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B This article describes an architecture for a highly parallel system of processors that
are specialized for real-time adaptive antenna nulling computations with many
degrees of freedom. This system is called the Matrix Update Systolic Experiment
(MUSE), and we describe a specific realization of MUSE for 64 degrees of freedom.
Each processor uses the Coordinate Rotation Digital Computation (CORDIC)
algorithm and has been designed as a single integrated circuit. Ninety-six such
processors working together can update the 64-element nulling weights on the

basis of 300 new observations in only 6.7 msec. This update rate would require 2.88

billion instructions per second from a conventional processor. The computations

support 50 dB of signal-to-interference ratio (SINR) improvement in a sidelobe

canceler. The simple connectivity between processors permits MUSE to be realized

on a single large wafer by using restructurable VLSIL.

HEN AN ANTENNA ARRAY of NV clements is
s g / subject to undesired interference, such as
jamming plus the thermal noise in each of
the IV receivers, the interference power can be reduced,
relative to the power in some desired signal, by forming
as the system output a suitably weighted sum of the
waveforms observed on all the antenna elements. We call
this process zulling. Usually the choice of suitable weights
must be made adaptively. The choice of weights that
maximizes the signal-to-interference ratio (SINR) ob-
served in the system output is the solution to a well-
studied least-squares problem. The number of arithmetic
steps required to solve this least-squares problem, for
almost any algorithm chosen, is proportional to the cube
of the number of antenna elements. Furthermore, be-
cause the statistical characteristics of the interference
change with time, the adaptive weight determination
must be performed repetitively and in real time.

When the antenna array is on board a satellite, the
number of antenna elements that can be nulled in prac-
tice is limited by the combination of the real-time re-
quirement driven by satellite motion and the cubic de-

pendence of the computational cost of adaptive weight
determination. A previous study of computational cost
set this limit at V= 26, based on an assumed conven-
tional digital signal processing architecture. This limita-
tion is not absolute, because it depends on the resources
we are willing to allocate to a nulling processor. Using
more resources, however, is not an efficient way to handle
a large number of antennas.

In this article we describe a specialized adaptive-nulling
processor, called the Matrix Update Systolic Experiment
(MUSE), which is capable of determining the weights
for N = 64 antenna elements. Becausc of its novel archi-
tecture, it can be compactly realized by using restructur-
able wafer-scale integration; the resulting system fits in
a 4-in square. MUSE is substantially smaller and light-
er than a conventional processor, and it uses substantial-
ly less power. Although the MUSE processor is special-
ized for NV = 64 antennas, the MUSE design concept
can be applied to the design of a similar processor
for an antenna array with a different number of
clements.

We briefly explain the mathematics of adaptive null-
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ing and the use of Givens transformations for voltage-
domain computation of a Cholesky factor. We explain
Coordinate Rotation Digital Computation (CORDIC)
rotations and show how they are suitable for realizing
the Givens transformations needed to update a Cholesky
factor. We also develop the idea of a systolic array of
computing elements, each of which is composed of
three CORDIC rotation cells operating together. An
array of connected computing elements shares the work
of updating a Cholesky factor, and this work is the
largest part of the computational task. By using a tech-
nique that we call latency-controlled interleaving, we
show how to modify the systolic array to make it 100%
efficient for the Cholesky update task.

Once a Cholesky factor is found, the nulling weights
are the solution of a set of linear equations whose constant
coefficients are the Cholesky factor. Our CORDIC cells
are also used for the solution of the linear equations. We

array so that it can be used for both the Cholesky update
and the solution of the linear equations. -

We then consider how the MUSE systolic array can
be adapted for implementation by using Restructurable
Very Large-Scale Integration (RVLSI) technology [1].
We describe a design that uses 96 identical cells and
the plan that provides intercell discretionary
connections.

Nulling with Givens Transformations

Figure 1 illustrates a typical adaptive-nulling system.
The outputs of the N antenna elements are down-con-
verted and the NVwaveforms are simultaneously sampled
and digitized. At the #th sampling instant a complex
number x; comes from the 7th antenna. We collect the
simultaneous samples together in a column vector X(7).
These vector samples are passed to a module that performs
the actual nulling, and some samples are passed to another

describe a modification of the timing of our systolic module that adapts the weights.
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FIGURE 1. A diagram of a typical adaptive-nulling system. We simultaneously sample the waveforms
on N antenna elements to give a column of complex numbers X for each sampling instant. The sam-
pling rate must at least equal the radar bandwidth, which is 5 MHz in this example. We use many fewer
columns of X per second (45,000 in this example) to characterize statistically the interference we wish
to null. We take a snapshot 150 times per second of L, the matrix of interference statistics, and use it

to compute the weights W.
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The adapted weights can be treated as a column
vector W. Although W varies with time, it is not recom-
puted for every sampling interval. The nulled out-
put y(n), which is a scalar, is formed by computing
the dot product of the vector W with the vecror X(n).
We express the nulling operation by the vector
cquatlon

y(n) = W'X(n),

where ()”is the Hermitian transpose.

The adapration process shown in Figure 1 involves
antenna samples X(») and a lower triangular matrix L,
that is regularly updated and used to determine W. The
interval within which W is held constant is defined as a
block. Within each block, W is chosen optimally with re-
spect to the statistics of interference appropriate to that
block. The statistics that matter are the correlations of
interference observed from one antenna element to an-
other; these statistics are arranged into a matrix R, which
we do not know in practice because it is a statistical
expectation. Let

R = €()(n) 1 (n)).

where J(n) is the interference component of X(7). We
estimate Rby using samples of the vector X(7). The
matrix R varies with time, but we have neither the time
to gather enough samples to estimate R perfectly nor the
computational resources to use all the samples we have.
We must use a limited amount of data to obtain an
estimate of R for each block, then gather another limited
set of data to update R for the next block, and so on.
Let us therefore collect all the samples of X(#) that
we intend to use to determine the optimum weights
for a given block and refer to this collection of data as X.
There is no implication that all the samples used come
from within the given block—we actually envision using
samples from within a sliding window. If the num-
ber of samples of X(7) is M and each sample is an
N-element vector, the M vectors can be arranged into a
matrix of M columns and N rows. The estimate of the
correlation matrix based on this matrix of raw data is
given by R, where
Bim—xx¥,

1
7 (1)

To optimize SINR we must first characterize the
signal, given that we now have an estimate of the inter-
ference statistics. Let S be a known constant vector. It
relates to the desired signal as follows: if all interference
were absent and only a signal were present, we would
expect to observe in X(7) some scalar time function
times the vector S. Then the optimum choice of W is
known from the literature [2] to satisfy the set of linear
equations

RW

S.

These equations tell us, first, that the only informa-
tion we need from the matrix X to determine the
optimum weight vector is the information neces-
sary to estimate R Hence, if we intend to estimate
R by using R in Equation 1, we can comfortably trans-
form X in any way as long as that transformation
leaves XX” unchanged. Second, this equation tells us
that we can find W from R by solving linear equations,
and hence it suggests that we might accept as a good
estimate of W the solution to the same equations
using R,

RW =§,

where R is the estimated correlation matrix in Equation
1[3].

How can we transform X while leaving XX 4
unchanged? Suppose we postmultiply X by a unitary
matrix Q:

X = XQ.

By definition a unitary matrix has the property QQ'=1,
S0 we can insert QQ"’ berween Xand X” in the equation
for R:

1

s 1 b _ 1 byh s sp

R 2 XX 5 XQQ"X 5. {ll®
Therefore, we can transform Xinto X without chang-
ing the correlation matrix that we estimate from it
Furthermore, we can repeat this transformation with
another unitary matrix, and repeat it again, as often as
we like, until the final transformed version of X has a
convenient form, with the nonzero elements confined to
an Nx N lower-triangular submatrix, which we call Z,

on the left. For example,
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The matrices L, , and L, in Figure 1 are examples of L.
We refer to lower-triangular matrices such as Las Cholesky
factors, or Cholesky matrices.

Let us give La physical interpretation. If the columns
of L were the samples that arrive on the antenna, the
optimum choice of weight vector W would be the same
as for the actual data. Therefore, we are allowed to use L
when we determine the weights, from which the deter-
mination of the optimum weight vector W is relatively
simple.

By making this sequence of transformations we can
write

A

L xxt=p="Lyr.
M M

Then the linear equations that must be solved to obtain
W take the simpler form

LI"W = MS.

The known constant M can be absorbed into the steer-
ing vector S and is hercafter omitted. (Because W is the
solution to a set of linear equauons, scaling S by any
constant also scales the solution W by the same constant.
But the SINR in W”’X(n) remains unchanged when we
multiply W by a scale factor, so the constant M can be
ignored.)

