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B The goal in speech-message information retrieval is to categorize an input speech
utterance according to a predefined notion of a topic, or message class. The
components of a speech-message information-retrieval system include an acoustic
front end that provides an incomplete transcription of a spoken message, and a
message classifier that interprets the incomplete transcription and classifies the
message according to message category. The techniques and experiments described
in this paper concern the integration of these components, and represent the first
demonstration of a complete system that accepts speech messages as input and
produces an estimated message class as output. The promising results obtained in
information retrieval on conversational speech messages demonstrate the feasibility

of the technology.

val is similar to that of the more well-known
problem of information retrieval from text docu-
ments. Text-based information-retrieval systems sort large
collections of documents according to predefined rel-
evance classes. This discipline is a mature area of research
with a number of well-known document-retrieval sys-
tems already in existence. Speech-message information
retrieval is a relatively new area, and work in this area is
motivated by the rapid proliferation of speech-messaging
and speech-storage technology in the home and office. A
good example is the widespread application of large
speech-mail and speech-messaging systems that can be
accessed over telephone lines. The potential length and
number of speech messages in these systems make ex-
haustive user review of all messages in a speech mailbox
difficult. In such a system, speech-message information
retrieval could automatically categorize speech messages
by context to facilitate user review. Another application
would be to dassify incoming customer telephone calls
automatically and route them to the appropriate cus-
tomer service areas [1].
Unlike information-retrieval systems designed for text

T HE GOAL IN SPEECH-MESSAGE information retrie-

messages, the speech-message information-retrieval system
illustrated in Figure 1 relies on a limited-vocabulary
acoustic front end that provides only an incomplete
transcription of a spoken message. The second stage of
the system is a message classifier that must interpret the
incomplete transcription and classify the message
according to message category. In our system the acoustic
front end is based on a hidden-Markov-model (HMM)
word spotter [2]. The techniques described in this paper
concern the design and training of the second-stage
message classifier and the integration of the message
classifier with the acoustic front end [3]. The major resule
described in the paper is the demonstration and evaluation
of an experimental system for speech-message information
retrieval in which speech messages are automatically
categorized into message classes.

The problem of speech-message information retrieval
must be distinguished from that of speech-message
understanding. In speech-message understanding, an
utterance is analyzed at acoustic, syntactic, and semantic
levels to provide a complete description of the utterance
at all levels. Determining a complete description, however,
is a difficult problem, especially for the unconstrained
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FIGURE 1. Block diagram of a speech-message informa-
tion-retrieval system. The hidden-Markov-model (HMM)
word spotter accepts a continuous-speech utterance as
input and produces a partial transcription of the utterance
according to a predefined keyword vocabulary. The mes-
sage classifier accepts the speech message in this re-
duced form and assigns it to a message class.

conversational speech messages described in the follow-
ing section. The goal in speech-message information
retrieval is more modest; such a system attempts only
to extract the most general notion of topic or category
from the message. The purpose of this paper is to demon-
strate the feasibility of a speech-message information-
retrieval system.

In configuring the system to a particular task, we
assume that both speech and text corpora exist that
represent the speech messages in each message category.
While the speech corpus is used for training statistical
hidden Markov acoustic models for the word sporter,
the text corpus, which contains text transcriptions of
speech messages, is used for training the second-stage
message classifier. The next section describes the specch-
message classification task, along with the speech and
text corpora used to define the task.
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The automatic techniques and experiments for speech-
message information retrieval are described in two parts.
First, a perfect acoustic front end is assumed, and the
attention is focused on the message classifier. The section
entitled “Message Classification” describes the message
classifier model and the techniques used for training this
model. Results of message classification from text
transcriptions of speech messages are also presented. The
second part of the paper concerns the complete problem
of information retrieval from speech messages. The section
entitled “Information Retrieval from Speech Messages”
describes the acoustic word spotter and techniques for
integrating the acoustic front end with the second-stage
message classifier. Results are presented for both word-
spotting performance and information-retrieval per-
formance from speech messages.

Speech-Message Information Retrieval

The most difficult problem in performing a study on
speech-message information retrieval is defining the task.
The definition of a message class is a difficult issue, and
the relevance of a particular speech message with respect
to a message class cannot always be determined with
certainty. We were fortunate in that a speech corpus
already existed that was suitable for this study. In this

Table 1. Message-Classification
Performance on Text Transcriptions
of Speech Messages

Initial Message-Classification Performance
(240 Words)

Percent Correct

Message Class Train Test

Toy Description 92.1 86.5
Abstract Object Description 94.1 74.5
General Discussion 84.0 68.0
Road Rally Map Reading 100.0 100.0
Photographic Interpretation 88.2 86.5
Cartoon Description 96.0 80.7
Overall 91.3 81.3
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speech corpus, natural conversation was elicited from
speakers by having them interact with an interlocutor in
performing a number of different scenarios. The speech
messages used in this study were excerpted from these
conversations, and the associated scenarios were used to
define the message classes. Hence we avoided the difficult
problem of defining the message categories and obtaining
relevant speech messages for those categories by defining
the categories according to the scenarios used to collect
the speech messages.

