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II Machine intelligence (MI) techniques have been combined with conventional
signal processing and image processing techniques to build a software package
that automatically recognizes reentry vehicles from a sequence of radar images.
This software package, called ROME (Radar Object Modeling Environment),
takes as its input a time sequence of range-Doppler images of a target produced
by the Lincoln Laboratory Discrimination System from raw radar-data samples.
ROME then processes thi~ image sequence to extract radar features and track
them from image to image. From these feature tracks, ROME then constructs
a three-dimensional model of the target. The object model derived from the
image sequence is then compared to a catalog of models of known objects to
find the best match. If no sufficiently close match is found, the observed object
is declared unrecognized. The object-model catalog is constructed by adding
new models derived from radar data that do not match any model already in the
catalog. Thus ROME is "trained" to recognize objects by using real radar data
from known objects.

Because of the strong interest in real-time recognition of reentry vehicles, the
entire ROME system was recoded for parallel execution on the MX-l multi­
processor, which was developed in the Machine Intelligence group at Lincoln
Laboratory. This machine was designed for MI applications that involve
intensive numeric as well as symbolic computation, and that have real-time
processing requirements. The final version of the ROME object-recognition
system, coded in a combination of parallel Common LISP and C, runs in real
time on the 16-node MX-l multiprocessor.

FOR MANY YEARS Lincoln Laboratory has been
. involve~ in research pertaining to defense

against intercontinental ballistic missiles, in­
cluding research on the detection, tracking, and rec­
ognition of reentry vehicles. During this time several
approaches to the problem of rapid and reliable rec­
ognition of reentry vehicles have been pursued. In
this article we report on an approach that combines
conventional signal processing and image processing
techniques with machine intelligence (MI) techniques
to recognize reentry vehicles at an early stage in their

trajectory, prior to their interaction with the atmo­
sphere. In this exoatrnospheric region, object trajecto­
ries are independent ofvehicle shape and mass; hence
gross vehicle dynamics cannot be used as discrimi­
nants. The approach taken here is based on the ap­
pearance and local dynamics of the object as inferred
from a sequence of radar images.

The concept of this approach to the early recogni­
tion of reentry vehicles is to have a radar detect an
unknown object, track it, and take enough data
samples to form a sequence ofrange-Doppler images.
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Then, while this image sequence is being processed
to recognize the object, the radar can detect and take
data on another object. The radar can thus be time
shared to handle multiple targets. Of course, real­

time operation of the overall detection-and-recogni­
tion process is the primary objective, which in this
context means that the object-recognition processing
should take no longer than the amount of time needed
to gather the radar data on the object.

Conventional approaches to object classification
typically involve parameter estimation, multidimen­
sional pattern classification, or template matching.

These approaches have been successful in many con­
texts, but are difficult to apply to the recognition of a
three-dimensional object from a sequence of noisy
images. They also can be computationally intensive
and sensitive to noise, artifacts, and minor object

alterations.
Human analysts, however, have been successful at

extracting estimates of radar scattering-center mo­
tion even from noisy data at low imaging rates. This
observation motivated us to pursue the approach of

building a three-dimensional model of an object as a
collection of radar scatterers on a rigid frame that
exhibits local dynamics about the gross trajectory.
Hence we take an approach that is more like recogni­
tion of visual objects, rather than the conventional

statistical-decision-theory or pattern-classification

apptoach.

Knowledge-Based Signal Processing

The goal of our approach is to combine the power of
conventional methods with the flexible representa­

tions and control structures from the field of ma­
chine intelligence. A first step in our object classifica­
tion is to derive primitive features from which a
semantic model can be built. The semantic model
then can be readily manipulated and interpreted by a
human observer as well as by automatic recognition,
discrimination, and generalization procedures.

We have built a recognition system and interactive
workstation software package that we call the Radar
Object Modeling Environment (ROME). Three ma­
jor conceptual modules are in our current system.
The first of these modules is based on an approach

known as knowledge-based signal processing [1 J. This
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apptoach involves a toolbox ofsignal processing primi­
tives, termed knowledge sources, that are designed to
select data subsets, extract features, and compare ex­
tracted features with the data to produce confidence

measures. These primitives include such standard sig­
nal processing procedures as clustering algorithms,
correlation measures, spectral analysis, and paramet­
ric curve fitting; their choice and design are based on
procedures used in the manual analysis and identifi­

cation of these objects.
The second system module is the semantic model­

building and matching scheme. This component takes
the data-derived features and produces a semantic
model that is then matched against a catalog ofstored

semantic models for object identification. The se­
mantic model represents the extracted information as
physical components, intercomponent relationships,
and properties of the components and their relation­
ships. The extracted model and the stored catalog
model are identical in form and thus can readily be
compared and contrasted. In addition, the system
can generalize several examples ofsemantic models to

form a single semantic model representation. This
feature is useful when the system is presented with
data of objects for which we do not have a priori
information.

The final system module is the control mechanism

based on the blackboard structure developed in the
field ofMI [2J. The blackboard structure consists ofa
global memory (the blackboard) in which informa­
tion is posted as it accumulates. Knowledge sources

that embody specific information-processing algo­
rithms check the state of the blackboard to see if their

expertise can be applied to move the processing to­
ward its final result. A knowledge source extracts
information currently on the blackboard, does its
own processing, and posts its results back on the
blackboard. The system control continues in this
manner until no knowledge sources remain to be

applied. A scheduler controls the triggering ofknowl­
edge sources in cases when more than one is ready to
perform some action. The blackboard design is in­
herently modular and opportunistic, allowing both
data-driven and model-driven processing.

The ROME user interface displays the recognition

and blackboard control operations as they proceed.
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FIGURE 1. Presentation of information in a screen image taken from a Symbolics
workstation running ROME. The input data, in a Doppler-versus-time format, is shown in
the middle panel. Directly below it are parameters of the derived model together with a
cartoon outline of the essential features of the vehicle. Monitor panels at the top left and
right show, respectively, the state of active knowledge sources and of the blackboard. At
the bottom right is the mouse-controlled operator's panel.

FIGURE 2. Simplified target model, showing two scatter­
ing centers. The parameters of importance are the rela­
tive axial difference d, the radial distance p, the aspect
angle K, and the angular rotation rate Q.

In addition to its recognition capabilities, ROME
can act as a workstation for manual analysis of target
characteristics. The menu-driven workstation pro­
vides a useful interactive analysis tool, and it allows

users to learn from the manual operation how to
build better deductive procedures. Figure 1, a typical
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presentation from the Symbolics workstation screen,
shows the data track in the middle panel, the operator's

control at lower right, the knowledge source at upper
left, the blackboard status at upper right, and a repre­
sentation of the derived model-obtained without
operator intervention-at the bottom.

In this article we first discuss the basics of range­

Doppler imaging that form the physical model for
our processing. We then describe major ROME sys­
tem modules in more detail, including motivations
for our approach, and provide some performance
evaluation results. Finally, we present a summary and
directions for future work.

Radar Range-DoppLer Imaging

The data used in this analysis are taken from a range­
Doppler imaging radar, which produces a sequence
of two-dimensional portraits of the target being ob­
served. Figure 2 shows two scattering centers (i.e.,

points of reflection) on a generic target model. As-
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Range

sume that the radar tracker has removed the gross
target motion, and that we measure the relative range
of scatterer B with respect to scatterer A. Assume
further that the scatterers are part of a rigid body
spinning around its axis with an angular rate of 0
radians/sec, with B at axial distance d and radial dis­
tance p with respect to A, and with aspect angle /(
between the spin axis and the radar line of sight
(LOS). The range increment r from A to B along the
radar LOS is given by

r(t) = d cos /( + P sin K:Sin( Qt), (1)

which induces a relative carrier phase shift given by

CD
0.
0.
o
o H.-

I \
I I

d cos /(

FIGURE 3. Range-Doppler locus of rotating scatterer.
The axial dimension is scaled by cos /( and the radial
dimension is scaled by sin /(.

interval of T sec, with corresponding time and fre­
quency resolutions !1t = 11 Wand !1fD = 11 T, the axial
resolution !1d and radial resolution !1p, given by

2r(t)
lJf(t) = 211: -/..-,

where 2r(t) is the round-trip range increment and /..
is the carrier wavelength (this simplified discussion
assumes that the vehicle velocity is small compared
with the speed of light c).