We can solve ZL” W = S in two steps. First define
an intermediate vector variable Y defined by

I'w=y, @)
so that Y is the solution to
LY = 8. (3)

We solve Equation 3 for Y and then, having found Y, we
are in position to solve Equation 2 for W. Both of these
equations are easier to.solve than general matrix-vector
equations because the matrices involved are triangular.
(If the antenna array is designed so that the appropriate
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steering vector S = [0, 0, ..., 0, 1]’, then the triangular set

of equations in Equation 3 becomes trivial and only

the set in Equation 2 needs to be solved. This kind of
adaptive antenna array is known as a sidelobe canceler.)

In summary, the determination of optimum weights
for adaptive nulling can be divided into three phases:

1. Obtain interference. Form an M X N rectangular
matrix X whose columns are the vector samples
X(n) of interference observed at the antenna ele-
ments.

2. Triangularize. Use orthogonal transformations to
compute a triangular Cholesky matrix L from X.

3. Back-substitute. Solve easy linear equations for the
weights W.

This process can be contrasted with a mathematically
equivalent approach in which we first compute R by the
equation

R=XXx",

followed by a procedure called Cholesky factorization to
determine L from R, followed by the two back-substitu-
tions. This approach is valid but not numerically robust.
In the matrix R, the largest and smallest eigenvalues are
usually determined by jammer power and thermal noise
power, respectively. Their ratio, if large, determines the
minimum word length needed numerically to solve lin-
ear equations involving R. This minimum-word-length
limitation does not depend on the algorithm used to
solve the linear equations. If, however, we determine L
directly from the raw data X, without first computing R,

the minimum-word-length requirement for solving lin-
ear equations involving L or L” is about half that needed
with the approach that first computes R. Because short
word lengths are more economical in the design and
construction of hardware, short-word-length algorithms
are preferred.

Updating the Cholesky Matrix in Successive Blocks

Now let us look at the treatment of successive blocks. We
must first recognize that both X and L are different in
different blocks. Let the raw data X and the Cholesky
matrix L in the kth block be X, and L, respectively. How
is X, related to X}, ,?

If the statistics of interference remained constant with
time, then we could expect to estimate those statistics
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better and better by using more and more raw data in the
successive blocks. We could append the observations
that became available during the kth block, X . onto
the matrix of all the observations available in earlier
bIOC.kS X&_ll

X, = [Xiy| X0 ]
so that

k& =f21,_1+X Xb

new= " new

and
LIt = L B+ X X0 =
PG 8 ¢ N
This relation suggests an efficient way to update L by

using unitary transformations. If Q is a unitary transfor-
mation, then

LkLi = [L&—lenm]QQb[L&—ilxnm]h :

We choose Q to force zeroes into the positions occupied

by X, thus

/ n n

i i n n

3 B T PR

I 1 1 Il|n n
/ 0 0
1 0 0
I LI |0 0
E & 4 110 0

There are two advantages to updating L, by using
L, ,. The first advantage is that the use of prior work
saves computation. The second advantage, which is more
important, is that Xj, involves more and more dara, so
that more and more storage is required as #increases. The
storage of L, requires only N? real numbers.

Because the interference statistics change with time,
although slowly in comparison with the duration of a

block, we would like to diminish the effects of the

previous blocks. An often-used technique is to weight
the data by an exponentially decaying window. To ac-
complish this diminishing window we define a forgerting
factor called @, and substitute aZ,_; in place of L , in the
previous algorithm for updating L,

We can now update L recursively as each new vector
sample becomes available, and we can preserve an after-
the-update snapshot of L= L at the end of the kth block.
Let X be the new vector sample, let L, be the Cholesky
matrix for all previous data, and let a be the forgetting
factor (@ is now chosen on the basis of updating L on a
per-sample basis rather than on a per-block basis).
We use an (N + 1) X (N + 1) unitary matrix Q in the

update

[aL,4|X]Q = [L,|0]-

Next we discuss the mechanization of the unitary
transformation. As we have previously explained, post-
multiplication by a sequence of simple unitary transfor-
mations accomplishes the same effect as a single more
elaborate transformation. Because our purpose is to in-
troduce zeroes into the tacked-on column X of the ma-
trix [alml X], we can use a sequence of unitary trans-
formations that each zeroes out one additional element.

The unitary transformations are of two types. The
first type changes the leading nonzero element (which is
typically a complex number) of the tacked-on column
into a real number. A unitary matrix Qg that accom-
plishes this change is an (NV+ 1) X (N+ 1) identty matrix
with the lower right diagonal element replaced by
¢”’. Postmultiplying [O‘Lafd | X] by Qg leaves most
of the matrix unchanged but multiplies the last col-
umn (the tacked-on column) by ¢/° We choose 8o that
multiplying the leading element of the tacked-on
column by ¢’ makes the product real.

The second type of unitary transformation is called a
Givens transformation, denoted by Q. This transforma-
tion is derived from an (NV+ 1) X (N'+ 1) identity martrix
by changing four elements. The mth and (N + 1)st
diagonal elements become cos ¢. The element in row
(N + 1) and column m becomes sin ¢. The element in
column (N + 1) and row m becomes —sing. When we
postmultiply by Q, we affect only the mth column and
the tacked-on (/V + 1)st column. Suppose that the ele-
ments in the same row in those two columns are /and x.
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After the transformation we will have
" <= lcos¢ + xsin ¢

x' & xcos¢—Isinog.

If /and x are real, this transformation can be interpreted
as a geometric rotation through the angle ¢ in the plane
defined by /and xaxes.

By an alternation of postmultiplications by unitary
matrices of these two types, we can zero out the entire
tacked-on column. Figure 2 illustrates this progression
by using an example with NV = 4, which requires eight
transformations. Complex quantities in this figure are
indicated by cand real quantities are indicated by 7 For the
Qg transformations only the tacked-on column (shown
in blue) is changed, while for the Q, transformations
only two matrix columns (shown in red) are changed.
One of these columns is the tacked-on column and
one is a column of the same length from the lower-trian-
gular portion of the matrix. The other columns are not
affected.

The mechanics of the two types of unitary transfor-
mation have much in common. The Q transformation
looks at the leading nonzero element of the tacked-on
column and determines the angle 6 that will make this
leading element real. Because the column is composed of
complex numbers, the determination of @ depends on two
real numbers that are respectively the real part and the
imaginary part of the leading element x;:
~ lm(x,-)

Re(x;) -
When cos 8 and sin 8 are known the transformation Qy
is applied to the remainder of the tacked-on column,
in which the real and imaginary parts can be considered

as two columns of real numbers. In terms of the two
columns, the ith Qg transformation takes the form

@ = arctan

0 0
0 0 o 2o
Re(x,-) Im(x,—) |:<:f:)s sin :|
sinf® cosé@

Rf(xm) I“"(xm)

Re(xy) Im(.xN)_
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FIGURE 2. Eight successive unitary transformations that
zero out the four-element tacked-on column.

On the other hand, for the sth Givens transformation
Q. the angle ¢ is determined by the leading elements of
two columns. The number Z; is the leading element of
column 7and the number x; is the leading element of the
tacked-on column. The leading element of the tacked-
on column is real because of the preceding Qj transfor-
mation. If we assume that /, is real, then by mathemati-
cal induction it remains real because all the operations
involved in updating it produce real numbers. The angle
¢ is determined by
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¢ = arctan -—:ci~,
i
which is analogous to the determination of 6 for the
Qp transformation. Then, when cos¢ and sin¢ are
available, the Givens transformation is applied only to
the two columns affected by it.

We can write the Givens transformation in terms of
these two columns as

" 0 6
0 0
cos¢ —sin ¢
b Xi 2 .
sing cos ¢
i %in
i Ini xn :

This representation shows that the mechanization of the
Givens transformation is nearly identical to the mechani-
zation of the Q transformation. There is one important
difference, however, between the two transformartions.
After we deal with the leading elements, we apply the
remainder of the Givens transformation to two columns
of complex numbers, whereas we apply the Q transfor-
mation to two columns of real numbers. We overcome
this difference by considering the Givens transformation
to apply separately to the real parts of its two affected
columns and to the imaginary parts of its two affected
columns. In these terms a Givens transformation is iden-
tical to two Q transformations. All the unitary transfor-
mations needed to zero out a tacked-on column ap-
pended to a triangular Cholesky matrix can be imple-
mented by using identical hardware. In subsequent sec-
tions of this paper we describe a design for such hardware
in detail.

Let us estimate the total workload involved in using
the algorithm we have described to zero out a single
64-element vector. Each element in the Cholesky matrix
is modified by using three rotations. To carry out each
rotation with a conventional computer architecture re-
quires two load instructions, four multiplications, an
addition, a subtraction, and two stores, or approximately
ten instructions per rotation. (The steps involved to

rotate the leading elements are different and more in-
volved, but we are counting them conservatively, as
if they required the same number of steps as the
other rotations.) Therefore, the total number of rota-
tions is

B(N+(N=1)+(N=2)++1)= %N(N +1),

or 6240 rotations for NV = 64. This number is equiv-
alent to approximately 62,000 instructions per new
sample.