The corpus consists of 510 conversational speech
messages from 51 speakers; each message is ar least 30
seconds in length. Each message is orthographically
transcribed, and the entire set of messages consists of
approximately 40,000 words. The messages were collected
under six different scenarios, which are listed in Table 1.
Most of the scenarios are relatively unconstrained and
require the speaker to describe several items to the
interlocutor. For example, in the photographic
interpretation scenario the speaker has a collection of
black-and-white photographs, and is asked to describe
each one to the interlocurtor in a few sentences. When
compared to text corpora (containing millions of words)
that are used to train statistical language models for
large-vocabulary continuous-speech recognizers, this
amount of text is extremely small. The interest in this
work, however, is in developing systems that can be
easily reconfigured for a speech-message information-
retrieval task. We are interested in determining whether
techniques can be developed that can profit from a more

modest representation of the domain of interest.

Message Classification

This section presents techniques for configuring the
message-classification portion of the speech-message
information-retrieval system. The experiments described
in this section present the best-case speech-message
information-retrieval performance by using text
transcriptions of speech messages to evaluate the message-
classification techniques. The first step in training
the message classifier involves training the weights
for the message classifier. The second step is to choose
a subset of the total words in the text corpus to use as
the message-classification vocabulary. This second step
is referred to below as the process of vocabulary
selection.

Message-Classifier Model
Figure 2
these experiments. An input message M is assumed to be
a collection of L independent words. We also assume
. 1y} consisting of K

shows the message-classifier model used in

that there exists a set V = fuy....
words that forms the message-classification vocabulary.
For cach vocabulary word there exists a message-classifier
activation 5,(M) that is activated by the occurrence of
vocabulary word wy in the input message, so that
si{M) = nif there are n occurrences of word wy, in mes-

Input Message-Classifier
Activations Weights
sy(M) Vi

s5(M) ¢

OQutput

Activations
sk(M)

FIGURE 2. Message-classifier model. The message
classifier assumes that the input message M consists of
a set of independent words. The message-classifier
weights v, are trained by using a mutual information
criterion. The message-classifier output activations c,
represent the estimate of the log probability of a message
class C,, given the input message M.

sage M. The subsection below, “Message-Class Correc-
tive Keyword Detection,” describes a more interesting
mapping of input word to message-classifier activation;
this mapping reflects the degree of confidence in the
detection of that keyword from the input speech.
Modeling a message as a set of independent words, or
unigrams, as opposed to using models based on higher-
order statistics, was motivated largely by the relatively
small training corpus. Even though we investigated an-
ecdotal examples of messages formed by examining co-
occurrence relationships among words, estimating the
statistics of these word co-occurrence relationships was
difficult with such a small amount of training dara.
The output of the classifier corresponds to the mes-
sage-class activations ¢|,..., ¢;. The problem of message-
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classifier training corresponds to determining the net-
work weights v;; on the basis of training messages
from all message classes. The approach taken here is
motivated by ].B. Haseler [4] and was also taken by A.L.
Gorin etal. [1].

For a simple two-class message classifier, the weights
are chosen to maximize the log likelihood of the interest-
ing message class relative to the uninteresting class, given
an input message. If the words that form the message are
assumed independent, and the message classes are as-
sumed to be equally probable, then this likelihood is
expressed as

P(c,M)
®P(CyM)

P(M|c,)P(C))

P(MIC,)P(C,)
w‘,|C

P P(wlc,)’

wieV

(1)

where the sum is over all words in the message that are
contained in the message-classification vocabulary. For
the general /-class message-classification problem the above
expression can be generalized so that the weights are
chosen to maximize the & posteriori log probability of a
message class. Again, if we assume independent words in
a message, we can show that

Z log P(C,-. w&)

log P(C;|M) = P(C,-)P(wl-)

+log P(C + lo
8 Y, log o H P(M)
wpeV (2)
for each class C,,..., C;. For the two-class case, the mes-

sage-classifier output for the 7th topic class is given as ¢;,
where

€ = Z”&.i-‘k(M)'

wyeV
For this case, the weight v ;between the word wj and the
topic ¢; is
P(wi|C))

v, ; = log P(w*|Cz) )

which is the conditional information of wj. For the
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general /class case, the message classifier output ¢ is

¢ = Z o5 (M) + log P(C,).
wy€l’
where
i e J”(C, “’I) 3)
R AT '
which corresponds to the mutual information berween

message class C, and word .

