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• This article describes an architecture for a highly parallel system ofprocessors that

are specialized for real-time adaptive antenna nulling computations with many
degrees of freedom. This system is called the Matrix Update Systolic Experiment
(MUSE), and we describe a specific realization ofMUSE for 64 degrees of freedom.

Each processor uses the Coordinate Rotation Digital Computation (CORDIC)
algorithm and has been designed as a single integrated circuit. Ninety-six such

processors working together can update the 64-element nulling weights on the
basis of300 new observations in only 6.7 msec. This update rate would require 2.88
billion instructions per second from a conventional processor. The computations
support 50 dB ofsignal-to-interference ratio (SINR) improvement in a sidelobe

canceler. The simple connectivity between processors permits MUSE to be realized
on a single large wafer by using restructurable VLSI.

W
HEN AN ANTENNA ARRAY of N elements is
subject to undesired interference, such as

jamming plus the thermal noise in each of
the N receivers, the interference power can be reduced,

relative to the power in some desired signal, by forming
as the system output a suitably weighted sum of the
waveforms observed on all the antenna elements. We call

this process nulling. Usually the choice ofsuitable weights

must be made adaptively. The choice of weights that
maximizes the signal-to-interference ratio (SINR) ob­

served in the system output is the solution to a well­
studied least-squares problem. The number ofarithmetic
steps required to solve this least-squares problem, for
almost any algorithm chosen, is proportional to the cube
of the number of antenna elements. Furthermore, be­
cause the statistical characteristics of the interference

change with time, the adaptive weight determination
must be performed repetitively and in real time.

When the antenna array is on board a satellite, the
number of antenna elements that can be nulled in prac­
tice is limited by the combination of the real-time re­

quirement driven by satellite motion and the cubic de-

pendence of the computational cost of adaptive weight
determination. A previous study of computational cost
set this limit at N =: 26, based on an assumed conven­

tional digital signal processing architecture. This limita­
tion is not absolute, because it depends on the resources
we are willing to allocate to a nulling processor. Using
more resources, however, is not an efficient way to handle

a large nwnber ofantennas.

In this article we describe a specialized adaptive-nulling
processor, called the Matrix Update Systolic Experiment
(MUSE), which is capable of determining the weights

for N =: 64 antenna elements. Because of its novel archi­
tecture, it can be compactly realized by using restructur­
able wafer-scale integration; the resulting system fits in
a 4-in square. MUSE is substantially smaller and light­

er than a conventional processor, and it uses substantial­
ly less power. Although the MUSE processor is special­
ized for N = 64 antennas, the MUSE design concept
can be applied to the design of a similar processor
for an antenna array with a different number of
elements.

We briefly explain the mathematics of adaptive null-
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ing and the use of Givens tranSformations for vohage­
domain computation of a Cholesky fac[Qr. We explain
Coordinate Rotation Digital Compuration (CORDIC)
rotations and show how they are suitable for realizing

the Givens transformations needed ro update a Cholesky
faccor. We also develop the idea of a systolic array of
computing elements. each of which is composed of
three CORDIC rotation cells operating together. An
array ofconneaed computing elements shares the work
of updating a Cholesky faaor, and this work is the

largest pan of the computational task. By using a tech~

nique that we call latency-controlled interleaving. we
show how to modify the systolic array [Q make it 100%

efficient for the Cholesky update taSk.
Once a Cholesky factor is found, the nulling weights

are the solution ofa set oHnear equations whose constant

coefficients are the Cholesky factor. Our CORDIC cells
are also used for the solution of the linear equations. We
describe a modification of the timing of our SYS[Qlic

array so that it can be used for both the Cholesky update
and the solution of the linear eqllations..

We then consider how the MUSE S)'5tolic array can

be adapted for implementation by using Restrucrurable

Very Large-Scale Integration (RVLSD technology [1].
We describe a design that uses 96 identical cdls and
the plan that provides intercell discretionary
connections.

Nulling with Givens 'Hansformations

Figure 1 illustrates a typical adaptive-nulling S)'5tem.
The Outputs of the N antenna elements are down·con­
verted and the N waveforms are simultaneously sampled
and digitized. At the nth sampling instant a complex
number x; comes /Tom the ith antenna. We collect the
simultaneous samples [Qgether in a column vecror X(n).

These Vector samples are passed [Q a module that performs
the acruaI nulling. and some samples are passed to another
module that adapts the weights.
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FIGURE 1. A diagram of a typical adaptive-nulling system. We simultaneously sample the waveforms
on N antenna elements to give a column of complelt numbers X for each sam~ling instant. The sam­
pling rate must at least equal the radar bandwidth, which is 5 MHz in this example. We use many fewer
columns of X per second (45,000 in this example) to characterize statistically the interference we wish
to null. We take a snapshot 150 times per second of LA' the matrix of interference statistics, and use it
to compute the weights W.
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The adapted wdghts can be treated as a column
v«:lor W Although W varies wim time, it is not ro:om­
puted for every sampling interval. The nuiJed OUt­
put y(n), which is a scalar, is formed by oomputing

me dot produa of the vtttor W with the va:r:or X(n).
We express [he nulling o~r.J.tion by the vector
equa[lon

y(n) =WhX(n).

where ()h is the Hennitian transpose.

The adaptation process shown in Figure I involves
antenna samples X(n) and a lower triangular matrix Lit
that is regularly updated and used to derermine W. The
interval within which W is held conswu is defined as a
bbxk. Within each block, W is chosen optimally with re­
spo:r to the statistics of interference appropriate to that
block. The statistics that matter are the correlations of
interference observed lTom one antenna dement to an~

orner, these statistics are arrangM into a matrix R. which
we do not know in practice because it is a statistical

exptttation. let

To optimize SINR we must first char2cteriu the

signal. given that we now have an estimate of the imer~

Ference statistics. let S be a known constant vector. It
relates to the desired signal as foUows: if all interference
~ absent and only a signal ....~ present, we ....."Quld
exp«t to observe in X(n) some scalar time funcrion
times the vector S. Then the optimum cnoia= of W is
known &001 the literature [2] to satisfy the set oflinear

equations

RW=S.

These equations tell us, first, that the only informa~

tion we need lTom the matrix X to determine the
optimum weight vector is the information neces·

sary to estimate R Hener, if we intend to estimate
R by using R in Equation I, we can comfortably tranS~

form X in any way as long as that transformation

leaves xxh unchanged. Second, this equation tells us
that we can find W &om Rby solving linear equations,

and hence it suggests that we might accept as a good
estima~e of W the solution to the same equa.tions
using R,

RW = S.

where J(n) is the interference component of X(n). We
estimate R by using samples of the vector X(n). The
matrix Rvaries with time, but we have neither the time

to gamer enough samples to estimate Rperfecrly nor the
oomputational resources to use all me samples we have.
We must use a limited amount of data to obtain an
estimate ofRfor each block, then gather another limited
set ofdma to update R for me next block, and so on.

Let us merefore ooIla:r: aU the samples of X(n) that

we intend to use to determine the optimum weights
for a given block and rd"er to this collection ofdata as X
There is no implication that all the samples used come
from within the givm block-we actually envision using
samples from within a sliding window. If the num­
ber of samples of X(n) is M and each sample is an
Ndement va:r:or, the M vectors can be arranged into a
matrix of M columns and N rows. The estimate of the
correlation matrix based on this marrix of raw data is
given by R, where

R=_I XX·.
M

(I)

where Ris the estimated correlation mauix in Equation

I [3).
How can we transform X while leaving XX h

unchanged? Suppose we postmultiply X by a unitary

matrix Q:

x=XQ.

By definition a unitary matrix has the property QQh II: I,
so y,~ can insert QQh between Xand x!' in the equation

for R:

R=_I XXh=_1 XQQhXh=_1 XXh .
M M M

Therefore, W~ can transform X into X without chang­

ing the correlation matrix that ....~ estimate from it.
Furthermore, we can rq>ea.t this tranSformation with
another unitary matrix. and repeat it again, as often as
we like, until the final transformed \'~rsion of X has a
convenient form, with the nonuro elements confined to
an N x N 10weHrianguJar submatrix, which we call L,
on the left. For example,
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LL'W = MS.

Then the linear equations that must be solved to obtain

W take the simpler fonn

-' XX' = R=-' LL'.
M M

The known constant M can be absorbed into the steer­

ing veaor 5 and is hereafter omined. (Because W is the

solution to a set of linear ~uations. scaling 5 by any
constant also scales the solution W by the same constant.

But the SINR in W'x(n) remains unchanged when we

multiply W by a scale factor. so the constam M can be
ignored.)

We can solve LLh W = 5 in twO steps. First define

an intermediate vector variable Y defined by

R= XX',

steeringveccor 5 = [0.0, ... ,0, IY, then the triangular set

of equations in Equation 3 becomes trivial and only

the set in Equation 2 needs to be solved. This kind of
adaptive antenna array is known as a sUUlob~ canctkr.)

In summary, the determination of optimum weights

for adaptive nulling can be divided into three phases:

1. Obtain interference. Form an M x N rectangular

mauix X whose columns are the vector samples

X(n) of inrerference observed at the antenna ele­
ments.

2. Triangularize. Use onhogonal transformations to

compute a triangular Cholesky matrix L nom X
3. Back·substirute. Solve easy linear equations for the

weightsW

This process can be COntrasted with a mathematically

equivalent approach in which we first compute Rby the

equatlon

followed by a procedure called Cholesky factorization to

determine L from R, followed by the two back·substiru·

tions. This approach is valid but not numerically robust.