Several authors have proposed parallel computation
to compute the update of a Cholesky matrix. The best-
known architecture for this computation is a systolic
array of computing elements arranged in a triangular
mesh [4]. For an array with N degrees of freedom this
triangular array uses MV + 1)/2 processors, which limits
practical application of the triangular array architecture
to small values of .

CORDIC Realization of Givens Transformations

In this section we describe a coordinate-rotation algo-
rithm known as Coordinate Rotation Digital Computa-
tion (CORDIC) that is well suited for digital reali-
zation. The basic idea for this algorithm was first
published in 1959 by J.E. Volder [5].

Suppose a vector from the origin, with endpoint coor-
dinates (x y), is rotated to new endpoint coordinates
(x", ), such that the angle between the new and old
vectors is & This rotation is represented by

5! 2= (cosé)(x - ytan 5)
' = (cos&)(y + xrang),

which involves four multiplications. If we choose special
angles, however, some of the multiplications simplify to
shifts. We will concentrate on the special angles &, with
i=0,1,2,...,,defined by

ang; =27,

The muldplications by tan &; therefore become right
shifts by 7 bit positions. For fixed 7 the two special
angles have the same magnitude but opposite sign and
therefore they have the same cosine.

The first step of the CORDIC algorithm is to de-
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scribe an arbitrary angle & as a sequence of rotations ei-

ther forward or backward by &, with 7= 0, 1,...,
Thus
£ = ZP;@.-‘-
i=0

Let p;= %1 determine whether a particular minirotation
is forward or backward. The rotation of (x; y) through the
angle £ is therefore accomplished by the following se-
quence of steps:

-0
(*) x=2 P{JJ’J

& cos ¢
O{y + Z_Opux

\J )

((x) x—Z_IpIy}

y+ 2'lp1x

x=2" P2y
& cos &, 3
Y +2 PaX

& cos &,
e

(x

¥

(4)

A key step in the CORDIC algorithm is to recognize
that the multiplications by cos &; can be collected to-
gether into a single constant K, where

[=-]
= I [cos"

=0

This constant is independent of the overall rotation angle
&. Thus we can revise Equation 4 to the form

)Ll el]

() =C)wa(2)

=) ()
;

=G
y (5)
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We see that the CORDIC algorithm is composed of
stages; most of the stages perform minirotations and the
last stage performs a gain correction. For any angle &, all
the minirotations are employed but each is employed in
either a clockwise or counterclockwise direction. Although
an exact realization of the CORDIC algorithm calls for
an infinite number of minirotations, for obvious practi-
cal reasons we use a finite number of stages. The higher-
numbered stages contribute little to the accuracy of the
angle specification (a binary adder or multiplier uses a
finite number of stages for the same reason). In addition,
the correction stage is not a general-purpose multiplier
but a multiplication by the fixed quantity K. An exact value
of K depends on how many CORDIC stages are used,
but when the number of stages is more than six, the
appropriate correction is well approximated by 0.607253.
(In the MUSE application, the fixed multiplication by X
designed into each CORDIC circuit is combined with
the forgetting factor )

The CORDIC method therefore achieves rotation
without using trigonometric functions and without ex-
plicit multiplications. If the angle & is known in advance,
it can be used to determine the set of controls

(,0,,1—0 max)

each of which is represented by a single bit. This set of
controls represents the angle & by digits p; in an uncon-
ventional number system different from any of the con-
ventional radix systems. Each p; can be stored in a flip-
flop in the stage whose direction of rotation it controls.

In the Givens transformation application, however,
we do not know the angle of rotation in advance. We are
given a coordinate pair (x, y) and we must rotate that pair
through the angle such that the resulting rotated pair
becomes (x’, 0). This operation is called vectoring. Then
we must rotate some number of other pairs through the
same angle. We have no need to know what the angle is,
as long as we can rotate by that angle. Therefore, what we
really need for vectoring is an algorithm that determines
the CORDIC controls p;. A major advantage of the
CORDIC algorithm is that the same circuit used for
rotating can be used for vectoring.

Consider the first CORDIC stage, for which the
special angle is either 45° or —45°. Our purpose is to ro-
tate the input (x, y) toward the x axis. If y is above the
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axis we rotate down and if y is below the axis we ro-

tate up. Therefore,
po = sgn(x)sgn()-

When we have determined p, we compute the effect of
the first stage on xand yand pass (x, y) as modified to the

second stage. Here again our rule is to rotate down if y
is above the axis and up if yis below the axis.

py = sgn(x)sgn(y).

In this way the determination of the CORDIC controls
is simple.

p; = :gn(x)sgn(_y), P=0,.. 0, -
We save these controls in the flip-flops of the specialized
stages and use them to control those stages for the suc-
ceeding (x, y) pairs that are to be rotated through the
same angle.

Figure 3 illustrates the concept of a CORDIC circui,
made up of independent stages, in which minirotations
modify the input coordinates (x, y) from stage to stage.
The controls p; are shown as if they depend only on

$

_____!____!___

-

L

Py P

sgn(y), but in fact they depend on the product
sgn(x)-sgn(y). This simplified figure illustrates the natu-
ral pipelining aspect of CORDIC circuits. If registers are
placed between the stages (at the positions illustrated by
dashed lines), then a new rotation problem, with a new
coordinate pair (x, y), can be started by the circuit as
soon as the preceding pair is latched at the output of the
first stage. Then another rotation can be started when the
first two pairs have been latched at the outpurt of the
second and first stages, respectively, and so on. Rotation
can follow vectoring in this pipelined fashion, and only
an addition and a subtraction need to be performed in
each stage (digital logic performs these operations rapid-
ly). Therefore, a CORDIC circuit can begin new rotation
problems at a high rate. By contrast the time required to
complete any given rotation is proportional to the num-

ber of CORDIC stages provided.

CORDIC Circuits in a Systolic Array for
Updating a Cholesky Matrix

The pipelined CORDIC circuir is ideally used as one of
a large number of computing elements operating in
parallel in a systolic array. The term sysrolic originated in

FIGURE 3. Pipelined CORDIC circuit. A rotation is accomplished as a
sequence of minirotations through special angles & = p; tan™'2”, where p;is

either 1 or -1,
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human biology to describe the circulatory system of
blood through blood vessels and various organs. In a
systolic computing system the data elements are figura-
tively pumped from computing organ to computing
organ and processed as they move. Ideally, data elements
in a systolic system should be processed as soon as they
become available, so they must be available at the right
place at the right time. The algorithmic and the architec-
tural considerations are closely intertwined. This section
describes how we use a large number of pipelined
CORDIC circuits in a parallel systolic pipelined system
to update a Cholesky matrix.

Supercell

To update one of the /N columns of a Cholesky matrix L
for each new vector sample, we need a Qg transformation
that operates only on the tacked-on column X followed
by a Qj transformation that operates on the tacked-on
column X and a single column of L. We configure a
processor for this task from three CORDIC circuits and
sufficient memory to hold the one column of data. One
CORDIC circuit performs the Qp transformation and
two CORDIC circuits perform the Q; transformation.
This combination of three CORDIC circuits and a
column of memory is called a supercell.

Data vectors of complex numbers are sequentially
presented to the CORDIC circuitry. The time for one
complex word to enter a CORDIC circuit is called a
microcycle. Every vector that enters a circuit has a leading
element, or leader (its first element), and some number
of following elements, or followers (all the other ele-
ments). The CORDIC circuits perform vectoring on the
leader and rotation through the same angle for the fol-
lowers. As an example, a vector composed of Kelements
flows into a CORDIC circuit during K consecutive mi-
crocycles. The elements that make up this vector flow
out of the CORDIC circuit at the same rate they en-
tered, which is one element per microcycle. Although
passage through the CORDIC circuits modifies the ele-
ments, they retain their identity and their order, and the
leader on input becomes the leader on output.

Simply passing the tacked-on column through a
CORDIC circuit accomplishes the @ transformation.
The CORDIC circuit changes the phase of the leader so
that the leader becomes a real number, and then changes
the phase of the followers by the same amount. A
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CORDIC circuit used in this manner is called a
6-CORDIC.

A Q,(Givens) transformation is a rotation of pairs of
complex numbers through a real angle. For each com-
plex pair, two new pairs are assembled. One pair is
formed from the two real parts and the other pair is
formed from the two imaginary parts. These new pairs
are separately rotated by the same angle. To accomplish a
Qj transformation we use two CORDIC circuits, which
we call the master -CORDIC and the slave -CORDIC.
The master ¢-CORDIC deals with the real parts of
complex data while the slave ¢-CORDIC deals with the
corresponding imaginary parts of the data. The rotation
of a column pair by either type of ¢-CORDIC is iso-
morphic to a phase change in a &-CORDIC. The col-
umns are presented to both ¢-CORDICs sequentially, one
element per microcycle, just as is done in a 8-CORDIC.
Figure 4 illustrates the architecture of a supercell.