Estimating Message- Classifier Weights

The message-classifier weights given in Equation 3 are
used directly in the classifier illustrated in Figure 2. This
choice of weights is optimal only under the assumption
that the probabilities in Equation 3 are homogeneous
across all messages in a message class. This assumption is
generally not the case for the moderate-length messages
described in the previous section. An alternative means
for training the classifier would be to learn the weights by
minimizing a function of the overall message-classification
error. This method is not possible, however, because the
vocabulary V is not known in advance.

The weights in Equation 3 are obrained directly by
estimating the probabilitics in the equation from sample
statistics derived from the frequency of occurrence of the
individual words in text messages, Several steps precede
the estimation of these sample statistics. The first step is
the removal of frequently occurring common words from
the messages. Second, noun plurals and verb tenses are
removed by reduction to a common baseform through a
set of word-stemming rules. Finally, word counts are
accumulated and used to estimate the probabilities in
Equation 1 and Equation 2. Estimating these probabili-
ties requires special precautions because, even for an
extremely large sample of training text, important words
occur infrequently. We use the Turing-Good estimare of
word frequency to overcome the problem of estimating
probabilities of words that occur infrequentdy in the
training text [5]. This estimate assumes that each word
wy, is binomially distributed in the text corpus, and has
the overall effect of increasing the probability of words
that occur infrequently in the training text, while de-
creasing the probability of more frequently occurring

words.
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Vocabulary Selection
Earlier we estimated a set of message-classifier weights for

all of the words in the text corpus. In this section, we
investigate techniques for choosing a smaller subsct of
the total words in the corpus for use as a message-
classification vocabulary. This process is referred to as
vocabulary selection. The goal in vocabulary selection is to
reduce the size of the message-classification vocabulary
while maintaining an acceprable level of message-classifi-
cation performance.

Vocabulary sclection is motivated by three issues. The
first issue relates to the reduction in compurtational
complexity of the full speech-message information-re-
trieval system. The second issuc is concerned with the
incorrect assumptions used in motivating the weight-
estimation procedure described earlier. Clearly, as average
message lengths become shorter, the probabilities of words
estimated from the entire training corpus become less
and less representative of the probabilities of words ap-
pearing within individual messages. To deal with this
issue, we chose a set of vocabulary words to minimize a
funcrion of the overall message-classification error. The
third and most subtle issue relates to the independence
assumption in which potential interactions among vo-
cabulary words are ignored. Often a particular word on
its own carries litde information to discriminate one
message class from another; when considered in the
context of other words, however, the word can become
an important discriminant.

Vocabulary selection is addressed here as a feature-
selection problem. Exhaustive evaluation of all possible
combinations of vocabulary words is not practical because
the number of possible word combinations grows expo-
nentially with the number of words. Two different sub-
optimal feature-selection techniques, known as genetic-
algorithm (GA) search and heuristically guided sequential
search, were investigated. Both techniques were evaluar-
ed in terms of their ability to obtain message-classifica-
tion vocabularies that maximize message-classification
performance.

GA search is a form of directed random search that
successively recombines the most-fit members of a
population (the fitness of a member of a population is
defined by the evaluation of a predefined fitness func-
tion). The goal is to create new members of the popula-

tion with increasing levels of fitness. The members of the
population are strings of bits, and each bit in the string
enables or disables the use of a corresponding feature. In
feature selection. the fitness function is the percent-correct
classification performance of the resulting feature set.

In the vocabulary-selection problem, a feature corre-
sponds to a vocabulary word. so cach member of the
population in the GA search corresponds to a different
message-classification vocabulary. The fitness function
for a particular member of the population corresponds
to the message-classification performance of the corre-
sponding vocabulary. In the vocabulary-selection experi-
ments described above, the GA search finds a smaller
subser of an NV-word vocabulary without sacrificing mes-
sage-classification performance. This process is accom-
plished by defining each member of the population as an
N-bit string. A smaller subset of the original N-word vo-
cabulary is obtained by enabling those bits which
correspond to a subset of the total vocabulary.

To stimulate the reduction of vocabulary size in GA
search, a bonus must be applied to the fitness funcrion to
reward those strings with a smaller number of vocabulary
words. This bonus function is a constant multiplied by
the number of vocabulary words not used, and is added
to the finess value for the string. Vocabulary reduction
must not be obrained, however, at the expense of message-
classification accuracy. To prevent the loss of accuracy,
the bonus is applied only to strings whose classification
accuracy is as good as or better than any previous string,
A large number of alternative strategies are available to
regulate the often conflicting requirements of classification
accuracy, vocabulary size, and convergence rate. These
alternarives are discussed in Reference 6.

