
(The difference in the number of categories reflects differences in the complexities of the three vehicles.) In
the transition matrices, the possible category transitions are coded in blue, while red denotes the absence of
such a transition.

new stimulus. Other mechanisms are responsible for
suppressing information that is not changing. For
instance, stabilized retinal images fade away in about
one second. In fact, all sensory systems become ha
bituated to constant or repetitive input patterns. In
deed, human vigilance decreases after long periods of
waiting, and we become bored. This principle of con
trast has been exploited earlier in our system in the
form of center-surround receptive fields, edge detec
tors, competitive learning, view-transition detec
tion, and confidence estimation via differential evi
dence. We now use the principle again, this time as
a foundation for Saliency Maps, hierarchical object
part representations, and caricature-based recognition
[21].

Visual attention not only focuses processing power
on an object in a scene, it often isolates only a part
of the object for closer inspection. (Note: Evi-
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dence for such a finely tuned attentional mech
anism has been found in psychological studies in
which subjects are demonstrably unaware of stimuli
external to the attended visual area.) A serial exami
nation of the object takes place in which the ex
amination is focused on the different parts of the
stimuli, which mayor may not correspond to differ
ent parts of the object. But what actually constitutes
an objectpart?

For a specific recognirion task, some parts may
carry more information than other parts, and deter
mining those key parts and the amount of informa
tion they carry depends on the specific task. For
example, human faces typically have two eyes, so that
particular piece of information is not very useful in
discriminating between different people, although it
would be useful in differentiating human faces from
clock faces. In a tactical military application, we need
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FIGURE 30. Example of recognition
by evidence accumulation: (a) as
pect sphere and (b) recognition re

sults (ct. Fig ure 24). The category
sequence recognized by the ART-2
network for reentry vehicle RV-3 of
Figure 29(c) is represented both on
an aspect sphere seen from above
in part a, and as a plot of category
versus view number, as shown in
the first graph of part b. The next
graph shows the evidence generated
for the three different reentry ve
hicles, the following graph shows
the selected target with the maxi
mum evidence, and the last two
graphs show the differential evi
dence between the two highest scor
ing targets and this differential evi-

dence integrated along the view sequence to give a measure of confidence. In this case, the system initially
identifies the target correctly and confidence grows, although the differential evidence remains small. But the
system then changes its decision, causing the confidence to be reset to zero. Finally, the system reverts to the
correct identification and locks in on that decision, and confidence grows monotonically.

Table 1. Reentry.Vehicie Recognition Results

Test Number of Images Correct Number of Images Fraction ofRotation
Vehicle in Test Sequence Recognition Required for Cycle Required for

Convergence Convergence

RV-1 90 Yes 4 0.15

RV-2 90 Yes 9 0.33

RV-3 90 Yes 23 1.58

VOLUME 6. NUMBER 1. 1993 THE LINCOLN lABORATORY JOURNAL 109



·WAXMANET AL.
Neural Systems for Automatic Target Learning and Recognition

f

to determine what information is useful in recogniz
ing the differences between the various types of ve
hicles that are being sought.

In our research, we use diffirencing to generate
expectation-driven part segmentation cues. As with
the 3-D object learning and recognition system de
scribed earlier, in Figure 31 the best-match aspect
category for tank 1 can be located on the tank-l
aspect sphere. The category carries with it a learned
template of the invariant appearance of the object.
For the extension to part-based representations, the
category must also carry a more complete description
to include characteristic attributes of the object such
as scale, orientation, context, and other information.
(Recall the what and where visual pathways, and their
interaction, mentioned earlier.) In addition to a de
scription of specific views of specific objects, the sys
tem also requires a description of the views of generic
(i.e., average) objects of a class. The generic-object
description is necessary to represent efficiently the
hierarchical descriptions that have been learned, as
well as to navigate quickly through the representation
during the recognition phase, as described below. A
generic-object description subsumes the descriptions
of all the specific objects that are associated with it.
For instance, a generic cannon-tank side view is the
average of the side views of all tanks that have can
nons. Thus the generic view is a generalized compos
ite representation.

After an ART-2 category is activated, the next step
in the object-part process is to compare the descrip
tion associated with the activated category node of
tank 1 with the corresponding previously learned de
scriprion for the generic tank. The differences be
tween the two descriptions are reported in the form of
a visual map called the Saliency Map. If all tanks have
exactly the same treads, turret, and cannon, then
these parts are not salient to the recognition or dis
crimination tasks, and they will not appear in the
Saliency Map. On the other hand, if the gun is longer
for tank 1 than for other tanks, then this difference
will be evident in the Saliency Map, and the degree to

which it is highlighted is used to prioritize the serial
attentional examination strategy.