In the matrix R, the largest and smallest eigenvalues are

usually determined by jammer power and thermal noise

power, respectively. Their ratio, if large, determines the

minimum word length needed numerically to solve lin­

ear equations involving R. This minimum.word.length

limitation does not depend on the algorithm used to

solve the linear equations. If, however, we determine L
directly from the raw data X without first computing R,
the minimum-word-Iength ~uirement for solving lin­
ear equations involving L or L is about half that needed

with the approach that first computes R. Because shorr

word lengths are more economical in the design and

construction ofhardware, shon-word-length algorithms

are preferred.
(2)

o
o
o = [Llo].

o

o
o
o
o

L'W = y,

o 0

o 0

I 0

I I

I 0

I I

I I

I I

The matrices Lit-I and Lir in Figure 1 are examples of L
We refer (0 lower-triangular matrices such as Las Choksky
factors. or Choksky mamas.

Let us give L a physical interpretation. if the columns

of L were the samples that arrive on the antenna. the

Optimum choice ofweight vector W would be the same

as for the actUal data. Therefore, we are allowed to use L
when we determine the weights, from which the deter­

mination of the optimum weight vector W is relatively

simple.

By making this sequence of transformations we can

write

We solve Equation 3 for Y and then, having found Y, we
are in position to solve Equation 2 for W Both of these

equations are easier (0. solve than general matrix-vector

equations because the matrices involved are triangular.

(If the antenna array is designed so that the appropriate

so that Y is the solution to

LY = S. (3)

Updating th~ Choksky Matrix in Succroiw Blocks

Now let us look at the treatment ofsuccessive blocks. We

must first recognize that both X and L are different in

different blocks. Let the raw data X and the Cholesky

matrix Lin the kth block be Xir and Lit> respectively. How

is Xir related to Xlt-I?
If the statistics of interference remained constant with

time, then we could expect to estimate those statistics
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better and ben:er by using morc and more raw data in the
successive blocks. We could append the observations
that became available during the kth block, XntW' OntO

the matrix of all the observations available in earlier

block> X>-l'

so that

and

This rdacion suggests an efficient way to update L by
using unitary transformations. If Q is a unitary transfor·
mation, then

We: choose Q to force zeroes into the positions occupied
by X_;thus

/ n n

I / n n
=>

I / / n n

I / / / n n

/ 0 0

/ / 0 0

/ / / 0 0

/ / / / 0 0

There are lWO advantages to updating Lit by using
Lit-I- The first advantage is that the use of prior work
saves computation. The second advantage. which is more
important, is that X", involves more and more data, so
that more and more storage is required as kinc~. The
storage of Lit requires only N 2 real numbers.

Because the imerferc=ncc statistics change with time,
although slowly in comparison with the duration of a
block, we would like to diminish the effectS of the

previous blocks. An often-usaJ technique is to ~ight

the data by an exponentially decaying window. To ac~

complish this diminishing window we define a fOrgming
fiu'torcalled a, and substitute aL"'1 in place of L"'1 in the
p~ous algorithm for updating Lr

We can now update L recursively as each new vector
sample becomes ava.ilable, and ~ can preserve an after­
the-update mApJhotofL '" L/tat me end ofthe kth block.
Let X be me new vector sample, let Lold be the Cholesky
matrix for all pm-ious data, and let a be the forgttting
factor (a is now chosen on the basis of updating L on a
per-sample basis rather than on a pet-block basis).
We ~ an (N + I) X (N + 0 unitary matrix Q in me
update

[aL."IX1Q => [L".loJ
Next we discuss the mechanization of me unitary

transformation. ~ ~ have pm-iously explained, post­
multiplication by a ~uence of si,:"ple unitary transfor­
mations accomplishes me same effect as a single more
elaborate transformation. Beca~ our purpose is to in­
troduce zeroes into the tacked-on column X of the ma­
trix [ aL"",1 X], we can use a sequence of unitary trans­
formations that each zeroes out one additional element.

The unitary transformations are of twO types. The
first type changes the leading nonzero element (which is
typically a complex number) of the tacked-on column
into a real number. A unitary matrix Qs that accom­
plishes this change is an (N+ I) x (N+ I) identity matrix
with the lower right diagonal dement replaced by
~. Postmultiplying [aLowl X] by Qg leaves most
of the marnx unchanged but multiplies me last col­
umn (the tacked-on column) by 11. We choose 9 so that
multiplying the leading dement of the tacked-on
column by 11 makes the product real.

The second type ofunitary transformation is called a
Givens transformation, denoted by £4. This transforma­
tion is derived /Tom an (N+ I) x (N + I) identity matrix
by changing four dements. The mth and (N + Ost
diagonal dements become cos 41. The element in row
(N + I) and column m becomes sin 41. The dement in
column (N + I) and row m becomes -sin 41. When we
postmuhiply by C20 we affect only the mth column and
the tacked-on (N + l)st column. Suppose that the ele­
ments in the same row in those twO columns are I and x.
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FIGURE 2. Eight successive unitary transformations that
zero out the four-element tacked-on column.

After th~ uansfonnacion we will have:

1'$=/cos~+xsin;

x' ¢::: xeDS; - / sin;.

If land rare real, this m.nsformacion em be inrerprtted.
as a geometric rotation through me: angJe ; in the plane:
defined by landxaxes.

By an alternation of postmultiplications by unitary
matrices of these twO types. we can zero our the entire
tacked-on column. Figure 2 illustrates this progression
by using an aample with N", 4, which requires eight

transformations. Complex quantities in this figure are

indicl.ted by cand real quantities art: indicated by r. For the:
Qs tranSformations only me tacked.-on column (sho\Ytl
in blue) is changed. while for the ~ transformations
only two marrix columns (shown in red) are changed
One of these columns is the t3.cked-on colwnn and
onc is a column ofme same length from the lower-trian·
gular ponico of the matrix. The other columns are not

affea<d.
The mechanics of the two types of uniwy rransfor­

marion have much in common. The Qg U2I1Sformation
looks at the leading nonzao element of the taeked-on

column and dae.nnines the angle 8 that will make this
leading dement real. Because the column is composed of
complex numbers, m(: c:ktumination of9d~dson two

real numbers mat arc= respectivdy m(: red pan and th(:
imaginary pan ofm(: leading d(:m(:m Xi:

'- Im(x.)
8 = arcran ' .

Re(x; )
Wh(:n cos 9 and sin 9 are known the transformation Qs
is applied to the rmlainda of m(: tacked-on column.
in which me red and imaginary partS can be considered
as two columns of red numbers. In rerms of the two

columns, cite jth Qs tranSformarion takes the form
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On me ocita hand, for me jth Givens uansformation
Qo. th(: angl(: ~ is derumined by m(: leading dements of
two columns. The numbc:r I"i is me leading d(:mem of
column jand m(: number Xi is the leading demenr ofme
racked-on column. The leading d(:m(:O[ of the racked­
on column is red because of the preceding Qs rransfor­
marion. Ifwe assume mar 1;.; is real, m(:n by mathemari­
cal induction ir remains real because all me operarions
involved in updaring it produce real numbers. The angle
~ is determined by

8 IHI L1NCOl_ llBOUTon JOUW\ VOlUME 6, ~U\lllt 1 1991



• RADER
Waft-r-S<4U IntfJT4tion Ofil urg~ SJltoli( Aml]for AdtJpriw Nulling

o 0

-x·
~ = arctan --' ,

/,.,
rotate: the: leading deme:nts are different and more in­
volvoo. but we are counting them conservatively, as

if they required the: same number of steps as the
other rorations.) The:refore, the: total number of rota·
lions IS

33(N +(N -I)+(N - 2)+"'+1) = -N(N + I),
2

or 6240 rotations for N. 64. This number is equiv­
alent to approximatdy 62.000 instructions per new
sample:.

Severa.! authors have proposed paralld computation
to compute the: update: of a Cholesky matrix. The best­
known architecture for this computation is a systolic
array of compuring dements arranged in a triangular
mesh [4]. For an array with N dc=grees of freedom this
triangular array uses M.,N + 1)/2 processors. which limits
praaical application of the triangular array architecture
to small values of N.

o
x;

o
/,.,

which is analogous to the: dete:rmination of (J for the
~ transformation. The:n, when cos4' and sin~ are:
available:, the: Givens u:msformation is applic=d only (Q

the £wo columns affc=a:c=d by it.
We can write: the: Givens transformation in te:rms of

these two columns as

This representation shows that the mechanization of the
Givens transformation is nearly identical to the: mechani­
zation of the ~ transformation. There is one: imporrant
difference, however, between the £wo transformations.
After we dc=al with the: leading dements, we apply the
remainde:r of the Givens transformation to two columns
ofcomplex numbers, whereas we apply the ~ transfor·
mation to two columns of real numbers. We overcome
this difference by considering the Givens transformation
to apply separately to the real pans of its twO affectc=d
columns and to the imaginary parts of its twO affectc=d
columns. In these terms a Givens transformation is iden­
tical [Q two ~ transformations. All the unitary transfor­
mations needed [Q zero om a rackcd.an column ap­
pended to a triangular Cholesky matrix can be imple­
mented by using identical hardware. In subsequent sec­
tions of this paper we describe a design for such hardware
in detail.

