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• As part ofLincoln Laboratory's research on neural network technology, a general­
putpose machine vision system that can learn to recognize diverse objects has been
designed. The system models human vision, primarily with neural networks, and the
learning is by example.

We tested the system on two disparate classes ofobjects-militaryvehicles and
human eells-with video images ofnatural scenes. These objects were chosen
because large databases were available and because most researchers judged the two
types ofobjects unrdated. When we trained and tested the system on 40 images of
militaryvehicles, the system was able to recognize the tanks, howitzers, and armored
personnel carriers without any errors. Pathologists at Lahey Clinic Medical Center
collaborated in the cytology study in which we trained and tested the system on
156 cell images from human cervical Pap smears. The system recognized normal and
abnormal (Le., precancer) cells perfectly. Because ofthe small number ofsamples of
the military vehicles and Pap-smear cells, these results are preliminary.

We should note that the architecture ofthe system is applicable to many civilian
and military tasks. The application depends mainly on training.

If one way be better than another, that you may be sure is
Nature's way.

-Aristode

R
ESEARCHERS HAVE BEEN STUDYING machine vi­
sion (MY) technology for more than 30 years.
As a result of their work, a standard technology

for computer vision has evolved. The most rigorous of
the conventional MY methods comes from D. Marr's
work at MIT in the 1970s (see the box "Conventional
Machine Vision Design"). Yet, to some researchers and
potential users, the performance of conventional MY
systems is disappointing. To establish the context of our
work, we quote from a recent review byA. Rosenfeld []],
a founder and leading MY figure:

... Standard vision techniques for feature detection,
segme,ntation, recovery,' etc., often do not perform
verywell when' applied ro natural scenes.

Ideally, the [vision process] stages should be close­
ly integrated; the results obtained ar a given stage
should, provide feedback to modify the techniques
used at previous stages. This is rarely done in existing

vision systems, and as a result, lide is known about
how to design systems that incorporate feedback be­
tween stages.

. . . Humans can recognize objeets--even com­
plex objects whose presence was unexpected-in a
fraction ofa second, which is enough time for only a
few hundred (!) "cycles" of the neural "hardware" in
the human visual system. Computer vision systems
have a long way to go before they will be able to
match this performance.

Our main goal was to develop a general MY architec­
ture thatwould work on a variety ofimage types without
significant changes in the algorithm. This robusmess
contrasts with the current practice of tailoring an MY
system to a specific application. Such tailored systems
have not performed well in situations unforeseen by the
designers.

In many respects the human vision system-known
for its high performance over a wide range ofobjects and
situations--is far superior to current MY systems. Thus,
in developing the architecture ofour system, we decided
to model the human vision system. Although this idea
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CONVENTIONAL MACHINE
VISION DESIGN

TO A MAJOR EXTENT, conventional
machine vision (MY) technology
evolved from the work ofone man,

D. Marr, at MIT in the 1970s.
Developed from the information
theory, cybernetics, and digital com­
puter technology ofthat era, Marr's

contributions were made within the
field of artificial intelligence. His

work led to numerous papers on
vision and, finally, to the book
Vision [l], which was published

after Marr died ofleukemia in 1980
at the age of 35. Reference 2 pro­
vides a recent summary of Marr's
work in relation to that ofothers.

An acknowledged contribution
of Marr's was his attempt to clarify
the thinking about vision systems
or, more generally, information pro­
cessing systems. In his work, Marr

introduced the distinction among
three levels ofexplanations: (1) the
computational theory, (2) the algo­
rithm, and (3) the hardware im­

plementation. Consideration of
these levels and associated issues

leads to a sequence ofquestions that

guides the design.
At the time, Marr's explicit ideas

somewhat puzzled researchers in

vision because other approaches
used concepts that were undefined,
or they used descriptions rather
than explanations. Marr attained a

high degree of rigor because his ap­
proach produced ideas that could

be directly checked by computer
simulation.

At the computational-theory lev­
el, Marr assened that the key issue

is to determine both a goal for the
computation and strategies for
achieving that goal. By explicitly

stating the goal and accompanying
strategies, we can describe what the

machine achieves and characterize
the constraints. Knowledge of the
constraints, in turn, allows the

processes to be defined. At the al­
gorithm level, the key issue is how

the input and output are represent­
ed, and the actual algorithm for
transformation. The algorithm will
depend partially on the nature of
the data representation. At the im­
plementation level, the key issue is

how the machine acrually works.
The concern here is with the hard­
ware of the machine, and the na­

ture and operation of its compo­
nent parts.

For example, applying Marr's ap­

proach to optical sensors and two­
dimensional processing leads to a

modular design with the following
consecutive processing stages:

Stage 1. Extract features such as
edges from an image to produce a
map representation. The map
(called the primal sketch) consists
of pixels and their feature values,

such as edge strengths. (In this con­
text, edge strengths are various com-

binations offirst and second deriva­
tives at each point in the image.)

Stage 2. Improve the map
by grouping pixels in connected
regIons.

Stage 3. Represent the map by an
abstract relational structure.

Stage 4. Recognize objects by
comparing the strUcture with stored
models.

