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• The Lincoln Laboratory multistage target-detection algorithm for synthetic­
aperture radar (SAR) imagery can be separated into three stages: the
prescreener, the discriminator, and the classifier. In this article, we focus on the
discrimination algorithm, which is a one-class, feature-based quadratic
discriminator. An important element of the algorithm design is the choice of
features. We examine fifteen features that are used in the discrimination.
algorithm-three features developed by Lincoln Laboratory, nine developed by
the Environmental Research Institute ofMichigan, two developed by Rockwell
International Corporatio~,and one developed by Loral Defense Systems. The
set of best features from this pool of fifteen was determined by a theoretical
analysis, and was then verified by using real SAR data. Performance was
evaluated for a number of different cases: for fully polarimetric data and HH
polarization data and for I~ft resolution data and I-m resolution data. In all
cases the theoretical performance analysis closely matched the real data
performance. This closeness demonstrates a good understanding of the
discrimination algorithm. In addition, we formulate a set of criteria for best
feature choice that apply to quadr~ticdiscrimination algorithms in general.

L INCOLN LABORATORY HAS PROCURED a fully
polarimetric, instrumentation-quality, high­
resolution (1 ft by 1 ft), 35-GHz, millimeter­

wave (MMW) synthetic-aperture radar (SAR), which
has been used to gather imagery of targets of interest
and clutter in a number of different locations and
deployments. The radar, which is mounted in a
Gulfstream G-1 aircraft, records data in-flight onto
24-track magnetic tapes. The tapes are then processed
on the ground to form the SAR imagery. A recent
Lincoln LaboratoryJournal article by Leslie M. Novak
et al. describes this radar system [1],

The Surveillance Systems group at Lincoln Labo­
ratory has been developing algorithms to detect tar­
gets of interest in this SAR imagery. A block diagram
of the algorithm suite is shown in Figure 1. The
target-detection algorithm suite takes the form of a
multistage algorithm. In theory, it is possible to con­
struct a single algorithm that performs target detec­
tion in an optimal manner, and which exploits all of

the information present in a high-resolution SAR
image. Unfortunately, it is often difficult to design
algorithms using the single-algorithm approach, be­
cause high-resolution SAR imagery is difficult to model
accurately and hence is poorly understood. The mul­
tistage approach becomes an attractive alternative,
because of the reduction in required computational
capability and the simplification in algorithm design.

The Lincoln Laboratory multistage algorithm has
three separate stages, each of which performs easily
identifiable functions. The first stage, which is called
the prescreener, is a computationally simple algorithm
whose function is to pass all targets and eliminate
only obviously non-targetlike naturally occurring clut­
ter. The second stage, called the discriminator, ideally
eliminates all naturally occurring clutter that has been
passed by the prescreener, and passes only man-made
objects to the third stage, which is called the classifier.
The classifier receives all man-made objects that have
been passed by the discriminator and categorizes each
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FIGURE 1. Block diagram of the multistage target-detection algorithm. This article concentrates on the discriminator stage.

Feature 1

FIGURE 2. Conceptual diagram of a one-class discrimina­
tion algorithm. This diagram represents a two-dimensional
feature space. If the separation in feature space is less
than the threshold, then the region of interest from which
the input vector is extracted is declared to be a target.
Conversely, if the separation in feature space is greater
than the threshold, the region of interest is declared to be
clutter.
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false alarms. These attributes include size, shape, power,
polarimetric properties, spatial distribution of reflected
power, and dimensionality. Unfortunately, at present
no method exists for developing discrimination fea­
tures to exploit these attributes in any optimal fash­
ion. The best that can be done is to design a feature
that seems to exploit a specific attribute, and then test
the feature on a variety of data to see if it separates
targets from natural-clutter false alarms. If it does not
separate targets from false alarms, the feature design is
obviously poor; if it does separate them, then the
feature may be a good one.

The other major criterion that a feature must sat­
isfy is orthogonality. In simple terms, features used

one either as a target of interest (ofwhich there can be
a number of classes) or as an uninteresting man-made
object.

In this article, we concentrate our attention on the
second stage, the discriminator. The prescreener stage
is covered elsewhere [2]; the classification stage is still
under development.

Discrimination Features

Algorithm Description

The discrimination algorithm used in the Lincoln
Laboratory automatic target-detection algorithm suite
is centered around a one-class quadratic discriminator
[3-5]. A one-class discriminator is trained only on a
target-training set, and it assumes that the clutter
false-alarm dataset (i.e., the set of false alarms passed
by the prescreener stage) has unknown attributes in a
feature space. Figure 2 illustrates the concept of this
discrimination algorithm. For each region of interest,
the algorithm produces a score that measures the
distance from the candidate to the center of the tar­
get-training set (in a feature space). When the algo­
rithm is properly trained, a lower value of this
distance metric indicates a more targedike candidate.

Key elements of the discrimination algorithm are
the features used to compute the distance metric. We
cover the discrimination features used in the Lincoln
Laboratory target-detection algorithm suite in the next
five sections of this article. Subsequent sections cover
the discrimination algorithm itself in great detail.

A number of attributes that are present in the fully
polarimetric, high-resolution SAR imagery can be ex­
ploited to discriminate between targets and clutter
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together in a discrimination algorithm must measure
different attribures of the region of interest. For ex­
ample, five different features that measure similar
polarimetric properties of the candidate region of
interest should not be used together in the same
discrimination algorithm. In fact, using similar fea­
tures is likely to make discrimination performance
worse. This fact is a consequence of the likely occur­
rence that the target-training dataset will differ some­
what from the target-testing dataset. This phenom­
enon is covered more fully in the sidebar entitled
"Adding Features Can Degrade Performance."

Another desirable property of the features in a
discrimination algorithm is that they should be ro­
bust in a number of ways. Many feature algorithms
require thresholds to be set to isolate the brightest
scatterers, for example, or to isolate the scatterers with
the most contrast. The feature values should not be
too sensitive to the settings of these thresholds, be­
cause they may then work in one deployment situa­
tion but not in another similar situation. The features
should also be somewhat robust to countermeasures;
radar signatures of military vehicles are frequently
altered by any number of methods. Some common
methods include placing foliage and mud on the
vehicle, adding metal parts to the vehicle, deploying
camouflage netting around and on top of the vehicle,
coating the target with radar-absorbing material, or
simply opening the hatches of an armored target.
An effective discrimination feature would ideally be
insensitive to these methods and to other types of
countermeasures.

We examined fifteen features for use in the Lincoln
Laboratory target discrimination algorithm; three of
these features were developed at Lincoln Laboratory
[6], nine were developed at the Environmental Re­
search Institure of Michigan (ERIM) of Ann Arbor,
Michigan, two were developed by Rockwell Interna­
tional Corporation of El Segundo, California, and
one was developed by Loral Defense Systems of
Goodyear, Arizona. The non-Lincoln Laboratory fea­
tures were developed under the Strategic Target Algo­
rithm Research (STAR) contract, a yearlong research
contract funded jointly by the Advanced Research
Projects Agency (ARPA) and the United States Air
Force. This contract was administered by Lincoln

Laboratory; the goal was to develop and test target
detection algorithms by using a common dataset pro­
vided by Lincoln Laboratory. Each contractor's ap­
proach to the target-detection problem was some­
what different, but all used a number of features. We
chose the most promising features for evaluation in
this study.

Lincoln Laboratory Discrimination Features

The three Lincoln Laboratory discrimination features
are standard deviation, fractal dimension, and
weighted-rank fill ratio. They were developed by Leslie
Novak, Michael Burl, and Gregory Owirka, all of
Lincoln Laboratory. The features are compured from
target-sized areas that are centered over the pixels
identified by the prescreener for further processing.
The extent of the target-sized area is determined by
the a priori knowledge of what type of target is being
sought, and a box-spinning algorithm is used to de­
termine target orientation [7].