Let us estimate: the: toral workload involved in wing
the algorithm we have described to zero OUt a single
64-e1emenr vector. Each elemenr in rhe Cholesky matrix
is modified by lIsing thrtt rorations. To carry out each
rotation with a convcntional computer architecture re­
quires £wo load instruaions, four multiplications, an
addition, a subtraaion, and (\vo Stores, or approximately
tcn instructions per rotation. (The steps involved to

CORDIC Re:alization of Givc=ns Transformations

In this section we describe a coordinare-roration algo­
rithm known as Coordinate: Rotation Digital Compura.
tion (CORDlq that is well suited for digitaJ reali­
union. The basic idea for this aJgorithm was first
published ;n 1959 by J.E. Void" [5].

Suppose a vector from the origin, with endpoint coor­
dinates (x, y), is rotated to new endpoint coordinates
(x', i). such that the angle: between the new and old
vo:tors is ~. This rotation is represented by

x' = (ws,)(x- yr.n')
y'=(cos,)(y+xtan,).

which involves four multiplic:arions. If we choose special
angles. hOW"ever, some of the multiplications simplifY to

shifts. We will concentrate: on the spc=cial angles ~i with
j = O. I, 2, ... ,00, defined by

tan~; = ±2- i
.

The: multiplications by tan ~; therefore become right
shifts by j bit positions. For fixed j the tWO special
angles havc the same magnitude but opposite sign and
therefore they have: the same cosine:.

The first Stc=p of the CORDie algorithm is to de-
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scribe an arbitrary angle ~ as a sequence of rotations ei­
ther forward or backward by ~i> with i = 0, I,".", 00.

Th",

;=0

Let Pi= ±l determine whether a particular minirotation
is fol"'N'3.rl:i or backward. The rotation of(:<; y) through the
angle ~ is therefore accomplished by the following se­
quence ofsteps:

(4)

A key step in the CORDIC algorithm is to recognize
that the multiplications by cos ~; can be collected to-­
gether into a single constant K, where

K = nCOS~i"
i=O

This constant is independent of the overall rotation angle
~. Thus we can revise Equation 4 to the form

(:) <= (:) + 2-0Pf:)
(:) <= (:)+2- 1Pt:)
(:) <= (JT2 pf:)

(5)
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We see mat the CORDIC algorithm is composed of
Stages; most of the Stages perform.minirot,uions and the
last stage performs a gain correction. For any angle ~, all
the minirotations are employed but each is employed in
either a clockwise or counterclockwise direction. Although
an exact realization of the CORDIC algorithm calls for
an infinite number of minirotations, for obvious practi­
cal reasons we use a finite number ofstages. The higher­
numbered stages contribute little to the accuracy of the
angle specification (a binary adder or multiplier uses a
finite number ofstages for the same reason). In addition,
the correction stage is not a general-purpose mulriplier
but a muicipliClcion by the fixedquanriry K An exact value
of K depends on how many CORDIC stages are used,
but when the number of Stages is more than six, the
appropriate correction is well approximated by 0.607253.
(In the MUSE appliCltion, the fixed multiplication by K
designed into each CORDIC circuit is combined with
the forgening factor a.)

The CORDIC method therefore achieves rotation
without using trigonometric functions and without ex­
plicit multiplications. If the angle ~ is known in advance,
it Cln be used to determine the set ofcontrols

(Pi'" = O, ... ,imu )'

each of which is represented by a single bit. This set of
controls represents the angle ~ by digits Pi in an uncon­
ventional number system different from any of the con­
ventional radix systems. Each Pi can be stored in a Aip­
flop in the stage whose direction of rotation it controls.

In the Givens transformation application, however,
we do not know the angle of rotation in advance. We are
given a coordinate pair (x,y) and we must rotate that pair
through the angle such that the resulting rotated pair
becomes (x', 0). This operation is called ulcton"ng. Then
we must rotate some number ofother pairs through the
same angle. We have no need to know what the angle is.
as long as we can rotate by that angle. Therefore, what we
really need for vectoring is an algorithm that determines
the CORDIC comrols Pi' A major advantage of the
CORDIC algorithm is mat the same circuit used for
rotating can be used for vectoring.

Consider the first CORDIC stage. for which the
special angle is either 45" or-45". Our purpose is to ro­
rate the input (x, y) toward the x axis. If y is above the
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axis we rotate down and if J is below the axis we ro­

toue up. Therefore.

Po = ,gn(x)WO(')·

When we have determined Po we compute the dkct of

the fim stage on xand yand pass (x,y) as modified to the
second stage. Here again our rule is (0 rocue down ifJ
is abovt: the axis and up ifJ is below the axis.

P, = ,gn(x ),gn(,).

In this way the determination of the CORDIe controls
is simple.

P; = ,gn(x),gn(,). i =O•...• i_.

We save these controls in the flip-flops of the specialized
stages and use mem (0 control mose stages for the suc·
cteding (x, y) pairs that are to be rotated through the

same angle.
Figure 3 illustr':ues the: conapr ofa CORDIC circuit,

made up of independent stages. in which minirotations
mooify the input coordinates (x, y) from sage to sage.

The controls Pi an= shown as if they depend only on

•

-

sgn(y), bur in fact they depend on the product

sgn(x).sgn(y). This simplil1ed figure illustrates the natu­
ral pipeliningaspttt ofCORDIC circuits. If registers are
placed betwttn the stages (at the positions illustrated by
dashed lines), then a new rotuion pmblcn, with a new
coordinale pair (x, y), can be sarred by the circuil as
soon as the prececl.ing pair is lalched al me ourpUt ofme
firsl stage.Then anomer rolation can be: Slarred when me
firsl £wo pairs have been latched at me OUrpUl of the
second and first srnges, respectively, and so on. Rmation
can follow vectoring in mis pipelined fashion, and only
an addilion and a Subtr.l.Clion need to be performed in
each stage (digital logic performs these operations rapid~

Iy). Therefore, a CORDIC circuil can begin new rotation
problems at a high rate. By contrast the time required to
complete any given rotacion is proportional (Q me nurn·
be, ofCORDie stages provided.

CORDIC Circuits in a Syslolic Array for
Updating a Cholesky Mauix

The pipdined CORDlC circuit is ideally used as one of
a large number of compUling demems operating in
paralld in a systolic array. The (erm systolic originated in

-I--L...----(

,

y

.•.• ..!...- x
I
I
I
I

... · .... 1
I
I

I
I

FIGURE 3. Pipelined CORDie circuit. A rotation is accomplished as a
sequence of minirotations through special angles ~i = Pi tan-'2-i. where P, is
either 1 or-f.
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human biology to describe the circulatory system of

blood through blood vessels and various organs. In a
systolic computing system the data elements are figura­
tively pumped from computing organ to computing
organ and processed as they move. Ideally, data elements
in a systolic system should be processed as soon as they
become available, so they must be available at the right

place at the right time. The algorithmic and the architec·
rural considerations are closely imerrwined. This section
describes how we use a large number of pipelined

CORDIC circuits in a parallel systolic pipelined system
to update a Cholesky matrix.

Superull

To update one of the N columns ofa Cholesky matrix L
for each new vector sample, we need a ClJJ transformation

that operates only on the tacked·on column X followed
by a ~ transformation that operates on the tacked-on
column X and a single column of L We configure a
processor for this task from three CORDIC circuits and
sufficient memory to hold the one column ofdata. One
CORDIC circuit perfonns the ClJJ transformation and

two CORDIC circuits perform the C4 transformation.
This combination of three CORDIC circuits and a
column of memory is called a mperul1

Data vectors of complex numbers are sequentially
presented to the CORDIC circuitry. The time for one

complex word to enter a CORDIC circuit is ca.iled a
microcyde. Every vector that enters a circuit has a leading
element, or under (its first element), and some number

of following elements, or ftllowm (all the other ele­
ments). The CORDIC circuits perform veaoring on the
leader and rmation through the same angle for the fol­
lowers. A5 an example, a veaor composed of Kelements
flows into a CORDIC circuit during K consecutive mi·
crocycles. The elements that make up this vector flow

our of me CORDIC circuit at the same rate they en­
tered, which is one element per microcycle. Although
passage through the CORDIC circuits modifies the ele­
ments, they retain meir idenrity and meir order, and the
leader on input becomes the leader on Output.

Simply passing the racked-on column through a
CORDIC circuit accomplishes the ClJJ transformation.
The CORDIC circuit changes rhe phase of the leader so
that the leader becomes a real number,.and then changes

the phase of rhe followers by the same amount. A

12 !HllIKCOLR lIBORA/ORT JO~RNlL YalU~( 4 HUUB!R 1 1991

CORDIC circuit used in this manner is called a
9-CORDIe.

A C4 (Givens) transfonnation is a rotation of pairs of
complex numbers through a real angle. For each com­

plex pair, two new pairs are assembled. One pair is
formed from the twO real parts and me other pair is
formed from the two imaginary parts. These new pairs
are separately rotated by the same angle. To accomplish a
~ transformation we use twO CORDIC circuits, which
we call me mmurt?'-CORDIC and the Jl1vet?'-CORDIc.
The master t?-CORDIC deals wim the real parts of
complex data while the slave 1P-CORDIC deals with the
corresponding imaginary parts of the data. TIle rotation
of a column pair by either type of 1P-CORDIC is iso­
morphic to a phase change in a 8-CORDIC. The col~

wnnsare presemed (0 both 1P-CORDICs.sequemially, one

elemem per microc:ycle, just as is done in a 8-CORDIC.
Figure 4 illustrates me architeaure ofa supercell.