Three-dimensional scenes are an
extension oftwo-dimensional ones.
For the extension to three di­
mensions, stages 1 and 2 should be
replaced by a method to find the
surface orientation ofeach pixel. The

process will produce a representa­
tion map called the 2Y2-D sketch.

Further extensions of Marr's
method add one or more of the

following stages: (1) cleanup of in­
put pixel values with image-restora­
tion techniques, (2) production of
multiple images for stereomap­
ping and motion analysis, (3) ad­

justment of the processing by
feedback from later stages to earlier
stages, and (4) recognition of ob­

jects by matching them with mod­
els made up ofcomposite parts.

Refl!rences

1. D. Man, Vision (W.H. Freeman, San
Francisco, 1982).

2. 1. Gordon, "Marr's Computational Ap­
proach to Visual Perception,» in Theo­
,us of Vzsual Pl!rception Oohn Wiley,

ew York, 1989), chap. 8.
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was not new, our approach was; it was to model the
entire system module by module, primarily through the
use of neural networks. We also incorporated features
that give the human vision system advantages over MY

systems, namely, feedback, parallel architecture, and a
flexible control structure. We tested the system module
by module and in its major composite subsystems.

Two new technologies made this study feasible: neu­
ral network theory and a new class ofcomputers. These

technologies were not available in the 1970s, when
Marr developed his method.

The Approach-A Biologically Inspired System

Our approach was to model the human brain. Thus we

based the functions and names of different modules on
structures in the human vision system (see the box "Hu­

man Vision-A BriefSurnrnary"). The modules roughly
approximated functions of their biological counterparts.
For convenience, we used a mixture of neural networks

and standard processing algorithms to implement the
module functions.

Our system recognizes gray images in a field ofview
(FOY); the images can have arbitrary translations and
rotations. We omitted certain biological features-bin­

ocularity, size invariance, motion perception, color sensi­
tivity, and the discernment of virtual boundaries-be­

cause we wanted to study the simplest architecture.
Moreover, these features are unnecessary for many appli-
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FIGURE 1. Block diagram of the neural network architecture. The modules that are in the location channel are shown
shaded in yellow, the modules in the classification channel are shaded in blue, and the modules common to both
channels are shaded in gray. Some modules are neural networks; others use conventional processing (see text). A
525 x 525 image with 8-bit pixels has been included at the left of the figure as an example input image. (Note: See the
box "Glossary of Acronyms" for definitions of the acronyms used.)
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HUMAN VISION­
A BRIEF SUMMARY

THE HUMAN BRAIN has three main

structures-the forebrain, the mid­

brain, and the hindbrain. Figure A

(top) shows the forebrain, or neo­

cortex. Red indicates some of the

areas associated with vision.

The visual cortex occupies the

entire back half of the neocortex

hemisphere. At least a dozen corti­

eal areas (not all shown in Figure A

but described by D.H. Hubel in

Reference 1) are involved with the

vision process. Areas 17, 18, and 19

are feature detectors, areas 20 and

21 function as classifiers, and area

7b helps to locate objects in the
field of view (FOY). (Note: The

numbering scheme was originated

Area 8

Area 20, 21

Area 7

Area 17

Area 18

LGN

Y Retina Cell

X Retina Cell

Temporal

Legend

<J Synapse (Weights)

o Typical Neuron

FIGURE A. Neural network vision model: (top) sketch of human forebrain in which areas associated with
vision are shown shaded in red, and (bottom) block diagram of human vision process.

cations (see the section '~pplications and Extensions").

The architecture of the system includes two major

channels that work together. The location channel search­

es for objects of interest in the FOV and, after one is

found, the classification channel classifies it. Studies of

the human vision system as well as that of other animals

suggest that the locating and classifYing functions are

separate [2].
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by K Brodmann in 1909.)

Cenain modules in the midbrain

also belong to the visual system: for

example, the lateral geniculate nu­
cleus (LGN), shown in Figure A

(bottom). The optic nerves relay

the images captured by the eyeballs

to the LGN, which has processing

functions and acts as a buffer.

The retina has about 1.25 X 108

receptors. Data compression by ret­

inal ptocessing is about 125 to 1,

which gives a resolution near the

fovea ofabour 1000 X 1000 pixels.

Assuming 7 bits ofrelative discrim­

ination of stimulus frequency per

pixel [2] and a 100-Hz pulse fre­

quency along the optic nerve, we

find that the data rate to the visual

cortex is about 700 Mb/sec, less

than the capacity of fiber optic

channels.

Researchers have mapped over

30 pathways among the visual areas

bur the actual number probably is

much larger because there are many

connections to areas that have not

been studied. A basic finding is that

with few exceptions the pathways

connect the modules in reciprocal

fashion.

Evidence shows a hierarchical

structure for the vision system [3]­

for the dozen visual areas, the over­

all cortical hierarchy has six levels.

Anatomical, behavioral, and physi­

ological data show two distinct

channels for classifying and locat­

ing. In Figure A (bottom), the clas­

sification channel consists of the

LGN, AI7, AI8, AI9 (not shown

in the figure), AlO, and All; the

location channel consists of the

LGN, AI8, A7, andA8.

