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The Best Approximation of Radar
Signal Amplitude and Delay

The estimation of receiver signal amplitude and delay, which can be converted to target
cross section and range, is one of the fundamental functions of signal processing algo-
rithms in a narrowband radar. The problem of tracking high-earth-orbit (HEO} satel-
lites with ground-based radars requires a generalization of simple filter-bank signal
processing architectures traditionally used to estimate signal amplitude and delay. A
solution of the mathematical best-approximation problem leads to a new signal pro-
cessing architecture that efficiently estimates signal amplitude and delay in all of the
generality necessary to address the HEO satellite tracking problem.

Narrowband radars capable of tracking high-
earth-orbit (HEO) satellites are an important
resource for both present and future space
missions. To track satellites, the United States
maintains a worldwide network of ground-
based sensors that provide data for civilian and
government users. At any given time, one or
more ground-based radars are engaged in HEO
satellite tracking. This routine tracking be-
comes more important as the number of man-
made objects in space increases. Ground-based
sensors regularly track more than 5000 space
objects, and hundreds more are added each
year.

The orbits and locations of active satellite
payloads are well known because of telemetry or
transponder-based tracking. The majority of
space objects, however, are inactive. If these
inactive satellites are not periodically tracked
and their orbit and position carefully measured,
their location would soon become unknown.
Most of the tracking is performed by ground-
based optical and narrowband radar sensors.
Knowing the locations of these objects is impor-
tant to reduce the risks of collision in space,
particularly with manned spacecraft, and to
maintain national security.

Satellites can be divided into two types: low
earth orbit and high earth orbit, depending on
their average altitude and orbital period. Each
type presents a unique challenge to the design-
ers of ground-based radars. The designer must
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provide algorithms to estimate the radar signal
amplitude and delay, which are then used to
determine target cross section and range. This
article describes a solution to the estima-
tion problem, developed to support the unique
requirements of HEO satellite tracking. The
solution, which is derived from a mathematical
best-approximation viewpoint, leads to a gen-
eralization of traditional receiver designs. The
solution can be efficiently implemented with
modern computational methods.

The High-Earth-Orbit
Satellite Tracking Problem

The HEO target tracking problem places
constraints on the design of signal processing
systems in ground-based radars. These con-
straints are imposed by low SNRs, and signifi-
cant pulse-to-pulse amplitude variations in the
received signal. The low SNRs occur when small
targets are tracked at long ranges. The ampli-
tude variations occur when the effects of change
in target aspect angle combine with the complex
scattering patterns of the satellites to cause
fluctuation in apparent target cross section. The
histograms shown in Fig. 1 illustrate these two
characteristics of HEO satellite tracking.

The histogram in Fig. 1(a) characterizes the
average single-pulse SNR of 722 targets tracked
by the Millstone Hill L-band radar in Westford,
Mass. The fraction of the total number of targets
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per dB of SNR is plotted versus the average
single-pulse SNR. The radar system designer
typically requires at least 10 dB of SNR to detect
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Fig. 1—Histograms that characterize the typical high-earth-
orbit (HEQ) satellite tracking environment. (a) The fraction
of 722 targets per dB of SNR versus average single-pulse
SNR. Because more than one-half of the area under the
histogram curve is associated with SNRs below a minimum
detection threshold of 10 dB, most targets cannot be
detected by the sensor on the basis of a single radar pulse.
Hence multiple-pulse detection and estimation signal pro-
cessing play an important role in the design of a HEO
satellite surveillance radar. (b) The fraction of the total
number of pulses per dB of SNR versus the single-pulse
SNR value during a single track of a single target. More than
30dB of SNR fluctuation occurs within this track. Hence the
multiple-pulse detection and estimation processing models
must allow for fluctuating target cross section.
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the presence of the target. Because more than
half of the area under the histogram curve is
associated with SNRs below 10 db, most targets
cannot be detected by the sensor on the basis of
a single radar pulse. Hence multiple-pulse de-
tection and estimation signal processing play an
important role in the design of a HEO satellite
surveillance radar.

The histogram in Fig. 1(b) characterizes an
ensemble of single-pulse SNRs obtained during
a one-minute track of a single target. The frac-
tion of the total number of pulses per dB of SNR
is plotted versus the single-pulse SNR value.
Because all other relevant variables are approxi-
mately constant over this track time, the histo-
gram shows that target cross-section fluctua-
tion is more than 30 dB. The histogram cannot
convey how much amplitude variation occurs
within a smaller set of multiple pulses; in the
worst case the amplitude variation could be the
full dynamic range of the target track.

Insome radar applications, wide signal band-
widths and high data rates make the design
problem difficult. In the narrowband ground-
based HEO satellite tracking radar the combina-
tion of low SNRs and fluctuating cross section
determines the signal processing design. The
signal processing models must include provi-
sions for both multiple-pulse and fluctuating
cross-section features. These requirements in-
fluence the models for signal amplitude and
delay that are related to the physically intuitive
notions of target cross section and range, hence
their importance to the satellite tracking prob-
lem. The radar receiver signal amplitude is
proportional to the target cross section, so a
complex variation of signal amplitudes is often
observed in a small given set of multiple-pulse
databecause of target cross-section fluctuation.
The signal delay (the time required for the radar
signal to propagate to the target and return to
the radar) is proportional to the target range, so
a smooth variation in delay is often observed in
asmall given set of multiple-pulse data because
of changing target range.