The input vectors for ¢-CORDICs contain complex
elemems from the outpm ofa 8-CORDJC and from one
column ofthe Cholesky matrix. The master t>-CORDIC
gets the real pan of its input vecwr from the real pan of

rhe Cholesky matrix column and its imaginary part from
rhe real pan of the 8-CORDIC omput. The slave
¢-CORDIC gets me real part of its input vector (except
the leader) from the imaginary pan of the Cholesky
matrix column and the corresponding imaginary part
from the imaginary part of the 8-CORDIC output. The
leader of me vector that is input to a slave ¢-CORDIC is
a special case, which is discussed below. The outpms of

the twO types of¢-CORDICs are then reassembled. The
real pans ofthe ¢-CORDIC omputs become the real and
imaginary parts. respectively, of me updated Cholesky
matrix column. The imaginary parts of the ¢-CORDIC
outputs become the real and imaginary pans, respectively,
ofthe updated tacked-on column. We explain mis process
in more detail below.

Note that the CORDlC circuits are used for two
different meanings of rotation--one is the phase modifi·
cation ofa complex number and the other is me coordi­

nate totarion of a [Wo-elemem vector. In the coordinate
rotation, although the twO coordinates can be complex
numbers. me angle through which they are rotated is
real, and the same real rotation angle is used on the real
and imaginary components, respectively.

To explain this process in more detail, first let us
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Input
(The Column X Tacked onto L).

Re(X) Im(X)

IUnused Memory I 8-COROIC
Supercell

l
Re(X) lm(X)

Re(Ll Im(L)

I + I + 1
Memory for

Master t/>-CORDIC
Memory for

Slave t/>-CORDICReal Part of L Imaginary Part of L -.. I .. I J

Re(X) Im(X)

, ,.
Output

(The Modified Tacked-On Column X) ,,
FIGURE 4. A CORDle supercell. The o-CORDIC determines the value of 8that makes the product t/8X1 real, and
then multiplies each element in the tacked-on column X byeie. The ~CORDIC finds the value of ¢that rotates
(fll' Xl) into (1'1' 0), and Ihen rotates the two full (f, xl columns by that angle. The master ~CORDIC works on
the real parts of X while the slave ¢-CORDIC works on the imaginary parts of X. The local memories in Ihe
¢-CORDIC hold the column of L to be updated.

consider the mth <Ie transformation. Its input is the
tacked~on (N - m + 1).-component colwnn with com­

plex components [xm>x,ml>"'> xN]' These components
are fed into a B-CORDIC one pair at a time, beginning

with the pair [Re(x",), Im(x"J]. The first pair is marked as
a leader with a special indicator that causes the CORDIC
circuit to determine and set the Pi controls as it passes
through the successive rotation stages (veaoring). Thus

the modified leader xmtharemerges from the B-CORDIC
is rotated in phase so that it is real-its imaginary com­

ponent is zeroed. The followers xm+ I"" • XN are rotated
by the same phase as the leader but they generally emerge
from the B-CORDfC as complex numbers.

We can think of the CORDIC circuit as a pipe and

visualize the tacked-on column being pumped through
the e-CORDIC one element at a time. The number of
elements inside the pipe at any ,rime is equal to the
number ofCORDIC stages.

In the mth £4 transformation the data pumped
through the transformation are in twO columns,

[lm,m> '_I.",'"'' 'N.m] and [xmt Xm+[>·,·, xN]' These col­
wnns are all complex numbers except for the real pair

(lm,nP xm)· We arrange timing so that 'lm and x'" are
available simultaneously. The master ~CORDIC re­

ceives irs rwo inputs from the real pans of the two input
streams. The slave q,-CORDIC receives its twO inputs

(with one exception) from the imaginary parts of the twO
input mearns. The pair (1m.",. x",) is marked as a leader so
that as it passes through the master ~CORDIC it deter­
mines the angle controls Pi that rotate all the follower

pairs [Re('l"m)' Re(xl,)]' The same angle comrols are used
in the slave q,-CORDIC to rotate the follower pairs

[1m (I""",), Im(xl,)]' The slave ¢-CORDIC does not need
to compute [Im(/",.,..), Im(xm)] because this pair already
has the value (0) 0), Therefore, we trick the slave

i?-CORDIC into setting its angle controls identical to

~OLUlCi 4, NUNIH I, lUI THI LINCOLN LA!O~1I0RY ,OURNIL 13
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th~ of the master ..-CORDIC by giving it the leader

p~' IR«I~",). R«x",)l in place of[!mUm.",). !m(x",)). The
outputs of the twO ..-CORDICs are an updated column
of the Cholesky matrix and an updated tacked-on col­
umn with its mth element zeroed.

In this way. the thrtt CORDIC circuits accomplish
the wo transformations needed to zero out one element
in the tacked-on column. Figure: 4 iIlusuates how the
9--CORDIC and the master and slave ¢-CORDICs are
inrerconneo:ed and how the pipelining ofeach individu­
al CORDIC circuit extends narurally to the pipelin­
ing of the superce1l. The Cholesky matrix column

[I"".... lmol .m•..• , 'N.m] can be stored within the supercell
in local memory. The racked-on column [xmol"'" xNl,

Input
N Words

per Sample

however, must be passed to another supercell where it is

needed by the (m + I)st Qg transformation and subse­
quem~ transformation. Because the leader ofthe tacked­
on column is zeroed out by passing through a supercell,
the element immediately following it in the sequence
becomes the new leader element.

Simplt Systolic Army

Now that we have a configuration fot a supercell that can
update one column ofa Cholesky matrix, we can config­
ure a complete systolic array by using N such supercells.
Figure 5 illust:r.ues such a systolic array, except that the
local memory in each superce1l. which holds the column

to be updated by that supercell, is shown separately. In

~~~~~[~=======lMemOry for Column 1