The input vectors for ¢-CORDICs contain complex
elements from the output of a ¢CORD]C and from one
column of the Cholesky matrix. The master ¢-CORDIC
gets the real part of its input vector from the real part of
the Cholesky matrix column and its imaginary part from
the real part of the 6CORDIC output. The slave
¢-CORDIC gets the real part of its input vector (except
the leader) from the imaginary part of the Cholesky
matrix column and the corresponding imaginary part
from the imaginary part of the 6 CORDIC output. The
leader of the vector that is input to a slave ¢-CORDIC is
a special case, which is discussed below. The outputs of
the two types of ¢-CORDIC:s are then reassembled. The
real parts of the ¢-CORDIC outputs become the real and
imaginary parts, respectively, of the updated Cholesky
matrix column. The imaginary parts of the -CORDIC
outputs become the real and imaginary parts, respectively,
of the updated tacked-on column. We explain this process
in more detail below.

Note that the CORDIC circuits are used for two
different meanings of rotation—one is the phase modifi-
cation of a complex number and the other is the coordi-
nate rotation of a two-element vector. In the coordinate
rotation, although the two coordinates can be complex
numbers, the angle through which they are rotated is
real, and the same real rotation angle is used on the real
and imaginary components, respectively.

To explain this process in more detail, first let us
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Input
(The Column X Tacked onto L)

Re(X) +

+ Im(X)

Y

Y

Unused Memory §-CORDIC Supercell
Re(X) Im(X)
Re(L) Im(L)
Memory for Sk S Memory for
Real Part of L Master 9-CORDIC imaginary Part of L Slave ¢-CORDIC

A |

4 |

Re(X) *

* Im(X)

S —

Output

(The Modified Tacked-On Column X)

FIGURE 4. A CORDIC supercell. The 8-CORDIC determines the value of 8that makes the product eiex1 real, and
then multiplies each element in the tacked-on column X by &%, The ¢-CORDIC finds the value of ¢ that rotates
(l44, 1) into (/34, 0), and then rotates the two full (/, x) columns by that angle. The master ¢-CORDIC works on
the real parts of X while the slave ¢-CORDIC works on the imaginary parts of X. The local memories in the

¢-CORDIC hold the column of L to be updated.

consider the mth Q transformation. Its input is the
tacked-on (N — m + 1)-component column with com-
plex components [x,, x,,,,..., xy]. These components
are fed into a -CORDIC one pair at a time, beginning
with the pair [Re(x,,), Im(x,,)]. The first pair is marked as
a leader with a special indicator that causes the CORDIC
circuit to determine and set the p; controls as it passes
through the successive rotation stages (vectoring). Thus
the modified leader x,, that emerges from the  CORDIC
is rotated in phase so that it is real—its imaginary com-
ponent is zeroed. The followers x,,,,,..., xy are rotated
by the same phase as the leader but they generally emerge
from the 6 CORDIC as complex numbers.

We can think of the CORDIC circuit as a pipe and
visualize the tacked-on column being pumped through
the 6CORDIC one element at a time. The number of
elements inside the pipe at any time is equal to the
number of CORDIC stages.

In the mth Q, transformation the data pumped
through the transformation are in two columns,
Uwr b1 <> Ini) a0d [, %, 15> xp7). These col-
umns are all complex numbers except for the real pair
(e %,). We arrange timing so that /,,, and x; are
available simultaneously. The master ¢-CORDIC re-
ceives its two inputs from the real parts of the two input
streams. The slave ¢-CORDIC receives its two inputs
(with one exception) from the imaginary parts of the two
input streams. The pair (/,, ,,, x,,) is marked as a leader so
that as it passes through the master 3-CORDIC it deter-
mines the angle controls p; that rotate all the follower
pairs [Re(/,,,), Re(x,)]. The same angle controls are used
in the slave ¢-CORDIC to rotate the follower pairs
(Im(Z,,,), Im(x,)]. The slave p-CORDIC does not need
to compute [Im(/,, ), Im(x,,)] because this pair already
has the value (0, 0). Therefore, we trick the slave
¢-CORDIC into setting its angle controls identical to
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those of the master -CORDIC by giving it the leader
pair [Re(/,, ), Re(x,,)] in place of [Im(Z,, ), Im(x,,)]. The
outputs of the two ¢-CORDICs are an updated column
of the Cholesky matrix and an updated tacked-on col-
umn with its mth element zeroed.

In this way, the three CORDIC circuits accomplish
the two transformations needed to zero out one element
in the tacked-on column. Figure 4 illustrates how the
6-CORDIC and the master and slave ¢-CORDICs are
interconnected and how the pipelining of each individu-
al CORDIC circuit extends naturally to the pipelin-
ing of the supercell. The Cholesky matrix column
e et +» i) can be stored within the supercell

however, must be passed to another supercell where it is
needed by the (m + 1)st Qp transformation and subse-
quent Q, transformation. Because the leader of the tacked-
on column is zeroed out by passing through a supercell,
the element immediately following it in the sequence
becomes the new leader element.

Simple Systolic Array

Now that we have a configuration for a supercell that can
update one column of a Cholesky matrix, we can config-
ure a complete systolic array by using N such supercells.
Figure 5 illustrates such a systolic array, except that the
local memory in each supercell, which holds the column
to be updated by that supercell, is shown separately. In

| Memory for Column 1

] Memory for Column 2

| Memory for Column 3

in local memory. The tacked-on column [x,,},..., xx],
Input
N Words
per Sample 5 .
Supercell ||
L.‘ — ¢}
r—
Supercell ||
8
Supercell ||
Ll =
—
Supercell

IMemory for Column 4

Supercell

Memory for Column N

FIGURE 5. A systolic array of CORDIC supercells configured to update an N x N
Cholesky matrix when a new N-element observation becomes available. Each
supercell updates one column of the Cholesky matrix. We input the observation
elements (the tacked-on column) one element at a time, and each supercell, as it
updates its column, modifies the column, making it one element shorter, and
feeds the column one element at a time to the next supercell in the chain. The
memory required in each supercell to store the Cholesky matrix declines as the
column proceeds forward along the chain of supercells. The computational work
required of each supercell similarly declines.
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this array the data passed from supercell to supercell are
components of the tacked-on column, one complex word
ata time. Thus, at the input to the first supercell, the data

seen in order of arrival are

l d l
veny xl;ng x3,..-sXN s xl,xz,xs,...,xN g e

The arrows mark the boundaries between successive
tacked-on columns. Each tacked-on column consists of
one vector sample of observed interference X. As soon as
one tacked-on column has been pumped into the first
supercell, that supercell is ready to receive another tacked-

are not values that just happen to be zero—they are
inevitably zero—so they need not be explicitly sent from
supercell to supercell, nor involved in compurtation.
Therefore, the first supercell is busy all the time, the
second supercell is idle for one microcycle out of every N,
the third supercell is idle for two microcycles out of every
N, and the last supercell is idle for all but one microcycle
out of every V.

Latency

The latency, or 1, of a pipelined digital circuit is de-
fined as the number of inputs that a circuit accepts before

Supercell
into0: x; X, X3 X, Xs X; Xy Xg Xg X5 Xy Xo X Xg X5 X Xy Xg Xg Xg X Xp
Oto1: x3 x4, x5 b X x5 x x5 b x5 x3 x, x5 b x5 x5 x % b x x5 x
1t02: x; b b x x x b b x x x b b X3 X4 xs b b x3 x4 x5 b
2to3: b b x, 3 b b b x, x¢ b b b x, x3 b b b x, x5 b b b
3to4: b x3 b b b b xx b b b b x b b b b x5 b b b b x

Microcycles —»

FIGURE 6. The timing relationships for successive modifications of tacked-on columns as they are passed from
supercell to supercell. For this example N = 5 and the latency is 3.

on column. The time interval between the first elements
of two successive vectors is called a macrocycle.

The output of the first supercell is a modified tacked-
on column. The other product of the supercell, the
updated first column of the Cholesky matrix, is retained
within the supercell to be used as original data for the
next update. The modified tacked-on column has one
fewer component than the original. Thus the output of
the first supercell (which is the input to the second
supercell) takes the form

L l !
vor 505 %35 X350 Xpr s by X9 %5500 s XpG 20ens

where & represents a blank, e.g,, a time interval in which
no dara are present. The outpur of the second supercell
(which is the input to the third supercell) takes the form

\ 1 1
vor 1050 %3555 5v 0 503855505 %6RE 4o s

with.two blanks per tacked-on column. Strictly speak-
ing, the blanks represent zero-valued samples. These blanks

the first output emerges. A supercell has the latency of
two CORDICs. Therefore, each tacked-on column ele-
ment not zeroed by a given supercell emerges from that
supercell delayed by the supercell latency, relative to the
time it entered the supercell. For example, Figure 6
illustrates the timing relationships (for N= 5 and 7= 3)
between corresponding elements of one tacked-on col-
umn as it is presented to the inputs of five supercells
(numbered 0 o 4), As soon as the tacked-on column
(shown in red) has entered the input supercell, that
supercell begins to receive the subsequent tacked-on col-
umn (shown in blue). This example shows how a tacked-
on column coexists in time with the next tacked-on
column, as well as with the earlier and later tacked-on
columns.