The two channels separate at the

retina and they have their own reti­

nal cells, labeled X and Y (Another

cell type not shown, the W cell,

goes to the midbrain areas to coor­

dinate the FOV to head and eye

movements). At the cortical and

midbrain levels, the channels re­

main separate. Evidence shows

the classification channel analyzes

form and color while the location

channel analyzes visual motion

across the FOY:

In AI7, AI8, and AI9, three

types of cells work like feature de­

tectors. The features in primate vi­

sion are stationary or moving edges,

slots or lines, and their respective

ends [1]. (In comparison, the fea­

tures in current MY technology are
much more varied: corners, human

faces, spatial frequencies, and re­

sponses of matched filters are typi­

cally used).

The population of retinal cells

that feed into a given feature cell are

not scattered about all over the

retina bur are clustered in a small

area. This area of the retina is

called the receptive field of the fea­

ture cell. The size of the recep­

tive field of simple cells is about

one-quarter degree by one-quarter

degree at the fovea.

Research shows that feedback

rakes place in the human vision sys-

tern [4]. In normal operation, stim­

ulating AlO changes the receptive

fields of AI7. This result suggests

that AlO exerts feedback conuol

over the feature detectors. Thus rec­

ognition is likely an active feedback

process that restructures the feature­

extraction stage. The restructuring
continues until the transformed in­

put matches some known class of

stimulus. Research also suggests that

there is a mechanism for directing

attention within the FOY: In short,

windowingrakes place. Wmdowing
focuses attention on small derails

and also suppresses notice of other

objects in the FOY: Researchers sus­

pect that the midbrain directs the

windowing process auromatically,

perhaps by using cortical inputs.

In summary, human vision is a

system in which a small number of

serial stages (sensor-preprocessor­

feature-extracting-classifier) pro­

cess large arrays of data in parallel.

The architecture has two channels

that use feedforward and feedback

signals.

References

1. D.H. Hubel, Eye, Brain, and Virion
(W.H. Freeman, New York, 1988).

2. T.B. Sheridan and W.R. Ferrell, Man­
Machine Sysrems (MIT Press, Cam­
bridge, 1974), p. 261.

3. D.C. Van Essen and ].H.R. Maun­
sell, "Hierarchical Organization and
Functional Streams in the Visual
Cortex," Trends Neurosci. 6, 370
(l983).

4. E.W. Kent, The Brains ofMan and
Machines (McGraw-Hill, New York,
1981).

Figure 1 shows a block diagram of the architecture,

the box "Glossary of Acronyms" contains a list of the

acronyms used, and the following sections briefly de­

scribe the functions of each module. We used feed-

forward and feedback paths to coordinate the modules.

To illustrate how the system works, we carry through an

example of a 525 X 525-pixel input image with 8-bit

pixels. For convenience, we start our description with
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the classification channel and the modules that are com­
mon to both channels.

Classification Channel

Certain classification-channel modules approximate
the functioning of selected brain areas: the lateral genic­
ulate nucleus (LGN), visual area 1 (VI, also called
AI7; see the box "Human Vision-A Brief Sum­
mary"), visual area 2 (V2, also called AI8), inferior
temporal cortex 1 (ITCI, also called AlO), and in­
ferior temporal cortex 2 (ITC2, also called All).
Other modules, such as the SUM module, approxi­
mate certain biological functions without the anatom-

GLOSSARY OF
ACRONYMS

FOV-field ofview

ITCI-inferior temporal cortex 1 (also called
AlO); an unsupervised classifier

ITC2-inferior temporal cortex 2 (also called
All); a supervised classifier

LGN-lateral geniculate nucleus; buffers and
places a window around an object

LTM-Iong-term memory

MY-machine vision

PPG--posterior parietal cortex; centers a win­
dow about an object

SUPERG--superior colliculus; performs coarse
location ofan object

VI-visual area 1 (also called AI7); extracts

high-resolution features from an image

V2-visual area 2 (also calledAI8); extracts

information about an object's general shape

194 THE LINCOLN LABORATORY JOURNAl VOLUME 4, NUMBER 2,1991

ical correspondence, as described below.

LGN-Grayness Processing

Figure 2 shows the front-end processing in the classifica­
tion channel. The LGN uses inputs from the location
channel (see the following section) to place a window
around an object. We set the window size to fit the
object, so the system does not emulate size invariance.
Starting with a 525 X 525-pixel input image, our ex­
ample uses a window of 175 X 175 pixels.

The CALIBRATE and NORMALIZE boxes ofLGN
(Figure 1) operate on gray-scale imagery. CALIBRATE
performs a histogram equalization of the object's pixel
values, and NORMALIZE rescales the pixel values so
that they leave LGN within a range from zero to one.
These two procedures enhance the image contrast and
adjust for varying brightness in the FOY:

Vl-High-Resolution Features

The first feature-generating module is VI, which breaks
the input window into subwindows of 7 X 7 pixels.
Thus, in our example ofa 175 X 175-pixel window, there
are 625 subwindows. Note that the 7 X 7 subwindow size
is unrelated to the input image size. Each 7 X 7 subwindow
is then processed by SPIRAL MAP and VISAREAI.