Suppose that a sequence of pulses is collected at a
fixed pulse-repetition interval. By observing the time
rate of change of lJf(t), for example by performing a
Fourier analysis of the (complex-valued) time-sampled
and range-sampled data, we obtain

dlJf(t) 2 dr(t)--- = 211:---,
dt /.. dt

which leads to

and

!1d =
c!1t

2 cos /(

c

2W cos /(

20T sin /('

By combining Equations 1 and 2 we see that the locus
of scatterer B forms an elliptical path in the range­
Doppler plane, as shown in Figure 3. Because the
Doppler frequency fD is directly proportional to the
distance p, the Doppler dimension is commonly called
the cross-range axis. We emphasize that, in this inter­
pretation, the Doppler frequency is measured as a
phase progression across a set of pulses within a single
range bin, with a target-tracking algorithm that holds
the range reference at a fixed position on the body.

For a signal bandwidth of W Hz and an imaging

fD(t) =_1 dlJf(t)
211: dt

= 2~O sin /( cos(Ot) .
(2)

are independent of the target range. We assume that
the imaging interval T is smaller than the time taken
by the imaged point to move from one range-Dop­
pler cell to another, and that the scatterer motion is
approximately linear over this interval. (For more
details and a relaxation of this requirement, see Refer­
ence 3.) This presentation of data differs from the
optical case; rather than the conventional angle-angle
scan, we illuminate the object from the radar direc­
tion and project the reflection intensity onto a plane
parallel to the radar LOS. Note, too, that the assumed
motion is necessary to form the image. With 0 = 0,
no cross-range information is obtained.

We can use this analysis to model a complex rigid
body as a collection of scatterers whose projections in
the range-Doppler plane traverse elliptical paths, per-
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haps with occlusion as individual scatterers are masked
from radar illumination by another part of the object.
By looking at successive range-Doppler images, we
can observe the motion of the rotating scattering
centers. This motion can be described graphically as a
helical locus of scattering-center locations in range­
Doppler-time space, as seen in Figure 4. This confus­
ing collection of points, each of which is associated
with an amplitude peak from a complex-valued im­
age, forms the input to our image understanding
system.

With data such as those presented in Figure 4, we
wish to produce a model in the form of Figure 2
that best explains these data. Our task is complicated
by the occurrence of extra points due to noise-in­
duced peaks in the range-Doppler plane, by missing
data due to dropped detections, and by the multi­
valued nature of the data for each image time as
scatterers move in and out of shadows in the radar­
beam illumination.

Feature Extraction and Model Derivation

A radar sensor observes an object as a number of
physical features that reradiate incident radar energy.
Some features, such as attachment points, rotate with
the body and can be used to extract spin information.
Other features, such as the nose, aft end of the cone,
and joints (or joins) between body parts, are known as
sLipping scatterers because they appear to slip around
the body as it turns, while always maintaining the
same apparent position with respect to the radar.
These target features are evidenced by a set of reflec­
tions of measured amplitude, or radar cross section
(ReS), in (time, range, Doppler) space. By properly
associating a subset of these reflections with a physical
feature on the object, we can parametrically model
the reflections and deduce the physical position and
reflection attributes of the feature on the body. The
collection of these features, together with a descrip­
tion of the object dynamics, then becomes the object

40
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FIGURE 4. Range-Doppler-time loci of multiple scatterers. Note the occlusion of the rotating
scatterer and the intertwining of the scatterer tracks.
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model. Because the reflections intertwine and overlap
in the observation space, howevet, it is difficult both
manually and automatically to associate reflection sub­
sets properly with the corresponding physical body
features.

Range Clustering

A fitst step in the aSSOCiatiOn of reflection subsets
within ROME is the clustering of range returns in an
attempt to distinguish those which arise from differ­
ent parts of the object. Range smoothing of the re­
turns is carried out by considering each observed
image feature as a point; the set of returns is con­
volved with an appropriate range kernel to yield an
RCS-versus-range portrait such as the one shown in
Figure 5. This clustering, which is done in the range
dimension, readily distinguishes returns from the nose,
mid-body joins, and aft end. A simple threshold com­
parison then suffices to separate the returns. The nose
and join returns can be isolated and treated as slip­
ping scatterers, with the spinning scatterers on the aft
body to be modeled as described below.

Spinning-Scatterer Extraction

Figure 6 shows a time-Doppler portrait of the scatter­
ers from the aft end of a typical object. All these
scatterers were found in the aft range cluster of Figure
5, and the reflections of several physical features are

superimposed. The task of the spinning-scatterer
knowledge source is to resolve these features and to

deduce the object motion. Several techniques are em­
ployed in this effort, including the direct modeling of
time-Doppler sinusoids, Hough-transform extraction
of sinusoidal segments, and clustering in time-Dop­
pler space. Once the reflections from individual physi­
cal scatterers are correctly associated, the parameter­
ization of the scatterers in terms of their body
coordinates and collective spin rate is straightforward.

Doppler- Time Sinusoidal Fit

Because our modeling of the scattering centers fol­
lows from a physical understanding of body dynamics
and the radar-imaging process, we can begin with the
sinusoidal model of scatterer motion in the time­
Doppler plane. Treating the scatterer's locus, or track,
as a sampled sinusoid, we choose three points near a
peak to estimate frequency (i.e., body roll rate) by
using a one-parameter linear predictive coding (LPC)
fit. Specifically, we choose the parameter a to satisfY
the homogeneous difference equation

Yk - aYk-l + Yk-2 = 0,

where Yk' Yk-l' and Yk-2 are successive Doppler values,
a = 2 cos (2n/ T), and T is the scatterer roll period
measured in time samples. The track is then extrapo­
lated by using a sinusoidal model to locate successive

Doppler

Smoothed Radar Cross Section

Range

FIGURE 5. Typical range profile: (a) The top portrait shows a projection of the range-Doppler-time points onto
the range-Doppler plane. (b) The bottom portrait shows the result of smoothing these data to obtain an
estimate of the radar cross-section distribution versus range.
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FIGURE 6. Time-Doppler view of the aft scatterer cluster. The individual loci of the five scatterers must be
identified and parameterized to model this portion of the object.

and then minimizing

with respect to a to obtain

Yk - aYk-l + Yk-2 = Ck '

The preliminary track extrapolation is terminated
when we reach the break caused by occlusion of the

spinning scatterer. With a roll-rate estimate based on
all points of the track segment, we now correlate the
sequence {Yk} with a sine and cosine at that frequency
to estimate the amplitude and phase of the best-fit
sinusoid. (If the track does not exhibit occlusion, it is
taken as evidence of a slipping scatterer exhibiting
precession; the treatment of this slipping scatterer is
described in a later section.)

Moving one estimated period in time along the
data, we now locate points that are hypothesized to

belong to the same feature track. The LPC fit is
repeated independently of the first estimate, and the
two sinusoid parameter estimates are compared. If the
parameters are sufficiently close, the frequency esti­
mate is refined by using the track zero crossings, and
the fit of amplitude and phase is revised by using the
combined data from both segments. This procedure

LYkYk-1 + LYk-2Yk-l

LyLl
a=

points, as illustrated in Figure 7. As each new point is
added to the track, the LPC fit is repeated to refine
the frequency estimate iteratively by defining the
equation
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FIGURE 7. Extraction of sinusoidal track. This figure shows a sinusoidal model being fit to the Doppler-versus­
time locus of one scatterer. The sinusoid is being extended bidirectionally, with the cross and the square box
indicating the next points to be tested for inclusion with the other data for this scatterer.
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FIGURE 8. Hough transform extraction of scatterer tracks. Several fits are shown for the central portion of the
scatterers' loci. Note the anomalous fits for the third scatterer.

is then repeated out to the time limits of the data
segment.