Figure 6 also illustrates an inefficiency in this systolic
array. During many of the microcycles the higher-num-
bered supercells are not doing any computation. In addi-
tion, local memory in each ¢-CORDIC is different be-
cause the columns of L are different lengths. The supercells
must either be given different amounts of memory or, if
they are all identical, most of them must waste memory.
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Table 1. Pairing of Columns in the Same Supercell
Supercell Column Number Length Column Number Length
0 1 N N 1
1 2 N -1 N -1 2
2 3 N-2 N-2 3

m m+1 N-m N-m m+1
N N N N N
> -1 B 2 +1 2 +1 2

A solution to these problems is described in the next

section.

Despite these inefficiencies, let us summarize the ex-
cellent characteristics of this architecture for updating a
Cholesky matrix:

1. The CORDIC circuits are specialized for rotation;
hence they are efficient.

2. The CORDIC circuits are naturally pipelined;
hence they can be clocked at high speed.

3. Data are passed only locally from processor to
processor; hence a global bus is not necessary.

4, Dara elements arrive where they are needed exactly
when they are needed; hence buffer storage is not
necessary.

5. All CORDIC circuits operate in synchrony by
using the same clocks.

Forgetting Factor

In practice we want to update the Cholesky matrix as if
the data were weighted by an exponential time window.
We accomplish this weighting if each ¢-CORDIC at-
tenuates its L output slightly by a forgetting factor o
before reusing the L output in the next update. Each
tacked-on column from the nth previous update affects
the Cholesky matrix as if it had been multiplied by o”.
Because the CORDIC circuit is also designed to imple-
ment a correction gain K we can combine the forgetting
factor and correction gain into a single correction gain
Ka. The choice of a is flexible; it can be chosen so that
multiplication by K& uses minimum hardware. By sc-
lecting & = 0.99867003, then Ka = (2°2%+1)(2°+1)/2"°,
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and the multdplication uses only three adder stages.

Ideally, the corrected gain of the CORDICs, and of
the ¢-CORDICs when correcting the gain for the tacked-
on column, should be unity. But we simplify the hard-
ware design if we use only one correction gain. The
attenuation of the tacked-on column due to the forget-
ting factor, as it passes through 128 CORDIC circuits
in series, is slight enough so that insignificant difference
occurs in nulling performance.

An Efficient Systolic Array with
Latency-Controlled Interleaving

In the previous section we described a systolic array that
updates a Cholesky matrix. This section introduces a
major improvement that increases the efficiency of the
systolic array. We assign each supercell the responsibility
for updating not one but two columns of the Cholesky
matrix. We pair the columns together so that the lengths
of the two assigned columns will always add up to N+ 1,
as shown in Table 1. (This technique assumes that N is
even. A similar line of development can be worked out if
Nis odd. We would use the first supercell for the longest
column and pair the remaining columns so that their
lengths add up to V)

Figure 7 illustrates a modified simple systolic array
that uses the paired columns. This pairing equalizes the
workload of the individual supercells, because each su-
percell now deals with two leaders and N - 1 followers
for every new vector sample of interference that comes
along. As a result only half the number of supercells are
needed. Furthermore, the memory used in a ¢-CORDIC
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to store the columns of the Cholesky matrix to be updat-
ed in that supercell is the same size—/N + 1 words per
¢-CORDIC—in all the supercells.

Although all the advantages of a systolic array are
retained, two aspects of this improved structure need
clarification. First, because the tacked-on column in the
originally proposed systolic array is passed from supercell
m~— 1 to supercell 7, and because in the modified systolic
array supercell m has the responsibilities of supercell
N -1 — m, each supercell must pass data both forward
and backward. For example, supercell 2 must pass its
output to supercell 3 but, later, when it is serving the role
of supercell N — 3 it must pass its output to supercell
N-2, which is really supercell 1. Because these communi-
cations are still local, however, there is no need for a

global bus.

64 Words
of X
per Update

e

CORDICs

CORDICs

The second consideration is more difficult to under-
stand or to explain. Data elements in a systolic array
must arrive where they are needed exactly when they are
needed. It would not be suitable if supercell 72 were passed
data from both supercell 72— 1 and supercell 7 + 1 dur-
ing the same microcycle. We can avoid all such possible
collisions by choosing the latency 7 as explained below.

Because supercell 7 must alternate its activity between
accepting blocks of data of length N— m from supercell
m— 1 and accepting blocks of data of length 7 + 1 from
supercell 7 + 1, there is a periodicity of N + 1 microcy-
cles in its activity pattern. If we number microcycles
consecutively, then whatever datum supercell 7 accepts
during microcycle 4 it will be accepting a corresponding
datum during every microcycle whose number is con-
gruent to ¢ with modulus NV + 1. Thus the pattern of

Column 6

/4

Column 1

¥

Memory

Column2 Column 63

¥ ¥

Memory

-
-

Column 32 Column 33

CORDICs

4 /

Memory

FIGURE 7. Global architecture of the folded systolic array. This architecture is derived
from the simple systolic architecture illustrated in Figure 5. Each supercell in this
figure plays the role of two supercells in Figure 5 and is responsible for updating two
columns of the Cholesky matrix. The memory required to store one of the two columns
is shown in red and the memory required for the other column is shown in blue, Each
supercell, to update its red column, accepts a column from above and sends a
modified column to the supercell below. To update its blue column, each supercell
accepts a column from below and sends a modified column to the supercell above.
These two processes are interleaved so that no supercell is required to accept data
from above and from below in the same microcycle.
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Table 2. Microcycles When Each Supercell Input Is Busy
Processor When Inputs Presented Inputs/Cycle

R ..., N=1 N

P, T+1,..., T+ N-1 N -1

R, 2r+1),..., 2r + N -1 N-2

/= m(z+1),..., mr+N-=-1 N-m
By a N=-1=m)z+1),..., N=1=mc+N-1 m+1

activity appearing at the input to any supercell is deter- must be odd), so that

mined completely by the timing and latency of the
earlier supercells.

We construct Table 2 by first listing the microcycles
during which elements of an input tacked-on column
arrive at the input to supercell 0. Then, taking account of
the latency 7, we list the microcycles when elements of
the resulting modified tacked-on column arrive at super-
cell 1, and so on. Soon the timing pattern of inputs for
arbitrary supercell m from the logical supercell m — 1
becomes obvious. One physical supercell serves as
both logical supercell 7 and logical supercell N—1 - m
(Table 2 also includes the pattern of activity for this
supercell). These two patterns must follow each other
indefinitely to form a periodic pattern modulo N + 1.
Thus microcycle m7 + N — 1 must be followed im-
mediately by a microcycle whose number is congruent to
(N-=1-= m)r + 1) modulo (N + 1). The formal

congruence
(mt+N-1)+1=(N-1-m)(r+1)
mod (N +1)
leads to
(m+1)(27+1) = 0mod(N +1).
If the same 7 is to work for all 7.2 we must have
2t+1=0mod(N +1).

The above congruence equation can be written
as an equality by choosing an unknown multiplier 4
(a parity argument shows that if NV is even then 4
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2t+1=d(N +1).

The smallest allowable latency occurs when 4 = 1;
namely,

N
=

2
The idea of choosing a latency that allows all the various
partially zeroed tacked-on columns of different lengths
to interleave with one another without collisions is called
latency-controlled interleaving. This concept allows us to
fold a linear systolic array that is 50% efficient into a
half-size linear array that is 100% efficient, without pay-
ing a penalty in complication of control.

Earlier, when we discussed the inputs to ¢-CORDICs,
we arranged thar the quantities /, ,, (which come from a
local memory) and x,, (which come from a 6 CORDIC)
should arrive at the ¢- CORDIC input during the same
microcycle. This timing requirement is also accomplished
by latency-controlled interleaving. The delay from one
update cycle to the next is N+ 1 microcycles. Therefore,
as /, ,, is updated it must be delayed by a combination of
the latency of the ¢-CORDIC and an extra delay so that
it appears again at the input N + 1 microcycles later.
Because the latency of a ¢-CORDIC is approximately
t/2, we produce the extra delay by providing a small
memory with approximately N+ 1 — 7/2 words.

Figures 7 and 8 illustrate the folded systolic array.
Figure 7 shows the global architecture and Figure 8
shows the communication for a typical supercell and its
neighbors. Two aspects are important in the control of
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this systolic array. First the data passed from CORDIC
cell to CORDIC cell must be marked to indicate wheth-
eritis a leader or a follower. Second, because a 6CORDIC
cell takes its input from two other supercells forward or
backward in the chain, some control must tell it which
supercell to choose.