SPIRAL MAP (Figure 1) scans through the subwin­
dows in a spiral pattern. The mapping proceeds as fol­
lows: left to right across the top row, down the right
column, right to left across the bottom row, up the left
column, back across the second rovv, and so forth until
the process ends at the center subwindow. The purpose
of the spiral mapping is to simplify interpretation of the
feature data.

VISAREAI (Figures 1 and 2) does the high-resolu­
tion feature extraction. For each 7 X 7-pixel subwindow,
VISAREAI measures luminance gradients (increasing or
decreasing) in four different directions. A gradient is a
characteristic ofgray images, and is analogous to an edge
in a binary image. The luminance gradient in our system
is the rate ofchange, or slope, in brightness across a 7 X 7
subwindow. Windows with an abrupt step in brightness
in one direction will have a large gradient in that direc­
tion; windows with a gradual change in brightness from
one side to the other will have a small gradient; and
windows with uniform brightness, i.e., windows with no
visible edges, will have zero gradient.



• HARVEY ET AL
A Neural Network Architecturefor General Image Recognition

Feature Vector
(SUM)

1
Line

Typical Normalized
Cell Image (V2)

I

4
Lines

/~II J 175

I / 7
525 ,,/

~1 ~
Location
Adjust (V1 )
/i x,/iy 2500

Lines

FIGURE 2. Summary of image processing operations. For the example of a 525 x 525 input image (Figure 1), the
classification channel places a window of 175 x 175 pixels around the object in the image. (The window size is set to
fit the object size.) The 175 x 175 window is then broken into subwindows to extract details of the image, and the
details are stored in a feature vector.

Because the slope depends on direction, the gradients
in different directions are usually not the same. The

system produces representative gradients in four direc­
tions-vertical, horiwntal, and the 45° diagonals-for
each 7 x 7 subwindow.

The gradient detectors in the system use cooperative­
competitive neural networks that model similar biologi­

cal processes. In biological nervous systems, a neuron is
either excitatory or inhibitory; i.e., it either attempts to
turn on or turn offother neurons [3]. A general coopera­

tive-competitive neural network employs a mixture of
interacting excitatory and inhibitory neurons. Coopera­
tive-competitive neural networks are one type of neural

network. Other common types are special cases that can
consist of only inhibitory neurons, which produce on­
center/off-surround networks.

For binary images, we found that on-centerloff-sur-

round networks could detect the edges and measure their

orientations. However, the gradients in gray images re­
quired cooperative-competitive networks for the same
tasks. Our feature-extracting neural networks had 25
hidden neurons and one output neuron. We used fixed

neuron connection weights that we computed off-line by
a genetic algorithm method, described in Reference 4.

To help interpret the feature values obtained from
SPIRAL MAP and VISAREAl, we arranged the VI

outputs in a vertical vector (Figure 2). For the 175 x 175­
pixel window, there were 2500 VI feature values because
each 7 X 7 subwindow produced four values. We stored

feature values from the image's outer parts at the top of
the vector and feature values from inner parts at the
bottom of the same vector. Thus data about the general
shape ofan image could be found at the top ofthe vector
and data about the interior at the bottom.
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There are three classes of ARTs. ART-I, which was

developed first, is used with binary inputs; ART-2 is used
with patterns consisting of real numbers; and ART-3

handles sequences ofasynchronous input patterns in real
time. This study used ART-2. Several versions ofART-2

exist, but they all have the same basic characteristics
described below.

Figure 3 shows the basic structure ofART-2, a neural

network with two levels of interconnected neurons, F1

and F2•The neurons are mathematical models ofbiolog­
ical neurons. In the figure, the bottom layer ofF1 receives
the input pattern-a list of numbers representing the

input. F1 consists of three layers of interconnected neu­
rons that filter out noise, enhance the shape of the

pattern, and rescale the input pattern values. The filtered
pattern appears at Fl's top layer, which is connected to

neural network classifiers, such as perceptrons and
Hopfield nets, because of ART-2's speed, stability, fea­
ture amplification, and noise reduction-features that
were better suited to our application. ART-2 is also a
better model of the biology.

Adaptive Resonance Theory (ART) is a learning theo­
ry introduced by Boston University professors G. Car­
penter and S. Grossberg [5]. ART mimics the human
brain by taking inputs from the environment, organizing

the inputs into internally defined categories, and then
recognizing similar patterns in the future.

V2-Shape Features

The second feature-generating module is V2 (Figures
1 and 2), which detects edges near the perimeter of
the input window. V2 is also part of the location channel
(see the following section), and its output contains infor­

mation about an object's general shape.
To detect edges, V2 produces a single defocused 7 x 7

image of the 175 x 175 input. In the defocused image,

each pixel corresponds to a subwindow of the original
input. AVERAGE sets a subwindow size that partitions
the input image and then computes a mean pixel value
for each of the subwindows. For the 175 X 175-pixel
window, the subwindows are 25 X 25 pixels.

VISAREA2 detects edges near the four sides ofthe de­
focused image. The output of this module, which uses
cooperative-competitive neural networks similar to those

in VI, contains four values that measure the edge strengths
on the north, east, south, and west sides ofthe 175 X 175

unage.