The Filter-Bank Receiver

Radar signal processing is often considered in
the context of the analog hardware architec-
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Fig. 2—The filter-bank receiver for a slowly fluctuating point target. This receiver contains the linear (bandpass matched filter)
and nonlinear (square-law envelope detector) components common to most optimal designs. Similar receivers were
originally built with dedicated analog hardware. The signal processing model associated with this receiver needs to be
generalized for the HEO satellite tracking problem (drawing modified from Van Trees [1], p. 278).

tures used before the arrival of digital signal
processors and general-purpose digital comput-
ers. An interesting example of this viewpoint is
the discussion of slowly fluctuating point-target
models found in Chapter 10 of Ref. 1. Figure 2
shows a filter-bank radar receiver designed to be
used against a slowly fluctuating point target.
The slowly fluctuating point-target model is
not as general as the model considered in this
article for HEO satellite tracking, but the radar
receiver designed to track such targets illus-
trates several important points about radar
signal processing system design over the last few
decades. In the frequency domain, a change in
range between the target and the radar intro-
duces a frequency, or Doppler, shift in the radar
receiver signal, relative to the frequencies trans-
mitted by the radar. In the time domain this
effect shows up as a time-varying signal delay. In
the filter-bank receiver, the N filter elements in
the bank correspond to N possible frequency
shifts. If the frequency shift cannot be modeled
as a constant because of higher-order range
changes between the target and radar, then the
filter bank would need at least N filter elements
to correspond to Npossible frequency shift rates
for each of N possible frequency shifts. Thus, as
the order of the Doppler-shift model is in-
creased, the necessary number of filter-bank
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elements increases exponentially. It does not
matter whether the problem is cast in the time
or frequency domain. Multiple-pulse models
often include higher-order Doppler-shift models
or delay models to represent a complicated
variationin target range. This article generalizes
thereceiver design shown in Fig. 2 by estimating
higher-order range rates with a method that has
a computational advantage over a fully general-
ized filter-bank implementation.

A unified explanation of the successful radar
receiver designs implemented in radar’s recent
history is difficult to find in any reference. Figure
2 shows one of the common elements found
among optimal designs—the receiver that con-
tains linear subcomponents performs a nonlin-
ear transformation on the signal. Because the
bandpass matched filter is a linear process
performed on the receiver signal, and the
square-law envelope detector represents a
purely nonlinear process, the overall transfor-
mation is nonlinear. The method of estimating
signal amplitude and delay proposed in this
article also decomposes into linear and nonlin-
ear components. Receivers similar to the model
in Fig. 2 were originally built with dedicated
analog hardware. Many modern algorithms
that are implemented as software on a general-
purpose digital computer merely emulate
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the old analog designs. When the constraints
imposed by the analog hardware designs are
removed, interesting new algorithms emerge.
One new algorithm is obtained by studying the
solutions of nonlinear problems with separable
variables.

Nonlinear Problems with
Separable Variables

The signal-amplitude and delay model im-
plied by the matched-filter-bank receiver of Fig.
2 for the slowly fluctuating point target is not
general enough for the HEO satellite tracking

Transmitter

ix(l)

Narrowband
Channel/Target
Modulation

a(t)x(t—1(t))

Receiver

s(e, T)(t)

Fig. 3—A narrowband linear channel/target model. Signal
processing models suitable for narrowband radars lead to
anonlinear signal processing problem with separable vari-
ables. This special structure permits an efficient algorithm
for estimating radar signal amplitude and delay, which are
then converted to estimates of target cross section and
range.
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problem. The model needs to be generalized to
allow for multiple pulses and fluctuating target
cross section. Figure 3 illustrates a narrowband
linear channel/target model that leads to an
ideal baseband receiver signal [2] of the form

s(a, 7)(t) = a(t)x(t - 7(t))v(t) (1)
where

a:t — a(t) is the signal-amplitude function,

x:t - x(t) is the transmitter-baseband
function,

T:t - 7(t) is the true signal-delay function,
and

v:it - v(t) is the local-oscillator function.

It is easy to verify by substitution of the
definition in Eq. 1 that

s(aa + B, 7)(t) = (ac(t)+ B(t)) x(t - 7(t))v(t)

= ao(t)x(t - 7(t))v(t) + B(t) x(t - =(t))v(t)
= as(a, 7)(t) + s(B.7)(1). ©2)

Equation 2 shows that the receiver signal de-
fined by Eq. 1 is linear in the amplitude variable
oabut not necessarily linear in the delay variable
7. The solution for & and 7, given some observa-
tion of s(a,7), is a nonlinear problem with sepa-
rable variables. Thinking of ¢ and ras functions
instead of scalars can accommodate some
complex signal-amplitude and time-delay
models. A particular case corresponding to the
HEO satellite tracking problem is derived in the
appendix.