The standard-deviation feature is computed from
the typical estimator for the standard deviation. It
uses the power (expressed in dB) of all the pixels in a
target-sized box.

The fractal-dimension feature, which is illustrated
in Figure 3, provides a measure of the spatial dimen­
sionality of the potential target [6]. This feature esti­
mates the Hausdorff dimension of the spatial distri­
burion of the top N scatterers in the region of interest.
For example, a straight line has a Hausdorff dimen­
sion of one, and a solid rectangle has a Hausdorff
dimension of two. Various other space-filling objects
with holes have a Hausdorff dimension that falls be­
tween one and two. An isolated point has a Hausdorff
dimension of zero.

To compute the fractal-dimension feature, we
threshold the region of interest by taking only the top
N scatterers in terms of power. A binary image is
created from these scatterers, and the minimum num­
ber n l of I-pixel-by-1-pixel boxes (dl = 1) that cover
all N scatterers is determined. This number, of course,
is equal to the value N Then the minimum number
~ of2-pixel-by-2-pixel boxes (~ = 2) that cover all N
scatterers is determined. This number is less than or
equal to N If the spatial distriburion of the scatterers
is highly diffuse, the value of ~ will be close to N; if
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ADDING FEATURES CAN DEGRADE
PERFORMANCE

100010010

all twelve Lincoln Laboratory and
ERIM STAR discrimination fea­
tures. otice the significant per­
formance degradation that occurs
when the seven extra features are
added. otes on interpreting this
type ofgraph can be found in the
sidebar entitled "Interpreting
PlotS of Pdversus FA/km2

."

Figure B is a notional diagram
that illustrates the degradation
phenomenon. The diagram is
complicated but the explanation
of it is relatively easy. There are
three distinct setS ofdata displayed
in the diagram: target training,
target testing, and clutter false
alarm. Each dataset is displayed
for two features, which we call
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ered (see the section entitled
"Confirming the Gaussian As­
sumption"). Small departures
from Gaussianity, however, are
probably not the major cause of
the phenomenon we are address­
ing here. Instead, the major cause
of degraded performance is that
the second condition is not
being met.

Figure A shows performance
curves for the I-ft, polarimetric
whitening filter (PWF) data us­
ing the features described in the
section entitled "Best Features for
Discrimination." This figure,
which is the same diagram as fig­
ure 17, also shows performance
curves for the same dataset using

FIGURE A. Performance curves comparing discrimination performance for
the five best features and for all twelve features. Performance degrades
when more features are added.

I THE MAl ARTICLE, a theoreti­
cal analysis of the one-class qua­
dratic discriminator shows theo­
retical expressions for the
probability of detection (Pd) and
the probability offalse alarm (Pfa )

of the algorithm. We make the
claim in the section on discrimi­
nation features that adding fea­
tures does not necessarily improve
discrimination performance. We
show here that this is indeed the
case by giving twO examples; the
first example shows discrimina­
tion performance with the set of
five best features, and the second
example shows discrimination
performance with the same set of
features in addition to seven oth­
er features.

The idea that adding features
can degrade performance is, per­
haps, counterintuitive. In fact, we
cannOt degrade performance by
adding features if a few key con­
ditions are met. These conditions
are (1) the real data obey perfect­
ly the multivariate Gaussian as­
sumption made in the section en­
titled "Theoretical Analysis of the
One-Class Quadratic Discrimina­
tion Algorithm," and (2) the tar­
get-training data and the target­
testing data have exactly the same
statistical distribution.

The multivariate Gaussian con­
dition is difficult to verify for the
real data, especially when a num­
ber of features are being consid-
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Feature 1

FIGURE B. Notional diagram of reason for performance degradation when
features are added. This graph shows two features in a feature space.

Threshold A

•

we remove the second key condi­
tion mentioned above. First, we
assume that the discrimination al­
gorithm uses only Feature 1 (re­
fer to the green, red, and black
points plotted along the abscis­
sa). By drawing a threshold at the
point labeledThreshold A, we see
that the discrimination perfor­
mance is equivalent to the previ­
ous case because the target-train­
ing data and the target-testing
data for Feature 1 have similar
characteristics.

ow, we add Feature 2. Per­
formance is severely degraded be­
cause we cannot draw an ellipse
(with the same orientation as
Threshold B) around the center
of mass of the green points that
does not engulf large numbers of
clutter false alarms (black points)
while still engulfing the target­
testing data (red points).

The important point is that
any threshold ellipse must have
the same orientation as the ellipse
shown as Threshold B, because
the orientation of the ellipse is
determined by the statistical char­
acteristics of the target-training
data. This example is a particu­
larly egregious illustration of
the failure of the second key
condition, because the target­
training data and the target-test­
ing data now have different
statistical characteristics. The ad­
dition of Feature 2 obviously de­
grades performance severely. More
subtle cases that significantly
affect performance OCCut more
frequently.

Threshold B
••
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actly the same statistical distribu­
tion, and the data obey (more or
less) the Gaussian assumption
(within each dara type).

Now, while still assuming the
target-training data and target­
testing data are the same, we add
Feature 2 (refer to only the green
and black points in the middle of
the graph). We can then draw
Threshold B as an ellipse around
the data, and do a still better job
at separating targets from clutter
(in this case one false alarm is
called a target). The twO key cri­
teria are still obeyed.

Ifwe assume now that the tar­
get-training data and the target­
testing data are different datasetS,

•
• •• • •
•• • •
• • •

C\l •
~ • •
:J •-IIIa> • • • •u. •• •

••

•

• Target testing
• Targettraining
• Clutter false alarms

Feature 1 and Feature 2. Imagine
that the target-training data and
the target-testing data are the same
(training and testing is done on
the same data, so ignore the red
points on the diagram for the time
being).

First, assume that the discrim­
ination algorithm uses only Fea­
ture 1 (refer to only the green and
black points plotted along the ab­
scissa for this case). We see that
the discriminator does a good job
of separating targets from clutter
by using Threshold A (three false
alarms are called targetS). In this
case the twO key conditions are
satisfied: the target-training data
and target-testing data have ex-
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(a) (b)

FIGURE 3. Calculation of the fractal-dimension feature, which measures the spatial bunching of the brightest pixels in
a region of interest. (a) The brightest pixels for a tree tend to be widely separated, which requires a relatively large
number of covering boxes and produces a low value forthe fractal dimension. (b) The brightest pixels for a target tend
to be closely bunched, which requires fewer covering boxes and produces a high value for the fractal dimension.

the scatterers are spatially bunched the value of 1"2 will
be considerably less than N. These values are deter­
mined for the two specific examples in Figure 3 and
plotted in Figure 4, with the logarithm of nl and 1"2
on the ordinate, and the logarithm of d1 and c0. on the
abscissa. The negative slope of the line through the
two points, which is given by

log n1 - log n2

log d2 - log d1 '
(1)

c::
o

OJ
o

...J

is an estimate of the Hausdorff dimension of the
region of interest. For the high-resolution data in this
article, we used N = 50.

The weighted-rank fill-ratio feature is computed
from the top N scatterers in the target-sized box. The
feature is computed by totaling the power in the top
N pixels within the target-sized box, and normalizing
by the total power of all pixels in the box. This feature
attempts to exploit the fact that power returns from
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FIGURE 4. An estimate of the Hausdorff dimension of the
tree and target in Figure 3. For both objects the total num­
ber of scatterers is 50; for the tree the minimum number of
covering boxes is 41 and for the target the minimum num­
ber of covering boxes is 20. The negative slope of the line
for each object is the estimate of the fractal-dimension
feature. Targets tend to have higher fractal dimensions
than natural clutter.
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and

IHH - VVl 2
2

Eeven = + 21HVI
2

= IRRI2+ ILq2 .