SUM-Size Feature

The third feature-generating module is SUM (Figures 1
and 2), which adds up the pixel values of the input
window. Thus the single output from SUM measures

the object's gross size. The corresponding biological func­
tion occurs in both VI and V2, but we have made it

separate for the sake ofconvenience.

Feature vector

The system classifies objects by using features based on
detailed structure (VI), overall shape (V2), and size
(SUM). The different subwindow sizes ofVI, V2, and

SUM approximate the different size-receptive areas of
the visual conex. For the 175 X 175-pixel window, there
are 2500 values from VI, four values from V2, and one

value from SUM. These 2505 values form the feature
vector. We can adjust the values ofeach module's output
to give equal influence to an object's size, shape, and
detailed structure (see the section "Test Results").

fTC] Module-Unsupervised Clmsification

The recognition process consists ofan unsupervised clas­
sifier (ITCl) followed by a supervised one (!TC2). For
the unsupervised classifier, we used the well-known

ART-2 neural network. We selected ART-2 over other
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the F2 level. The filtered pattern, called the exemplar, is

the pattern that ART-2 stores.
In the F2 level, each neuron represents a category, or,

with high sensitivity (see below), one example input that

defines a category. The activation of F1 and F2 models
the activation of biological neurons.

The F1 and F2 levels are connected in both a bottom­
up and top-down fashion by the long-term-memory
(LTM) trace. Mathematically, the LTM trace is the set of

weights given to the F1 neurons as they attempt to turn
on an F2 node. Functionally, the LTM trace stores infor­
mation permanently or until the trace is modified by

learning. The LTM trace models the synaptic junctions
of biological neurons.

To train an ART-2, the initial LTM trace values are set

according to a rule given by Carpenter and Grossberg
[5]. Next, a set of training patterns is presented to Flone
after another. Initially, when ART-2 is untrained, the first

pattern immediately causes the neural network to enter
into the learning mode. The network learns the pattern
by modifying the weights associated with one of the F2

nodes.
After the first pattern is learned, each succeeding pat­

tern will trigger the network to search for a match among
the F2 nodes. Ifthe pattern is a close match to a previous­

ly learned pattern, ART-2 enters the learning mode and
modifies the LTM trace so that the trace is a composition
of all the past, closely matched patterns. If the pattern is

mismatched with all the previously learned patterns,
ART-2 goes into the learning mode and learns the pat­
tern by modifYing the weights associated with an unused
F2 node. Thus each pattern is automatically associated

with an F2 node, and in this manner ART-2 programs
itse1£

After training is completed and a new pattern is pre­
sented, the pattern's exemplar is produced, and ART-2
searches the LTM trace for the stored pattern that most
closely matches the exemplar. When a match is found

the corresponding F2 neuron turns on, indicating the
category that best matches the pattern.

Before using ART-2, we must set several parameters
that influence the network's performance. For many of

these parameters, suitable values have been determined
by experience. One parameter of imponance is the Vigi­
lance, which serves as a threshold on the degree of simi­

larity between the LTM trace and the input pattern's

exemplar. If a cenain mathematical matching formula

equals or exceeds the Vigilance, that pattern will be
associated with the corresponding F2 node. When the
Vigilance criterion is not satisfied, ART-2 declares a mis­
match and searches for a match among the other nodes.

The selection of a low Vigilance value (i.e., a value
near 0) leads the system to tolerate large differences,

resulting in coarsely defined categories. A high Vigilance
value (i.e., a value near 1) leads to increased sensitivity in

pattern discrimination, resulting in finely defined cate­
gories. In practice, the Vigilance should be adjusted high

enough to distinguish patterns that represent different
categories. However, the value should be low enough
that slight changes resulting from incomplete or wrong
information will not cause mismatches.

ITC2 Module-External Labels and Flexible Control

After training, the ITC1 (ART-2) output nodes in F2

correspond to particular patterns, or objects. For in­
stance, if the first ten examples are tanks, the first ten
ITC1 output nodes will correspond to tanks. In our
basic system, the supervised classifier ITC2 uses a simple

logical OR operation to associate activity ofany of these
nodes with the name TANK

(Note: ITC1 is called an unsupervised classifier be­

cause the label of an input pattern is the F2 node num­
ber, which is automatically and internally defined by the
algorithm. ITC2 is called a supervised classifier because
the user defines the labels externally.)

After ITC2 processing, the system decides whether to

store the object's name and location, and the ART-2

matching parameter [5] serves as a confidence measure

for the decision process. If the matching parameter just
passes a threshold (the Vigilance), the confidence level is
50%. A perfect match corresponds to a confidence level
of 100%. If the confidence level passes a second thresh­

old specified by the user, the system stores the results. But
if the confidence is not high enough, the location chan­

nel adjusts the window (discussed in the following sec­
tion) and the system processes the image again.

Location Channel

The location channel places an input window around an

object so that the system might classifY it. As shown in
Figure 1, the location channel consists of the following

modules: superior colliculus (SUPERC), LGN, V2, and
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posterior parietal cortex (PPe). Location is a two-stage
process consisting ofcoarse location followed by pull-in.