The structured nonlinear problem with sepa-
rable variables was studied in the mid-1970s by
G.H. Golub and V. Pereyra [3], and F. Krogh [4],
and later by L. Kaufman and Pereyra [5], and
A. Ruhe and P.A. Wedin [6]. The original prob-
lem of solving for & and 7 can be reformulat-
ed into two problems—one that depends linear-
ly only on o and another that depends (possi-
bly nonlinearly) only on 7. This reformula-
tion, which is important because linear prob-
lems are well understood and efficient algo-
rithms exist for their solution, leads to an effec-
tive technique for estimating the signal ampli-
tude and delay.
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Best Approximation of Signal
Amplitude and Delay

This section discusses the estimation of re-
ceiver signal amplitude and delay from the best-
approximation, or minimume-norm, viewpointin
a Euclidean space [2]. From this viewpoint many
results can be derived as consequences of well-
known principles (such as the projection theo-
rem and the Pythagorean relationship). Thus
detailed proofs, which are seldom intuitive, can
be avoided.

The best approximation of receiver signal
amplitude and delay is more general than the
particular estimation problem encountered in
HEO satellite tracking. New transmitter-base-
band waveforms and signal-amplitude func-
tions in Eq. 1 provide the variations needed to
address other radar signal processing problems.
For example, some sensors use phase-coded
transmitter functions instead of the frequency-
coded function assumed in the appendix; this
modification is easily made.

Best approximation is one viewpoint that
naturally leads to an algorithm architecture that
can be implemented efficiently with modern
computational methods. The algorithm archi-
tecture exploits linearity in a manner that does
not obviously emulate the analog radar receiver
architectures used for so many years. Hence a
new way of thinking about the receiver design
problem is exposed.

The Best-Approximation Problem

This section defines what is meant by the
approximating set, ideal receiver signals, and an
observed receiver signal. A few definitions estab-
lish the underlying structure of the problem. Let
H be a Hilbert space of complex-valued func-
tions of the real (time) line with the usual
pointwise operations of addition and scalar
multiplication. The functions in H can be called
signals, elements, or points of H, and all of these
terms are interchangeable in this article. In the
space H the norm is denoted by .| and the
inner product by (.,-). Let A be a subspace of H
and let T be some subset of H. The subspace A
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contains the functions that represent possible
receiver signal amplitudes, and the subset T
contains functions that represent possible sig-
nal delays. The ideal receiver signal is denoted
by a function s:A x T — H that satisfies the
following property:

PROPERTY 1 (SEPARABLE VARIABLES). The function
slaa + B, 1) = as(a, 1) + s(B, 1) _for all complex
scalars a, cand fin A, and tin T.

Each ideal receiver signal is built from an ampli-
tude function and a delay function. A specific
ideal receiver signal model (including the ampli-
tude and delay models) for the HEO satellite
tracking problem is developed in the appendix.

The description above is all of the structure
needed to study the best approximation of an
element of H (some observed radar receiver
signal) on the approximating set

S ={s(a,7)|ain A, 7in T}

of ideal receiver signals. The problem is to find
a noiseless ideal radar receiver signal from S
that best approximates, in a minimum norm
sense, some noisy observed radar receiver signal
represented by a general element of H.

The remainder of this section defines the
best-approximation problem and illustrates
some methods to solve it. Once the best-approxi-
mating ideal receiver signal is found, the associ-
ated signal-amplitude and delay functions are
also recovered through Eq. 1, and they deter-
mine the desired estimates of signal amplitude
and delay.

We introduce a particular subset of S before
defining the best-approximation problem. The
set S_is defined for each 7in Tin terms of ideal
receiver signals by

S, = {s(a.r)| o in A}.
Property 1 implies that for each 7in T, S_is a
subspace of H. This fact is important because

best approximation on a subspace is a well-
structured problem. Note also that
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so that the union of all of these subspaces over
all possible values of Tregenerates the approxi-
mating set S.

The best approximation of the observed re-
ceiver signal r in H on the set S is the ideal
receiver signal r in S such that

Ir =7l < lIr =yl

for all y in S. Let us consider the following
questions: (1) when does the best approximation
exist, (2) when is it unique, and (3) how is it
characterized, or constructed? The third ques-
tion—the construction of the best approxima-
tion—is the focus of this article; the issues of
existence and uniqueness are not directly ad-
dressed here.

Construction of the Best Approximation

Four problems are defined in this section.
Each problem is either a best-approximation
problem or is closely related to a best-approxi-
mation problem. We assume that each problem
has at least one solution.

The best approximation of signal amplitude
and delay is the problem of interest defined by

PrOBLEM 1 (PRINCIPAL). Given r in H, find a best
approximation of r on S; that is, find a in A
and t in T such that

Hr -s(a. 1) < |r - s(e. 7)|
forallain Aand tinT.

The function s(e, 7) is the solution of the princi-
pal problem. By a well-known projection theo-
rem [7] the error r— s(a, 7) is orthogonal to the
subspace S.. In particular,

(r-s(a.t).s(a,z))=0

for all ¢ in A. The function s : (¢, 7) = s(a, 1) of
two variables is generally nonlinear in 7. If the
function were linear, then many efficient meth-
ods would be available to solve the principal
problem for signal amplitude and delay. A first
step in solving such a nonlinear problem is to
reduce the problem to finite dimensions. This
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reduction prepares the problem for a numerical
solution that must be done in a finite dimen-
sional space. A reduction in the dimensionality
is accomplished by introducing a finite-dimen-
sional parameterization of the sets A and T. A
finite-dimensional parameterization of the set A
is a function f: P, —> A from the finite-dimen-
sional set P, onto the set A. Since f: P, - A
denotes a finite-dimensional parameterization
of the set A, let g : P, — T denote a finite-
dimensional parameterization of the set T.
Figure 4 is a diagram that illustrates the
point, set, and functional relationships associ-
ated with the best-approximation problem.