~~~~~[~======lMemOry for Column 2

~~~~~[~=====lMemOry for Column 3

L:.;:::.::;::.rr-----.. MemOry for Column 4

•

Memory for Column N

FIGURE 5. A systolic array of CORDIC supercel1s configured to update an N x N
Cholesky matrill when a new N-element obsel"Jation becomes available. Each
supercell updates one column of the Cholesky matrill. We input the observation
elements (the tacked-on column) one element at a time, and each supercell. as it
updates its column, modifies the column, making it one element shorter. and
feeds the column one element at a time to the next supercell in the chain. The
memory required in each supercell to store the Cholesky matrix declines as the
column proceeds forward along the chain of supercells. The computational work
required of each supercelt similarly declines.
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this array the data passed from supercdl to supercell are
components ofthe tacked-on column. one complex word
at a time. Thus. at the input to the first supercell, the data
seen in order ofarrival are

The arrows mark the boundaries between successive
tacked-on columns. Each tacked-on column consists of
one vector sample ofobserved interference X. As soon as

one tacked-on column has been pumped into the first
supercell. that superceU is ready to receive another tacked-

are not values that JUSt happen to be zeto--they are
inevitablyzero--so they need· not be o::plicicly sent from
supercell to supetceU, nor involved in computation.
Therefore. the first supercell is busy all the time. the
second supercell is idle for one microcycle out ofevery N,
the third supercell is idle for (WO microcycles oUt ofevery
N, and the last supercell is idle for all bUl one microcyde
Out ofevery N

ultmcy

The latmcy. or r, of a pipelined digital circuit is de­
fined as the number of inputs that a circuit accepts before

Supercell

inlo 0: "
o 10 1: '3

1 10 2: '.
2 to 3: b

Microcycles ---+-

FIGURE 6. The timing relationships for successive modifications of tacked-on columns as they are passed from
supercell to supercetl. For this eKample N = 5 and the latency is 3.

on column. The rime interval between the first elements

of twO successive vectors is called a macrocyck.
The output of the first supercell is a modified tacked­

on column. The other product of the supercell. the
updated first column of frte Cholesky matrix. is retained
within the supercell to be used as original data for me
next update. The modified tacked-on column has one

fC\Ver component than me original. Thus the OUtput of
the first supercdl (which is the input to the serond
superceJl) takes the form

" " I.... b.x2.x3.· ... xN .b.X2. X}, ... ,xN •...•

where b represents a blank, e.g., a time interval in which

no data are present. The output of the second supercdl
(which is the inpm to the third supercell) takes the form

" I "... , b.b,x} •...• xN • b.b.x) ..... XN •...

with.two blanks per tacked-on column. Strictly speak­
ing, me blanks represent zero-valued samples.These blanks

the first OUtput emerges. A supercell has me latency of
twO CORDICs. Therefore. each racked-on colwnn ele­
ment not zeroed by a given supercell emerges from that

supercell delayed by the superceB latency. relative to the
time it entered the supercdl. For example. Figure 6
illustrates the timing relationships (for N = 5 and l' = 3)
between corresponding elements of one tacked-on col­

umn as it is presented [0 me inputs of five supercells
(numbered 0 [Q 4). As soon as the tacked-on column

(shown in red) has entered the input supercell. mat

supercell begins to receive the subsequent racked-on col­
umn (shown in blue). This example shows howa tacked­
on column coexists in time with the next tacked-on

column. as well as with the earlier and later tacked-on
columns.

Figure 6 also illwtrates an inefficiency in this systolic

array. During many of the microcydes me higher-num­
bered supercells are not doing any computation. In addi­
tion. local memory in each tp-CORDIC is different be­

cause me columns ofLaredifferent lengths. The supercells
must either be given different amounts of memory or, if
they are all identical, most of them must waste memory.

~OlUM! 4 ~UMB(R 1, 1991 r~( lIKCOlH lUORliORY JOURNAL IS
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Table 1. Pairing of Columns in the Same Supercell

Supercell Column Number length Column Number length

0 , N N ,
, 2 N -, N -, 2

2 3 N-2 N-2 3
-- --
m m+ 1 N-m N-m m +'

- --
!i _1 N N N N

2 - + 1 - +' 22 2 2
-

A solution [Q these problems is described in the next

secuon.
Despite these inefficiencies, let us summarize the 0:­

ceUem characteristics of this architecture for updaring a
Cholesky matrix:
1. The CORDIC circuits are specialized for rotation;

hence they are efficient.
2. The CORDIC circuits are naturally pipe:lined;

hence they can be docked at high speed.
3. Data are passed only locally from processor to

processor; hence a global bus is nO[ necessary.
4. Data elements arrive where they are needed exactly

when they are needed; hence buffer storage is not
necessary.

5. All CORDIe circuits operate in synchrony by
using the same docks.

Forgetting Factor

In practice we v.ranr (Q update me Cholesky matrix as if
the dam were weighted by an exponential time window.
We accomplish this weighting if each ~CORDIC at~

renuares its L omput slighcly by a forgerring factor a
before reusing the L OUtput in me next updare. Each
tacked-on column from the nth previous update affects
the Cholesky matrix as if it had been multiplied by a".
Because me CORDIC circuit is also designed to imple.
ment a correction gain K we can combine the forgetting
F.!.ccor and correction gain into a single correction gain
Ka. The choice of ex is flexible; it can be chosen so mat
multiplication by Ka uses minimum hardware. By 5(.-

. .L 623/"leccmga=O.99867003,ulen Ka= (2 +2 +1)(2 +1) 2 ,
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and me multiplication uses only three adder Stages.
Ideally, me corrected gain of the 9-CORDICs, and of

the ~CORDICswhen corroccing the gain for the tacked·
on colwnn, should be unity. But we simplify the hard·
ware design if we use only one correction gain. The
attenuation of the tacked-on column due to the forget­
ting Factor, as it passes through 128 CORDIC circuits

in series, is slight enough so thar insignificant difference
occurs in nulling performance.

An Effiden[ Systolic Array with
Latency-ControUed Interleaving

In the previous section we described a systolic array thar

updates a Cholesky matrix. This section introduces a
major improvement mat increases the efficiency of the
systolic array. We assign each supercdl the responsibility

for updating not one but cwo columns of the Cholesky
matrix. We pair the colwnns together so mar the lengths
of me cwo assigned columns will always add up to N + 1,
as shown in Table I. [[his technique asswnes chat N is
even. A simjlar line ofdevdopment can be worked out if
Nis odd. We would use the first supercell for the longest

column and pair the remaining columns so that their
lengths add up to N.)

Figure 7 ilIusrrares a modified simple systolic array

that uses the paired columns. This pairing equalizes the
workload of the individual supercells, because each su~

percell now deals with cwo leaders and N - 1 followers
for every new vector sample of interference mat comes
along. As a result only half the nwnber of supercells are
needed. Furthermore, the memory used in a ¢-CORDIC
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to store the columns of the Cholesky matrix to be updat­
ed in that supercell is the same si-re-N + I words per
¢l'-CORDIC--in all the supercel1s.

Although all the advantages of a systolic array are

retained, twO aspects of this improved strucrure need
clarification. First, because the racked-on column in the
originally proposed systolic array is passed from superceU
m - I to supercell m, and because in the modified systolic
array superceU m has the responsibilities of supercelJ
N - I - m, each supercdl must pass dara both forward
and backward. For aample, supercdl 2 must pass its
output to superceU 3 bur, later, when it is serving the role
of supercell N - 3 it must pass its output to supercell
N- 2, which is reallysupercelll. Because these communi­
cations are still local, however, there is no need for a
glob,] b",.

64 Words
of X

per Update

The second consideration is more difficult [Q under~

stand or to explain. Data dements .in a systolic array
must arrive where they are needed oraccly when they are
needed. It would not be suitable ifsuperceU mwere passed
data from both superceU m- I and superceU m + I dur­
ing the same microcyde. We can avoid all such possible
collisions by choosing the latency, as explained below.

Because superceU m must alternate its activiry between
accepting blocks ofdata of length N - m from superceU
m- I and accepting blocks ofdata oflengrh m + 1 from
superceU m + 1, there is a periodiciry of N + 1 microcy­
des in its activiry pattern. If we nwnber microcydes
consecutively, men whatever datum superceU m accepts
during microcyde I, ir will be accepting a corresponding
darum during every microcyde whose numbel is con·
gruem [0 t with modulus N + 1. Thus me panern of

o

65

CQRDICs

63
65

CQRDICs

, 62

Column 63

I

····
31

••· -·,,33
• 65

32

•
•

Column 33

I
CORDICs

FIGURE 7. Global architecture of the folded systolic array. This architecture is derived
from the simple systolic architecture illustrated in Figure 5. Each supercell in this
figure plays the role of two supercells in Figure 5 and is responsible for updating two
columns of the Cholesky mat rill.. The memory required to store one of the two columns
is shown in red and the memory required for the other column is shown in blue. Each
superceJl, to update its red column, accepts a column from above and sends a
modified column to the supercelJ below. To update its blue column, each supercell
accepts a column from below and sends a modified column to the supercell above.
These two processes are interleaved so that no supercell is required to accept data
from above and from below in the same microcycle.
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Table 2. Microcycles When Each Supercell Input Is Busy

Processor When Inputs Presented Inputs/Cycle

fI, 0, ___ , N-1 N

P, l' + 1, __ . , T + N-1 N -1

P, 2(r+1), ... , 2r + N-1 N -2

Pm m(r+ 1), ... , mr + N-1 N-m

PN-l - m (N - 1 - m)( r + 1), ... , (N - 1 - m) r + N - 1 m + 1

acriviry appearing at the input to any supercell is deter­
mined completely by the timing and latency of the
earlier supercells.

We construCt Table 2 by first listing the microcycles
during which elements of an input tacked--on column
arrive at the input to supercell O. Then, tiling account of

the latency i, we list the microcycles when elements of
the resulting modified t3cked-on column arrive at super­
cell 1, and so on. Soon the timing pattern of inputs for

arbitrary supercell m from the logical supercell m - I