This process ofextracting the parameters ofa single
physical body feature is termed bottom up, or data
driven; given the data points, we estimate parameters
according to some predefined fit criterion. We now
take a top-down viewpoint. Expecting a sinusoidal
pattern, we compare the parametric fit with all data
points, associating those points which can be explained
with the given model component and removing them
from the data set.

The remaining points are now left to be associated
with additional object features, and the process begins
anew with the reduced data set. We repeat the search
procedure, successively extracting tracks and inter­
preting them as spinning scatterers on the model.
This stage of processing ends when no further tracks
can be extracted. The remaining data points are as­
sumed to be anomalies (poor fits or noise) or the
tracks of slipping scatterers, which do not exhibit
periodic occlusion.

Hough- Transform AppLication

The difference-equation approach described above
works well in many cases, but can lose track in the
presence of precession, data dropouts, random dis­
placement of time-Doppler features, and similar
anomalies. This problem is especially troublesome at
the beginning of the object-recognition process, when
relatively few points are used to extrapolate the track.

An alternative is to take a more global search for
sinusoidal fits and use a standard Hough transform to
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identity the roughly parallel middle portion ofsucces­
sive sinusoids. An interesting problem arises in the
interpretation of peaks in (slope, intercept) space;
although we are interested in points clustered along
regularly spaced lines with negative slope, which the
eye readily extracts from the data of Figure 6, a simple
peak detection in the Hough (slope, intercept) plane
leads to the detection of many lines present in the
data but inconsistent with the physical model [4].

Figure 8 shows a typical result, with a number of
correct fits as well as several anomalies from the pre­
cession of slipping scatterers. A consistency check of
slope is used to filter good fits from poor ones, and
the period is initially estimated as a factor of approxi­
mately three times the time span over which the mid­
sinusoid fit is close. Alternatively, an LPC-period esti­
mate can be formed from the point cluster for each
line. The number of spinning scatterers is then ex­
tracted by an analysis of periodicities in the zero
crossings for a given spin-period estimate, which al­
lows for missed line detections and for anomalous
detections representing false lines, as seen in Figure 8.
A consistency check of zero crossings is then used to
refine the period estimates, and finally a fit of model
to data is used to resolve ambiguities. The primary
test in this portion of the modeling is for consistency
among the spin periods observed, according to the
implicit rigid-body assumption.

As an alternative to the standard Hough approach,
we could employ a generalized Hough transform by
using sinusoids parameterized by amplitude, period,
and phase to match the entire pattern for each track
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of the scatterer. The search space in this case, however,
is considerably larger, more processing time is re­
quired ro form the estimated scatterer position, and
this approach is more sensitive to body precession.

Time-Doppler Clustering

A third approach is warranted in cases when the
Doppler coordinates of the data points are too noisy
to link with the LPC approach, and the presence of
multiple scatterers leads to ambiguous detections with
the Hough-transform line extraction. The time-Dop­
pler clustering algorithm begins with the evaluation
of a track autocorrelation to detect periodic structure
in the data. Let the kth image feature have coordi­

nates (tk' D k) and RCS equal to (Jk' Now define the
autocorrelation measure R(r) as

R( r) = L L (Jk(Jk'W] (tk - tk' + r, Dk - Dk,),

k k' (3)

where the kernel function W] (c5t , c5D ) is nonzero for
only a limited extent in time and Doppler. The effect
is to test the association of points on the given track
with those on a r-shifted version of itself Relative
peaks in the function R( r) indicate time shifts at
which the track is self-similar, suggesting potential
spin-period hypotheses. These peak spacings are readily
found by examining the amplitude spectrum of R(r).

Figure 9(a) shows a typical track for which the
time-Doppler clustering algorithm is appropriate, be­
cause here the scatterers do not persist long enough to
apply the LPC or Hough approaches. Figure 9(b)
shows the corresponding autocorrelation R(r) on the
same time scale. The recurring peaks every TI2 sec­
onds are evident in the amplitude spectrum of Figure
9(c). We make allowance for potential symmetry in
the physical location of scatterers on the body, which
induces a submultiple of the spin period in the
autocorrelation-function peak spacing. If the spin­
period estimate is ambiguous, alternative values may
have to be carried through succeeding processing stages
before a fit estimate can resolve the uncertainty.

The track data are then wound up on the selected
spin period T, with track points at time t + nT over­
laid on those at time t, as shown in Figure 9(d). A
spreading function W2 is used to smooth the points in

time and Doppler, yielding the function

A(t,D) = L(JkW2(t-tk,D-Dk), 0 ~ t < T,

k (4)

where (Jk and (tk' Dk) are the RCS and (time, Dop­
pler) coordinates of the kth track point, and the sum
is taken over all points on the wound-up track. The
function A(t, D) is evaluated on a fine grid in the
time-Doppler plane, local peaks are identified, and
(t, D) points are collected along ridges emanating
from each peak. A sinusoid of period T is fit to the
points forming each ridge. This set of sinusoids is
now compared with the original track data, and indi­
vidual sinusoids are selected in the order of best fit to
the data until a lower threshold is reached in fit
quality. Estimates of sinusoid amplitude and phase
are refined through comparison with close data points.
At this stage, ambiguities in spin rate are resolved to
obtain the appropriate multiple of the apparent spin
period and the correct number of physical scatterers.

Resolution ofSpinning-Scatterer Extraction

The previous three sections outline three indepen­
dent approaches for extracting a spinning-scatterer
description from the data signature. The choice of
algorithm could be decided on an a priori basis, de­
pending on the data quality, object class, or other
criteria. Alternatively, the three algorithms could be
run in parallel on the same data, and an a posteriori

selection made on the basis of fit quality between
model and data. The spin-fit resolver could then be
viewed as a fourth knowledge source. The results of
the various spinning-scatterer extraction algorithms
are posted to subareas of the system blackboard, and
the resolver combines these pieces of evidence to re­
port a single evaluated result to the spinning-scatterer
domain ofthe blackboard. The flexibility of this modu­
lar structure has expedited the construction of our
system, with algorithmic implementations developed
by different analysts and merged at well-defined
interfaces.

Slipping-Scatterer Extraction

Following the modeling of spinning scatterers, we
turn to the parameterization of slipping scatterers,
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FIGURE 9. (a) Time-Doppler portrait of the aft scatterer cluster. Note the difference in appearance for this
class of scatterers from those shown in Figure 6. (b) Generalized correlation for the data in part a. This
function, evaluated according to Equation 3, shows peaks at intervals for which the data in part a are similar;
in this case these peaks occur at submultiples of the roll period T. (c) Discrete Fourier transform of track
autocorrelation. This spectral portrait of the data in part b shows a strong peak at twice the roll frequency.
Because the body is symmetric, there is minimal energy at the true roll frequency, which must be deduced
from sinusoidal fits to the original data. (d) Wound-up track, with l' = t mod T. This figure shows the super­
position of several periods from the data in part a; the scatterer structure will be extracted from these data.

which are annular reflecting structures such as the
join between body parts or reflections from the aft
end of the body cone. These scattering-center tracks
are generally characterized by significantly lower Dop-

pIer excursions, unoccluded visibility, relatively con­
stant ReS versus roll angle, and motion characterized
as precession. The tracks of slipping scatterers are
found from the initial range clustering and from the
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remnants of the slipping-scatterer extraction. Because
precession is generally variable in amplitude and fre­
quency, especially in the presence of forces induced
by atmospheric interactions, a time-varying model is
used to describe it. By letting t; represent the preces­
sion amplitude, e the precession angle, d the axial
distance from the slipping scatterer to the reference
point, and K' the aspect angle as before, we have a
Doppler signature of approximately

I-' () 2t;(t)e(t)dsinK' ()
J D t = A. cos e t .

Here, t; and eare smooth functions of time (we chose
multiple pairs of low-order polynomials on disjoint
time intervals).