Of course, an input image can activate (to various
degrees) the category nodes in many different tank
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ART-2 networks. Each of these category nodes has a
corresponding view-description template with other
associated information, including its own Saliency
Map. Each tank's Saliency Map indicates which pans
are most salient to discriminating that particular tank,
and the saliencies predict which parts should be in the
image from that vantage point, if the object in ques
tion is indeed that particular tank. The predictions
become expectation-driven attentional cues for seg
menting the most salient parts of the image, as shown
in Figure 32. With Saliency Maps, we not only know
whatpans to look for, but we also know where to look
for those parts relative to other parts and to the object
as a whole. As each expectation is investigated, it
either confirms or contradicts the hypothesized de
scription, and evidence is accumulated or dissipated
for each potential model target.

A Saliency Map can be obtained for a particular
object by computing the difference between the de
scription of the characteristic view of that object and
the corresponding description of the characteristic
view of the class of objects to which that particular
object belongs, i.e., the generic object. Figure 31 illus
trates this process. (Note: For simplicity, the Saliency
Map shown in Figure 31 was derived from the origi
nal gray-scale imagery. In a complete implementa
tion, however, the Map should be obtained from an
invariant description of a view, such as a log-polar
mapped image with the illuminant discounted in the
case of passive visible sensors.) As an example, we
might have a generic class of objects that are tanks
with cannons, turrets, and treads, and included within
that class we might have M48 and M60 tanks. Then
the Saliency Map for the front view of an M60 tank
represents the differences between the front view of
the M60 and the front view of a similar class of tanks
in general. Such differences are referred to as "activ
ity"-the greater the difference in a particular area of
the Saliency Map, then the greater the activity in that
part. Areas in which there are no differences (i.e., no
activity) are ignored in the scheduling of attentional
shifts.

Using Saliency Maps, we can organize a hierarchi
cal representation of the learned objects. Figure 33
illustrates an example hierarchy of tanks. Beginning
at the upper left are the descriptions of a generic tank
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Generic tank

Tank1

Tank-1 aspect

Generic-tank aspect

Tank-1 caricature

FIGURE 31. Construction of a Saliency Map and corresponding caricature image for the side view oftank 1, an M60 tank. The
Saliency Map is created by taking differences between the side view of tank 1 and the side view of a similar class of tanks in
general. (This class of tanks is collectively called a generic tank). The caricature image emphasizes the salient parts of tank
1 with respect to the generic tank. The salient parts in a Saliency Map are used to generate attentional cues for the
recognition and discrimination of a particular object among similar objects, and the use of caricatures increases the
efficiency of this process.

from various aspects. If all we desire is to discriminate
between tanks and aircraft, then this level of descrip
tion may be adequate. If, instead, we desire to dis
criminate between a flamethrower tank and a cannon
tank, then more detailed descriptions indicating the
information-carrying attributes of both types of tanks
are needed. The Saliency Maps described earlier natu
rally contain this information, so that if an object has
been determined to be a tank, the Saliency Maps
indicate exactly what must be investigated to make a
more refined decision about which specific tank that
object is. Once the tank has been recognized as a
cannon tank, either an M48 or an M60 in this ex-

ample, additional Saliency Maps indicate the differ
ences between these two types of tanks and the ge
neric cannon tank. Although Figure 33 shows only 2
way branching, the branching often is N-way.

Caricatures of the object descriptions can be used
to increase the efficiency of the recognition process.
For the recognition of human faces, there are many
different possible facial caricatures that can be used,
depending on what qualities are emphasized. A cari
caturist might emphasize age, sex, beauty, or simply
the differences evidenced between a particular face
and a corresponding generic age-matched, sex-matched
face. P.]. Benson and D.1. Perrett [8] have demon-
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• Salient part discovery and learning

• Class-object-part hierarchy learning

Attentional Aspect ~ ~ Part
priming ., .. indexing ~ .. priming
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FIGURE 32. Conceptual approach to the learning and recognition of c1ass-object-part hierarchies. Again, views are
quantized into aspects through the use of unsupervised learning, but objects of a class are averaged together to form
generic-object representations. Differences between specific objects and the generic object of that class are highlighted
on a Saliency Map (Figure 31), which is then used to focus attention on salient parts during the recognition process.
Recognized aspect categories for salient parts generate evidence for targets. In addition, the categories prime the system
with expectations for other parts at certain locations.

strated a reduction in reaction time in the recognition
task for subjects who are shown a caricatured face
versus a non-caricatured face.