The most obvious numerical solution of the
general nonlinear best-approximation prob-
lem is to minimize the function [Ir— s(e. 7) [l on
P, x P, or the set of all pairs consisting of
one element from P, and one element from P,.
This solution yields a set of parameter values
that minimizes the norm and determines the
estimate of signal amplitude and delay. Un-
fortunately, a direct numerical approach
is only practical with a few unknown para-
meters. In particular, for the HEO satellite
tracking problem the number of amplitude
parameters (the dimension of PA) is too large.

Instead of solving the principal problem as a
general nonlinear problem, we can use the
separable-variable property to reduce the di-
mension of the numerical problem [2-6]. The
principal problem thus contains

PROBLEM 2 (LINEAR). Given r in H and tin T,
Jfind a best approximation of ron S ; that is,
Jind a_in A such that

“r -s(a,, r)” <|r-s(a 1)
Jor all a in A.

The function s(a,, 1) is the solution of the linear
subproblem. In this case, the projection theo-
rem guarantees that the error r - s(a, 1) is
orthogonal to the subspace S . In particular,

<r—s(a,.r),s(a,r)> =1 3)
for all @ in A. This problem is simpler than

The Lincoln Laboratory Journal, Volume 3. Number 2 (1990)
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Fig. 4—The point, set, and functional relationships used in the mathematical description of
the best approximation of radar signal amplitude and delay. This diagram shows subspaces
as blue sets. A minimum norm (minimum error) approximation of the observed receiver signal
on the approximating set S of ideal receiver signals is associated, through the modeling
functions, with a best set of signal amplitude and delay parameter estimates.

Problem 1 because the approximating set is now
S, rather than S, and S_is a subspace of H. Best
approximation on a subspace is a standard
linear problem, and the linear subproblem can
be solved efficiently by a number of techniques
that are not suitable for the nonlinear problem.
The number of unknowns in the parameteri-
zation of A (the dimension of P,) that can be
practically accommodated in Problem 2 is also
larger than the number of unknowns that
can be treated in a general nonlinear prob-
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lem. The appendix contains additional re-
marks that concern a closed form solution
of the linear subproblem for the HEO satel-
lite tracking problem.

To use the solution s(dr. 7) of the linear
subproblem to construct a solution of the prin-
cipal problem, define

PROBLEM 3 (ALTERNATE). Given rin H, find tin T
such that

”r - s(a;, r)“ < Hr -s(a,, r)"
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forallzinT.

Thus s(df. 7) denotes the solution of the alter-

nate problem, which is also the solution of the

linear subproblem for a particular value of 7.
A simple inequality chain

||r - s(a;. r)“ <|r-s(a..7)| < |r-s(e )|

that holds for each oin A and 7in Timplies that
the solution of the alternate problem also solves
the principal problem. Thus we construct a
solution to the principal problem by numerical
optimization over T, which utilizes the closed-
form solution of the linear subproblem.

The alternate problem is not the only nonlin-
ear optimization problem over T that also solves
the principal problem. Suppose 7 in T satisfies

Hs(di, %)”2 > |s(a., T)H2 (4)

for all 7in T. The orthogonality condition in Eq.
3 allows the Pythagorean property to be applied
to both sides of

I = |s(ae. )| < el - (. o)

which follows from the inequality in Eq. 4.
Then

Ir = s(é:. %) <|r - s(a..7)|" (5)

for all 7 in T. If we compare the inequality in
Eq. 5 to the alternate problem, it follows that
a solution of the alternate problem (and hence
the principal problem) can also be found by
solving

PROBLEM 4 (FINAL). Given r in H, find 7 in T such
that

”s(di. r)” > Hs(d,. r)"
JoralltinT.
Thus the principal problem can be solved by

each of the following methods:
1. Utilize the solution of the linear sub-prob-
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lem (Problem 2) to solve the alternate best-

approximation problem (Problem 3) by

numerical optimization over P.

2. Utilize the solution of the linear sub-
problem (Problem 2) to solve the final
problem (Problem 4) by numerical optimi-
zation over P,.

3. Solve the principal best-approximation
problem (Problem 1) by numerical optimi-
zation over P xP,.

Many interesting cases exist in which a
closed-form solution of the linear subproblem is
easily computed, as in the HEO satellite track-
ing problem described in the appendix. In these
cases, if we use methods 1 or 2, we avoid
numerical optimization over the set P, of para-
meters that characterize A. Thus computation
based on methods 1 or 2 may be considerably
faster than computation based on method 3.

v

Predict Time
Delay for Data
Interval J-1
j Collect Data
for Interval
Compute Best o
Approximation of

Amplitude & Delay
for Data Interval
J-1

Y

Set J to J +1

Fig. 5—Direct estimation of signal amplitude and delay. A
practical algorithm is obtained by combining the best ap-
proximation of radar signal amplitude and delay with delay
prediction and data collection steps. Delay prediction is
required to initialize the numerical optimization process
(used within the best-approximation method) on one set of
data while the next data set is being collected.
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Implementation and Testing

The previous section described the problem of
estimating the radar receiver signal amplitude
and delay from the best-approximation view-
point. The signal amplitude is proportional to
the amount of energy reflected from the target.
The signal delay (the time required for the radar
signal to propagate to the target and return to
the radar) is proportional to the target range.
The signal amplitude and delay can be con-
verted to the physically intuitive notions of
target cross section and range at any time,
hence their importance to the satellite tracking
problem.