The first feature-selection technique applied to vo-
cabulary selection is heuristically guided sequential search.
Forward and backward sequential-search procedures
successively add and discard individual features. respec-
tively, on the basis of their effect on dassification perfor-
mance. At the kth stage of forward sequential search, all
feature combinations that include the current (k-1)-di-
mensional feature vector and one of the remaining features
are evaluated, and the best combination is chosen as the
k-dimensional feature vector. At the kth stage of back-
ward sequential search, a single feature of the 4-dimen-
sional feature vector that results in the smallest reduction
in classification performance is discarded.
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Experiments
Initial message-classification experiments were performed
on the text transcriptions of the speech messages from
the corpus defined for this study. Half of the transcribed
messages were designated as the training dataset and the
other half were designated as the test dataset. The initial
vocabulary consisted of 240 words chosen by selecting
40 words for each class C; with the highest mutual
information AC,,w;). This initial vocabulary selection
was performed on the half of the messages designated as
the training dataset. Message-classifier weights were esti-
mated from all 510 text messages. Message-classification
performance was evaluated on the half of these messages
designated as a test dataset by using a leave-one-out
procedure. For each test message, the word frequencies
for that message were subtracted from the total word-
frequency count, the message-classifier weights were
reestimated, and the message was labeled according to
message class by using the updated classifier weights.

Table 1 gives the message-classification performance
by message class for the above experiment. An overall
classification performance of 81.3 percent correct was
obtained with considerable variability across message
classes. As might be expected, message classes cor-
responding to highly constrained tasks such as map read-
ing resulted in high message-classification accuracy, while
less constrained tasks such as general conversation resulted
in poorer performance.

The performance of both GA search and sequential
search for vocabulary selection were also evaluated on the
full database described in an earlier section. The initial

240-word vocabulary described above was used as the
maximum vocabulary size for both the GA and sequential
search. The fitness function for all vocabulary selection
procedures corresponded to the percent-correct message
classification on the designated training daraser, and the
performance of each procedure was evaluated on the
designarted test dataser.

Table 2 gives the comparative performance of these
techniques. With the exception of the first row of the
table, all results are reported for a 126-word vocabulary.
Message-classification performance on the text messages
used for vocabulary selection is given in the second col-
umn of the table, and performance on an independent
test set is given in the third column. The first row of the
table summarizes the overall message-classification per-
formance of the 240-word vocabulary system as already
shown in Table 1. Table 2 shows that the GA search
procedure identified a 126-word vocabulary with no sac-
rifice in message-classification performance over the ini-
tial 240-word vocabulary. The table also shows that the
GA search outperforms both the forward and back-
ward sequential-search procedures with the same size
vocabulary.

Information Retrieval from Speech Messages

This section describes a complete system for speech-
message information retrieval and presents the results for
this system on the speech-message information-retrieval
task discussed carlier. We have already described the
message classifier and the means for vocabulary selection,
so now we describe the two remaining components of

Table 2. Comparison of Vocabulary-
Selection Techniques

Reduced Vocabulary Performance

Vocabulary Selection Words | Train (%) | Test (%)
Max /(C,w,) 240 91.3 81.3
Max /(C,w,) 126 83.2 R
Forward Sequential Search 126 88.9 73.0
Backward Sequential Search 126 87.6 72.2
GA Search 126 89.2 78.6
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the speech-message information-retrieval system shown
in Figure 1. The first component, the HMM word
spotter, is described and evaluated separately on the
conversational speech messages. The second component
automatically integrates the acoustic front end and the
second-stage message classifier. This component, which
is included in the message classifier to account for acoustic
keyword confusion in the word sportter, is referred to
below as a message-class corrective keyword detection. It
compensates for the effect of keyword false alarms on
performance. This second component is described and
its effect on complete end-to-end speech-message
information-retrieval performance is evaluated.

Hidden-Markov-Model Word Spotter

The word spotter is based on a statistical HMM
representation of speech. HMMs have found wide
application in speech recognition, and are the subject of
many excellent review articles (7, 8]. If viewed generatively,
an HMM consists of a hidden sequence of states resulting
from a finite-state Markov process that is transformed
into a set of observations through a set of observation
densities. When HMM methods are applied to the
training of a word spotter or speech recognizer, the pa-
rameters of an HMM can be estimated from example
utterances to represent a particular word or subword
unit. A word is spotted within a portion of an input
utterance when the HMM corresponding to that word
is the most likely model to have generated that portion
of the utterance.

Word spotting and continuous-speech recognition
(CSR) are similar problems; both involve identifying a
finite vocabulary of words in continuous utterances. Word
spotting, however, differs from CSR in two important
aspects. The first major difference lies in the assumptions
that are made about the words in the input utterance.
The CSR method generally assumes thar all speech pre-
sented to the recognizer consists of a finite set of vocabulary
words. The word spotter must be able to accept as input
completely unconstrained speech utterances that include
both in-vocabulary keyword speech as well as out-of-
vocabulary non-keyword speech. The second difference
between word spotting and CSR is found in the mode of
interaction that is generally assumed for the speaker in
the two different types of systems. Most CSR systems
can only interpret utterances that conform to a restrictive

syntax, thus confining the user to a rigid mode of hu-
man-machine interaction. Word spotting, on the other
hand, assumes that input speech can arise from com-
pletely unconstrained human-machine or even human-
human interaction.