The odd-bounce channel given by the first equation
corresponds to the radar return from a flat plate or a
trihedral; the even-bounce channel corresponds to
the radar return from a dihedral. Figure 6 illustrates
examples of these reflectors, along with notional dia­
grams of how they reflect the radar energy. The use-

(2)
x - f..t c

where x represents the test pixel, and [Lc and ac are
estimates of the local mean and local standard devia­
tion, respectively, of the surrounding clutter. The esti­
mates of the parameters from the surrounding clutter
are accomplished by using the pixels in a window
around the supposed target whose opening is large
enough to exclude the target return. Figure 5 illus­
trates this window, and the opening is called the guard

area.

The CFAR statistic given by Equation 2 is com­
puted for each pixel to create a CFAR image. The
maximum CFAR feature is the maximum value in the
CFAR image contained within the target-shaped blob.
This quantity is similar to the basic feature used in
the prescreener algorithm. The mean CFAR feature is
the average of the CFAR image taken over the target­
shaped blob. The percent bright CFAR feature is the
percentage of pixels within the target-shaped blob
that exceed a certain CFAR value.

The polarimetric discrimination features are based
on a transformation of the linear polarization basis in
which the Lincoln Laboratory MMW SAR gathers
data to an even-bounce, odd-bounce basis described
by the equations

most targets tend to be concentrated in a few bright
scatterers, whereas power returns from natural-clutter
false alarms tend to be more diffuse. This feature
measures a power-related property of the target-sized
box, which makes this feature different from the fractal­
dimension feature, which measures a spatial property
of the entire region of interest.

ERiM Discrimination Features

The ERIM discrimination features were developed
and provided to Lincoln Laboratory under the STAR
contract mentioned above. They were modified for
this study by altering the thresholds to account for a
target dataset that was substantially different from the
dataset used for the STAR contract. Instead of using a
target-sized box as a preliminary step, as in the Lin­
coln Laboratory feature algorithms, the ERIM feature
algorithms compute a target-shaped blob by perform­
ing morphological operations. These operations serve
both as a method of grouping spatially related hits
from the prescreener and as a method of estimating
the size, shape, and orientation of the supposed
target.

There are three categories of ERIM discrimination
features: size-related features, contrast-based features,
and polarimetric features. Each of these three catego­
ries contains three features. The size-related features
are mass, diameter, and square-normalized rotational
inertia. The contrast-based features are maximum con­
stant false-alarm rate (CFAR) statistic, mean CFAR
statistic, and percent bright CFAR statistic. The pola­
rimetric features are percent pure, percent pure even,
and percent bright even. We describe each feature in
detail in the following paragraphs.

The three size-related features utilize only the bi­
nary image created by the morphological operations.
The mass feature is computed by counting the num­
ber ofpixels in the morphological blob. The diameter
is the length of the diagonal of the smallest rectangle
(either horizontally oriented or vertically oriented)
that encloses the blob. The square-normalized rota­
tional inertia is the second mechanical moment of the
blob around its center of mass, normalized by the
inertia of an equal mass square.

The contrast-based features are determined by a
CFAR algorithm. This algorithm can be described by
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Trihedral

FIGURE 6. Reflection of radar signal from a variety of re­
flectors. (a) Odd-bounce reflectors include a flat plate and
a trihedral. (b) Even-bounce reflectors include a dihedral.
Radar backscatter from natural clutter is predominantly
odd bounce, while backscatter from man-made objects is
typically an equal mixture of even bounce and odd bounce.

(b)

Dihedral

Flat plate

(a)

exhibit large amounts of pure odd-bounce energy.
Also, man-made objects are more likely to exhibit an
equal mixture of even-bounce and odd-bounce
energy than a natural-clurter false alarm.

Rockwell Discrimination Features

The Rockwell discrimination features were also devel­
oped and provided to Lincoln Laboratory under the
STAR contract. Like the ERIM discrimination fea­
tures, they were modified to account for the different
type of target data used in the present study. These

TargetTest cell

FIGURE 5. CFAR template, showing the pixel under test,
and the surrounding window of pixels from which clutter
estimates are computed. The test pixel and clutter window
are separated by a guard area, which protects the clutter
estimates from being corrupted by portions of the target

return.

fulness of these polarimetric feature resides in the fact
that few dihedral structures exist in natural clutter,
but these structures are plentiful on most man-made
targets. Natural clutter tends to exhibit more odd­
bounce reflected energy than even-bounce reflected
energy.

The ERIM polarimetric features are formed from
the even-bounce and the odd-bounce images. The
percent-pure feature is the fraction of pixels within
the target-shaped blob for which at least a certain
fraction of the scattered energy falls in either the
even-bounce channel or the odd-bounce channel. Per­
cent even is the fraction of pixels within the target­
shaped blob for which at least a certain fraction of the
scattered energy falls in the even-bounce channel.
The percent-bright-even feature is the fraction of
pixels that exceed a certain value in the CFAR image
described above, and which are mainly even-bounce
scatterers.

The main impetus for these features is that a man­
made object exhibits approximately equal amounts of
pure even-bounce energy and odd-bounce energy,
whereas a natural-clutter false alarm is more likely to

Guard area
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ai = max(Pi - T, 0),

specific entropy = - i fi log fi .
i=1 log m

The relative phase between the HH polarization
channel and the VV polarization channel is then cal­
culated for the remaining pixels within the target­
sized box. The values are arranged in a histogram
plot, such as the example shown in Figure 7, and the
feature is calculated from this plot. The polarimetric
phase ratio is defined as the number of pixels to fall
within ±xo of 180° relative phase on the histogram,
divided by the number of pixels that fall within ±xo of
0° relative phase on the histogram. We used a value of
x= 90°.

Specific entropy is the second Rockwell discrimi­
nation feature used in this study. Because of the com­
plicated definition of this feature, it was not clear
which step in the calculation provides the ability to
separate targets from natural-clutter false alarms. To
understand this feature better, we investigated it in
considerable detail. A number ofsteps are involved in
computing this feature:

1. Choose a threshold Tthat is set to the quantity
corresponding to the 98th percentile of the surround­
ing clutter, and calculate a normalized amplitude by

unless ai = 0 for all i = 1, ... , m, in which case the
specific-entropy feature is set to zero.

3. Compute the specific-entropy feature by

where a is the amplitude (in dB) above the threshold,

P is the amplitude of the original pixel (in dB), i is the
pixel tag number (of which there are m, which is the
number of pixels in the target-sized box), and T is the
value (in dB) of the threshold.

2. Normalize the amplitude by

36090 180 270

Relative phase (degrees)
o

o

80 .--------,,...-----,------,------,

.!!!. 60
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><
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~ 40
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features use the pixels in a target-sized box for feature
calculation; the algorithm used to determine the ori­
entation of the target-sized box is the same as that
used for computing the orientation for the Lincoln
Laboratory discrimination features described earlier.
Some of the Rockwell discrimination features are simi­
lar to those already used by Lincoln Laboratory and
ERIM. These similar features were not considered.
Instead we concentrated on two other Rockwell fea­
tures: (1) the polarimetric phase ratio feature, and (2)

the specific-entropy feature.
The polarimetric phase ratio feature is another

attempt to exploit differences in polarization between
radar returns from targets and radar returns from
clutter. The relative phase between the HH polariza­
tion channel and the VV polarization channel is used
for this purpose. Only pixels in a target-sized box (the
orientation of which is determined by the box-spin­
ning algorithm described in Reference 7) are exam­
ined. In addition, to eliminate the low-return pixels

that may have a random phase due to corruption by
receiver noise, we use only the pixels that exceed a
threshold in both the HH polarization channel and
the VV polarization channel. This threshold, which is
set to a percentage of the maximum power in a pixel
in a given image, is set to a low value so the
thresholding operation eliminates only the lowest re­
turn pixels whose phase is most likely to be corrupted
by receiver noise.