The model that characterizes the signal
amplitude aand delay tis developed in detail in
the appendix. The form of this model is suitable
for the HEO satellite tracking problem. The
signal amplitude is constant for the duration of
aradar pulse but varies unrestricted from pulse
to pulse. Parameters in the delay model repre-
sent the values of the delay and its rates at a
reference time. If enough rate parameters are
included, the delay model can describe any
smooth variation of delay with time.

Figure 5 illustrates how direct estimation of
delay can be accomplished by combining an
implementation of one of the solutions of the
best-approximation problem with delay predic-
tion and data collection steps. The prediction
step provides a crude starting point for the
numerical maximization of ||s(o”:r, 7) |l over all
possible values of t; this starting point is re-
quired to solve the final problem (Problem 4) and
to estimate the best approximation of signal
amplitude and delay. We implement the data
collection step in parallel with computation, so
that the next interval of data is available when
computation on the previous data interval is
completed.

In steady-state operation, the delay is first
predicted from the current state of the tar-
get dynamics model. The target dynamics
model is chosen to reflect what the design-
er knows about the behavior of the target. In
the HEO satellite tracking problem an orbit-
al dynamics model is appropriate. The pre-
dicted values of delay provide the initial value
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of 7 for the numerical optimization routine that
maximizes ||s(dt. 7) |l. The numerical maximiza-
tion of “s(dr. 1)l requires repeated evaluation of
"S(dr’ 7) [l with different values of 7. Each evalu-
ation involves a linear transformation of the
radar receiver signal data, which solves the
linear subproblem (Problem 2). The appendix on
p. 325 describes the specific transformation for
the special case related to HEO satellite track-
ing. The value of r obtained by numerical maxi-
mization is used to update the target dynamics
model, and the entire process is repeated with
the next set of radar receiver signal data.

Numerical Optimization

To assess the practicality ofimplementing the
signal-amplitude-estimation and delay-estima-
tion algorithms illustrated in Fig. 5, a simplified
version of an optimization routine due to R.P.
Brent [8] and the transformation required for
solving the linear subproblem (Problem 2) were
coded for a Floating Point Systems AP120B
processor. The optimization algorithm was es-
sentially identical to the algorithm that Golub
and Pereyra used in their numerical studies of
the solution of nonlinear problems with sepa-
rable variables [3].

The optimization routine performs succes-
sive quadratic approximations to estimate the
maximum value of ||s(dr. 7) Il Figure 6 shows a
typical example for a linear delay model, which
is obtained by setting M = 1 in the more general
model of Eq. A3 developed in the appendix.
Figure 6 shows the curves determined by equal
values of ||s(dr, )l in 7 space. The algorithm
progresses from the predicted delay at point A to
the vicinity of the best approximation of delay at
point B in 12 optimization steps. Each step
requires one solution of the linear subproblem:.
In the example shown the predicted delay was
0.42 usec (63 m) and 0.40 usec/sec (60 m/sec)
from the best approximation.

Sources of Estimation Error

Information about the errors between the
value of robtained by numerical optimization of
||s(dr,r) [ and the true value of 7 (the true value
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Fig. 6—A typical example of the numerical optimization process. Numerical optimization
reduces the large error between the predicted delay for the data set (labeled A) and the best
approximation of delay (labeled B). The best approximation of delay is the value that
maximizes lis(a_, 1) |. The curves are defined by equal values of |ls(a._, 1) |l in t space. The
numbered points show the path of the optimization process over the 12 steps required to
progress from the predicted delay to the vicinity of the best approximation of delay. The best
approximation of signal amplitude is determined by the solution of the linear subproblem

associated with the best approximation of delay.

of delay) is needed to update the target dynamics
model. The value of the best approximation 7is
not identical to the true value of delay because
of noise and other errors that corrupt the ob-
served radar receiver signal. The fact that any
real implementation can compute only a nu-
merical approximation of 7 is often overlooked.
Thus an error occurs in the estimate because
noise corrupts the observed receiver signal (the
difference between the best approximation 7
and the true value of delay), and an additional
error occurs because of the numerical error of
the algorithm (the difference between 7 and the
numerical approximation of 7).

Many computational problems produce
numerical errors due only to roundoff error in
the computer; this fact is not always true for
numerical optimization problems. Theoreti-
cally, an infinite number of optimization steps
is required to compute the maximum value of
the function being optimized, unless the func-
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tion is quadratic or satisfies some rare special
cases. In practice, optimization must stop after
reasonable execution time. Terminating the
optimization process too early may cause
the final numerical error to be larger than
the roundoff error.