To deal with the non-keyword speech that is presented
to the word sporter, we added acoustic filler models to
the word spotter’s vocabulary. Filler models are intended
to act as explicit models of non-keyword speech, and
serve as a self-normalizing threshold to disambiguate
keyword speech from non-keyword speech. After experi-
menting with several different types of filler models, we
obtained the best trade-off berween performance and
computational complexity when fillers were trained as

Keyword Network

Keyword 1

Keyword n

Filler Network

Filler 1

FIGURE 3. Null-grammar word-spotter network. Both
keyword and fillers are represented as labeled arcs in the
network. The grammar in this context is a set of rules
that defines the relationship of the words and fillers in
the network. A null grammar is a degenerate case that
allows all words and fillers to follow one another in any
sequence.
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FIGURE 4. A three-state left-to-right hidden Markov
subword model. The finite-state Markov chain is charac-
terized by the transition probabilities a;;; the manner in
which observations are generated from a state sequence
is characterized by multivariate normal observation
densities b,( ).

HMM s of general-context phonemes [2]. To deal with a
completely unconstrained syntax, we use a null-gram-
mar network of keywords and fillers. Figure 3 shows this
network, which contains HMM s for both keywords and
fillers, and allows transitions between all keywords and
fillers at any instant in time.

Each keyword in the word spotter is composed of a set
of subword HMMs whose form is illustrated in Figure 4.
The finite-state Markov chain is characterized by the
transition probabilities 4, for 4, j = 1,..., M, where Mis
the number of states (in the figure, Mis equal to 3). The
particular model shown is known as a left-to-right HMM,
which possesses a temporal structure in which lower-
numbered states always precede higher-numbered states.
The manner in which observations are generated from a
state sequence is characterized by multivariate normal
observation densities 4{ ) for i=1,..., M. Speech is rep-
resented by cepstrum vector observations that are obrained
by using a linear transformation of the short-time log
energy speech spectrum [9]. The reader is referred o
published turorials that discuss the maximum-likelihood
procedure for estimating the parameters for HMMs of
the type shown in Figure 4 [7, 8].

A word sporter is presented with an utterance O and
produces the string of words and fillers V' that results in
the maximum & posteriori probability, given the input ut-
terance. Thus

V= arg max P(V|O)
= P(O|V)P(V),
arg max P(O|V) P(V) %
where the second equality follows from Bayes rule and
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because P(O) does not depend on V. In Equation 4,
P(V) is the probability that the string of words was
uttered. Estimating this probability is a problem in statis-
tical language modeling, which incorporates a variety of
information sources including syntax, semantics, and
dialog. A considerable successful effort has been devored
to developing language models for many CSR tasks [10],
and much of this work may find application in word
spotting. For the current HMM word-spotting system
shown in Figure 3, however, we assume that all words
and fillers are equally probable.

The first term in Equation 4 is the probability that the
acoustic utterance is generated for a particular sequence
of words. For a single word W in the sequence, this
probability is obtained by summing over all possible
sequences of hidden states that could have generated the
utterance

r(o|w) = Zp(o S|w)

I
ZH“ Jrsl ‘rvI ')'
=1

where S is a state sequence of length 7" Of course, com-
puting P(OI W) by exhaustively enumerating all possible
state sequences is computationally mﬁ.‘aﬁblc because this
computation requires on the order of 7:M operations.
Fortunately, this probability can be computed more effi-
ciently by defining the forward probability a/r) as the
probability of generating all observations up to time ¢
and occupying the HMM state 5, = ¢;-

(1) = =q,|W).

The forward probability at time  can be computed by
induction from the forward probability at time £ -1 as

1)a;4,(0,)-

P(OI.....O,.:‘,

M
a(r)= Y (s -
j=1
The full probability of the utterance follows directly as

P(OIW) = P(0.4;1W) = a,, (7).

where s5;-= g is the final state in the utterance. Further
discussion concerning the computation of a{r) can be
found in published tutorial references (7, 8].

In the word spotter, we are interested in finding a
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single sequence of words (and fillers) that is optimal,
given the observations O in some meaningful sense. The
best state sequence through a string of words and fillers
can be obtained by using a technique known as the
Viterbi algorithm. A recursive expression similar to that in
Equation 4 can be written for the probability of the best
path v{¢) as

v;(t) = 12}2&4 VJ-(r—l)a}-J-bj(O,). (5)
Equation 5 shows that only a single path (sequence of
states) is extended from time £ 1 to form the optimal
path terminating in state g;at time ¢,