The digital signal processing operations employed
include sign extraction from a weighted sum of Dop­
pler values for each time, median filtering to remove
dropouts, zero-crossing detection, sinusoidal fit over
consecutive estimated half-periods, and a least-mean­
square polynomial fit of the magnitude and net angle
versus time for successive time segments. In the de­
sign of the fit algorithm for this time-varying phe­
nomenon, we look for a balance between the close­
ness of the match and the length of the time segment
over which it is valid. The results of the precession­
estimation algorithm are reported to the precession­
estimates domain of the blackboard. As with spin
extraction, a precession-resolver knowledge source ex­
amines the results for ambiguities or conflicts, and
posts final results to the resolved motion domain.

Model Generation, Comparison, and
Catalog Generation

The choices of model representation and model­
matching strategy are tightly coupled and depend on
the objects being modeled, the nature of the data, the
types of features extractable from the data, and the
general approach to the problem (e.g., data driven
versus model driven). The characteristics of range­
Doppler images of simple rigid objects with a trac­
table motion solution provide several specifications
for a model representation. First, we can image the
entire object through several rotations because its spin
rate is considerably lower than the imaging rate and
the observation time can be on the order of several

periods of rotation. Thus a three-dimensional de­
scription of the located scatterers can be derived.
Second, the distinguishing factor between different
imaged objects is the general body structure and mo­
tion solution, as opposed to more detailed numerical
specifications. Therefore, a suitable object model
should symbolically represent the structural compo­
nents, their interrelationships, a motion description,
and numerical quantifiers. Finally, while there is a set
of known objects for which we would like to build
and store models to compare with imaged objects, we
also need to acquire new models from the data as new,
previously uncataloged objects are presented to the
system. Thus the ability to derive a workable model
directly from the data is important. Furthermore, this
data-derived model should be identical in form to the
stored catalog models to facilitate building and gener­
alizing new catalog entries directly from the data.

Model Representation

A representation known as a semantic network was
chosen to satisfy the above criteria. This representa­
tion is a network of nodes denoting physical features
of the object, and links relating pairs of nodes [5, 6].
In addition, descriptive property nodes can point to

and quantify either nodes or links. This structure is a
common model representation for structured objects
or scenes from imagery [7, 8]. We can think of this
structure as a way of encompassing the information
that one analyst passes verbally to another in describ­
ing the data-derived features of an object of interest.
These features then lead to a three-dimensional object
description as a collection of parts, positions, and
parameters. Note that models can be built from sparse
features in cases in which not all features are detected.

As a simple example, a description of a hammer
might consist of a list of the parts handle and head,

with the head further represented as claw and ftce,

and with length and weight attributes assigned to the
handle and head. Figure 10 shows the corresponding
semantic net. This descriptive framework allows us to
distinguish among different hammer types (claw,
sledge, ball peen) on the basis of their parts (claw,
face, ball) and attributes (weight, handle length).

Within ROME, a typical semantic network repre­
sentation of a reentry vehicle is as shown in Figure 11.
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FIGURE 10. Semantic network model for a simple object,
which in this example is a claw hammer. Nodes in the
network correspond to parts of the hammer, and links
serve to relate and characterize the parts.

This network represents the reentry vehicle in terms

of its scatterers, the geometric relationships between
them, associated quantifiers, and the object motion.

Nodes in the network correspond to point scatterers,
ring scatterers, and the entire rigid body as a unit. The
relational links between the nodes represent relative
differences in range, cross-range, or angle. Quantifiers
pointing to the nodes contain more detailed descrip­
tive information such as scatterer type, radar cross
section, or polarization attributes. The spin rate is a

property attached to the entire body node, because all
scatterers extending from the rigid-body node must
rotate together. The data-derived features are repre­
sented in the identical format used in the catalog of
objects available for comparison.

Model Comparison

Once a data-derived semantic model has been built, it
can be matched against a catalog of semantic models.
The catalog models are established directly from
known physical models or from previous data-derived
models. The matching strategy consists of finding the
best correspondence between parts on the derived
model and parts on the catalog model. This corre­

spondence is evaluated and compared to the corre­
spondences from the other catalog models. Because of
the symmetry of the objects and the occasional dis­
crepancy in number of parts between the derived
model and the catalog model, several potential corre­
spondences between point and ring scatterers usually

206 THE LINCOLN LABORATORY JOURNAL VOLUME 5. NUMBER 2, 1992

exist. These correspondences are based on the general
structure rather than on quantifiers. The correspon­
dences are constrained because range and angular­
position information limits the possible permutations
for these correspondences.

Once a set of realizable correspondences is estab­
lished between the scatterers from the derived model
and the scatterers from the catalog model, these corre­

spondences must be evaluated and scored to assess the
best fit. The basis for evaluation is finding the corre­

spondence that minimizes the distances in property
space. For example, assume that in a certain corre­
spondence a ring from the derived model is associated

with a ring from the catalog model. The properties
attached to both rings (such as range and ReS) are
plotted in their property space, and Euclidean dis­
tances :he computed between derived and cataloged
properties. This computation is done for all parts in
the correspondence, and for all correspondences. The
correspondence with the greatest number of mini­
mum distances across its parts is marked as best. The
scoring metric for each correspondence is the number

ofminimizations in property space less the number of
missing parts between the derived and catalog mod­
els. Some cost must be associated with a derived
model having either too few or too many parts com­
pared to the catalog model. The resulting normalized
scores are compared across the catalog, and the maxi­
mum score is chosen as the best match from the

catalog to the derived model. Note that the spin rate
and the apparent number of point scatterers are mu­
tually dependent pieces of evidence; this fact can be
used to refine an object model in a model-driven

processmg pass.

Catalog Generation

Because of the variety of missions of the radars from
which we obtain data, images of unknown objects are

often presented to the system. In these cases, the data
correspond to objects for which no a priori models
exist. An important part of our system is the ability to
generate a semantic model from any number of data

segments associated with a particular object.
Generalization, which is a subproblem in the more

general field of learning [9], is the ability to learn a
general model from several specific examples. P.H.
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Winston advocates an inductive learning strategy

known as learning by example [10]. An external teacher
presents the system with examples and counter­
examples, and the system induces the general concept
description. As new inputs are presented to the sys­
tem, they are matched against the current models.
New inputs can also be used to refine the internal
representations continually.

We approach generalization not as a learning sys­

tem that continually changes its knowledge and per­
formance based on examples, but chiefly as a way to
train the system as to how a particular uncataloged
object should be represented, based on several ex­
amples derived from data. This information is then
entered into the current catalog. Once the training is
complete, the system performs in its normal mode,

treating the generalized model as a catalog entry.
The generalization process is guided by a human

Extended
Return

operator who selects acceptable data-derived models
for a given object. Acceptable models as well as
counterexamples are determined by the expertise of
the human operator. The resulting models can thus

be ambiguous because of the complexity of the data
and the inconsistency among experts; these ambigu­
ities are resolved through generalization.

All the data-derived models that were selected re­
sult from the initial processing of the ROME system
(up to the matching stage) to produce semantic mod­
els, as we discussed previously. The first derived model
initializes the generalized model. As other examples
are presented, the generalization associates new struc­

tural components with current structural components
in the generalized model. When an association is
made (similar to the matching correspondence prob­
lem), the structural components increases a number­

of-occurrences counter. Each structural component

Extended
Return

FIGURE 11. Semantic network model for a reentry vehicle. Nodes corre­
spond to the body as a whole and to various scattering centers. Links
relate the attributes and relative positions of the scatterers.
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Table 1. ROME Classification Performance

Catalog

Test Data RV1 RV2 RV3a RV3b RV4* RV5 RV6

MOO (4) 100%

M01 (9) 100%

M10 (9) 45% 55%

M02(8) 100%

M03/LDS013 (8) 100%

LDS014 (5) 100%

LDS027 (5) 20% 80%

* Catalog models are based on a mission different from the one tested.

keeps track of the number of associated occurrences
as well as the total number of training instances. Thus

each component in the generalized model has a weight
attached to it equal to the number of occurrences
divided by the number of training sets. This weight,
which is between 0 and 1, is used to estimate the
importance of that structural component in the match­

ing. Components that are not associated with existing
partS in the generalized model are added as additional
parts, but their weight is low compared to parts that
do find appropriate associations.