A simple rule accomplishes both controls. At
the input to the first supercell (supercell 0), we provide
an input bit called direction. When direction = true the
leading supercell takes its input from the given
N-element tacked-on column. When direction changes
to false the leading supercell takes its next input from
supercell 1 (acting as supercell N — 2). The change in
direction from false to true or from trueto false marks the
arrival of a leader element, which causes the CORDIC to
set its controls as that element passes through the stages.

The direction bit passes systolicly through both
CORDIC cells, along with the tacked-on column, and
emerges from the ¢-CORDICs to be used in the next
supercell. The leading edge must be delayed by one
additional microcycle, however, relative to the tacked-on
column, so that the change in direction is artached to the
first nonzero element. The direction bit travels only
forward along the chain (a backward-passed direction
bit would be redundant and ignored). The control of
the folded array is actually no more complex than the
control of the original systolic array. Each supercell
generates the control for the supercells that follow it in
the chain. ’

Finite-Word-Length Effects

Many factors control the improvement in SINR achieved
by adaptive nulling. These factors include the number
and distribution of jammers, their strength in compari-
son to thermal noise in the system, the antenna element
gain patterns, the mismatch of circuitry prior to digiti-
zation, the adequacy of the statistical representation of
interference (principally, the number of samples that
characterize the interference), and the accuracy of the
digital computation.

Our goal was to demonstrate adaptive nulling with at
least 50-dB improvement in SINR without relying on
special knowledge of the environment or of the antenna
elements. More precisely, if the dynamic range of the
input data is not too much greater than 50 dB, the
MUSE system should realize almost the full SINR im-
provement theoretically possible for that inpurt dara. To
achieve this goal, we used extensive numerical simulation
to select MUSE parameters that affect the accuracy of
the digital computation. Each hardware configuration
under consideration was simulated in software ar the bit
level by using simulated dara sets.

Each simulated dataset was created to satisfy three
constraints: (1) the number of jammers (all with equal
power); (2) the ratio 6 of jammer power to noise power,
and (3) the theoretically optimal SINR improvement
possible with infinitely precise computation. In the liter-
ature on numerical analysis, o is known as the condition

o

It

I
=

FIGURE 8. Local communication between CORDIC circuits within a folded systolic array. Within each
supercell, the inputs external to the supercell come into the 8-CORDIC cell, which is shown in yellow. The
output of each 8-CORDIC cell has a real part that goes to the master ¢-CORDIC cell, shown in red, and an
imaginary part that goes to the slave ¢-CORDIC cell, shown in blue. The two ¢-CORDIC cells also use local
memory, shown in light grey, to read and write data. Outputs from the two ¢-CORDIC cells in any supercell are
transmitted to the 8<CORDIC cells in the two adjacent supercells,
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number of the data [6]. The datasets were random except
for these three constraints, and we tried several different
darasets with the same constraints for each experiment.
The Cholesky matrix determined by MUSE for each
dataset was used to determine weights, and the weights
were then used to determine the actual SINR improve-
ment, which, in turn, was compared with the theoreti-
cally optimal SINR improvement. We therefore deter-
mined the loss in performance due to each hardware
configuration under consideration.

On the basis of these simulations, we determined four
finite-word-length parameters: the word length of the
internal CORDIC regjisters, the word length of the tacked-
on column, the word length of the Cholesky matrix, and
the number of CORDIC stages. We also selected the
forgetting factor & described earlier. Because the simula-
tion of the CORDIC circuit takes exact account of the
finite-word-length arithmetic process, the results it pro-
duces are bit-by-bit identical to the results expected from
actual hardware.

A precise execution of Equation S increases the num-
ber of bits to the right of the binary point by 7bits in the
ith stage. Rounded arithmetic is thus needed in almost
every stage. Such rounding introduces computational
noise, and the total noise from all stages can be excessive.
Our experiments showed that two guard bits at the low
end of each word adequately reduce the rounding noise.

We also considered the problem of overflow, even
though overflow in a CORDIC circuit might be un-
avoidable. If x and y are both near their maximum
values at input and are rotated by 45°, then a component
of the result can exceed the maximum by a factor of al-
most +/2 . This overflow must be prevented by an appro-
priate scaling of the inputs (scaling to prevent overflow is
common to all fixed-point signal processing projects).

Overflow within an interior CORDIC stage is pre-
vented in connection with realizing the combination of
the CORDIC gain compensation and forgetting factor.
The required fixed multplication

621 242241 22 +1
1024 af 2*

is split between a factor of 69/128 at the input to the
CORDIC (the guard bits are created at this point) and
9/8 at the output of the CORDIC (the guard bits are
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dropped at this point). Splitting the factor in this way
insures that an overflow occurs in the interior of the
CORDIC circuit only when it is an inevitable result of
an accurate rotation in the available word length.

Each contrived dataset contained exactly V= 64 vec-
tor samples, and its ideal Cholesky matrix was deter-
mined. We computed ideal weights for each dataset by
using floating-point arithmetic, and solved Equation 2
and Equation 3 by using the ideal Cholesky matrix, to
confirm that the predetermined SINR improvement was
correct. These 64-sample datasets were repeated as MUSE
inputs several times in succession, and snapshots of L
were taken after each block of 64 samples. With highly
accurate arithmetic, we then used the computed Cholesky
matrices to compute the MUSE weights. Any loss in
SINR improvement when the MUSE weights were used
in place of the ideal weights was therefore attributed to
the compurational error in computing L with finite-word-
length arithmetic.

The section “Using CORDIC Cells to Solve Linear
Equations for Weights” describes another method of
computing MUSE weights. In this method the linear
equations for the desired weights are solved, after L is al-
ready computed, by using the same finite-word-length
CORDIC arithmertic. Nulling based on weights compu-
ted this way thus generally shows an additional loss in
SINR improvement. This additional loss was also
studied.

Figure 9 shows the relation between the condition
number of a possible dataset and the SINR improvement
possible for that dataset. The solid curve illustrates the
upper bound of the set of possible scenarios. With a
given condition number, no dataset is possible for which
a sidelobe canceler can give an SINR improvement that
lies above this curve. Some scenarios actually tested are
marked as black points on the plot. The most interesting
datasets are given by the points slightly below the upper
bound; these points represent strong jamming that can
be deeply nulled.

Individual experiments with fixed-word-length pa-
rameters produce reduced SINR improvements. The
SINR improvements from the weights obtained by using
MUSE'’s inaccurately computed Cholesky matrix to solve
linear equations accurately are marked as red points on
the plot. The SINR improvements for the same inaccu-
rately computed Cholesky matrix when the weights are
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computed instead by CORDIC cells are marked as blue
points on the plot. When several scenarios with the same
theoretical performance were tried, there is one black
point and a scattering of red and blue points shown for
the corresponding condition number.

The data in Figure 9 are for the final parameter
choices. We can characterize the expected system perfor-
mance from this data in two ways. First, the loss in SINR
improvement due to parsimonious parameter choices
increases with the condition number of the data. For a
dataser with a condition number of 300 the loss is
negligible; for a dataset with a condition number of
1000 the loss is approximately 2 dB. Second, the loss in
SINR improvement does not seem to depend on the
number of jammers as long as there are fewer jammers
than degrees of freedom. All the experiments illustrated
in Figure 9 used 35 jammers.

The final parameter choices were as follows. The

number of CORDIC stages, exclusive of the three stages
used for the combination of CORDIC correction gain
and forgetting factor, was selected as 13 (e.g., 7, = 12).
The word length of internal registers of the CORDIC
cell was chosen as 24 bits. Of these 24 bits the two least
significant bits are guard bits and are not passed beyond
the CORDIC. The tacked-on column data passed be-
tween CORDIC cells use a 22-bit wordlength. The
stored matrix elements /;; are also 22-bit words. The in-
puts obtained from the antenna elements, although pre-
sented as 22-bit words, must not be allowed to use the
full 22-bit dynamic range because the Cholesky matrix
generated from many such tacked-on columns contains
the energy of all of them and therefore is much larger in
dynamic range than any single vector.

Realization of MUSE with Restructurable VLSI

The systolic array described in the preceding sections has
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FIGURE 9. Scenarios and performance for ideal nulling and for simulated hardware

parameter choices.
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32 supercells, each requiring three CORDIC cells. A
CORDIC cell designed as a CMOS integrated circuit
requires tens of thousands of transistors, which dlassifies
it as VLSI. Because the three types of CORDIC cells
are different in function burt similar in structure, we
designed only one type of CORDIC cell capable of
operating in three different modes. Thus MUSE can be
built by using 96 identical VLSI chips. The MUSE
system can be realized more efficiendy, however, as a
larger single chip by using an advanced rtech-
nology called Restructurable VLSI (RVLSI). Lincoln
Laboratory has already used this rechnology to realize
six different systems, so the technology is reasonably
mature.