A trellis structure is used to implement the computa-
tion of the Viterbi algorithm. Figure 5 shows a diagram
of a simple trellis-structure expansion of a single word in
the word-spotting network of Figure 3. This figure illus-
trates the process of identifying the optimal Viterbi path
through a network. The trellis is a time-state representa-
tion that displays observation times along the horizontal

axis and the HMM state indexes along the vertical axis.
For this simple example, the given word model is formed
by the concatenation of two subword HMMs of the
form shown in Figure 4. For example, the given word
model could correspond to the word go, which can be
expanded as a concatenation of the monophone sub-
word models Gand OW, The small circles represent the
hidden states, or nodes, within the subword HMMs,
and the large circles represent the grammar nodes
shown in Figure 3. The transitions to these grammar
nodes are called null transitions because the transition
does not produce any outpur, and therefore does not
consume a unit of time. At all nodes, the highest proba-
bility path flowing into the node is propagated to the
next node, and the most likely sequence of words is
recovered by backtracing through a series of pointers
that are maintained at the grammar nodes. The like-
lihood score for a keyword y, = L(w), decoded for ob-

servations within an interval of the input urtterance, is

Observations 0, 041 Oi42 0,43 044
Vma.x(n Vmax(t+1} Vmﬂl{t+2) ‘,mﬂl{t.‘_a) me[f‘“l]
o K
G q2 O\
qa O\
qai .\
OW q5 \
9r =g
1
v"Fm Grammar
2 N
“'q,m ode
:N.
Vel
V() v (D) vIE(ED) vM(t+2) v (E+3) v (t+4)

FIGURE 5. Trellis representation of Viterbi search for an observation sequence O,,..., O;,4 through a single word
model in Figure 3. The word model representing the word go is expanded as two left-to-right subword HMMs of the
type shown in Figure 4. Arrows indicate allowed transitions from a source node to a destination node. The small
circles represent within-word nodes, and the large circles represent grammar nodes as shown in Figure 3. The
optimal path is found by the process of Viterbi search, where only the most probable path is propagated at each node

according to the max operation in Equation 5.
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WORD SPOTTING FROM A
CONTINUOUS UTTERANCE

Software tools have been developed
to evaluate the performance of the
word spotter. Figure A shows an
example of some of the displays
produced by these software tools as
they appear on the screen of a UNIX
workstation. The display at the top
of the screen shows the digitally
sampled speech waveform for a
conversational utterance that is
approximately 10 seconds in
duration. The vertical lines in this
display represent the end points of
the putative keyword hits decoded
from the utterance by the word
spotter, and the labels in the next
window correspond to the word
names associated with each putative
hit. All of the labeled putative hits

represent actual occurrences of the

keywords in the utterance, except
the hic labeled bings, which was
decoded when the words and go
actually appeared in the utterance.

To illustrate the inherent vari-
ability in speech processes that
makes the word spotting problem
so difficult, the portion of the ut-
terance corresponding to the true
keyword hit bangor is compared to
a separate occurrence of bangor
spoken by a different speaker. An
expanded version of the sampled
time waveform for this separate
occurrence of bangoris shown below
the original utterance. Two speech
spectrograms corresponding to the
separate occurrence of bangor and
the occurrence of the word taken
from the original urtterance are

shown as separate displays at the
bottom of Figure A. The spectro-
grams display the distribution of
speech energy in time and frequen-
¢y, with time displayed along the
horizontal axis and frequency dis-
played along the vertical axis.

Even though the spectrograms
show a number of similarities in
the two versions of bangor, many
significant differences also exist.
These differences include differences
in duration, as well as differences in
how the high-energy spectral regions
evolve in time. The existence of
these natural sources of variability
in speech are a fundamental moti-
vation for the use of probabilistic
models in speech recognition and
word spotting.

passed along to later stages of processing,

The final performance criterion for the integrated
speech-message information-retrieval system is the per-
cent-correct classification performance on speech mes-
sages. We must also evaluate the performance of the
acoustic word-spotting front end, however, because it
defines the quality of the partial message transcription
provided to the message classifier. An example of key-
words located by the word spotter in a continuous utter-
ance is shown in the box, “Word Spotting from a Con-
tinuous Utterance.” The measure used to describe the
HMM word-spotter performance is given as the average
probability of keyword detection. The acoustic models
were trained by using data collected in a separate data-
gathering effort. Keyword sentences were read by 15
male speakers from a 130-word vocabulary, providing an
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average of approximately 45 occurrences per keyword.
The performance of the word spotter was evaluated on
120 speech messages. This corpus amounted to a total of
1.5 hours of speech containing 480 total keyword occur-
rences. The relative richness of this test set was actually
low compared to that of the test set used in another study
(2]. This evaluation test set contained a total of approxi-
mately 325 keyword occurrences per hour, whereas the
conversational speech corpus used in the other study
contained the equivalent of 960 keyword occurrences
per hour.