becomes obvious. One physical supercell serves as
both logical supercell m and logical supercell N - 1 - m
(Table 2 also includes the pattern of activity for this
supercell). These two patterns must follow each other
indefinitely to form a periodic pattern modulo N + 1.

Thus microcyde mT + N - I must be followed im~

mediately by a microcyde whose number is congruent to

(N - 1 - m)(r + 1) modulo (N + 1). The formal

congruence

(mr+ N -I) + I:; (N - 1- m)( T + I)

mod(N + I)

leads to

(m + 1)(2T + I):; Omod(N + I).

If the same r is to work for all m we must have

2T+I:;Omod(N+I).

The above congruence equarion can be wrmen
as an equaliry by choosing an unknown multiplier d
(a pariry argument shows that if N is even then d

18 IH! liNCOLN tUOUrORT JOUllNll VOtU~( 4 NUIlBE~ 1 Iggi

must be odd), so that

2T+I=d(N+I).

The smallest allowable latency occurs when d = 1;
namely,

N
r= -.

2

The idea ofchoosing a latency that allows all the various

panially zeroed tacked-on columns of different lengths
to interleave with one another without collisions is called

w!eru:y-control1ed inmuaving. This concept allows us to

fold a linear systolic array that is 50% efficient into a
half-size linear array that is 100% efficient, without pay­
ing a penalty in complication ofconuol.

Earlier, when we discussed the inputs to ¢-CORDICs,

we arranged that the quantities I"',m (which come ITom a
local memory) and Xm (which come from a 9-CORDIC)

should arrive at the ¢-CORDIC input during the same
microcyde. This timing requirement is also accomplished
by latency-controlled interleaving. The delay from one

update cycle to the next is N + I microcycles. Therefore,
as I"',m is updated it must be delayed by a combination of
the latency of the IfrCORDIC and an extra delay so that
it appears again at the input N -t 1 microcydes later.
Because the latency of a ¢-CORDIC is approximately
r12, we produce the extra delay by providing a small

memory with approximately N + I - r/2 words.
Figures 7 and 8 illustrate the folded systolic array.

Figure 7 shows the global architecture and Figure 8

shows the communication for a typical supercell and its
neighbors. Two aspects are imponant in the control of
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this syslolk array. First the data passed from CORDIC
cdl to CORDIC cdl must be marked to indicate wheth­
er it is a leader or a~ Second, becausea 6-CORDIC
cdl takes its input from tv..o other supercdls forward or

backward in the chain. some control must tell it which
supercd1 to ch~.

A simple rule accomplishes both comrols. At
the input to the first supercdl (supercell 0), we provide
an input bit called dirrction. W'hen dir«tion = tru~ the
leading supercdl takes in input from the given
N·element tacked-on column. W'hen dirmion changes
10 fals~ me leading supercell takes its next input from
supereell 1 (acting as superedl N - 2). The change in
dirmion from fa[g to trut or from t1W to fizls~ marks the
arrival ofa leader element, which causes the CORDIC to

set its controls as that dement passes through the stages.
The direction bit passes systolicly through both

CORDie cdIs, along with the tacked-on column, and
emerges from the ~CORDICs to be used in the next

supercd1. The leading edge must be delayed by one
additional micnx:ycle, howcver, rdative to the tacked.-on
column, so that the change in direction is attached to the

first nonzero element. The direction bit tr.I.vds only
forward along the chain (a backw2rd-passed direction
bit would be redundant and ignored). The control of
the folded arr.ay is actually no more complex than the
control of the original systolic array. Each supereel!

generates me control for the supercells that follow it in
me chain.

Finite-Word-Length Eff«u

Many factors control the improvement in SINR achiC\oed
by adaptive nulling. These factors include the number

and distribution of jammers. their Strength in compari·
son to thermal noise in the system, the antenna element

gain patterns, the mismatch of circuitry prior to digiti­
zarion. the adequacy of the statistical representation of
interference: (principally, the number of samples that
characterize me interference), and the accuracy of the
digital computation.

Our goal was to demonstrate adaptive nulling with at
least 50-dB improvement in SINR without relying on

special knowledge of the environment or of the antenna
elements. More precisely, if the dynamic range of the
input data is not tOO much greater than 50 dB, the
MUSE system should realize almost the full SINR im·
provement throrecically possible for that input data. To
achieve this go.al. we used octensive numerical simulation

to selea MUSE par.uneters that affect the accuracy of
the digital computation. Each hardware configuration
under consideration was simula(ed in software a( the bit

I~ by using simulated data sets.

Each simulated dataset was created to satisfY thea:
constraints: (I) the number of jammers (all with equal
power); (2) the ratio (12 ofjammer power to noise power,
and (3) the theoretically optimal SINR improvement
possible with infinitely precise computation. In the liter·
ature on numerical analysis, (1 is known as the condition

o

•

o

• -
o

II II 1111 1111 I II

FIGURE •. local communication between CORDIC circuits within a folded systolic array. Within each
supercell, the inputs external to the supercell come into the 9-CORDIC cell, which is shown in yellow. The
output of each 6-CORDIC cell has a real part that goes to the master ","CORDIC cell, shown in red, and an
imaginary part that goes to the slave ","CORDIC cell, shown in blue. The two ~CORDtC cells also use local
memory, shown in light grey, to read and write data. Outputs from the two ~CORDIC cells In any supercell are
transmitted to the 9-CORDIC cells in the two adjacent supercells.
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numb"of the data [6]. The datasets were random except
for these three constraints, and we tried several different
darasets with the same constraints for each experiment.
The Cholesky matrix determined by MUSE for each
dataset was used [Q determine weights, and the weighlS
were then used co determine the aerual SINR improve·
ment, which. in turn, was compared with the theoreti·
cally optimal SINR improvement. We therefore deter­
mined the loss in performance due to each hardware
configuration under consideration.

On the basis ofthese simulations, we determined four
finite-word-lengLh parameters: the word length of the
internal CORDIC registers, the word length ofthe racked­
on column, the word length ofthe Cholesky matrix, and
the number of CORDIC Stages. We also selected the
forgetting factor a described earlier. Because the simula­
tion of the CORDIC circuit rakes exaCt account of the
finite-word-length arithmetic process, the resullS it pro­
duces are bit·by-bit identical to me results expected from
actual hardware.

A precise execution of Equation 5 increases the num·
ber ofbilS to the right of the binary point by ibilS in the
ith stage. Rounded arithmetic is thus needed in almost
every stage. Such rounding introduces computacional
noise, and the cotal noise from all stages can be excessive.
Our experiments showed that cwo guard bits at the low
end ofeach word adequatdy reduce the rounding noise.

We also considered the problem of overflow, even
though overflow in a CORDIC circuit might be un­
avoidable. If x and J are both near their maximwn
values at input and are rotated by 45°, then a component
of the result can exceed the maximum by a factor ofal­
most .fi. This overflow must be prevented by an appro­
priate scaling of the inputs (scaling to prevent overflow is
common to all fixed-point signal processing projects).

Overflow within an interior CORDIC stage is pre­
vented in connection with realizing the combination of
the CORDIC gain compensation and forgetting fueror.
The required fIXed mulciplicarion

Ka =~ = 2
6

+ 2
2

+ 1
1024 2'

is split between a factor of 69/128 at the input to the
CORDIC (the guard bits are created. at this point) and
9/8 at the OutpUt of the CORDIC (the guard bits are
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dropped. at this point). Splitting the factor in this way
insures that an overflow occurs in the interior of the
CORDIC circuit only when it is an inevitable result of
an accurate rotation in the available word length.

Each contrived dataset contained exactly N = 64 vec­
tor samples, and its ideal Cholesky marrix was deter­
mined. We computed ideal weights for each dataset by
using floating-point arithmetic, and solved Equation 2
and Equation 3 by using the ideal Cholesky matrix, to

confirm that the predetermined SINR improvement was

correct. These 64-sample darasets were repeated as MUSE
inputs several times in succession, and snapshots of L
were taken afrer each block of 64 samples. With highJy
accurate arithmetic. we then used the computed Cholesky
matrices to compute the MUSE weights. Any loss in
SINR improvement when the MUSE weights were used
in place of the ideal weights was merefore attributed to
the computational error in compucing L with finire-word­
length arithmetic.

The seerion "Using CORDIC Cells to Solve Linear
Equations for Weights" describes another method of
compuring MUSE weights. In this method the linear
equations for the desired weights are solved. afrer L is al­
ready computed. by using the same finite-word-Iength
CORDIC arithmetic. Nulling based on weights compu­
ted this way thus generally shows an additional loss in
SINR improvement. This additional loss was also
studied.

Figure 9 shows the relation between the condition
number ofa possible dataset and the SINR improvement
possible for that dataset. The solid curve illusmues the
upper bound of the set of possible scenarios. With a
given condition number, no dataset is possible for which
a sidelobe canceler can give an SINR improvement that
lies above [his curve. Some scenarios actually tested are
marked as black points on the plot. The most interesting
dataselS are given by the poinlS slightly below the upper
bound; these points represent strong jamming that can
be deeply nulled.

Individual experiments with fixed~word.length pa­
rameters produce reduced SINR improvements. The
SINR improvemenlS from the weights obtained by using
MUSE's inaccuratelycompuced Cholesky matrix to solve
linear equations accurately are marked as red points on
the plor. The SINR improvements for the same inaccu­
rately computed Cholesky matrix when the weights are
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computed instead by CORDIC cells are marked as blue
poinrs on the plot. When several scenarios with the same
theoretical performance were tried, there is one black

point and a scanering of red and blue points shown for
the corresponding condition number.

The data in Figure 9 are for the final parameter
choices. We can characterize the expected system perfor­
mance from this darn in cwo ways. First, the loss in SINR

improvement due to parsimonious parameter choices