The best-approximation approach to the
design of an estimator of signal amplitude and
delay does not require any assumptions con-
cerning how the observed radar receiver signals
differ from the ideal receiver signals. Usually the
ideal receiver signals represent all possible
noiseless radar receiver signals; the actual
observed signals differ from these ideal signals
only by an additional additive noise component.
The assumptions about the noise determine the
signal-amplitude-estimate and delay-estimate
errors, provided that the algorithm includes
accurate models of the radar and the target
behavior (see the box titled “Delay Estimate
Errors due to Observation Noise”).
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How well does the method and its implemen-
tation numerically estimate the best approxima-
tion of signal amplitude and delay? In the HEO
satellite tracking problem, the estimation of
delay is more important than the estimation of
amplitude. The delay estimates are needed to
compute the position measurements used to
determine the satellite’s orbit.

Numerical Tests

A series of tests was performed to determine
if the algorithms could consistently estimate the
best approximation of delay associated with
tracking a HEO satellite. This section presents
the results from one of those tests. The test was
designed to measure the typical numerical error
encountered in estimating the best approx-
imation tof delay. The numerical error includes
the combined errors due to termination of the
optimization procedure and the roundoff error.
The test used a quadratic delay model obtained
by setting M = 2 in the more general model
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Table 1. Radar and Signal Parameters

Interpulse Period: 0.036 sec

Pulse Width: 1.04 msec
Bandwidth: 500 kHz

Number of Trials: 10,000
Processing Time: 60% of Real Time
Per Pulse S/N: 0 dB

Pulses Per Processing Interval: 200

developed in the appendix (Eq. A3). Table 1
summarizes the relevant radar and signal para-
meters. The algorithm resolved 10,000 random
errors between the predicted delay that was
used to initialize the numerical optimization
routine and the best approximation of delay.
Figure 7 shows histograms of the range and
range-rate errors determined from the de-
lay errors. Two histograms are shown for each
target range parameter, along with sample
standard deviations. In the three-dimensional
problem the three range-error parameters are

(@) (b)

o =2.9 m/sec

(c)

o = 0.25 m/sec?

o =18 m/sec

c=92m / o = 4.6 m/sec?
| |
-317 317 —64 64 -33 33
Range (m) Velocity (m/sec) Acceleration (m/secz)

Fig. 7—Determination of numerical optimization errors in target range, velocity, and acceleration. Each pair of histograms
shows the error before and after the numerical optimization process. An order-of-magnitude reduction in the standard
deviation of the errors is obtained. The final errors are small enough so thatthe total range error is dominated by noise errors,

and not the numerical error of the optimization process.
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Delay-Estimate Errors due to

A well-designed implementa-
tion of an estimator is limited only
by the effects of noise in the ob-
served radar receiver signal, and
not by numerical errors due to
computer roundoff and termina-
tion of numerical optimization. In
the signal-amplitude-estimation
and delay-estimation problem for
HEO satellite tracking, compo-
nents of noise arise from sky noise
(atmospheric, cosmic back-
ground, galactic, and solar) and
radar receiver noise (shot and
thermal). The effect of clutter
(backscatter from objects other
than the desired target) is often
treated as noise, but it is usually
negligible in the HEO satellite
tracking problem.

From a stochastic model of the
observed receiver signal, the ef-
fects of noise on estimate error
can be calculated by using statis-
tical estimation theory [1]. These
techniques yield explicit results
for the signal-amplitude-estimate
and delay-estimate errors due to
noise. Because of the characteris-
tics of the dominant noise en-
countered in the HEO satellite
tracking problem, a reasonable
model for the observed receiver
signal consists of a complex
Gaussian stochastic process
added to the ideal receiver signal.
The stochastic process is as-
sumed to be stationary and white.
A realization of the observed sto-
chastic receiver signal is then
defined as

r(t)=s(e, 7)(t) +w(t)

Observation Noise

where s(a, 7): t = s(a, T)(1) is
the ideal receiver signal and
w:t— w(t) is a realization of the
noise. The ideal receiver signal is
determined by the amplitude
function o:: t - of t) and the delay
function 7: t — 7( t) from Eq. 1.

With these assumptions, the
estimates @ and rthat result from
the best approximation of signal
amplitude and delay are also the
maximum likelihood (ML) esti-
mates. That is, the pair (@, 7)
maximizes (over the set Ax T) the
joint probability density of the
observed receiver signal evalu-
ated at its realization r.

The error in the ML estimates
due to noise is described by the
Cramer-Rao (C-R) bound. Any
unbiased estimator has error co-
variances no smaller than the
C-R bound, but the C-R bound
has special significance for ML
estimators, unbiased or not. In
amultiple-pulse implementation,
a total SNR is defined as the sum
of the single-pulse SNRs. Under
reasonable conditions, as the
total SNR increases, the distri-
bution of the errors of the ML esti-
mator tends toward a Gaussian
distribution with zero mean and
a covariance equal to the C-R
bound. Thus the C-R bound ap-
proximates the mean-squared er-
rors of such an estimator, and
the approximation becomes exact
as the total SNR becomes large.

The appendix outlines the
parameterization of the signal-
delay function that is used in the
HEO satellite tracking problem.