The word-spotting performance on the speech
messages in the corpus was good at higher false-alarm
rates, but poorer than the performance obtained on the
test set in Reference 2 at lower false-alarm rates. A 69%
probability of keyword detection was obrained ar a false-
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FIGURE A. Displays produced by a set of software tools that were developed to evaluate the performance
of the word spotter. The displays are shown as they appear on the screen of a UNIX workstation.

alarm rate of 5.4 false alarms per keyword per hour
(fa/kw/hr). The false-alarm rate is given as the ol
number of false alarms normalized by the number of
keywords and the duration of the message. This false-
alarm rate corresponds to a total of approximately 330
true hits and 1030 false alarms in the evaluation dataser.
A standard figure of merit used in evaluating word-
spotter performance is the average probability of detection
when averaged over false-alarm rates between 0 and 10
fa/kw/hr. Computing this figure of merit gave 50.2%
average probability of detection over 0 1o 10 fa/kw/hr,
highlighting the poor performance at low false-alarm

rares.

Message-Class Corrective Keyword Detection

This section addresses the integration of the maximum-

likelihood acoustic word spotter and the mutual-
information-based message classifier. The stream of key-
words decoded by the word spotter form the partial
message transcription that is input to the message classi-
fier, The partial transcription is inaccurate in that it con-
sists of keyword insertions (false alarms) in addition o
correctly decoded keywords (true hits). The interest
here is in devising a keyword detection mechanism
that requires little supervision and can casily be adapr-
ed o changing acoustic conditions. A network s de-
scribed that learns the detection characteristics for all
keywords simultancously through an error metric based
on the global message-classitication task.

Keyword detection is generally accomplished in word
spotting by using a Nevman-Pearson criterion, in which

the probability of correer keyword detection is maxi-

W
i
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mized under an assumed probability of false alarm [11].
The Neyman-Pearson keyword-detection criterion has
two primary disadvantages in this context. First, we
assume some prior knowledge of the densities associated
with the probability of detection and the probability of
false alarm for each keyword. This assumption implies
significant supervision in training, because these densities
are usually estimated from observed likelihoods obtained
from speech messages containing hand-labeled occur-
rences of the keywords. The second and more serious
disadvantage is that the adjustment of the Neyman-
Pearson operating point is performed individually for
each keyword, not in relation to the final message-
classification error.

The block diagram in Figure 6 illustrates the model
for the speech-message classifier. The word sporter detects
keywords in a continuous-speech message and outputs
the keyword likelihood scores to the output correspond-

d1 L d’

! :

Mean-Squared Error

Ym

Output
Normalization

]

]

]

]

[}
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Message :
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‘

]

]

]
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1 5 S2 SK
le el ===
(Sigmoid " Y2 YK
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HMM Word Spotter

f

Speech Message

FIGURE 6. Model for a complete speech-message classi-
fier, including multiplicative keyword-likelihood weighting
functions. The network learns to interpret keyword like-
lihoods from the HMM word spotter by minimizing the
overall message-classification error.
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ing to the decoded keyword index. The resulting likeli-
hood scores correspond to putative hits that are either
true keyword hits or false alarms; the putative hits, how-
ever, are not labeled as true hits or false alarms. If there is
more than one detected keyword with the same index,
the acoustic likelihood scores for each detected keyword
are weighted separately and the average of the weighted
scores are presented to the message classifier.

The input activations to the message-classification
network are related to the keyword likelihoods through a
set of multiplicative weighting functions. By simulta-
neously estimating the parameters of these weighting
functions, the network learns how to combine keyword
scores in a manner that maximizes a criterion relating to
the overall message-classification rask. A modified mean-
squared-error criterion is used to estimate these weighs,
which implies that the network outpur ¢, represents an
estimate of the posterior class probabilities 7(C,IM) [12].
The weights of the message classifier were estimated by
using the procedure described in the subsection entitled
“Message-Classifier Model” so that the message-classifier
output ¢ for class 7 is an estimate of log P(C,IM). An
exponential output layer is included to provide the ap-
propriate normalization of the message-classifier out-
puts. The final network outputs ¢,,..., ¢, are normal-
ized so that they sum to 1.

The form of the keyword weighting is a sigmoid
nonlinearity

5(_1’1») =

1

1 + cxp{—[:q__Ln, all )}

where the parameters u,,, and #; , are estimated by back-
propagating the message-classification error

!
B 122((1, ik iF ©)

through the message-classifier nerwork. In Equation 6
the quantity &, corresponds to the desired message-class
output for a speech message; the value of &, is 1 for the
correct message class and 0 otherwise. The form for the
weighting function can be motivated by observing ex-
amples of estimated weighting functions for two keywords.
Figure 7 displays the weighting functions for keywords
time and west, and shows the likelihood scores for the
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FIGURE 7. Sample keyword-likelihood weighting functions
learned through back-propagation of the speech-message
classification error: (a) the estimated weighting function
for the keyword time; (b) the estimated weighting function
for the keyword west. The likelihoods of putative hits
decoded in training speech messages are also shown on
each plot.