increases with the condition number of the data. For a

dataset with a condition number of 300 the loss is
negligible; for a dataset with a condition number of
1000 the loss is approximately 2 dB. Second, the loss in
SINR improvement does not seem to depend on the
number of jammers as long as there are fewer jammers

than degrees of freedom. All the experiments illustrated
in Figure 9 used 35 jammers.

The final parameter choices were as follows. The

number ofCORDIC stages, exclusive of the three stages
used for the combination of.CORDlC correction gain

and forgening factor, was selected as 13 (e.g., irrw: = 12).
The word length of internal registers of the CORDIC
cell was chosen as 24 bits. Of these 24 bits the twO least
significant bits are guard bits and are not passed beyond
the CORDIC. The tacked-on column data passed be~

tween CORDIe cells use a 22-bit wordlength. The

Stored matrix elements liJ are also 22-bit words. The in·
puts obtained from the antenna elements, although pre­
sented as 22-bit words, must not be allowed ro use the
full 22-bit dynamic range because the Cholesky matrix
generated from many such racked-on columns contains
the energy ofall of them and therefore is much larger in
dynamic range than any single vector.

Realization of MUSE with Restrucrurable VLSI

The systolic array described in the preceding sections has
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FIGURE 9. Scenarios and performance for ideal nulling and for simulated hardware
parameter choices.
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32 su~lls. Glch requiring three CORDIC cdls. A
CORDie a=ll designed as a CMOS integrated circuit
requires rens of thousands of uansistors, which classifies
it as VI.51. lkcause the dutt rypes of CORDIe cd1s
are differem in function but similar in struaure. we
designed only onc ~ of CORDIC cc=U capable of
operating in three different modes. Thus MUSE can be
built by using 96 identical VLSI chips. The MUSE
system can be realized morc= efficiencly, however, as a
larger single chip by using an advanced tech­
nology called Restrucrurable VLSI (RVLSI). Lincoln
Laborarory has already used this technology ro realize
six different systems, so the technology is reasonably
mature.

RVl..S1 comprises a design methodology, a laser-based
interconnect modificuion technology, and a set ofCAD
tools for building large-area integrated circuits [I. 7-1OJ.
Wafers are fabricated with redundant circuits and inter­
connectS, which are tested after fabrication. A laser is
then~ to build the desim:i system by forming and
breaking connections to me operable circuits. Panition­
ing considerations and fabrication yield determine me
sitt of me basic replaceable unit, or C~U; l)'pically, a cell
comprises mousands oftransistors. Experience has shown
that building a wafer with twice as many cells as ulti­
mately needed strikes a good balance between intercon­
nect overhead and cell yield.

Several laser resrruCluring technologies have been de­
veloped [81; the technique used in the MUSE applica­
tion, in which the laser forms a connection between (wo
adjacent diffusions, is completely compatible with St:ln­

dard imegrated-circuit processing. The laser-diffused link
is used for both signal and power connections. The laser
breaks connections by vaporizing a merallization path,
and the connections and the meral cuts are made with
high yield and appear to be reliable.

Six RVLSI systems have been built on th~ different
waf" designs II); the l:ug<s< design has 405,000 fune­
tional tr.lnsistors. One wafer-scale system (me lme­
gr.ltor) has been operating in a bench tester for over four
years without failure. The MUSE system and an­
other system now being built [10] are by far me largest
and most logically complex wafer-scale circuits ever
manufactured.

Several design choices made the Iv!USE system even
more compatible with the RVLSI technology. First, be-

cause of the significant COSt of inrercell connections, the
microc.yde was divided into four steps so that dara could
be moved into and out ofa CORDIC cdJ in four small
pieces.. Consider a 6 cdI (as shown in yellow in Figure 8)
that must read rwo 22-bit words from either of rwo
sources (me superc.dl ahead of it and me supercell be­
hind it) while ourpuning f'A'O 22-bit words to me 9 cells
(as shown in red and blue in Figure 8) of its supercelJ.
Such a (Jcell would require 132 connections to at least as
many metallization lines, without even counting docks,
comrol, jumpers, power, and ground. The four-step mi­
crocycle allows the same data to be moved with 33
connections and 33 metallization lines.

Second, the rwo adder-subtraClors in each CORDIC
stage were replaced by a single adder-subtractor
time-shared between (WO tasks. It first computes its y
OUtpUt

yf-y+2'p,x

but preserves me old y for the next computation

Xf-x-2i p,y.

Theadder-subU3.Clor is the largest panofeach CORDlC
stage, and is much larger than the control or the pipeline
latches. Therefore, a single adder-subtractor reduces the
sitt of the srage. tn exchange, however, 3. minirotation,
which requires essentially the time to perform the addi­
tion and the subtraction, takes twice as long. Because a
CORDIC cell is relatively large (even after mis change
to a single adder-subtractor), and because a fast adder
can be adequately designed, this modification was
judged worthwhile.

Third, we decided to provide each CORDIC cell
with adequate memory to store the required real
or imaginary part of me rwo columns of the Cho­
lesky matrix, even though the 9-CORDIC cells have
no need for this memory. The memory uses only a
minor ponion of the silicon area of each cell, and the
COSt of this silicon area mU$[ be balanced against the
competing cost of providing connections between the
~ cells and a second type ofcdl, called mmlory, or, alter­
natively, against the COSt of making tWO types of
CORDIC cells, some with memory and some without.
A fabrication fault in the memory porrion of a
CORDIC cell still leaves it useful as a 9-CORDIC cell.

•
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FIGURE to. Microphotograph of one CORDIC cell and its memory. The cell is 5.5
mm wide and 5.6 mm deep, is fabricated in CMOS with 2·pm design rules, and
has approximately 54,000 transistors.

Using CORDIC Cells to Solve Linear Equations

for Weights

Consider the general Nx N set of linear equations

where A and B are given and X is [Q be determined.

To solve the linear equations. we introduce a

seemingly unrelated second problem. First, construct

an Nx (N + I) matrix by appending the vector B OntO

the right edge ofA:

is 5.5 X 5.6 mm1
, exduding OUtput drivers and bond

pads. The CORDIC stages are 24 bits wide; 13 stages are

required [Q meet the accuracy criterion described in the

previous section on finite-word-length effects. Figure 1\

is a photograph ofa wafer ready for restructuring. It has

130 CORDIC cells, ofwhich 96 must function correct­
ly [Q allow us to structurc a MUSE systcm from the

single wafer.

The founh change is much more complex and is

described in the foUowing section. BrieRy, [Q ~ the

Cholesky matrix to solve the linear equations for me

nulling weights (after enough samples have updated a

Cholesky matrix), we would require data paths [Q pass

the M"N + 1)/2 matrix elements off the wafer [Q their
nextJX)Sirion. Instead we found a way to ~theCORDIC

cells [Q begin the process ofsolving the linear equations.

This method produces 2N intermediate results, which

are the only quantities sem off the wafer, and they are

moved on the paths already provided for moving the
tacked-on column.

Finally, the CORDIC cells are made in t'NO mirror­

image versions and the discretionary metallization paths

run bet'Neen them. The ability to use CORDIC cells on

either side ofa bundle ofdiscretionary connection tracks

gives extra interconnection flexibility. The CORDICcell

shown in Figure 10 is fubricated in.2-pm CMOS and test­

ed at the design speed. It COntains 54.000 transistors and

AX = B. (6)
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Next, postmulciply by an (N. I) X (N. I) un;wy ma­
trix Q dut causes the last column of this mamx to
become zeroes.

Third, partition Qas

Q... Q.

where Q.... is an N X N matrix. From this partition we
obtain the equation

AQ. +qB = 0,

which in rum leads to

A(-;,) = B

This result shows that the solution for X in Equation 6
is hidden in the elements making up the last column
of the unitary matrix Q of the second problem. If we
can zero out a column B tacked on to a matrix
A by using a tranSformation Q then AX '" B has the
solution X '" -Q,Jq.

The collection of CORDIC ctlls in the MUSE sys­
tem performs such a transformation. This f.aa suggests
we can use the same CORDIC ctIIs to soke for the
weights W with the Cholesky matrix as the marnx of
coefficients in the linear equations.

•

FIGURE 11. Photograph of a 5·in wafer conl8ining 130 CORDIe celts of the type
shown in Figure 10. Metallization paths running between cells can be either
fused together to make connections or vaporized 10 break connections. If at
least 96 of the cells are functional they can be connected together to form a
complete MUSE system.
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In the earlier 5I=Ction entitled "Nulling wim Givens
Transformations" we saw that in general twO setS of

linear equations must be solved. In the case ofa siddobe
canceler (a panicular choice of the steed ng vector,
S = [0. 0•... , 0, I]'), however. the first set is solved by
inspection rather than by computation, so only the second
set, that involving [h, needs to be solved by using the
CORDie cells. This second set ofequations is

LhW = _1_ 5 .
IN,N

In the above equation we can ignore the scale factor

IIlNN' because, as we stated earlier, changing it only
scales Why a constant, which cannot affect the resulting
SINR.

In the following discussion, we assume that in each
supercdl the twO columns of the snapshOi of L (which
we want to solve for W) are stored in a snapshot

memory. The process of solving for the weights
can therefore be interleaved with the process of up­
dating the Cholesky mauix as "-,are antenna data are

fo:l. into MUSE.
To use CORDIC cells to solve LhW = S, where Lh

is an uppeHriangular matrix, we must rewrite me

equation .set as one involving a loweHriangular ma­

trix with a tacked-on column. To accomplish this trans­

formation we use a reveml matrix j. Premuhiplying

a veaor or mauix by f reverses it tOp to bottom while

postmultiplying by f reverses it left to right. The

product JJ is an identity matrix. Now manipulate

LhW = S by insc:ning ff between Lh and W and men

premultiplying by j to give

(J L
hi )(;W) = (;5).

and then conjugate the entire equation:

This equation has me fonn of Equation 6 with

A = i Lhi

X = (;W)'
B = is,

and A is me lower triangular matrix

'N.N

'N,N-I 'N-I,N-I

'N.2 'N-I.Z '2,2

'N.I 'N-I,t '2.t I"

Solving for X immediately gives W because W = jX·.
The mcked-on column B is [I, 0, 0, ... , ot Changing