The three graphs of Fig. A show
the error in the estimates of these
parameters derived from the C-R
bounds. This particular case cor-
responds to the conditions de-
scribed in the section titled
“Numerical Tests” on p. 321. The
errors are presented as physically
intuitive target-range, velocity,
and acceleration estimate errors.
The ordinates of each graph are
proportional to the value of the
square root of the appropriate di-
agonal element of the C-R bound
matrix. The graphs represent the
approximate rms errors in the
parameter estimates due to noise;
they show the well-known in-
crease inrange estimate accuracy
as a function of increasing radar
bandwidth. The graphs also show
the relative insensitivity of veloc-
ity and acceleration estimate ac-
curacy to radar bandwidth.

The total SNR for this example
is a moderate 23 dB. Sample rms
errors (as determined by compar-
ing the delay estimates to pre-
cisely fitted orbits from laser ra-
dar sensor data) tend to be from
one to three times larger than
these C-R bound values, depend-
ing on the total SNR. These orbits
are accurate enough to be consid-
ered exact for purposes of deter-
mining the signal-delay-estimate
errors achieved on a portion of a
single satellite track by a narrow-
band sensor. Based on such com-
parisons, actual rms errors due to
noise in this example are typically
twice the values predicted by the
C-Rbound.

expressed as the range, velocity, and accelera-
tion errors, relative to the best approximation
of delay associated with the track of the
HEO satellite at a reference time. For each
pair of histograms, the histogram with the larg-
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er standard deviation characterizes the error
in the parameter before the algorithm is ap-
plied to the radar data. Thus this histogram is
associated with the difference between the ini-
tial value of delay used by the optimization algo-
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Fig. A—Cramer—Rao bounds for the standard devia-
tion of errors in (a) target range, (b) target velocity,
and (c) target acceleration, as a function of the radar
transmitter bandwidth for the radar and signal para-
meters summarizedin Table 1. The sample standard
deviations encountered in a real system are larger
because the C-R bounds only approximate the error
due to noise in the observed radar receiver signal.
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rithm and the best approximation 7 of delay.
The second histogram of each pair, with the
smaller standard deviation, characterizes the
error in the parameter after application of the
algorithm to the radar data. Thus the second
histogram is associated with the difference
between the best approximation 7 of delay and
the numerical approximation of 7.

Optimization reduces the standard deviation
of the error in each variable by an order of
magnitude. The final errors after optimization
are small enough so that the error between the
best approximation 7and the true value of delay
(a difference primarily due to noise in the obser-
vation) dominates the total error. However, the
standard deviation of final error in velocity turns
out to be larger (relative to the noise errors) than
the standard deviations of error in range and
acceleration. Appropriate problem scaling bal-
ances each component of numerical error rela-
tive to the noise errors. Scaling is a mathemati-
cal change of delay variables that alters the
multidimensional shape of lIs(a., 7) [l near its
maximum (Ref. 9, section 8.7). Appropriate
scaling transformations were added to the
numerical optimization process before the final
software for an operational tracking system was
completed.

Conclusions

Low single-pulse SNRs and fluctuating target
cross sections are encountered when ground-
based radars track high-earth-orbit satellites.
This condition requires that the usual filter-
bank radar receiver architecture be generalized.
A generalization can be obtained by estimating
signal amplitude and delay in a narrowband
radar from the viewpoint of best approximation
in a Euclidean space. The best-approximation
approach is general enough to address the prob-
lem of direct estimates of the cross section and
range of the HEO satellite. In addition, this
approach can be used in other specialized radar
signal processing design problems by appropri-
ately choosing waveforms and target models.

The best-approximation approach leads to a
way of thinking about radar receiver design that
does more than emulate the analog filter-bank
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architectures used for many years. With appro-
priate restrictions, the best-approximation
approach generates estimates of target cross
section and range identical to those obtained
from a filter-bank receiver. Thus the algorithm
can be interpreted as a generalization of the
matched filter bank. For example, if a constant
unknown signal amplitude is assumed, then a
matched-filter-bank approach for the HEO sat-
ellite tracking problem can be constructed with
generalized filter elements based on higher-
order delay models. The banks can become large
because the number of elements in the bank
grows exponentially with the order of the delay
model.

By using the algorithm proposed in this ar-
ticle, only the outputs of a subset of the gener-
alized filter elements of the bank need to be
constructed, and only portions of these filter
outputs need to be sampled in time. This partial
construction and sampling is essentially what
happens whenever the linear subproblem is
solved. The results of each sampling are com-
bined with previous samplings by the numerical
optimization process to predict which filter ele-
ments should be constructed and sampled next.
The optimization process refines an estimate of
the filter parameters that are best matched to
the radar receiver signal, and the time when
their outputs will maximize. This procedure is
equivalent to finding the best estimate of signal
amplitude and delay. The algorithm does not
terminate, but the parameters of the best-
matched elements, and the time of their maxi-
mum output, can be precisely predicted in a
reasonable time.

The relationship between the best-approxi-
mation approach and a filter-bank receiver is
less clear when a general signal-amplitude
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model is assumed. Thinking of the general algo-
rithm from the best-approximation viewpoint
maintains maximum flexibility when applying
the algorithm to new signal processing prob-
lems. At a more philosophical level, the project
experience is a reminder of the value of taking
time to understand a problem from a different
viewpoint. We developed an algorithm that is
considerably different from a solution based on
obvious extensions of a conventional filter-bank
receiver.