FIGURE 7. Histogram of relative phase between the HH

polarization channel and the VV polarization channel. This
type of plot is used in the calculation of the Rockwell
polarimetric phase ratio feature.

The idea behind this feature is to exploit two sup­
posed properties of a target: (1) the pixels exceeding
the threshold T do not vary greatly in amplitude for a
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target, but they do vary greatly for a natural-clutter
false alarm; and (2) more pixels exceed the threshold
T for a target than for a natural-clutter false alarm.
The question that remains is which step in the feature

calculation provides the separation between targets
and natural-clutter false alarms.

We studied this problem by separating the calcula­
tion of the specific entropy into the steps described
above, and then we calculated a feature based only on
the operation in each separate step. To this end, we
invented a simple count feature, which counts the
number of pixels that exceeded the threshold T as it
was calculated above, and normalizes this value by the
total possible number of pixels in a target-sized box.
This procedure was done for targets and for clutter
false alarms, and the count feature was then plotted as
a scatterplot versus the specific-entropy feature, as
shown in Figure 8 for a sample target dataset.

In this plot, specific entropy is plotted on the

ordinate, and the logarithm of the count feature is
plotted on the abscissa. If the two features are highly
correlated, the plot shows the points falling along a
straight line, which is indeed the case for this ex­
ample. In fact, all the target and clutter false-alarm
datasets that we examined showed similar scatterplots.
For practical purposes, this scatterplot indicates that
the count feature and the specific-entropy feature are
equivalent. The extra steps given above in the calcula­
tion of the specific-entropy feature do little to

increase the separation between targets and natural­
clutter false alarms.

Loral Discrimination Feature

Loral Defense Systems was the third participant in
the STAR contract. Many of their discrimination
features substantially overlapped the features of the
other two contractors and Lincoln Laboratory. For
this reason, we examined only one Loral discrimina-
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FIGURE 8. Scatterplot of the Rockwell specific-entropy feature versus count feature. Points falling on a straight
line indicate a high correlation between the two features.
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FIGURE 9. Concept of contiguousness feature. (a) The
target within the region of interest has an irregular shape.

The radar illuminates this shape from the top, which causes

a shadow to extend downward in the image. (b) The two
thresholds in the histogram of pixel power (in dB) divide

the region of interest into three categories: shadow, back­
ground, and target region. The Loral contiguousness fea­

ture is computed by first forming six separate regions of

interest based on these categories.

which consists of a target-sized area plus a border
containing the surrounding clutter. Each region of
interest was then segmented into the three categories
by using only the clutter area surrounding each target
candidate to determine the threshold levels.

The thresholding procedure effectively creates three
regions of interest: one that contains the brightest
pixels (called the Level 3 image), one that contains
the dimmest pixels (called the Level 1 image), and
one that contains the midlevel pixels (called the Level
2 image). The same thresholding procedure is per­
formed on the CFAR image, which is derived in the
same way as the CFAR image described in the section
on ERIM discrimination features and determined by
the expression in Equation 1. The contiguousness
feature is determined by computing numbers from
each of these six regions of interest.

The computation of the contiguousness feature is
straightforward. Each contiguousness number is de­
rived from only one image (i.e., the Level 1 CFAR
image, the Level 2 CFAR image, the Level 3 CFAR
image, the Level 1 image, the Level 2 image, or the
Level 3 image). Each pixel included in each particular
image is counted, and its immediate neighbors that
appear in the same image are counted as well. The
count is then normalized by the total number of pos­
sibilities that could have occurred (which is nine times
the number ofpixels in the image). The final number,
which has a value between zero and one, is the con­
tiguousness number for that image. This operation is
done for every image, so the contiguousness feature
gives six separate numbers for each region of interest.

Discrimination Algorithm

As mentioned at the beginning of the section on
algorithm description, the Lincoln Laboratory dis­
crimination algorithm is based on a one-class qua­
dratic discrimination algorithm, the inputs of which
are the feature vectors for each candidate region of
interest. The algorithm is trained beforehand with
representative target data only (no clutter data are
used for the training, hence the one-class algorithm).
Often these target data consist of images of targets
with no countermeasures applied. The tests performed
for this article use this training method.

The reasoning behind this type of training is that

Target region
(Level 3)

Upper
threshold

(a)

(b)

Background
(Level 2)

Lower
threshold

Shadow
(Level 1)

Region of interest

tion feature-the contiguousness feature.
To calculate this feature, we segment each image

into three separate images based on the amplitude of
individual pixels, as shown in Figure 9. All the pixels
in an individual image are histogrammed and then
divided into three categories. The lowest 25% of pix­
els are called shadow (Level 1), the middle 60% are
called background (Level 2), and the top 15% are
called the target region (Level 3). For the purposes of
this study, we modified the procedure by applying the
thresholding process only to each region of interest,
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predicting the use or modification of enemy targets is
impossible, so training on exactly the same types of
targets that will be encountered in a real situation is
also impossible. Therefore, data gathered by using
non-countermeasured targets seem a reasonable choice
for a target-training dataset. Any realistic test of the
discrimination algorithm, however, must include tar­
gets that have some countermeasures applied.

variate Gaussian distributed. Then the Zj values are
chi-squared distributed [8], and the pdf can be writ­
ten as

Theoretical Analysis ofthe One-Class Quadratic
Discrimination Algorithm

The one-class quadratic discrimination algorithm used
in the Lincoln Laboratory multistage target-detection
algorithm can be described mathematically as

where E(z) = 1 and Var(z) = 2/n.

The distribution of Zj under the target (non-train­
ing) and clutter false-alarm classes with these assump­
tions is more difficult to calculate. In each of the two
cases, a different matrix A must be found such that

1 'T '-I 'Zj = - (Xj - Mtr ) Str (Xj - Mtr ) ,
n

for i = 1, 2, ... ,kt + kc '

(3)

and

and

and

(7)

(6)

where L t and L c are diagonal matrices. This operation,
which is a simultaneous diagonalization, reduces the
problem of evaluating Equations 4 and 5 to one of
finding the distribution of

At,' = diag(L t ),

T '
wt,! = At (Mt - M tr ),

A
C
,! = diag(Le),

T '
we,' = A c (Me - M tr )"

where

and

where n is the number of features used in the dis-, ,
criminator, M tr and Str are the estimates of the mean
vector and variance-covariance matrix of the training
target set, X j is a random vector representing the
observed candidate features, and Zj is a random vari­
able representing the distance from the test point to
the target-training class. The two variables kt and ke

are the number of targets and the number of clutter
false alarms, respectively, that the discriminator re­
ceives from the prescreener stage of the multistage
algorithm.

To analyze the discriminator given by Equation 3,
we need to find the quantities

Prob {Zj < K Ii is target} = Pd (4)

Prob {Zj < K Ii is clutter} = Pfa ' (5)

where K is the hard threshold. This analysis involves
finding the probability distribution function (pdf) of
Zj for the target case and for the clutter false-alarm
case, and then integrating the pdf according to Equa­
tions 4 and 5.

The distribution ofZj for the target-training dataset
is easy to calculate if the assumption is made that the
estimates of M tr and Str take on their true values. For
tractability, we also assume that the features are multi-
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and where the operator diag(') indicates the extrac­
tion of the diagonal vector from the matrix argument.
The quantity n is the number of features used in the
discriminator.