AX 0:: B into LhW = S, an equation wim a lower·

triangular matrix, is purely an exercise in notation. No

actual computations arc: involved.

DNCription oftlx Q·Opmuion

Two complications ~'ere overcome to use the MUSE

CORDIC cells to solve for weights. First, the timing

was modified slightly, because a system that is 100% effi­
ciem cannot otherwise be given an extra taSk. Two extra

idle microcyc1es were provided for every vector sample.

which increased the number of microcyc1es per vector

from 65 to 67. These microcydes were available to be
used [0 solve for weights. The revised latency r of a

supercell, in unitS of microcycles, must be

N
r=-+l.

2

Second, the matrix A = jL'j is stored by rows in the

snapshot memories of me supercells, rather than by col·
umns. Figure 12 illustrates the pattern ofstorage and also

shows how twO elements of the racked-on column B
(which is initialized as [1,0,0, ... , OJ') areassigned ro each

superceU. We can zero out the r:acked-on column B,

however. without moving the Cholesky matrix clements.

This process is called me Q-operation, and is meant to

zero out the tacked-on column B by using CORDIC

ror:ations, in a manner similar to me Cholesky update

process illustrated in Figure 2.

The first step of the process uses CORDIC circuits to

postmultiply the two columns

'N.N q
'N,N-I bz
'N.N-Z bJ
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by a unitary matrix to cause bl to become O. The
CORDIC comrols are developed by using the pair
(INN bl ) as leaders. This pair is available in supercell 0,
so me CORDIC comrols are developed mere. Because
the other pairs are available in other supercells, we pass
me CORDIC coorrols from one supercdl to the next,

moving the controls first down the chain of supercells
and then back up the chain of supercells, rotating each
pair in the supercell in which it is available and saving the
modified tacked-on column components in that supetcell
for use in the next step of me Q-operarion. Evemually
the CORDIC comrols are passed off the wafet from
supetcell 0 and are stored for later use in determining the

weights.
As a result ofall this activity, the first column ofA and

the tacked-on column B are modified. No funher use is
made of the first column of A. The racked-on column B
is modified so that irs first value is zero. The remaining
elements ofB (which were zero) are now nonzero values
[b2, b3,... , btJl available in supercells 1,2, ... , (NI2)-t,
(NI2)-I, ... ,2, 1,0, respectively, where they were created

by the rotations JUSt discussed.
The next step is to postmultiply the second column of

A and the modified tacked-on column B

'N-I.N-I b2

'N-I.N-2 b3

'N-l.2 bN _ I

'N-l.l bN

by a unitary matrix to zero our the next e1emem ofB. Both

dements in the first pair (IN-I. N-l' b2) are available in
supercell t, because b2 was just compmed there. These
elements are the leaders used to set up Q-operation
rotation comrols in supercell I. These Q-operarion con­
trols are moved to superceJl 2, where they comrol the

CORDICs acting on the pair (I~1. N-2' b3), then on to
supercell 3, where they concrol the CORDICs acting

on me pair (I~I.~3,b4)' and so on. Ultimately, these
Q-operation comrols also turn around at supercell
(NIl) - 1, travel back up me chain, and are sem off the
wafer at supercell O. Like the previous set ofQ-operation
comrols, these comrols are also stored off me wafer for
later use in determining weights. At the end of mis step

"

Supercell 0 'N,N b,

Supercell 1 'N,N-l 'N-l,N-l b,

,
Supercell 2 'N,N_2 'N-l,N..'}. 1N-2,N_2 b3

•-
Supercell 2 'N,3 'N-l,3 'N-2,3 '3,3 bN-2

Supercell 1
' N,2 'N-l,2 'N-2,2 '3,2 '2.2 bN_,

.,
Supercell 0 'N" 'N-l,1 'N-2.1 ...

'3.1 '2,\ ",1 bN

FIGURE 12. The lower-triangular matrix JLtJ, where J is a reversal matrix, is a re­
arrangement of the elements of a snapshot of the Cholesky matrix L. We append
the tacked-on column B = JS, which is obtained by reversing the elements of the
steering vector S. To solve for the nulling weights, we zero out the elements of B
by unitary transformations (rotations) carried out by the supercells. This figure
shows how the elements making up columns of JL1J and the column B are dis~

tributed among the 32 supercells. Each rotation involves data within one supercell.
To use the same rotation on an entire pair of columns, we must transmit the
CORDIC controls Ihat eHect that rotation from supercell to supercell. The data
rotated within any supercell remain in that supercell.
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Table 3. Projected Speed of MUSE

Interval Duration Rate

Half·Stap 831- nsec 12 MHz3 ,

Step (= 2 Half-Steps) 1661- nsec 6 MHz,
Microcycle (= 2 Steps) 3331- nsec 3 MHz,

Macrocycle (= 67 Microcycles) 221- /Jsec 44.78 kHz,
Update Cycle (300 Macrocycles) 6.7 msec 150 Hz

the elements of the now twice-modified mcked-on
column [b3, b4, ... , bN II are available in supercells
2, 3, ... , (N/2) - I, (N/2) - I, ... , 2, I, 0, ex.cuy where

they will be needed to carry our the third Step. (The
modified second column of A is no longer needed.)

Proceeding in this way, we perform the emire process
ofzeroing out the tacked-on column by using CORDIC
rotations ofdata that are never moved from supercell to
supercell. The only information that moves during the
Q-operation is the Q-operation rotation comrols. Be­
cause these comrols are passed locally to the adjaccm
supercdls, no global communication paths are needed.
Each set ofQ-operation controls is ultimately passed off
the wafcr and stored for use in the final phase ofweight
determination.

In the final phase we determine the elements in the
last column of rhe unitary matrix Q. Although che
CORDICs were used to postmultiply (AlB) by Q the
transformation Q was never determined in a standard
matrix form. The Q-operation comrols that were passed
off the wafer are all that is needed to instruct CORDIC
cells to carry out the operations that realize a postmulti­
plication by Q. Therefore, any CORDIC cells with these
same controls can postmuhiply an identity matrix by Q.
This postllluitiplica.cion gives us the matrix clements of
Q. which we can usedirecdy as the desired weights in our
nulling problem.

Summary ofRrvjs~dMUSE ContrOl and TIming

The fastest clock present in the system is called a halfsup.
A half-step is the time nea:led to pass eleven bits between

CORDIC cells. Two consecutive half-step intervals make

a st~p and suffice co move a word. The reciprocal of me
step interval is the rale ar which new data are presented to

an adder within any CORDIe scage. Two steps are
called a microcyck. A microc:ycle is che time required co
inpuc one complex element inco any 9-CORDIC, and its
reciprocal is rhe rare at which new rotations can begin in
any CORDIC cell.

The rime interval berween input of successive
64-e1emem vectors imo MUSE is 67 microcycles,
called a mncroryck. At the input to any 9-CORDIC
cell the 67 microcydes are assigned co move data, as de­
scribed in the senion entitled "An Efficient Systolic
Array wirh Latency-Controlled Inrerleaving," except
that a blank microc}'c1e is inserted berween each

tacked-on column. These blank microcycles are used to
move Q-operation controls.

Any macrocycle can be designated as a snapshot cycle.
The Q-operation is initiatcd when the Cholesky factor
has been updated to reflect the effect of the vector
fed into MUSE during a snapshot cycle. The imerval
between successive snapshm cycles is called an /(pdnr~

']C1e.
The MUSE riming builds up from the half-step, and

me CORDIC cell is designed to operate at a dock speed
of 12 M Hz. Table 3 summarizes the various dock speeds
and periods implied by the 12-MHz half-step dock.

Statistical accuracy of the weights to within about I

dB of optimal SINR improvement requires about 320
updates [3]. This updare rare means chat the weights can
be updared as often as 140 times per second. MUSE,
however, is physically capable of updating its weights
much more frequemly or less frequently because a snap-
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shot cycle is designated by a special external signal.
Ikcaus< MUSE has 96 CORDIC cdl" and each cell

performs 3 million new rotations per second. a con~n*
tiona! computer requiring 10 instruaions per rotation
would have: to perform 2.88 billion insuucrions per
s«ond to match the operational speed of MUSE.

Summary and Starw

This mide describes the design ofa wafer-scale adaptive­
nulling processor called MUSE. whose: individual celis
carry Out coordinate ror:uions by using the CORDIe
algorirhm. The CORDIC cdIs are almOSt 100% utilized
and communic:ue with one anomer in a simple sys­
rolic f"ashion. The high efficiency and modulari()' of
the algorithm is achieved by interleaving rwe data
urea-ms traveling in opposite directions. It also de­
pemls on a carefUl choice ofCORDIC latency to avoid
collisions.

A CORDie cell-including memory-requires ap­
proximately )4,000 CMOS transistors and occupies a
55-mm X 5.6-mm rccrangle. Ir has been docked at 12
MHz, so char an entire system of 96 such cells can
updale a 64~e1ement weight vector on the basis of 300
ohserv:l.tions in 6.7 msec. Aconventional computer would
need 2.88 giga-ops to carry out the same task. Simula­
tions have demonstrated that the system can support 50
dB ofSINR improvement. A yield analysis has demon­
mmed that the entire MUSE system can be realized on a
single wafet if cell yield averages 70%. Furthermore, the
simple systolic communication permits the use of twO Ot
more wafers ifcdl yield is tOO low.

The main function of the CORDIC cells is to update
the Cholesky Faeror of the correlation matrix ofobserved
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interference as new data~ observed, with a new update
approximately every 22 1J5eC. The solution of a set of
linear equacions wh~ coefficients om: a snapshm of the
Cholesky Factor gives the desired nulling weights. The
CORDIC ceUs are also used, in an interleaved fashion,
to solve these linear equations.

We have demonstrated the viability of me technical
concept of the MUSE system, although much work stiU
needs to be completed. We first manufactured the
CORDIC cell illustrated in Figure 10 as an integrated
circuit for ease in testing. We have operated a shon chain
of 12 such packaged CORDIC cdls as an eight-dement
nulling system to voifY all the system aspectS of the
MUSE architecture, and also to check out a tester and
test software. which we wiU use later to test and operate
the wafer-bastd 64-dement nulling system. We Fabricat·
ed wafetS containing 130 CORDIC cells and we have
tested ceUs and interconneaion paths on these wafetS.
Figu~ II shows one such wafer. We are nO'N using a
wafer (which lacks sufficient working CORDIC cells to
form a complete system) to test software used to control
the laser that makes and breaks connections. The final
step will be to use that laser-comrol software on a wafer
with at least 96 working cells.
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