Once an example model is generalized for a par­

ticular object, this model is entered as the catalog
entry for the unknown object, and the system per­
forms its normal operations. As new data come into
the recognition system and a semantic model is built,
the derived model is compared against the trained
examples. The number of examples needed for a par­

ticular object depends on the diversity of the models
in the entire catalog and the inherent variability in the

data and in the data processing. As discussed in the
next section, results from the generalization ofmodels
have been encouraging. The margin between match
scores for correct matches versus incorrect matches is

significant.
In the discussion above, we implicitly assumed that

the aspect angle /( between the radar LOS and the
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vehicle spin axis is known, so that absolute dimen­
sions could be compared in the match assessment. If /(

is not known, then the look angle between the radar
LOS and the vehicle velocity vector can be used as an
estimate of /( (this estimate assumes that the spin axis
is aligned with the trajectory, which is not necessarily
true). Alternatively, /( can be left as a free parameter to
be estimated in the search, and chosen-for each

association of derived and catalog model-to maxi­
mize the range and cross-range match score. The
maximum score is taken to indicate the assessed ve­
hicle type, and the corresponding value of /( that was
used to maximize the corresponding score is taken as

an estimate of aspect angle.

Detection Performance Results

For evaluation of the classification performance of
ROME, data from several missions were collected by
operational radar systems, processed through the Lex­
ington Discrimination System (LOS) facility [11],

and passed to ROME as sets of feature vectors defin­
ing the locations of peaks in the respective sequences
of range-Doppler images. Five different vehicle types
were represented by one mission each; a sixth type
was represented by two independent missions. The
data from each of the seven missions were partitioned
into data segments. ROME independently processed
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Scores for Correct Matches

o 2 3 4 5 6 7 8 9 10

Scores for Non-Matches

o 2 3 4 5 6 7 8 9 10

FIGURE 12. Distribution of matching scores for the results shown in Table 1. Note the bimodal nature of the matching
score distribution, with the scores for nearly all correct matches lying well above the scores for all incorrect matches.
This distribution suggests that the match score can be compared with a threshold for introducing a new model.

each data segment to generate derived semantic mod­
els for the corresponding vehicles. In all, there were
48 data segments and 48 corresponding individual
models. These models were combined by vehicle type
to form respective catalog models for the six vehicle

types.
Each data segment was taken in turn and its indi­

vidual model was tested as follows. The remaining
data segments from that mission were used to form a
modified catalog model for the vehicle; note that the
tested segment was not represented at all in this modi­
fied model. The derived model for the data segment
under test was then compared with the catalog, which
now contained the modified model in place of the
original one, and the best match was chosen. Then
the next data segment was chosen, a new modified
catalog entry was formed, and so on for each of the 48
track segments. This testing methodology corresponds
to the standard leave one out experiment, where the

models against which a data segment is tested do not
depend on that data segment.

Table 1 shows the test results. The mission desig­
nation is shown in the first column, with the number
of data segments shown in parentheses; the top row
indicates the cataloged vehicle models. The nine indi­
vidual derived models from the data segments of mis­
sion MlO formed two clusters in feature space, and
were assigned two entries in the catalog. The model
labeled RV4 was derived from missions M02 and
M03/LDS013; in testing the derived models from
these missions, we used only derived models from the
other mission to generate the catalog entry. Of the 48
data segments, only one was misclassified-one of the
LDS027 data segments was declared to be vehicle
type RV5 instead of its correct identity ofRV6. Figure
12 displays a histogram of the numerical matching
scores from the correct matches as compared with
those of the incorrect pairings. The minimal overlap
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of these distributions suggests that the match score
can be used as an absolute measure of classification
confidence. We note that the system parameters were
not tuned to the vehicles tested; as successive vehicles
were added to the database during the development
of this code, only the catalog entries were altered.

Of course, accurate assessment of the system's clas­
sification performance will require a greater quantity
of data, with multiple missions included for all ve­
hicle types. Also, because a primary goal of this sys­
tem is the discrimination of reentry vehicles from
decoys and associated objects, the system must be
tested with a wider range of objects. We found these
preliminary results encouraging, however, because
similar reentry vehicles were correctly classified on the
basis of their appearance through the use of real data
taken on exoatmospheric flight objects.

Parallel Processing for Real-Time
ROME Execution

Now we turn to the second requirement of this project:
real-time execution of the ROME algorithms. The
basic objective of this project was to assess the appli­
cability of MI techniques to the problem of auto­
matic recognition of reentry vehicle types. The initial
emphasis was on developing algorithms that worked
well with real input data and actually recognized the
different reentry vehicle types. The next phase was to
optimize these algorithms to achieve the best possible
recognition performance by using a database of real
radar data on real objects. Because any practical appli­
cation of these techniques would require real-time
execution, the emphasis then shifted to defining the
computational requirements for real-time execution,
recoding the ROME algorithms, and demonstrating
actual real-time execution on a parallel processor.

ROME Processing Requirements

The execution time of ROME on a uniprocessor
LISP workstation (a Symbolics 3645 LISP machine)
with a typical data track was measured as 45 seconds
of processing per second of radar data. The data had
already been preprocessed by the LDS computer sys­
tem [11] and sent to ROME in the form of feature
vectors (i.e., locations of peaks in the range-Doppler
images). Thus for achieving real-time execution, a
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speedup factor on the order of 100 would be needed.
This factor allows a margin for variation in processing
time due to data-dependent factors such as signal-to­
noise ratio, object complexity, imaging rate, and data
length. In addition, the catalog size has a strong but
well understood effect on the overall processing time,
but we do not have to deal with this issue with the
small catalog size that ROME uses.

A number of approaches can be used to speed up
the ROME execution time. One obvious method is
to use a uniprocessor computer that can run Com­
mon LISP 100 times faster than a Symbolics LISP
machine. Such a computer would require a processor
that runs Common LISP with a cycle time consider­
ably less than a nanosecond; unfortunately, no such
machine is available. Recoding ROME in some other
language, such as C or FORTRAN, would not re­
duce the required processor speed significantly
enough to make the uniprocessor approach feasible
or appealing.

The alternative approach is parallel processing,
which offers several interesting options. The obvious
parallel implementation to achieve a speedup of a
factor of 100 is to use a machine with 100 processors,
or nodes, each of which could run Common LISP
programs as fast as a LISP workstation. Each node
could run the uniprocessor ROME code to process
radar data corresponding to a different interval of
time, say T seconds, and produce its results in 50 to
100 times T seconds. Each node would then be able
to process data fast enough to handle one out ofevery
100 data intervals, and the entire parallel system could
then keep up with real time. This solution would be
unwieldy, however, and the latency of the results would
be unacceptably long (for T = 2 sec, each node would
take 100 to 200 seconds to produce results). This
approach would therefore not be useful in a system
requiring a fast response.

Let us now consider more practical parallel imple­
mentations of ROME involving fewer than 100 pro­
cessors. In the late 1980s, low-cost processors that
could run Common LISP as fast as a LISP machine
were unavailable, so achieving real-time execution with
the ROME system was a considerable challenge. How
can we currently realize a speedup of a factor of 100
relative to a LISP machine with processors that can-
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Lexington Discrimination System
Feature Vector Sequence

Figure A indicates that for a mix of times R from 3
to 10, a numeric speedup of greater than 20 achieves

FIGURE 13. Major processing steps in ROME. The num­
bers reflect execution times in seconds of processing per
data second for a uniprocessor LISP workstation.
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not run Common LISP as fast as a LISP machine?
The answer, in fact, is that it cannot be done.

To achieve real-time ROME execution, we must
focus in more closely and consider the resources that
are specifically required to do the ROME computa­
tions, rather than just running Common LISP. Com­
pared to other types of processors such as digital
signal processor (DSP) computers, LISP machines are
relatively slow at performing numeric computations
such as signal processing operations. If ROME in­
volved only signal processing computations, we could
easily put together a multiprocessor computer with a
modest number ofDSP chips to obtain a large speedup
in execution relative to a uniprocessor LISP machine.
ROME, however, involves a mixture ofsymbolic com­
putations as well as signal processing.