Calculating the distribution ofEquation 6 or Equa­
tion 7 without the multivariate Gaussian assumption
would be difficult because the summation would then
be over uncorrelated-but not necessarily indepen­
dent-random variables. Once again, we make an
assumption that the estimates of M tr and Str take on
their true values.

The characteristic function of the distribution of
Equations 6 and 7 is given by

In this equation,j = .H. We can omit the target and
clutter-false-alarm subscripts because the mathemat­
ics for the two cases is similar. This characteristic
function can be inverted and integrated according to
Equations 4 and 5 by using Fourier transform theory,

so that

nK

Pd(K) = JIr(z) dz

o

= .!- _'!-Joo [~¢t.n(q)J cos(nKq)
2 TC q

o

m[¢t n(q)J . ( IG)] d
- ' SIn n q q

q

and

nK

Pfa (K) = JIe (z) dz

o

Confirming the Gaussian Assumption

We make a key assumption in the theoretical perfor­
mance prediction for the discrimination algorithm
given above-we assume that the datasets (target train­
ing, target testing, and clutter false alarm) are multi­
variate Gaussian distributed. There are two tests that
are feasible to confirm this assumption; the first test is
for the univariate case and the second test is for the
bivariate case. Tests for higher dimensions exist, but
they can become complicated and difficult to inter­
pret [9J (or they rely on making some other crucial
assumption, which can be difficult to check). We
chose to perform the univariate and bivariate tests, for
which we give the results here. We also created a
scatterplot for a trivariate test.

All the tests described here were done as a check on
algorithm performance and not as an end in them­
selves. We did not try to calculate exact quantitative
measures for goodness of fit. An exact study would
have added considerable complexity to our task, while
providing little insight. Instead, our tests were done
by using graphical techniques and the fits were per­
formed by eye; only approximate Gaussianity can be
ascertained by such techniques. The proof that the
theory is an accurate predictor of performance is not
contained in these tests, but rather in the comparison
of real data results with theoretical results. This com­
parison is given in the section entitled "Real Data
versus Theoretical Performance."

The univariate test is straightforward. We plot each
feature on Gaussian-scaled paper, and test it by exam­
ining if the cumulative density function is a straight
line. In general, we found that most of the features for
most of the datasets were adequately univariate
Gaussian. In the few exceptional cases, the distribu­
tions were not far off, and the discrepancies were not
significant in the final results. Figure 10 is an example
of a univariate test with the fractal-dimension feature.

The bivariate case is tested by using scatterplots,
which show data points of one feature versus another
feature. For Gaussianity, these points should fall in an
ellipsoidal bunch around the centroid of the data
points. There should be more data points near the
center of the ellipse, and fewer data points farther
from the center of the ellipse. We could carefully and
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FIGURE 10. Univariate Gaussian test ofthe fractal-dimension feature. Any straight
line on this graph represents a Gaussian curve.

quantitatively verify the percentage of points within a
certain normalized radius of the center of mass, which
would give a measure of how Gaussian the data were
distributed. We did not, however, perform this quan­
titative verification; we merely observed how closely
the data points were bunched around the center of
mass.

These graphs are also useful for checking the corre­
lation between two features; the more linear the data
points are, the higher the correlation. If the data
points fall in an ellipse that is horizontally or verti­
cally oriented, then the data points are uncorrelated.
This test is not just an interesting foomote; the sec­
tion entitled "Feature Choice Guidelines" describes
the importance of choosing features that are orthogo­
nal (i.e., uncorrelated) for good discrimination per­
formance. The scatterplots can also give additional
insight into the ability of two features (taken simulta­
neously) to separate targets from clutter. Ideally, we
would like the target-training dataset and the target­
testing dataset to be coincident, and the clutter false­
alarm dataset to be separated from the other two by a
wide margin (measured both along the abscissa and
the ordinate).

Figure 11 shows an example of a scatterplot for the
fractal-dimension feature versus the weighted-rank
fill-ratio feature. The target-training, target-testing,
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natural-clutter false-alarm, and natural- and cultural­
clutter false-alarm datasets are shown. The target­
training and target-testing datasets seem to be reason­
ably elliptically distributed around their centers of
mass, and they seem to be close to each other; both of
these properties are desirable. The clutter false-alarm
datasets seem to be somewhat less elliptical, but are
reasonably well separated from both target datasets.

The three-dimensional scatterplot shown in Figure
12 illustrates all three Lincoln Laboratory discrimina­
tion features for the target-training, the target-testing,
and the natural-clutter false-alarm datasets described
in the section entitled "Data Used." There are two
things to be noticed about this figure. First, the figure
clearly shows the separation between targets and natu­
ral-clutter false alarms, and it shows that the clutter
false alarms intermingled with the target datasets tend
to be those created by man-made objects (i.e., cul­
tural clutter). Second, the figure helps confirm the
approximate Gaussianity of the target datasets and
the natural-clutter false-alarm dataset.

Notice the distribution of the red points (the tar­
get-training dataset) in the figure. If these red points
are Gaussian distributed, they should form an ellip­
soidal pattern around the center of the red point
cloud with greater density of points toward the cen­
ter. Likewise, the dark blue points (the target-testing
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dataset), the green points (the natural-clutter false­
alarm dataset), and the light blue points (the cultural­
clutter false-alarm dataset) in the figure should be
distributed in a similar manner for Gaussianity to
hold.

Figure 12 shows that the red points and the dark
blue points are distributed in an approximately ellip­
soidal pattern around their respective centers. The
green points, however, are less ellipsoidal in their
distribution, and the light blue points are clearly non­
ellipsoidal. As we demonstrate in a later section, the
minor deviation of the green points (i.e., the natural­
clutter false alarms) from Gaussianity does not greatly
affect the agreement between the theory and the real
data. The lack of Gaussianity in the light blue points
(i.e., the cultural-clutter false alarms) is not critical
because the discriminator is designed to eliminate the

natural-clutter false alarms and pass the cultural-clut­
ter false alarms to the classification algorithm.

The goal of the discrimination algorithm, as stated
earlier in this article, is to reject false alarms caused by
natural clutter. For most of this article, we do not dis­
tinguish between clutter false alarms caused by natu­
ral clutter and clutter false alarms caused by cultural
clutter, because it is impossible to know, in any kind
of realistic scenario, which type of clutter false alarm a
given region of interest is (or even if the region of
interest is a clutter false alarm or a legitimate target).

In Figure 12 we separate the two types of false
alarms for analysis purposes. For the discrimination
algorithm to perform well, the targets must be sepa­
rated from the natural-clutter false alarms. Figure 12
shows that the targets are indeed separated from the
natural-clutter false alarms but not from the culrural-
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• Stockbridge natural- and cultural-clutter false alarms
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FIGURE 11. Scatterplot of fractal-dimension feature versus weighted-rank fill-ratio feature. For good discrimination
performance with these two features, the target datasets should be separate from the false-alarm datasets.
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FIGURE 12. Three-dimensional scatterplot of the three lincoln Laboratory discrimination features: fractal
dimension, weighted-rank fill ratio, and standard deviation.

clutter false alarms. In other words, the discrimina­
tion algorithm does well in the role for which it was
designed.

Goals

An important goal for this study is to choose the best
set of features from the discrimination feature list
given above in the section on discrimination features.
As we already stated, these features are standard devia­
tion, fractal dimension, weighted-rank fill ratio, mass,
diameter, square-normalized rotational inertia, maxi­
mum CFAR statistic, mean CFAR statistic, percent
bright CFAR statistic, percent pure, percent pure even,
percent bright even, polarimetric phase ratio, specific
entropy, and contiguousness. What determines a best
set of these features? Initially we do not know whether
the best set contains some combination of three fea­
tures or four features or more, or all fifteen features,
or even if the best set is composed of certain of these
features and not others.