SUPERG-Coarse Location

The SUPERC module uses a second ART-2 neural net­
work to perform coarse location. The network's LTM
trace, which we compute off-line, corresponds to general
shapes ofinterest. This trace primes the system. To detect
the presence ofan object, the SUPERC ART-2 compares
the exemplar of its current window to the LTM trace.
Even an off-center object will trigger a match if the
object's size is correct.

SUPERC judges a match by comparing the ART-2
matching parameter with a threshold [5]. If the system
does not find a match, SUPERC shifts its attention to an
abutting window. When a match does occur, SUPERC
sends signals to other modules; the ART-2 matching
parameter is an Enable signal for LGN, and the PPC
module receives the coarse position as a starting point to
center the window.

PPC-Pull-In

Pull-in operates over a feedback path that consists of
LGN, V2, and ppe. Using the outputs of V2, PPC
makes small changes in the window's position. When the
system centers a window on an object, all the V2 edge
strengths are about equal. Otherwise, PPC tries to equal­
ize the V2 edge strengths. For example, Figure 2 shows
an object that is above and to the right of the window.
This position produces a stronger north than south re­
sponse and a stronger east than west response because of
the stronger gradient. To center the object, the D ELTA-1
box (Figure 1) must move the window north and east.

A second pull-in path, which consists of LGN, V2,
ITC1, ITC2, and PPC, makes repeated tries at recogni­
tion. ITC2 activates this path when the classification
channel has low confidence in a match between an input
pattern and the closest stored pattern. When the path is
activated, the DELTA-2 box generates a small, random
adjustment ofthe window's position and the system then
tries to classify the object with greater confidence. A
counter limits the number of tries.

The Software Testbed

One ofour major goals was to test the architecture with
computer simulation. To that end, we developed a series
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ofsoftware testbeds to study the algorithm performance.
As we programmed the testbeds to handle more complex
and extensive data, the architecture and algorithms
evolved.

We built up the software in three stages. The earliest
version was written in the APL*PLUS programming
language and ran on an IBM PCIAT. Using syn­
thetic binary images such as alphabetic letters, the
APL*PLUS software tested algorithms for the individual
modules.

We developed a second version for Sun Microsystems
workstations. The Sun testbed provided a convenient
operator interface, handled gray-scale images from real
sensors, and incorporated algorithm modifications that
were needed to process gray-scale data.

A third version incorporated a Convex C220 super­
computer along with the Sun 4/110 or SPARC worksta­
tion. The Sun/Convex testbed increased the run speed
while maintaining the previous version's operator inter­
face and options. We used the Sun/Convex testbed to
test the databases of military vehicles and Pap-smear
unages.

Source code for the Sun and Sun/Convex testbeds
was written in the C programming language, and the
programs ran under the UNIX operating system. In the
Sun/Convex testbed, we distributed the module func­
tions between the two computers: the Sun workstation
performed 1/0 and interacted with the operator while
the Convex computer carried out the VI and ART-2
calculations. A local area network enabled communica­
tion among the separate subprograms.

Adapting and optimizing the VI and ART-2 source
code for the Convex computer resulted in performance
gains that were dramatic (our colleague e. Mehanian
optimized the ART-2 algorithm). For example, the Sunl
Convex testbed ran VI over a 175 x 175 image in only
45 sec, while a Sun 4/110 required 4Y2 min. On the
Convex, ART-2 learned the corresponding feature vector
in only 18 sec, as compared to 20 min on a Sun 4/110.

Figure 4 shows the Sun screen display, which consists
ofa set ofwindows. The operator enters data through the
keyboard and selects run options with a mouse. Algo­
rithm execution can be monitored by text and graphical
displays. Figure 4 displays a normal cell, its histogram,
and its feature vector.

To test large databases, we have programmed a batch
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FIGURE 4. Sun workstation display of a Pap-smear cell, its histogram, and its feature vector.

mode in which a list of input images can be read auto­
matically from a disk me. The batch option runs
the images through the algorithm without operator
intervention.

Test Results

We tested the major subsystems to assess their perfor­
mance. To simplifY the interpretation of the results, we
tested the location and classification channels separately.
For the classification channel, we centered, or foveated,
the objects by hand so that the tests evaluated recogni­
tion under ideal conditions. Thus our results gave an
upper bound on system performance because the loca­
tion process introduces additional errors.

The preliminary test results were auspicious. The sys­
tem located and recognized objects in their natural set­
tings, and the algorithm was robust with respect to

centering accuracy and clutter. In the following subsec­
tions we describe the classification-channel tests. (Note:
The location-channel tests are contained in Reference 4.)

Military Vehicles

We assembled a dataset of three common military ve­
hicles: an M48A5 tank, an MI13 armored personnel
carrier (APC), and an MIlO self-propelled howitzer. The
database consisted of 40 images: 20 tanks, four APes,
and 16 howitzers. The vehicles were at 700-m range,
with orientations that varied from front-on to broadside
to end-on, and the background consisted of trees and
rolling hills.