One practical approach is to build a multiproces­
sor with a modest number of nodes, each of which
can run Common LISP as fast as a LISP machine,
and use a special coprocessor to perform signal pro­
cessing computations much faster than a LISP ma­
chine. Thus the key issue to focus on is the amount of
numeric computation versus the amount of symbolic
computation done in ROME. The more numeric
computation in ROME, the more a fast numeric
coprocessor could contribute to the overall speedup.
Figure 13 shows the major processing steps in ROME.
The numbers in the figure indicate how many sec­
onds of processing each module takes per second of
radar data on a uniprocessor LISP machine. These
numbers indicate that the bulk of the processing time
is concentrated in the modules that involve numeric
computations. Estimates of exactly how much of the
total ROME uniprocessor execution time involves
numeric computation range from 75% to as much as
90%. This percentage would be much greater if the
processing done in LDS were included.

In the box entitled "Uniprocessor Speedup with a
Numeric Accelerator" we use a simple model to calcu­
late the potential speedup factor for a program in
which the numeric computation in a uniprocessor
takes R times as long as the symbolic computation
time. The model assumes the use of a special proces­
sor that performs numeric computations (J times as
fast as the original processor and symbolic compu­
tations at the same rate as the original processor.
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execution time of this application

on the second machine would

then be
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erating numeric computations has
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(i.e., 10 times as much numeric

computation as symbolic compu­
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CJn is increased beyond 20. In gen­
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creasing CJn much beyond twice

the value of R in the application

because the speedup factor is al­

ready close to its asymptotic val­

ue for CJn -7 00. For an applica­
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between 4 and 8, the maximum
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factor of between 5 and 9, and
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FIGURE A. Overall processing speedup versus ratio of nu­
meric to symbolic processing time. Curves are parameter­
ized by the speedup of numeric computations, with symbolic
computation speed held constant.
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as
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chine for this application; i.e.,

R = Tn.
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essentially all the speedup possible with this mix of
computation (i.e., effectively an infinite speedup of
numeric computation), and the overall program
speedup ranges from a factor of 4 to 10.

The goal of speeding up ROME execution time by
a factor of 100 was ultimately achieved by a combina­
tion of measures. We first conservatively estimated
that streamlining the ROME code would speed up
execution by a factor of two, because the code was
originally written for accurate recognition rather than
fast execution. Another factor of five could be ob­
tained from a processor that performs numeric com­
putations 20 times as fast as a LISP machine. That
would leave a factor of 10 to be realized by using
multiple nodes working in parallel on ROME com­
putational tasks. Cooperative parallel computations
require communication between processors; hence, a
multiprocessor with more than 10 nodes would be
needed to achieve real-time execution of ROME.

The MX-l Multiprocessor

The ROME system is one example of a large class of
MI applications that we term sensor data understand­

ing, which involve a mixture of intensive numeric
computation with symbolic computation. Moreover,
these applications must frequently execute in real time.
Other example applications are robotic vision, auto­
matic-target-recognition systems, and machine recog­
nition of spoken language. Real-time execution of
sensor-data-understanding applications often presents
difficulties for the same reasons already discussed;
namely, artificial-intelligence workstations perform
numeric computations inefficiently, and parallel com­
puters that run LISP are not common. Thus the
Machine Intelligence Group set out to develop a mul­
tiprocessor computer specifically to facilitate de­
velopment of parallel algorithms for high-speed ex­
ecution of this class of MI applications. The result of
this effort is the MX-1 multiprocessor, which is a
shared-memory, tightly coupled system with a paral­
lel LISP programming environment that also pro­
vides powerful numeric computation capability [12].

The MX-1 multiprocessor consists of 16 process­
ing nodes interconnected with a crossbar network.
Each node consists of a Motorola 68020 micropro­
cessor and 68882 math coprocessor chip (running at

a clock rate of 16 MHz), 8 Mbytes of random access
memory (RAM), and an independent DSP computer
designed around a Weitek DSP chip set. The DSP of
each node has a peak math computation rate of 20
Mflops (single precision) and 256 Kbytes of data
memory. Figure 14 shows a block diagram of the
MX-1 system, including its host, which is a Symbolics
3675 LISP machine. The host provides the user inter­
face, the network interface, and the hard-disk mass
storage.

The crossbar has one-byte-wide bidirectional data
paths that operate at 16 MHz. The crossbar control
allows broadcasts to be made from any node to any
subset of other nodes, including all other nodes. The
crossbar was motivated by the unpredictability of
memory-access patterns in LISP systems doing sym­
bolic processing. Each RAM memory module is con­
nected to a processing node so that accesses to local
memory are faster than going over the crossbar to
another memory module. In the MX-1, a single-word
(4 bytes) memory access over the crossbar is approxi­
mately seven times longer than a local memory access.
The shared-memory software environment can cor­
rectly access data anywhere in memory, but using the
crossbar for every memory access would significantly
increase access time. The user has the option of set­
ting up data structures in specific memory modules to
try to maximize locality of memory references for
faster execution.

The interface between the LISP machine host and
the MX-1 is complicated by the differing word lengths
of the Symbolics and 68020 processors. This interface
thus employs a 68020 processor similar to one of the
MX-1 processing nodes. This processor, which is called
the Interface Processing Element, handles all com­
munication between the MX-1 and the host machine
(including network functions, the user interface, and
the mass storage), and it also can participate fully in
the MX-1 computations.

Each node also has a high-speed data-input port
with a peak data rate of 16 Mbyte/sec to accommo­
date rapid entry of sensor data for real-time process­
ing experiments. The concept of operation of the
MX-1 in real-time applications is as follows. The
sensor data are entered into the data memories of the
DSP processors via the high-speed data ports on each
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FIGURE 14. MX-1 multiprocessor architecture. Each processing node contains 8 Mbytes of dynamic random
access memory (DRAM), a 68020 processing element (PE), and a DSP coprocessor. Communication is
handled by a 17 x 17 crossbar. The host is a Symbolics 3675 LISP machine.

node. At this point, front-end signal processing (data­
independent numeric operations) is performed by the
DSP processors executing C functions. Computation
in sensor data understanding systems starts out al­
most exclusively as signal processing, then becomes
more data dependent (with more branching), and
then becomes largely symbolic computation. Thus
when the computation becomes more symbolic and
less efficient to perform on the DSP processors, the
computation is performed on the 68020 processors,
which can execute both C programs and compiled
Common LISP programs. In this way, the symbolic
parts of the application code are speeded up by paral­
lel execution on the 68020 processors, while the nu­
meric parts are speeded up by parallel execution and
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by the faster DSP processors.
Although readers might conclude from this article

that the ROME application motivated the MX-l de­
sign, this was actually not the case. The MX-l design
was well under way by the time the focus in the
ROME project turned to real-time execution. In fact,
because the data input to the ROME processing sys­
tem consists of feature vectors already computed in
the LDS computer, much of the front-end numeric
processing, on which MX-l could achieve a spectacu­
lar speedup, has already been done. ROME is thus
not an ideal first application with which to demon­
strate MX-l in its best light, because the LDS pro­
cessing has already greatly reduced the ratio of nu­
meric processing to symbolic processing.
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The MX-I Programming Environment

The programming language of the MX-l is Common
LISP. More specifically, we use the Kyoto Common
LISP (KCL) software developed at Kyoto Universiry,
Japan, which is in the public domain in the U.S.
(including sources). This software was benchmarked
by using a number of the Gabriel LISP benchmarks,
and it compares favorably with the performance of
Symbolics LISP workstations [13]. Of course, Com­
mon LISP programs must include numerous declara­
tions to compile efficient run-time code, which partly
offsets the advantages of the LISP language. But new
code can be proto typed rapidly in the LISP sryle
without declarations by using all of the protoryping
and debugging features of LISP while paying a pen­
alry in slower execution time during this phase of
program development. When the code has been de­
bugged, declarations can then be added to produce
more efficient compiled code for faster execution.