40 THE LINCOLN LABORATORY JOURNAl VOLUME 6. NUMBER I. 1993

An additional goal is that the features chosen must
be a robust set of features. Ideally, the features should
work equally well, regardless of the target deploy­
ment, the countermeasures used, or the type of clur­
ter being imaged. This invariance to data is impos­
sible to achieve; a more realistic goal is for the same
features to be part of the best feature set, regardless of
data. As a test of this goal, we examine a number of
different datasets.

Another goal is to understand the operation of the
discrimination algorithm. We would like the theoreti­
cal expressions for the performance of the one-class
quadratic discrimination algorithm to predict the be­
havior of the discrimination algorithm accurately. If
the theory is accurate, then we can predict the perfor­
mance of the algorithm for different combinations of
features. A strategy for feature selection would then
be to derive the parameters needed for the theory
from the real data, compure the theoretical results for
all combinations of features, and choose the best set
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of features based on these predictions. We shall see
that this strategy is a reasonable one.

We would also like to examine discrimination re­
sults for different resolutions and different polariza­
tions. The Lincoln Laboratory MMW SAR has a
resolution of 1 ft by 1 ft, but we can easily construct
lower-resolution, single-look radar imagery from the
data at hand. Additionally, the Lincoln Laboratory
MMW SAR is fully polarimetric (fully polarimetric
SAR data allow synthesis of any polarization or com­
bination of polarizations). Many radar sensors are not
fully polarimetric, and use only a single polarization.
The most common polarization used is HH; there­
fore, we use HH data as well as fully polarimetric
data in this study. We expect the best feature set to
change, depending on our choice of resolution and
polarizat.ion.

Choosing a Feature Set

The method we use to choose the best feature set is
straightforward. First, the data are prescreened by
using a simple two-parameter CFAR algorithm [2,
10]. This stage is designed to eliminate (with a mini­
mum of computation) only the most obviously non­
targedike clutter. The prescreening algorithm oper­
ates on imagery that has already been reduced to a
resolution of 1 m by 1 m. The resolution was re­
duced by taking a noncoherent average of each
4-pixel-by-4 pixel non-overlapping box (a pixel has a
nominal resolution of approximately 0.23 m). This
method of resolution reduction has two advantages:
(1) it reduces the amount of data we need to process,
and (2) it reduces the speckle that is present in the
high-resolution SAR imagery (the article by Leslie M.
Novak et al. in this issue gives an explanation of
speckle in SAR imagery).

In the prescreener for this study we use a threshold
value that allows the detection of 80% of the targets.
This percentage was chosen for consistency among
datasets; it was also chosen by considering the num­
ber of clutter chips that are passed to the discrimina­
tion stage. A higher probability of detection in the
prescreener stage necessarily increases the number of
clutter false alarms passed to the discriminator. Com­
putation time and storage limitations preclude using
a higher percentage value for the prescreener prob-

ability of detection. The data used in the prescreener
algorithm were also processed by using the polarimet­
ric whitening filter (PWF) [1], which combines the
HH, HY, and VV polarization channels together in a
manner that optimally decreases speckle. The HH
polarization results use only the HH polarization SAR
data, and hence do not use the PWF imagery for the
prescreener algorithm.

The candidates identified by the prescreener (ei­
ther on targets or on clutter false alarms) are then
grouped spatially. The grouping algorithm is a simple
one; all hits within a target-sized area are grouped
into a single detection. This grouping operation ex­
ploits some of the spatial information inherent in the
proximity of prescreener hits.

The discrimination algorithm is run on all the
regions of interest selected by the prescreener and the
grouping algorithm. First, all the features described in
the section on discrimination features are computed
for all regions of interest. The features are computed
for the following four combinations of data: (1) I-ft
resolution and PWF polarization, (2) I-m resolution
and PWF polarization, (3) I-ft resolution and HH
polarization, and (4) I-m resolution and HH polar­
ization. The features were originally tuned (in terms
of the thresholds used in the feature calculations them­
selves) for the I-ft resolution, PWF case. The features
are used without modification for this case as well as
for the I-ft resolution, HH polarization case.

Naturally, the polarimetric features cannot be cal­
culated for the HH polarization case because the
polarimetric features use polarizations other than HH.
We therefore use a reduced set of features. For the
I-m resolution cases, we retune the features by com­
puting them for a range of thresholds, and we choose
the threshold that provides the best separation be­
tween targets and clutter false alarms for all datasets.
This retuning is done separately for the PWF case and
the HH polarization case. Therefore, these features
are intended to give best-case results. Any use of these
tuned features in other datasets can only approach the
results shown in the article in general. Certainly, the
I-m resolution tests provide a better indication of the
performance of the discrimination algorithm than is
likely to be obtained in a real situation.

The parameters necessary for a theoretical evalua-
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for the particular set of inputs
being provided by the prescreen­
er at that operating point.

As the threshold of the pre­
screener is varied, the set of in­
puts provided to the discrimina­
tion algorithm varies as well. The
evaluation criterion for perfor­
mance in an ROC curve works
here as well; the line moving up­
ward and leftward indicates bet­
ter performance.
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number of extra lines, or tails.
These extra lines (in blue) repre­
sent the improved performance
provided by the discrimination
stage of the multistage target-de­
tection algorithm. Each extra line
meets the curve of the original
prescreener stage at a certam
point. Each discrimination line
emanating from these points de­
scribes the operating characteris­
tic ofthe discrimination algorithm

FIGURE A. Example of a Pd versus FA/km2 curve, which is also known as a
receiver operating-characteristic curve, for a multistage target-detection
algorithm. The additional lines represent the performance ofthe discrimina­
tion stage of the algorithm. Three of these performance lines are shown; in
fact, an infinite number of them are possible, because their intersections
with the prescreener curve are dictated by the level at which the prescreener
stage is operated.

THE METHOD OF EVALUATIO for
the discrimination algorithm de­
scribed in this paper involves plot­
ting a curve that shows the prob­
ability ofdetection (Pd) versus the
number of false alarms per square
kilometer (FAlkm2

). The measure
of FAlkm2 scales directly to the
probability of false alarm, which
was theoretically derived for the
discrimination algorithm in the
section entitled "Theoretical Anal­
ysis of the One-Class Quadratic
Discrimination Algorithm." Such
curves are often referred to as re­
ceiver operating-characteristic
(ROC) curves.

Figure A gives an example of a
simple ROC curve (in red). Bet­
ter performance is indicated in
these types of plots by a curve
moving upward and leftward. A
plot such as this one might be
used to evaluate the prescreener
stage or the discrimination stage
separately. A more complicated
plot is necessary to evaluate the
combination of the prescreener
and discrimination stages.

Figure A also shows an exam­
ple of a plot (blue and red) that
might be used to evaluate both
the prescreener and discrimina­
tion stages combined. otice that
the original ROC has grown a

tion of the discrimination performance are computed
in each case from a target region-of-interest dataset
and a clutter false-alarm region-of-interest dataset.
Additionally, the assumptions necessary for the theory

to hold are checked in most cases. These checks are
more fully detailed in the section entitled "Confirm­
ing the Gaussian Assumption." All combinations of
the discrimination features are tested by using the
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theory. Theoretical Pd versus Pfiz plots are produced
for each combination, and the best combinations are
chosen for further analysis. The best combinations of
features are given in the section entitled "Best Fea­
tures for Discrimination." The results we get by using
the real data are then generated for the short list of
good combinations. The real-data results are then
compared with the theoretical results; these compari­
sons are given in the section entitled "Real Data ver­
sus Theoretical Performance."