Caricaturing occurs naturally in the class-object
part hierarchical representations of Figure 33. Com
puting a difference map between a description of an
input target image and a previously learned generic
description leads to the detection of differences be
tween the two descriptions. With that information,
the differences can then be emphasized, resulting in a
caricature of the input description. Because certain
parts in the caricatured map have been exaggerated,
they stand out even more strongly, and, because the
non-differences have been suppressed, attention can
be focused more quickly on the parts of the input
image description that are most unusual and there
fore most likely to carry discrimination information.
Figure 31 contains an example caricature image of a
tank.

Visual Navigation by MAVIN

The ATR system design described in the section c~r_

craft Recognition from Visible Image Sequences" has
been implemented at Lincoln Laboratory on a mobile
robot called the Mobile Adaptive Visual Navigator
(MAVIN). Shown in Figure 34, MAVIN can be pro-
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grammed to travel a reconnaissance path, detect and
track objects as it moves, and recognize objects it has
learned. Arrays of light bulbs, such as the ones shown
in Figure 34, have been used for the target objects.
Currently, MAVIN is also able to recognize silhou
ettes of objects that can be segmented easily from the
background. Equipped with binocular cameras, MA
VIN operates in real time, with feature extraction
running on a PIPE video-rate parallel-processing com
puter, and all other neural network computations
running on SUN computers. (Capable of I-billion 8
bit integer operations per second, PIPE was devel
oped for robotic vision at the National Institute of
Standards and Technology [NIST] and manufactured
by Aspex Corp. of New York.)

Our past investigations have incorporated the vi
sual learning and recognition system into a neural
architecture that is capable ofsupporting various Pav
lovian behavioral-conditioning paradigms based on
learned associations and expectations, including
excitatory conditioning, inhibitory conditioning, sec
ondary conditioning, and the extinction of condi
tioned excirors [22, 23]. We have recently extended
the MAVIN system to incorporate the learning and
recognition of environments that are defined by the
layout of visual landmarks observed during explora-
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tion [24, 25]. Associative learning methods similar to
those used for learning 2-D feature patterns have
been applied to spatial patterns of recognized visible
landmarks to establish place cells, which qualitatively
map an environment based on its visual surround
ings. We are currently incorporating displace cells into
the architecture to code place field transitions that are
induced by robot motions. (A place field corresponds
to an area in the environment where recognized target
landmarks possess a similar spatial layout.) These con
cepts for the qualitative mapping and navigation of
space are based on behavioral experiments with rats,
and on the physiological measurements of neurons in
the rat hippocampus.

An important motivation for developing MAVIN

Generic-tank
aspects

Flamethrower-tank generic aspects

has been to demonstrate in the laboratory the system's
ability to recognize in real time both fixed landmarks
and mobile targets from a sensor platform that can
navigate through, explore, and map an environment,
viewing the scene from a variety of vantage points.
Indeed, MAVIN has proven to be an excellent experi
mental domain to test the ATR systems that we have
developed.

Conclusion

Our strategy of using the unsupervised learning of
view-based, invariant representations in conjunction
with evidence accumulation that exploits view transi
tions has proven effective in several sensory domains,
and is relevant to both automatic target recognition

M60 aspects

M48 aspects

FIGURE 33. Hierarchical object representations are a natural consequence of the Saliency Map approach. The Saliency
Maps direct a branching down from generic object to specific target, which may be unique because of some specific part.
Because of this hierarchy, Saliency Maps can be used in the recognition process to guide a rapid search among learned
categories.
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FIGURE 34. The Mobile Adaptive Visual Navigator (MAVIN) developed at Lin
coln Laboratory. MAVIN, a mobile robot with binocular cameras, provides a
testbed for a passive-vision A TR system in which the concepts that underlie 3-D
object learning and recognition have been extended to the learning of represen
tations for environments that are defined by distributions of visual landmarks.
This extension supports the ability for an autonomous sensor platform to ex
plore, map (in a qualitative fashion), and navigate through environments con
sisting of fixed landmarks and moving targets. The neural architecture being
developed is based on studies of the rat hippocampus.

(ATR) and environment navigation. But perhaps
the most important lesson we have learned is that
many valuable insights can be gained from serious
study of the brain and behavior. Anatomical, physi
ological, and psychophysical studies have all helped
shape the computational theories and system archi
tectures used in our work. We believe that such stud
ies will continue to enable rapid progress in the ATR
field.
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