decoded purative hits superimposed over the plots. For
the keyword #ime, shown in Figure 7(a), where most
putative hits are false alarms, the estimated weighting
function serves to suppress putative hits whose like-
lihoods in training messages correspond largely to
false alarms. Note that this characteristic is obtained
as a function of the total message scores, and not as a re-
sult of labeled true hits and false alarms. The weighting
function for the keyword west, shown in Figure 7(b), where
most of the putative hits correspond to true key-
word occurrences, is different. For this keyword a
more uniform weighting is used in the region of all

observed putatve his,

The back-propagation equations for estimating the
parameters of the weighting functions are easily deter-
mined. The message-classifier output is given as

N
¢ = Z ve Selmety ),
k=1
with

net, = ¥ gy

where NVis the number of putative hits decoded by the
word spotter from the input speech message. The weights
v for k=1,..., Kand i=1,..., / are estimated as
described in the earlier section on the message-classifier
model. These weights remain fixed during the weighting-
parameter update procedure, primarily because of the
relatively small number of speech messages. The weight-
update equation for the keyword detector parameters is
expressed in terms of the message-classification error
gradient as

rq,“;(r b = l) = fl‘._‘r‘ T)+ n
duy g

k=K 0= (7)

where 1 is a learning-rate constant. The update interval
in Equation 7 corresponds to a single speech message
whose duration ranges between 30 and 50 sec. Conse-
quently, the variable rin Equation 7 is actually a message
index and does not represent a fixed time interval. Solv-
ing Equation 7 for the message-classification error gradient

yields

dl

/-1
= z se(V=se ) (d, = )e (V=€ ).

f)lq,_‘r i=0

Table 3. Summary of Results for Text
Messages and Speech Messages

Text Messages

Speech Messages

240-Word GA Search Binary Corrective
Vocabulary 126 Words Detection Detection
81.3% 78.6% 50.0% 62.4%

57



* ROSE
Techniques for Information Retrieval from Speech Messages

Experiments
The performance of the complete end-to-end speech-
message information-retrieval system was evaluated on
the same 120 speech messages that were used for evaluat-
ing word-spotting performance. The putative hits
produced by the word-spotter evaluation experiment
described earlier were input to the message classifier
illustrated in Figure 6. The keyword vocabulary in
the complete system evaluation was restricted to a
110-word subset of the toral 130-word vocabulary
used in word spotting, Table 3 summarizes the results
obtained in speech-message information-retrieval ex-
periments, along with results obrained for message clas-
sification from test transcriptions of speech messages.
Two separate speech-message information-retrieval
experiments were performed. In the first experiment the
message-corrective keyword detection was not used, and
the message-classifier inputs were activated by the pres-
ence of the corresponding putative hit. In the second
experiment the parameters of the multiplicative weight-
ing functions in Figure 6 were trained from the 120
speech messages. Each of these messages was labeled by
message class. Speech-message classification was then
performed by using the weighted keyword-likelihood
scores as input to the message classifier. Unfortunately,
not enough processed speech messages were available to
form independent training and evaluation datasets for
evaluating the effect of the message-corrective keyword
detection. The performance reported in Table 3 is the
speech-message classification performance evaluated on
the speech messages used for training the message-class
corrective keyword detectors. The third and fourth col-
umns of Table 3 compare speech-message classification
performance obtained with and without the message-
class corrective keyword detection. For this example the
corrective keyword detection resulted in a 25%
improvement in performance.

Summary

The most important result of this work is the implemen-
tation of the first end-to-end speech-message informa-
tion-retrieval system. The complete system has been
implemented on special-purpose digital signal processing
hardware, and demonstrated by using live speech input.
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The results obtained on a relatively constrained task have
demonstrated the feasibility of the technology and also
illustrate the need for further work.

Several conclusions can be made as a resule of this
study. The first conclusion concerns the message-classifi-
cation performance from near-perfect text transcriptions
of speech messages. Even with a perfect acoustic front
end, Table 3 shows that a message-classification accuracy
of only 78.6% was obtained with a 126-keyword vocab-
ulary. The second conclusion relates to the decrease in
performance resulting from the presence of the word
spotter. Although test conditions varied somewhat be-
tween speech-message and text-message experiments,
Table 3 clearly shows that the inclusion of the word-
spotting front end results in a significant decrease in
performance. Finally, a general comment can be made
concerning the effort required to configure a speech-
message information-retrieval system to a new task. The
most labor-intensive effort in this study was the col-
lection of a separate speech corpus required to train
hidden Markov keyword models for the word sporter.
This level of effort is clearly unacceprable if the system is
10 be frequently reconfigured for a new task, as would be
the case for the applications suggested at the beginning
of this paper. Current research includes the development
of techniques to reduce the amount of acoustic speech
data necessary for HMM word-spotter training. This
effort and other ongoing rescarch are directed toward the
development of easily implementable high-performance
systems for speech-message information retrieval.
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