Performance evaluation is done by plotting the
probability of detection Pd versus the number of false
alarms per square kilometer (FA/km2

). The measure
offalse alarms per square kilometer is merely a rescaling
of the probability of false alarm (Pfiz) into an opera­
tionally meaningful measure. This rescaling is per­
formed to remove the effect of sensor resolution (be­
cause a higher resolution image inherently gives more
opportunities for false alarms to occur, the same Pfiz
value at different resolutions means different num­
bers of false alarms per square kilometer). The inter-

pretation of plots of Pd versus FA/km2 is reviewed in
the sidebar entitled "Interpreting Plots of Pd versus
FA/km2

."

Data Used

All the target data used in this study were gathered
with the Lincoln Laboratory MMW SAR in
Stockbridge, New York. The targets consisted of two
datasets of the same targets in different deployment
conditions. The first dataset, which we use for dis­
crimination algorithm training, is called the target­
training dataset. The second dataset, which we use for
discrimination algorithm testing, is called the target­
testing dataset. There are three distinct clutter datasets;
two gathered at Stockbridge, New York, and a smaller
clutter dataset gathered in Concord, Massachusetts.

The first clutter dataset, which consists of mostly
natural clutter, is called the Stockbridge natural-clut­
ter dataset. Figure 13 is an example of this dataset; it
shows a river with treelined banks (the river is the
dark area curving through the middle of the image).

FIGURE 13. SAR image of natural clutter in Stockbridge, New York. The sensor is flying parallel to the top of
the image, and the shadows extend downward in the image. Areas of high radar return are colored in bright
yellow; areas of low radar return are in dark colors. The dark band in the middle of the image is a river with
trees lining each bank. The smooth green areas are open fields.
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The remainder of the image is an open field. Freshly
plowed furrows in the open field can also be seen. The
radar illuminates the area from the top of the image;
therefore, the shadows cast by the trees point down­
ward in the image. The Stockbridge natural-clutter
dataset also includes some man-made objects (which
are impossible to avoid entirely in the Stockbridge
area), including the farmhouse shown in an earlier
article by Novak [1]. The clutter in this dataset is
considered to be relatively benign.

The second clutter dataset is called the Stockbridge
natural- and cultural-clutter dataset. This dataset was
gathered from a different area of the same Stockbridge
collection site; it includes a farm-supply store that is
shown in Figure 14 both as a SAR image and in an
aerial photograph. The clutter in this dataset is con­
sidered to be moderately difficult.

The third clutter dataset is a small dataset gathered
in Concord, Massachusetts, which is a few miles from
Lincoln Laboratory. This dataset, which we refer to as
the Concord dataset, consists entirely of man-made
clutter, and is considered to be a very difficult dataset.

(a)

Figure 15 shows an example of imagery from this
dataset.

Best Features for Discrimination

The method used to determine the best features for
discrimination is fully described in the earlier section
entitled "Choosing a Feature Set." For two cases-the
I-ft resolution, PWF data of the Stockbridge natural­
clutter dataset and the Stockbridge natural- and
cultural-clutter dataset-we found the best features
to be those given in Table 1. For the case of the
I-ft resolution, PWF, Concord man-made clutter, the
feature set reduced to those features given in Table 2.

As stated earlier, we did not attempt to pick the
best features for the I-ft resolution, HH-polarization
case. Instead we evaluated performance with the same
features as the best-case features for the PWF data.

For the I-m resolution, PWF, Stockbridge natural­
clutter, and the natural- and cultural-clutter case, we
found the best features to be those given in Table 3.
The "optional" qualifier given in the table means that
the feature does not increase or decrease any perfor-

(b)

FIGURE 14. (a) An optical photograph and (b) a SAR image of a farm-supply store in Stockbridge, New York. This
store is an example of a man-made clutter discrete. The store parking lot is in the bottom of each image. Although the
photograph and the SAR image were taken at different times, passenger cars can be seen in the parking lot in both
images. The bright spots in the middle right area of the SAR image are caused by various metallic objects in the yard
of the supply store.

44 THE LINCOLN LABORATORY JOURNAL VOLUME 6, NUMBER 1. 1993



• KREITHEN ET AL.
Discriminating Targets from Clutter

(a)

FIGURE 15. (a) A SAR image of man-made clutter in Concord, Massachusetts. The other three photographs
illustrate specific objects visible in the SAR image: (b) the church and steeple, (c) a spotlight that illuminates the
church at night, and (d) a house and a telephone wire suspended overhead. Note the bright columns along the
side of the church in the SAR image. These columns clearly correspond in number and placement to the areas
between the windows of the church in the optical photograph. Also notice the bright circular feature-the c1ock­

on the church steeple.
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Table 1. Best Features for1·ft, PWF, Natural-Clutter
Dataset and Natural- and Cultural-Clutter Dataset

Table 4. Best Features for 1-m, HH, Natural-Clutter
Dataset and Natural- and Cultural-Clutter Dataset

Feature Description

Fractal dimension Lincoln Laboratory

Weighted-rank fill ratio Lincoln Laboratory

Diameter ERIM size

Mean CFAR or

percent bright CFAR ERIM CFAR

Feature

Fractal dimension

Diameter

Mean CFAR

Description

Lincoln Laboratory

ERIM size

ERIM CFAR (optional)

Table 2. Best Features for 1-ft, PWF,
Man-Made Clutter Dataset

Table 3. Best Features for 1-m, PWF, Natural-Clutter
Dataset and Natural- and Cultural-Clutter Dataset

mance ability with these datasets, but it could add or
subtract a certain amount of robustness for other
datasets. The best features for the I-m resolution,
HH-polarization case are given in Table 4. For this
case, however, the discrimination algorithm provides

Percent pure

Feature

Fractal dimension

Percent bright CFAR

Percent pure

Feature

Fractal dimension

Diameter

Percent bright even

Percent pure

Mean CFAR

ERIM polarimetric

Description

Lincoln Laboratory

ERIM CFAR

ERIM polarimetric

Description

Lincoln Laboratory

ERIM size

ERIM polarimetric

ERIM polarimetric

ERIM CFAR (optional)

little or no performance gam over the prescreener
alone.

Feature Choice Guidelines

An examination of the list of best features from the
previous section, along with the scatterplots shown in
the section entitled "Confirming the Gaussian As­
sumption," reveals some interesting and important
guidelines for choosing the best features. There are
two general criteria for feature choice for this dis­
crimination algorithm-separation and orthogonality.
The separation criterion is the common-sense consid­
eration that the feature must adequately separate the
target training (and target testing) dataset from the
clutter false-alarm dataset. The orthogonality crite­
rion is less intuitive, and can be summarized by the
idea that different features used in the discrimination
algorithm must measure different attributes of the
region of interest.

Unfortunately, we cannot easily predict exactly
which attribute of a region of interest a feature mea­
sures. Sometimes two features that beforehand would
seem to be highly correlated ultimately exhibit a low
degree of correlation. We show an example of this
type of behavior later in this section.

The best features listed in Table I are a good ex­
ample of the orthogonality criterion. We see that the
table includes two of the three Lincoln Laboratory
discrimination features, which is not surprising be­
cause the three Lincoln Laboratory features were de­
signed with orthogonality in mind. The first feature
(fractal dimension) exploits the spatial relationship of
the top N scatterers in the region of interest, while the
second feature (weighted-rank fill ratio) exploits the
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distribution of reflected power among all the scatter­
ers on the rarget. Clearly, these two fearures were
designed to measure different characteristics of the
region of interest.