The images, intensity measurements made with a
low-level TV camera, were 120 x 128 pixels with each
pixel containing eight bits, so that 28 gray values could
be represented. We made no effort to improve the
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Pap-Smear Cells

We assembled a dataset of 23 normal and 16 abnormal
Pap-smear cells (our Lahey Clinic collaborators judged

the cell types). The images were 175 X 175 pixels, with
8-bit gray values. Figure 7(a) shows a typical image

FIGURE 6. SUM and V2 multipliers (Figure 1) for an 18­
image training set of military vehicles. Note that the
number of categories was equal to the number of input
patterns when we selected low values for both multipli­
ers. As we increased the values of the multipliers, the
system lost its ability to discriminate between certain
categories, and. the number of categories decreased be­
low the number of inputs. The dotted line represents a
rough boundary for this transition. We selected a design
value inside the boundary and near the elbow of the
curve.

I
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~----------~--- +
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dow size and sensor properties.
We trained the system on 10 random tank images

that spanned orientations from head-on to end-on, and
the corresponding exemplars were stored inART-2 nodes

othrough 9. Next we trained the system on eight howit­
zers, which were stored in ART-2 nodes 10 through 17.
During training we used a Vigilance of 0.999, which
corresponded to a 2.6° angular separation in feature­
vector space.

After the training was completed, we tested the sys­
tem on the remaining 22 images. Table 1, which summa­
rizes the results, shows that the system correctly classified
the remaining 10 tanks and eight howitzers. When the

Vigilance was set to 0.997, which corresponded to an
angular separation of 4.4°, the four APC images went
to an untrained node. Thus, for this example, the sys­
tems recognition was errorless.

FIGURE 5. Typical intensity image of a howitzer.

images with, for example, preprocessing. Figure 5 shows

a typical image ofa howitzer.
To simulate the foveation of an image, we centered a

42 X 42-pixel window by hand. The system then gener­
ated a feature vector that contained three kinds of data:
SUM, VI, and V2. We varied the relative weighting

among the three components. Large SUM and V2 val­
ues resulted in VI having little effect on recognition
while small SUM and V2 values allowed VI to playa
predominant role. By adjusting the SUM and V2 multi­
pliers, we gave the three feature-vector components rough­

ly equal influence.
To find suitable weighting values, we trained the sys­

tem on a small set of images and watched the resulting
number ofcategories that ART-2 formed. Figure 6 shows
some of our results for an 18-image training set. Note
that when the SUM and V2 multipliers have low values,

the number of categories is the same as the number of
inputs. As the SUM and V2 multipliers increase, the VI
features become less important, and the system loses its
ability to discriminate between certain categories. Conse­

quently, the number ofART-2 categories decreases below
the number of input patterns. The dotted line in Figure

6 represents a rough boundary for this transition. To
obtain equal weighting for SUM, VI, and V2, we chose

a point inside the boundary near the elbow. In general,
the SUM and V2 multiplier values depend on the win-
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Edge-Detector Results

(a)

Edge-Detector Results

(b)

FIGURE 7. Comparison of (a) normal Pap-smear cell and (b) abnormal Pap-smear cell.

of a normal cell and Figure 7(b) a typical image of an
abnormal cell (the grid suggests the VI processing). To
the right of the photographs, VI feature values near
the cell's nuclei are shown.

To train and test the system on different orientations,
we rotated each cell image 90°, 180°, and 270°. The

rotations expanded the dataset to 92 normal and 64
abnormal cells, or 156 altogether.

As with the military-vehicle example, we selected the
multipliers to weight the SUM, VI, and V2 contribu­
tions about equally. We trained the system with a Vigi­
lance of0.99999, which corresponded to a 0.256° sepa-

Table 1. Preliminary Classification Results for Military Vehicles

System Classification

Tank Howitzer Unknown

Vehicle

Tank 10 0 0

Howitzer 0 8 0

Armored Personnel 0 0 4
Carrier

Note: For training, we used 10 tanks and 8 howitzers.
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Applications and Extensions

Reliable MY systems have many applications. Besides
those areas of interest to MIT Lincoln Laboratory in

The error rates of false positives and false negatives
dropped as we repeated the procedure.

Figure 8 shows the error rates as we varied the number
of training examples. We should note that it is crucial to
keep the false-negative rate small to avoid potentially
fatal errors. The curves were produced by the iteration
method described above.

The results of Figure 8 suggest the system generalizes
from its training. Mathematically speaking, the feature
vectors lie in a 2505-dimensional vector space, as de­
scribed earlier in the subsection "Feature Vector." The
normal cells lie in a subset of that vector space, and the
abnormal cells lie in a different subset. If the subsets
had formed a checkerboard pattern or had a highly
jagged boundary, training might have required all the
images. However, the curve in Figure 8 suggests that we
can eliminate all false negatives with far fewer images.
Thus we believe that the boundary is comparatively
smooth, which allows the system to generalize. Table 2
summarizes our results; they show no false positives or
false negatives with 118 training images.

The results suggest that the system might have prom­
ise for initial cytology screening. Furthermore, the results
suggest that the error rate can be decreased to less than
5%, for example, with training sets of several hundred
examples for each cell type. More testing is necessary
both to confirm these preliminary results and to assess
the system's practical value. For the system to achieve an
error rate of less than a few percent, a much larger
database is required.