KCL compiles to C code, which, in turn, is com­
piled to 68020 machine code for execution. Using C
as an intermediate language allows easy porting of
LISP applications to other processors when necessary.
The Machine Intelligence Group has added a number
of extensions to KCL for parallel programming. The
primary extension is called the promise, which is a
construct that causes a LISP procedure to be executed
on a specified node of the MX-l. The node can be
precisely specified (e.g., node seven) or loosely speci­
fied as the next one available to run a procedure.

The single address space of the MX-l is arranged
to provide a portion of each local memory for use as
private memory for the processing element, a portion
for use as shared memory, and a portion for use as
broadcast memory. Private memory is used for operat­
ing-system code and application code; shared memory
can be accessed by all other processing elements. The
contents of the broadcast portion of each processing­
element memory are identical, which allows us to
simulate the access of a single data structure by all
processing elements, while still allowing localiry of
reference for each processor. Broadcast memory ex­
ploits the broadcast capabiliry of the crossbar by han­
dling all writes to broadcast space with a single cross­
bar write operation.

The standard parallel-programming paradigm on
the MX-l is for a user to write a LISP procedure to
process data in a data structure such as an array, and
to then debug the procedure. The array is then parti­
tioned (divided into parts) and distributed to a set of
processing elements (put in their shared memory).
The processor can then perform a promise-fimcallwith

the procedure, specifYing the processing elements that
contain the data structures to execute the promise.
The box entitled "Parallel Language Constructs" gives
a simple example of a parallel program that performs
a vector dot product. The actual parallel program is
not greatly extended in length relative to the uni­
processor version of the code for the procedure. The
promise-ftncaLL is a basic construct that allows us to
build many different types of parallel programs. The
wait-for-promise construct provides a basic primitive
for synchronization of subprogram execution on dif­
ferent nodes. The pyramid-peconstruct combines these
other two into a mechanism for distributing tasks and
combining results.

The underlying C software runs on a distributed
operating system called MXOS, which was derived
from UNIX 4.3. C programs can be executed on the
MX-l, but the parallel-programming tools are all ori­
ented toward parallel KCL. KCL, however, does pro­
vide a convenient interface with the C environment
that allows us to load a C program into the MX-l,
give it a LISP name, and then call it from the KCL
environment. In this way, certain numeric-intensive
computations can be coded in C and called from a
KCL program to execute in the 68882 math
coprocessor.

The selection and use of the DSP coprocessors also
relies on the convenient C interface of KCL. The
Weitek DSP chip set used in the MX-l comes with a
C compiler. Thus C programs can be written and
compiled for the DSP coprocessors, and debugged by
using the special tools of the DSP programming envi­
ronment. We developed a linkage to KCL to allow
DSP routines to be loaded in the same way that C
routines are loaded and linked to the KCL environ­
ment so they can be called from a KCL program. The
DSP linkage automatically handles the movement of
the C routine arguments to the DSP coprocessors,
loads the C code, executes the routine, and commu-
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PARALLEL LA GUAGE CO STRUCTS

A UMBER OF parallel program­
ming primitives are available to
the applications programmer who
wishes to use Parallel Kyoto Com­
mon LISP; these primitives are
shown in Figure A. The promise­
funcallis a processing request that
identifies a function to be called,
the function arguments, the tar­

get processor identification, and
a strictness parameter. A high
strictness indicates that the func­
tion must be run on the indicat­

ed processor' a low strictness di­
rects that the function be executed
by the next available processor.
The promise-funcall is a pending
operation that may be assigned to
a named variable (e.g., to the vari­

able promise-object in this exam­
ple). Synchronism is established
with a wait-fOr-promise, which re­
turns the processing result when

it is available, meanwhile suspend­
ing further operation.

These two primitives are built
into a basic parallel mechanism,
the pyramid-pe, which defines a
set of active processing elements,
an operation to be performed in
parallel on all processors, another

operation that pairwise combines
their partial results, and separate
strictness measures for the base
operation and the combination
operation. For execution on N
processors, the pyramid-pe or­
chestrates the issuing of N prom­
ise-funcalJs and the correspond­
ing N wait-for-promises for the
base function, N/2 promise-fun­
calls and wait-for-promises for the
first-level combination, N/4 pro­

mises and wait-for-promises for
the second-level combination, and
so on to the last promise-funcall

and wait-for-promise that yield
the final result.

Thus, as shown in Figure B, a

vector inner product can be de­
fined as the result of a pyramid­
pe that calls the basic vector-mul­
tiply operation to evaluate a partial
inner product on each of the ac­
tive processing elements and a vec­
tor-sum operation to combine the

results of any two vector-multi­
plies. Each processing element
knows the total number of pro­
cessors to be used, the length of
the vectors, and its own identity·
from this information, the local
initial and final vector index lim­

its are computed and a local sum
is evaluated by each of the pro­
cessing elements. The N local
sums are combined in parallel, by

pairs, through log2(N) stages, to
yield the final result.

(promise-funcall pe-number strictness #'function arg1 ... arg n)

(setq promise-object (promise-funcal!. .. ))

(setq result (wait-for-promise promise-object))

(pyramid-pe

number-of-pes

#'base-function

#'combine-function

base-strictness

combi ne-strictness)

FIGURE A. Parallel language constructs. These parallel programming
primitives are used by the applications programmer to code an algo­
rithm for execution on the MX-1.
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(defun inner-product (arg1 arg2)

(pyramid-pe number-of-pes

#'vector-multiply arg1 arg2

#'vector-sum

3

3))

nmax

S = I v1 (n) v2(n)

n=O

(defun vector-multiply (vector1 vector2)

(let ((start-index (compute-start-index vector1 this-pe-num))

(end-index (compute-end-index vector1 this-pe-num)))

(do ((index start-index (1 + index))

(partial-sum 0))

((= index end-index) partial-sum)
(setq partial-sum (+ partial-sum

(* vector1 [index] vector2[index])))))))

(defun vector-sum (promise1 promise2)

(+ (wait-for-promise promise1)

(wait-for-promise promise2)))

(setq S (inner-product v1 v2))

FIGURE B. Vector inner-product computation. This example shows the coding
of a vector inner product in the form of a parallel program for execution on the
MX-1. The vector-multiply function forms a partial product and the vector-sum
function combines partial sums in a pairwise fashion.

nicates the results back to the 68020 processor of the
node. In fact, the DSP environment can also handle a
sequence of calls to the DSP that might not need to
have all results at intermediate stages of processing
moved to the processing element. The DSP co­
processors, which have been benchmarked on a vari­
ety of numeric-intensive routines and compared to
the 68882 math coprocessor, consistently execute these
routines more than 20 times faster than the 68882.
The overall speedup in execution time will be some­
what less than this factor because of the time needed
to handle the communication between the 68020
and the DSP.

The parallel-programming extensions to KCL, the
MXOS distributed operating system, the use ofbroad­
cast memory space, and the software to communicate
with and run C programs on the DSP coprocessors

wete all developed in the Machine Intelligence Group
at Lincoln Laboratory.

Parallel Processing Issues and Results

The ROME code was modified in a version for paral­
lel KCL implementation called MX-ROME. Modifi­
cations amounted to identifying the code segments
that would benefit from parallel execution, such as
range clustering, autocorrelation evaluation (Equa­
tion 3), and time-Doppler clustering (Equation 4),
and casting them in a form that allows a run-time
selection of the number of processing elements. MX­
ROME was then tested on the MX-l to evaluate its
execution speed. All processing elements ran identical
code; the only difference in execution was a local
selection of processing subset based on the identity of
the individual processor and the total number of pro-
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Number of Processing Elements

processors then perform their part of the computa­
tion, which takes time proportional to 11N Results
are gathered in pairs (simultaneously to the extent
possible), which requires time proportional to the
depth of the binary collection tree, or i logz N i,
where i . i means "least integer greater than or equal
to." Thus our processing model predicts a processing
time Tp of the form

Thus Tp behaves as 11N for small N, as N for large N,
and it jumps as Nis increased from (for example) 4 to

5 or 8 to 9. The optimum number ofprocessors varies
with the application, and greater computation re­
quirements favor larger numbers of processors. For
the ROME application, including C code running on
the DSP processors, the optimum number is found to

be six processing elements. If the DSP processors are
not used, the optimum number is seven processing
elements, and if all processing is done in LISp, the
processing time continues to decrease out to the full
complement of 16 processing elements.