The three other features included as best features
in the case shown in Table 1 all come from the ERIM
discrimination features. Interestingly, the three cho­
sen fearures each come from a different subser of
fearures; the first comes from the ERIM size features,
the second comes from the ERIM CFAR features,
and the third comes from the ERIM polarimetric
fearures. Even if the ERIM fearures were not designed
with the orthogonality criterion in mind, we find it
interesting that the choice of best features narurally
selects one fearure from each category.

A subset of the features listed in Table 1 works best
in the man-made clutter dataset, as shown in Table 2.

The orthogonality criterion holds here as well, except
that the two fearures not included, which were in­
cluded in Table 1, no longer provide reasonable sepa­
ration between targets and clutter false alarms.

For the case of I-m resolution, there is an apparent
exception to the two criteria given above in the best
feature choices. Notice that Table 3 contains two
ERIM polarimetric features. Figure 16 shows a
scatterplot of these two features (percent bright even
and percent pure) for the I-m resolution datasets.
From the scatterplot we can see that these two fea­
rures are, in fact, uncorrelated and are therefore or­
thogonal in some meaningful sense. Apparently, in
the I-m resolution dataset the thresholding involved
in calculating the percent-bright-even feature causes
this fearure to measure something other than the
polarimetric properties of the region of interest. The

• Stockbridge natural-clutter false alarms

• Stockbridge natural- and cultural-clutter false alarms

• Target testing

• Targettraining
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FIGURE 16. Scatterplot of percent bright even feature versus percent pure feature for 1-m-by-1-m resolution data.
These two features are uncorrelated because the data points do not fall along a straight line.
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FIGURE 18. Comparison of real data and theoretical re­
sults forthe 1-ft-by-1-ft resolution, PWF, Stockbridge natu­
ral- and cultural-clutter case.
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FIGURE 17. Comparison of real data and theoretical re­
sults forthe 1-ft-by-1-ft resolution, PWF, Stockbridge natu­
ral-clutter case.
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FIGURE 19. Comparison of real data and theoretical re­
sults for the 1-ft-by-1-ft resolution, PWF, Concord man­
made clutter case.

five features chosen in Table 3 for the I-m resolution
case obey both the separation and orthogonaliry crite­
ria given above. The same holds true for the best
features in the HH-polarization case, which are given
in Table 4.

Real Data versus Theoretical Performance

This section gives the real-data prescreener and dis­
crimination results in the form of plots of Pd versus
FNkm2

. These plots are explained in the sidebar
entitled "Interpreting Plots of Pdversus FA/km2

." We
also plot on the same graphs the predictions com­
puted from the theoretical analysis given in the sec­
tion entitled "Theoretical Analysis of the One-Class
Quadratic Discrimination Algorithm." In all cases,
the theory and real data coincide closely. This fact
demonstrates that the one-class quadratic discrimina­
tion algorithm is well understood as it is implemented
in the Lincoln Laboratory multistage target-detection
algorithm.

Figure 17 gives the combined prescreener and dis­
crimination results for the I-ft resolution, PWF data
for the Stockbridge natural-clutter dataset, while Fig­
ure 18 gives the prescreener and discrimination re­
sults for the Stockbridge natural- and cultural-clutter
dataset, and Figure 19 gives the prescreener and dis­
crimination results for the Concord man-made-clut­
ter dataset. Figures 20 and 21 show the prescreener
and discrimination results for the Stockbridge natu­
ral-clutter dataset and the Stockbridge natural- and
cultural-clutter dataset, respectively. Both results are
for I-ft resolution, HH-polarization data.

The remaining results are for the I-m resolution
case. Figures 22 and 23 show the prescreener and
discrimination results for the Stockbridge natural­
clutter dataset and the Stockbridge natural and cul­
tural-clutter dataset, respectively, for PWF data.
Figures 24 and 25 show the prescreener and discrimi­
nation results for the same two datasets for the
HH-polarization case.

Polarization Comparisons

We can compare the discrimination results from the
PWF data and the HH-polarization data for the same
cases to draw a conclusion regarding the advantage of
using a fully polarimetric radar versus using the more
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FIGURE 20. Comparison of real data and theoretical re­
sults for the 1-ft-by-1-ft resolution, HH-polarization,
Stockbridge natural-clutter case.

FIGURE 23. Comparison of real data and theoretical re­
sults for the 1-m-by-1-m resolution, PWF, Stockbridge
natural- and cultural-clutter case.
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FIGURE 21. Comparison of real data and theoretical re­
sults for the 1-ft-by-1-ft resolution, HH-polarization,
Stockbridge natural- and cultural-clutter case.

FIGURE 24. Comparison of real data and theoretical re­
sults for the 1-m-by-1-m resolution, HH-polarization,
Stockbridge natural-clutter case.
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FIGURE 22. Comparison of real data and theoretical re­
sults for the 1-m-by-1-m resolution, PWF, Stockbridge
natural-clutter case.

FIGURE 25. Comparison of real data and theoretical re­
sults for the 1-m-by-1-m resolution, HH-polarization,
Stockbridge natural- and cultural-clutter case.
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common HH single-polarization radar. We see that
the performance increase is significant (a reduction of
one to two orders of magnitude in false-alarm rate for
equal probabilities of detection) in both the I-ft reso­
lution and the I-m resolution cases. The performance
difference is more pronounced for the higher-resolu­
tion data.

In general, during the course of this study, we
noticed that the combination of higher-resolution
data and fully polarimetric data provided a significant
increase in performance. Either capability alone is not
nearly as effective as the two capabilities together for
the discrimination features we have studied in this
article. In other words, building radars with both
higher resolution and with fully polarimetric capabil­
ity makes sense.

In the I-m resolution case, the difference between
the PWF data and the HH-polarization data is clear.
Using the HH data alone, the discrimination algo­
rithm provides little or no performance improvement
over using the prescreener algorithm alone. The fea­
tures for the I-m, HH-polarization case were tuned
specifically for these datasets, so this result should be
considered a best case. Clearly, there is no point in
using the discrimination algorithm with these fea­
tures for the I-m resolution, HH-polarization dataset,
because it provides little benefit and it requires addi­
tional computational capacity.

Resolution Comparisons

We can also compare the results from the I-ft resolu­
tion case with the results from the I-m resolution
case. We see that the higher-resolution data allows a
performance increase of more than an order of mag­
nitude in terms of the false-alarm rate for a given
probability of detection. This performance increase is
approximately constant over the different cases given
in Figures 17 to 25.

Conclusion

In this article, we discuss and evaluate the discrimina­
tion algorithm used in the Lincoln Laboratory multi­
stage target-detection algorithm. This one-class qua­
dratic discriminator uses features calculated from SAR
imagery. The discrimination algorithm uses candidate
regions of interest identified by the prescreener, and
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ideally eliminates all natural-clutter false alarms
from further consideration, passing only targets and
man-made clutter false alarms to the classification
algorithm.

Fifteen discrimination features were evaluated for
this study; three of the features were developed by
Lincoln Laboratory and the remainder were devel­
oped by the three STAR contractors. These features
were modified to account for the different types of
data used in this study, and the best set of features was
chosen for a number of different datasets and a num­
ber of different types of data. The best features re­
mained constant from the natural-clutter dataset to
the natural- and cultural-clutter dataset, which was a
surprising and pleasing result. For best performance,
we needed to select different feature sets for PWF and
HH-polarization data, as well as for I-ft and I-m
resolution data, which was not a surprising result.

We evaluated the features by using a theoretical
expression that accurately predicted the real-data per­
formance of the discrimination algorithm. This accu­
racy reflects a good understanding of how the dis­
crimination algorithm functions as a part of the
Lincoln Laboratory multistage target-detection algo­
rithm for SAR data.
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