15050 100

Number of Training Cells

OL..-----...L-----...&.ll...---J

o

0.8 .-------,------,---------.

FIGURE 8. Error rate versus training-set size for im­
ages of Pap-smear cells.

0.2

Q)-roa::
.... 0.4
ew

0.6

ration in feature space. (Tests showed that the separation
of the cells in feature space varied from 0.256° to 30°.)

Initially we chose the training sets randomly, as we
had done with the military-vehicle dataset. The random
selection, however, resulted in high error rates; i.e., some
cells did not make good training examples. In general,
those cells far from the normal-abnormal boundary in
feature space did not help the system improve its dis­
crimination ability. For this reason, we developed an
iterative training method that selects cells near the

boundary.
To train the system iteratively, we started with two

normal and two abnormal cells. We then tested the
system on the remaining 152 images. We increased the
training set by adding roughly equal numbers of false
positives and false negatives. (False positives are normal
cells that have been classified as abnormal. False negatives
are abnormal cells that have been classified as normal.)

Table 2. Preliminary Cytology Results with Iterative Training

System Classification

Normal Abnormal

Cell Type

Normal 26 0

Abnormal 0 12

Note: For training, we used 66 normal cells and 52 abnormal cells.
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remote sensing and automatic target recognition, other
uses include medical screening, industrial inspection,
and robot vision. The architecture ofour system is appli­
cable to these diverse areas.

The basic system architecture is also extendable, and
the following subsections describe several possible exten­
sions. We should note that the examples include new
principles and so are speculative.

Sensor Fusion

A direct extension of our research is to combine parallel
sensors. Figure 9 shows a fusion concept at the feature­
vector level. The bottom system is our basic system with
minor additions, and the top is another system, which
can be a different type.

The two systems produce features that train the classi­
fier. Using video and laser-radar range images, we have
done preliminary tests of this concept [6].

Moving Objects

Another extension is the capability to track and recog­
nize moving objects. Figure 10 shows a conceptual block
diagram in which an object in the FOV is moving in
an arbitrary direction. To detect this motion, we can

add modules that are sensltlve to the motion of
edges at multiple orientations. These motion detec­
tors would mimic the characteristics of biological vision
systems.

In Figure 10, the system feeds signals from the mo­
tion detectors back to the SUPERC module for track­
ing, and the motion-detection features are stored in
the feature vector for recognition. To use time-varying
features for recognition, we can replace the ART-2
module by an Avalanche neural network [7]. This mod­
ification would enable the recognition of, for example,
a flying butterfly [8].

Binocular Vision

For an extension to binocular vision, Figure 11 shows a
block diagram of two of our basic systems working in
parallel. In the figure, the SUPERC module points
the two "eyeballs," and the left and right FOV of each
sensor (denoted as Ll, L2, R1, and R2, respectively)
go separately to two LGNs for calibration and
normalization.

The system uses parallel sets of feature detectors,
and the feature vector consists of the left and right
features and their difference, or disparity. The clas-

Feedback for Second Look

Medium-Receptive-Area Outputs

Imaging or Nonimaging Sensor

'-
Q)

00 ~00 00
~ 00 Store

Instantaneous FOV U <tl

""C U Result

• Q) ""C00 Q)

~ 00

Q) ~a. Q)
:l a.
00 :l
C en::::>

FIGURE 9. Block diagram showing a system that combines two parallel sensors.
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sifier is similar to the classifier of the basic system.

Vision-Motor Systems

We end on a more speculative note by describing a
neural network system for driving a car. Figure 12 shows
the conceptual block diagram.

The video sensor, with two pointing angles, is part of
the basic vision system. (We should note in passing that
Boston driving requires more than one camera.) An
addition to the vision system is the GAZE channel,
which gives direction information that combines with
the visual features to form the feature vector. The ITC is
like that of the basic system: its output drives a com­
mand-generating neural network. The network used is
Vector Integration to Endpoint (VITE) [9], a type of
neural network that models biological motor systems.
During the learning process, the adaptive elements are in

the network module. Output from the command-gen­
erating neural network drives other modules that
give speed, steering, and braking commands to the
automobile.

Summary

We have developed a general-purpose machine vision
(MY) system for recognizing stationary visual objects in
their natural settings. The system uses neural networks
and standard processing to model selected functions of
human vision. The recognition is experiential, i.e., based
solely on prior examples, and the system performance
improves through experience.

We tested the system with images ofmilitary vehicles
and human cervical smears, and the results were very
encouraging. In fact, the results suggest that a practical
system might be feasible.
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FIGURE 10. Block diagram of neural network architecture for moving objects. (Note: See the box "Glossary of
Acronyms" for definitions of the acronyms used.)
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FIGURE 11. Block diagram of neural network architecture for binocular vision. (Note: See the box "Glossary of
Acronyms" for definitions of the acronyms used.)

We believe this approach to MY is promising for
many applications. At Lincoln Laboratory we are study­
ing improvements that include motion detection, appli­
cation to microwave radar and passive/active infrared
imagery, and integration into complex systems. We are
also considering the hardware implementation of select­
ed modules.
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