Figure 16 displays the execution time of ROME
for various computation platforms. In its initial LISP
form running on a Symbolics 3645 workstation, the
program required 45 sec ofprocessing for each second
of a typical data segment. When ported to a single
processing element of the MX-l, the corresponding
processing requirement increased to 54 sec per data
second, which reflects both the difference in CPU
(MX 68020 versus Symbolics 68030) and the alter­
ation of certain code constructs from their Symbolics
ZetaLISP form (which is tuned for the Symbolics
CPU) to the corresponding generic KCL equivalents.
With all 16 processing elements running Parallel KCL,
this processing time dropped to 4.3 sec per data sec­
ond (a speedup of approximately 80% of the maxi­
mum possible 16-fold improvement). Rewriting four
of the numeric-intensive routines in C and running
these routines on the DSP processors gave a further
improvement in processing time to 1.3 sec per data
second.

The parallel-programming result, however, was still
slower than what was needed for real-time operation.
This realization led to a structuring of the processing
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cessors used. In a typical implementation, upper and
lower loop index values were computed locally so that
the processors shared the computation load fairly.

The system was then run with a fIxed data set for a
variable number of active processing elements. Figute
15 shows a typical profIle of execution speed versus
number of processors. This fIgure shows what at fIrst
might be considered a surprising result: as more pro­
cessors are employed, the execution time decreases
initially, achieves a minimum, and then increases
thereafter. In addition, the relationship of the process­
ing time to the number of processors exhibits local
extrema.

To understand this phenomenon, consider the com­
ponents of processing time inherent in the parallel
execution ofan algorithm with N processors. Initially,
a fIxed time is required for initialization of variables
and data access, independent of N Then the proces­
sors are passed data and requested to do their part of
the processing; in our implementation, this task in­
volves sending individual promises to the active pro­
cessors, which requires time proportional to N The

FIGURE 15. MX-ROME processing time versus number of
processing elements, in seconds of processing per sec­
ond of data. The value 1.0 corresponds to real-time
operation on this data set. The increase in processing
time as processors are added is due to interprocessor
communication.

218 THE LINCOLN LABORATORY JOURNAL VOLUME 5. NUMBER 2. 1992



-AULLET AL.
Real-Time Radar Image Understanding: A Machine-Intelligence Approach

100

ro-ro
0
u
Q)
en
~

Q)
0- 10
O'l
e
en
en
Q)
ue

Q..

u
Q)

.!!:.-
Q)

E
l-
e
0

:;
u
Q)
x

w

0.1

.....

54
45

I-

4.3
Symbolics Single

LISP MX-1
Machine Node

Host Running 1.32 1.29
LISP Real Time = 1.0 sec/sec

16 MX-1 16 MX-1 0.65
Nodes Nodes

Running Running 2 4
LISP LISP Partitions Partitions

+ Running on Running on
Con DSPs MX-1 MX-1

FIGURE 16. MX-ROME execution times for various platforms and software configurations, in seconds of
processing per second of data.

elements in clusters, as shown in Figure 17. In this
scheme the operating system is designed so that all
clusters can simultaneously run code on different data
sets with no confusion of identically named variables

among the clusters (including system-level global vari­
ables such as the number of processing elements). In
this implementation of the control mechanism, the
processing elements can be assigned arbitrarily to clus-

Data Source

Partition 1 Partition 2

Crossbar

Partition 3 Partition 4

FIGURE 17. Partitioning the MX-1 into clusters of processing elements. For MX-ROME all clusters ran identical code
on independent data sets, although more general operation is possible.
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ters, clusters can be of unequal size, and each cluster
can run an arbitrarily assigned code segment. Of
course, fewer processing elements are available to run
each cluster's code, and a penalty must be paid in
overhead to coordinate the communication of data to
and between processing clusters. We found, for ex­
ample, that a two-cluster partitioning of the MX-l
with eight processing elements per cluster ran the
code at approximately the same rate as an eight-node
version of the MX-l without the partitioned code.

With the optimal partitioning of the MX-l into
four clusters of four processing elements each, we
achieved a run time of 0.6 processing seconds per
data second, well within the required real-time per­
formance limit. The latency is approximately 2.4 sec
per data second; i.e., for a two-second data segment,
the classification result will be available within five
seconds after the data are input to the MX-l.

Summary

The accomplishments of this project are numerous.
The ROME software was the first program that used
MI techniques to analyze radar imagery and recog­
nize reentry vehicles automatically. This software uses
MI techniques to implement the knowledge sources,
the blackboard control structure, and the semantic­
net object representations. It also builds its own cata­
log of object models from real data, and in this sense
it is trainable. The recognition performance ofROME,
when measured on real data, has been excellent.
The system was coded for parallel execution on a
multiple-instruction multiple-data multiprocessor, the
MX-l. It was the first serious MI application to run
on the MX-l, and as such, it motivated valuable
enhancements to the MX-l parallel programming
environment.

The parallel version, called MX-ROME, makes
significant use of the MX-l performance-monitoring
system to time the execution ofvarious code segments
and processing steps, which is necessary to optimize
parallel programs. With the numeric-intensive pro­
cessing coded in C and executing on the DSP proces­
sors, MX-ROME ran nearly at real time. Real-time
execution was achieved on the MX-l by concurrently
running four versions ofMX-ROME, each on differ­
ent subsets of four nodes.
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Future Directions

ROME can be enhanced in many ways to make it
more effective in the general discrimination problem
for ballistic missile defense systems. The ROME code
could be extended to incorporate radar polarization
data when available and to characterize the individual
scatterers by their RCS-versus-azimuth portraits. Effi­
cient use of radar resources suggests developing a
look-process-look strategy, whereby data from dis­
joint observation intervals are combined to make a
refined classification decision. Early selection of reen­
try vehicles from a cloud of objects that includes
booster fragments, decoys, and countermeasures will
involve building an enhanced object catalog with pro­
vision for on-line catalog updating. The general dis­
crimination problem will require the capability of
performing all of these functions at real-time rates.

The MX-2 Multiprocessor

A need exists for even more powerful parallel com­
puters to execute general discrimination code han­
dling multiple objects in real time. Since the MX-l
multiprocessor design was finalized and construction
began in 1987, microprocessor technology has con­
tinued to improve at a steady pace. When reduced
instruction-set computer (RISC) chips became com­
mercially available, their potential use in upgrading
the MX-l to an improved multiprocessor-the
MX-2-was investigated. Even though RISC micro­
processors offer faster computation rates for both nu­
meric and symbolic processing, they cannot simply
replace the Motorola 68020 microprocessors used in
the MX-l because the crossbar interconnection net­
work is not fast enough to keep up with the RISC
processors. This enhanced computation rate would
create a communication bottleneck that would result
in an unbalanced multiprocessor architecture and in­
efficient use of the RISC processors.

To obtain more processing power for real-time MI
applications, the MX project has turned its focus to a
new multiprocessor design based on the use of these
RISC processors. Optical communication techniques
will be used for building a very high-speed inter­
connnection network to avoid the communication
bottleneck. The applications of primary concern for



...

-AULLET AL.
Real- Time Radar Image Understanding: A Machine-Intelligence Approach

the MX-2 are the same as those addressed in the
MX-l design, namely, MI applications that involve a
mix of both numeric and symbolic computations and
that have a real-time processing requirement. There­
fore, the programming environment envisioned for
the MX-2 is essentially that of the MX-l, which
allows a user ro write parallel programs using a com­
bination of Common LISP and C. The operating
system, however, will be MACH instead of a UNIX
derivative, to provide better support for parallel pro­
cessmg.
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