RVLSI comprises a design methodology, a laser-based
interconnect modification technology, and a set of CAD
tools for building large-area integrated circuits [1, 7-10].
Wafers are fabricated with redundant circuits and inter-
connects, which are tested after fabrication. A laser is
then used to build the desired system by forming and
breaking connections to the operable circuits. Partition-
ing considerations and fabrication yield determine the
size of the basic replaceable unit, or cel/; typically, a cell
comprises thousands of transistors. Experience has shown
that building a wafer with twice as many cells as uld-
mately needed strikes a good balance berween intercon-
nect overhead and cell yield.

Several laser restructuring technologies have been de-
veloped [8]; the technique used in the MUSE applica-
tion, in which the laser forms a connection between two
adjacent diffusions, is completely compatible with stan-
dard integrated-circuit processing. The laser-diffused link
is used for both signal and power connections. The laser
breaks connections by vaporizing a metallization path,
and the connections and the metal cuts are made with
high yield and appear to be reliable.

Six RVLSI systems have been built on three different
wafer designs [1]; the largest design has 405,000 func-
tional transistors. One wafer-scale system (the Inte-
grator) has been operating in a bench tester for over four
years without failure. The MUSE system and an-
other system now being built [10] are by far the largest
and most logically complex wafer-scale circuits ever
manufactured.

Several design choices made the MUSE system even
more compatible with the RVLSI technology. First, be-
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cause of the significant cost of intercell connections, the
microcycle was divided into four steps so thar data could
be moved into and out of a CORDIC cell in four small
pieces. Consider a 8 cell (as shown in yellow in Figure 8)
that must read two 22-bit words from either of two
sources (the supercell ahead of it and the supercell be-
hind it) while outputting two 22-bit words to the ¢ cells
(as shown in red and blue in Figure 8) of its supercell.
Such a 6 cell would require 132 connections to at least as
many metallization lines, without even counting clocks,
control, jumpers, power, and ground. The four-step mi-
crocycle allows the same data to be moved with 33
connections and 33 metallization lines.

Second, the two adder-subtractors in each CORDIC
stage were replaced by a single adder-subtractor
time-shared between two tasks. It first computes its y
output

ye y+2'px

but preserves the old y for the next computation

x(—x—Zip,-_y.

The adder-subtractor is the largest part of each CORDIC
stage, and is much larger than the control or the pipeline
latches. Therefore, a single adder-subtractor reduces the
size of the stage. In exchange, however, a minirotation,
which requires essentially the time to perform the addi-
tion and the subtraction, takes twice as long. Because a
CORDIC cell is relatively large (even after this change
to a single adder-subtractor), and because a fast adder
can be adequately designed, this modification was
judged worthwhile.

Third, we decided to provide each CORDIC cell
with adequate memory to store the required real
or imaginary part of the two columns of the Cho-
lesky matrix, even though the 8CORDIC cells have
no need for this memory. The memory uses only a
minor portion of the silicon area of each cell, and the
cost of this silicon area must be balanced against the
competing cost of providing connections between the
¢ cells and a second type of cell, called memory, o, alter-
natively, against the cost of making two types of
CORDIC cells, some with memory and some without.
A fabrication fault in the memory portion of a
CORDIC cell still leaves it useful as a CORDIC cell.
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FIGURE 10. Microphotograph of one CORDIC cell and its memory. The cell is 5.5
mm wide and 5.6 mm deep, is fabricated in CMOS with 2-um design rules, and

has approximately 54,000 transistors.

The fourth change is much more complex and is
described in the following section. Briefly, to use the
Cholesky matrix to solve the linear equations for the
nulling weights (after enough samples have updated a
Cholesky matrix), we would require data paths to pass
the M + 1)/2 matrix elements off the wafer to their
next position. Instead we found a way to use the CORDIC
cells to begin the process of solving the linear equations.
This method produces 2V intermediate results, which
are the only quantities sent off the wafer, and they are
moved on the paths already provided for moving the
tacked-on column.

Finally, the CORDIC cells are made in two mirror-
image versions and the discretionary metallization paths
run between them. The ability to use CORDIC cells on
either side of a bundle of discretionary connection tracks
gives extra interconnection flexibility. The CORDIC cell
shown in Figure 10 is fabricated in 2-um CMOS and test-
ed at the design speed. It contains 54,000 transistors and

is 5.5 X 5.6 mm’, excluding outpur drivers and bond
pads. The CORDIC stages are 24 bits wide; 13 stages are
required to meet the accuracy criterion described in the
previous section on finite-word-length effects. Figure 11
is a photograph of a wafer ready for restructuring. It has
130 CORDIC cells, of which 96 must function correct-
ly to allow us to structure a MUSE system from the
single wafer.

Using CORDIC Cells to Solve Linear Equations
for Weights

Consider the general VX N set of linear equations

AX =B, (6)

where A and B are given and X is to be determined.
To solve the linear equations, we introduce a
seemingly unrelated second problem. First, construct

an NX (N + 1) matrix by appending the vector B onto
the right edge of A:
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[4]B].
Next, postmultiply by an (N + 1) X (N + 1) unitary ma-

rix Q that causes the last column of this matrix to
become zeroes.

[4]B]a = [4]o].
Third, partition Qas

Quu Q,

Q g
where Q,, is an N'x N matrix. From this partition we
obtain the equation

‘AQr +qB = 0'
which in turn leads o I

)+

This result shows that the solution for X in Equation 6
is hidden in the elements making up the last column
of the unitary matrix Q of the second problem. If we
can zero out a column B tacked on to a marrix
A by using a transformation @, then AX = B has the
solution X =-Q /q.

The collection of CORDIC cells in the MUSE sys-
tem performs such a transformation. This fact suggests
we can use the same CORDIC cells to solve for the
weights W with the Cholesky matrix as the matrix of

coefficients in the linear equations.

-
4
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FIGURE 11. Photograph of a 5-in wafer containing 130 CORDIC cells of the type
shown in Figure 10. Metallization paths running between cells can be either
fused together to make connections or vaporized to break connections. If at
least 96 of the cells are functional they can be connected together to form a

complete MUSE system.
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In the earlier section entitled “Nulling with Givens
Transformations” we saw that in general two sets of
linear equations must be solved. In the case of a sidelobe
canccler (a particular choice of the steering vector,

= [0, 0,..., 0, 1]°), however, the first set is solved by
mspectlon rather than by computation, so only the second
set, that involving I, needs to be solved by using the
CORDIC cells. This second set of equations is

r'w=—1_s.
NN

In the above equation we can ignore the scale factor
1/ly p» because, as we stated earlier, changing it only
scales W by a constant, which cannor affect the resulting
SINR.

In the following discussion, we assume that in each
supercell the two columns of the snapshot of L (which
we want to solve for W) are stored in a snapshot
memory. The process of solving for the weights
can therefore be interleaved with the process of up-
dating the Cholesky matrix as more antenna data are
fed into MUSE.

To use CORDIC cells to solve L°W = S, where I’
is an upper-triangular matrix, we must rewrite the
equation set as one involving a lower-triangular ma-
trix with a tacked-on column. To accomplish this trans-
formation we use a reversal matrix /. Premultiplying
a vector or matrix by / reverses it top to bottom while
postmultiplying by / reverses it left to right. The
produc: J/ is an identity matrix. Now manipulate
I'w-=s by inserting J/ between 1" and W and then
premultiplying by /to give

(27)(1w) = (J9).

and then conjugate the entire equation:

(s27)sw) = (5).

This equation has the form of Equation 6 with

A=)
=(Jw)
B=JS,

and A4 is the lower triangular matrix

Inn ]
Inn— N v

Ina Inaz o by

In, Iyay o by by _

Solving for X immediately gives W because W = /X .
The tacked-on column Bis (1,0, 0,..., 0]°. Changing
AX = B into /W = S, an equation with a lower-
triangular matrix, is purely an exercise in notation. No
actual computations are involved.

Description of the Q-Operation

Two complications were overcome to use the MUSE
CORDIC cells to solve for weights. First, the timing
was modified slightly, because a system that is 100% effi-
cient cannot otherwise be given an extra task. Two extra
idle microcycles were provided for every vector sample,
which increased the number of microcycles per vector
from 65 to 67. These microcycles were available to be
used to solve for weights. The revised latency 7 of a
supercell, in units of microcycles, must be

N
T=—+1.
2

Second, the matrix A = JL/ is stored by rows in the
snapshot memories of the supercells, rather than by col-
umns. Figure 12 illustrates the pattern of storage and also
shows how two elements of the tacked-on column B
(which is initialized as [1, 0, 0, ..., 0]°) areassigned to each
supercell. We can zero out the tacked-on column B,
however, without moving the Cholesky matrix elements.
This process is called the Q-operation, and is meant to
zero out the tacked-on column B by using CORDIC
rotations, in a manner similar to the Cholesky update
process illustrated in Figure 2.

The first step of the process uses CORDIC circuits to
postmultiply the two columns

!N.N bl
{N.N—l 52
Inn-2 b

Ing by

Iny by |
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by a unitary matrix to cause & to become 0. The
CORDIC controls are developed by using the pair
({yn» by) as leaders. This pair is available in supercell 0,
so the CORDIC controls are developed there. Because
the other pairs are available in other supercells, we pass
the CORDIC controls from one supercell to the next,
moving the controls first down the chain of supercells
and then back up the chain of supercells, rotating each
pair in the supercell in which it is available and saving the
modified tacked-on column components in that supercell
for use in the next step of the Q-operation. Eventually
the CORDIC controls are passed off the wafer from
supercell 0 and are stored for later use in determining the
weights.

As a result of all this activity, the first column of A and
the tacked-on column B are modified. No further use is
made of the first column of A. The tacked-on column B
is modified so that its first value is zero. The remaining
elements of B (which were zero) are now nonzero values
[6,, bs,..., bx)" available in supercells 1, 2,..., (N/2)-1,
(NI2)-1,...,2, 1,0, respectively, where they were created
by the rotations just discussed.

The next step is to postmultiply the second column of

A and the modified tacked-on column B

[ [N—I.N—l bl
[N—I.N—Z 53

-

!N—I,Z bN—]

IN—I,I bN

by a unitary matrix to zero out the next element of B. Both
elements in the first pair (/y.; ay» ;) are available in
supercell 1, because &, was just computed there. These
elements are the leaders used to set up Q-operation
rotation controls in supercell 1. These Q-operation con-
trols are moved to supercell 2, where they control the
CORDIC:s acting on the pair (/y; a2 &3), then on to
supercell 3, where they control the CORDICs acting
on the pair (/. n.3,64), and so on. Ultimately, these
Q-operation controls also turn around at supercell
(N12) — 1, travel back up the chain, and are sent off the
wafer at supercell 0. Like the previous set of Q-operation
controls, these controls are also stored off the wafer for
later use in determining weights. At the end of this step

Supercell 0 /yy b,
Supercell 1 Inn-t v et by
Supercell 2 Iynz Inane Inene by
Supercell 2 Iys  Ivag In-23 o lgg by
Supercell 1 Iyp  Ingp In-22 coe lyp Iy by
Supercell 0 /y; Inet.1 In-21 coe By by gy by

FIGURE 12. The lower-triangular matrix JL'J, where J is a reversal matrix, is a re-
arrangement of the elements of a snapshot of the Cholesky matrix L. We append
the tacked-on column B = JS, which is obtained by reversing the elements of the
steering vector S. To solve for the nulling weights, we zero out the elements of B
by unitary transformations (rotations) carried out by the supercells. This figure
shows how the elements making up columns of JL'J and the column B are dis-
tributed among the 32 supercells. Each rotation involves data within one supercell.
To use the same rotation on an entire pair of columns, we must transmit the
CORDIC controls that effect that rotation from supercell to supercell. The data
rotated within any supercell remain in that supercell.
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Table 3. Projected Speed of MUSE
Interval Duration Rate
Half-Step 83;— nsec 12 MHz
Step (= 2 Half-Steps) 156-;— nsec 6 MHz
Microcycle (= 2 Steps) 333%. — 3 MHz
Macrocycle (= 67 Microcycles) 22;_ ysec 44,78 kHz
Update Cycle (300 Macrocycles) 6.7 msec 150 Hz

the elements of the now twice-modified tacked-on
column [bs, by,..., by " are available in supercells
2,3,...,(NI2) =1, (NI2) - 1,..., 2, 1, 0, exactly where
they will be needed to carry out the third step. (The
modified second column of A is no longer needed.)

Proceeding in this way, we perform the entire process
of zeroing out the tacked-on column by using CORDIC
rotations of data that are never moved from supercell to
supercell. The only information that moves during the
Q-operation is the Q-operation rotation controls. Be-
cause these controls are passed locally to the adjacent
supercells, no global communication paths are needed.
Each set of Q-operation controls is ultimately passed off
the wafer and stored for use in the final phase of weight
determination.

In the final phase we determine the elements in the
last column of the unitary matrix Q. Although the
CORDICs were used to postmultply [4IB] by @, the
transformation @ was never determined in a standard
matrix form. The Q-operation controls that were passed
off the wafer are all that is needed to instruct CORDIC
cells to carry out the operations that realize a postmulti-
plication by Q. Therefore, any CORDIC cells with these
same controls can postmultiply an identity matrix by Q.
This postmultiplication gives us the matrix elements of
Q, which we can use directly as the desired weights in our
nulling problem.

Summary of Revised MUSE Control and Timing

The fastest clock present in the system is called a half-step.
A half-step is the time needed to pass eleven bits between
CORDIC cells. Two consecutive half-step intervals make

a step and suffice to move a word. The reciprocal of the
step interval is the rate at which new data are presented to
an adder within any CORDIC stage. Two steps are
called a microcycle. A microcycle is the time required to
input one complex element into any 8 CORDIC, and its
reciprocal is the rate at which new rotations can begin in
any CORDIC cell.

The time interval between input of successive
G4-element vectors into MUSE is 67 microcycles,
called a macrocycle. At the input to any 8CORDIC
cell the 67 microcycles are assigned to move dara, as de-
scribed in the section entided “An Efficient Systolic
Array with Latency-Controlled Interleaving,” except
that a blank microcycle is inserted between each
tacked-on column. These blank microcycles are used to
move Q-operation controls.

Any macrocycle can be designated as a snapshot cycle.
The Q-operation is initiated when the Cholesky factor
has been updated to reflect the effect of the vector
fed into MUSE during a snapshot cycle. The interval
between successive snapshot cycles is called an update
cycle.

The MUSE timing builds up from the half-step, and
the CORDIC cell is designed to operate at a clock speed
of 12 MHz. Table 3 summarizes the various clock speeds
and periods implied by the 12-MHz half-step clock.

Statistical accuracy of the weights to within abour 1
dB of optimal SINR improvement requires about 320
updates [3]. This update rate means that the weights can
be updated as often as 140 times per second. MUSE,
however, is physically capable of updating its weights
much more frequently or less frequently because a snap-
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shot cycle is designated by a special external signal.
Because MUSE has 96 CORDIC cells, and each cell
performs 3 million new rotations per second, a conven-
tional computer requiring 10 instructions per rotation
would have to perform 2.88 billion instructions per
second to match the operational speed of MUSE.

Summary and Status

This article describes the design of a wafer-scale adaptive-
nulling processor called MUSE, whose individual cells
carry out coordinate rotations by using the CORDIC
algorithm. The CORDIC cells are almost 100% uilized
and communicate with one another in a simple sys-
tolic fashion. The high efficiency and modularity of
the algorithm is achieved by interleaving two data
streams traveling in opposite directions. It also de-
pends on a careful choice of CORDIC latency to avoid
collisions.

A CORDIC cell—including memory—requires ap-
proximately 54,000 CMOS transistors and occupies a
5.5-mm X 5.6-mm rectangle. It has been clocked ar 12
MHz, so that an endre system of 96 such cells can
update a 64-clement weight vector on the basis of 300
observations in 6.7 msec. A conventional computer would
need 2.88 giga-ops to carry out the same task. Simula-
tions have demonstrated that the system can support 50
dB of SINR improvement. A yield analysis has demon-
strated that the entire MUSE system can be realized on a
single wafer if cell yield averages 70%. Furthermore, the
simple systolic communication permits the use of two or

more wafers if cell yield is too low. =
The main function of the CORDIC cells is to update
the Cholesky factor of the correlation matrix of observed
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interference as new data are observed, with a new update
approximately every 22 psec. The solution of a set of
linear equations whose coefficients are a snapshor of the
Cholesky factor gives the desired nulling weights. The
CORDIC cells are also used, in an interleaved fashion,
to solve these linear equations.

We have demonstrated the viability of the technical
concept of the MUSE system, although much work still
needs to be completed. We first manufacrured the
CORDIC cell illustrated in Figure 10 as an integrated
circuit for ease in testing. We have operated a short chain
of 12 such packaged CORDIC cells as an cight-element
nulling system to verify all the system aspects of the
MUSE architecture, and also to check our a tester and
test software, which we will use later to test and operate
the wafer-based 64-element nulling system. We fabricat-
ed wafers containing 130 CORDIC cells and we have
tested cells and interconnection paths on these wafers.
Figure 11 shows one such wafer. We are now using a

wafer (which lacks sufficient working CORDIC cells to -

form a complete system) to test software used to control
the laser that makes and breaks connections. The final
step will be to use that laser-control software on a wafer
with at least 96 working cells.
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