The Millstone Hill L-band satellite surveil-
lance radar in Westford, Mass., has used an
implementation of the algorithm for several
years. The authors believe the Millstone radar is
the only operational radar signal processing
system that uses these methods.
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Appendix

Reference 2 discusses how a narrowband linear
channel/target model leads to an ideal baseband
receiver signal s(a, 7): t — s(e, 7)(t) of the form

s(a. 7)(t) = a(t)x(t - z(t))v(t) (A1)

where

a:t — a(t) is the signal-amplitude function,

x:t — x(t) is the transmitter-baseband function,
t:t — 7(t) is the true signal-delay function, and
v:it — v(t) is the local-oscillator function.

The local-oscillator function in a heterodyne receiver
is usually chosen to control the bandwidth of
s(a, 7): t = s(a, 7)(t) so that the function can be
sampled at lower rates. Otherwise, the exact
choice of v : t = v(t) does not affect the estimate of
signal amplitude and delay. This appendix defines
particular forms of the functions in the model given
by Eq. Al and outlines a solution of the linear sub-
problem. These particular forms were used in an
implementation of the algorithm to address the
HEO satellite tracking problem. In this appen-
dix the inner product (y. z) is defined by

(v.2) = [u(0)z* (0 at

where z*is the complex conjugate of z. Then the norm
of z is given by

J2f? = (z.2).

First we define the transmitter-baseband func-
tion. The use of complex-valued functions in signal
processing often facilitates the modeling. The possi-
bilities for the transmitter-baseband function are
limited in practice by the available radar hardware.
This model is for a chirp function, which is a sig-
nal with a frequency that varies linearly in time.
Define z : t— z”(t) as

27j( fut-but? /268
(1) = R0

to characterize the transmitter-baseband function
over a single pulse. Then the complete baseband
transmitter function is

N
x(t)= Y pa(t) 2y (t-na)
=-N

N 271( fo(t-na) by (-1 25
= 2 Pn (t)e

n=-N
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where
pn(t) = {

1 if —6/2+nA<t<é/2+nA
0 otherwise.

Here A and § are real constants that define the
interpulse period and the pulse width of the radar
transmitter function, respectively. The function
P, it p,(t) is an indicator function that defines the
time support. The instantaneous bandwidth, or
change in instantaneous frequency within each
pulse, is 27b and the center frequency of the pulse
is 27f .

Next we define the signal-amplitude and delay
functions. In the subsection titled "Construction of
the Best Approximation™ on p. 316, the concept of
finite-dimensional parameterization of the ampli-
tude and delay models was introduced to facili-
tate the numerical solution of the best-approxima-
tion problem. These parameterizations are now
made explicit.

Define the set A of approximating receiver ampli-
tude functions by assuming that the value of
o: t— a(t) is approximately constant over a time inter-
val corresponding to a transmitter pulse width, but
can vary in an unrestricted way from pulse to
pulse. This assumption is reasonable as long as the
target aspect angle changes only slightly over the
time corresponding to a pulse width. Thus A can
be defined by

N
A=iat— at)) a(t)= ZAnpn(t - 1(t)). Ay in ¢
n=-N

(A2)

where (Cis the field of complex numbers. Notice that
the definition in Eq. A2 implies the existence of a
parameterization from c?N*lonto A. The values of the
A, are estimated, and the definition can be used to
recover the amplitude function estimates.

Define the set T of approximating receiver delay
functions by assuming that the forces acting on the
target are approximately constant over the time inter-
vals of interest. Thus the propagation delay due to
the changing range between the radar and the target
is a smooth function of time. The set T can then be
defined by

M
T =41t t(t)| 7(t) = z Tnt™ T IN R ¢ (A3)

m=0
where R is the field of real numbers. As with the

definition in Eq. A2, the definition in Eq. A3 implies
the existence of a parameterization from gM*!
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onto T. The values of the r_ are estimated, and the
definition can be used to recover a delay
function estimate.

The local-oscillator function v : t —» v(t) is the
last of the four functions in the model given by Eq.
Al to be specified. Like the transmitter-baseband
function, the available radar hardware limits the
possible forms. A common choice for the local-
oscillator function is another chirp function

N i 7 = 9 s
21j( T (t-na-cy)-bp(t-na-c, )? /28
t) = zpn —Cp )e ( RS T )

For the bandwidth of s(«, 7): t — s(a, 7)(t) to be small,
it is sufficient that

J-Fn = _fn '
b, = -b, , and
¢, = t(na).

The values off_n‘ Bn and ¢, must be calculated with the
best available estimate of the true value of signal
delay, so that v(t) = x*(t— (t)) and the above approxi-
mations are satisfied.

The complete receiver signal model is therefore

N
t) = ZAn“n(T)(t> (Ad)
n=-N

) 27mjon (t) ,

where

un(r)(t) = pn(t - T( ))pn( Cn

and

On(t) = = Jncn —bpc2/28 - fot(t)-b,t?(t)/28
+(]’n + fn +bpcn /8 + b, T(t) /5) t—nA)
+(=by/28 b, /25)(t -na)®.

The radar system is designed so that receiver sig-
nal pulses do not overlap. This is accomplished by
making § << A. Then

P (t=7(t)) pm(t - 2(t)) =

0 whenever n # m.
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It follows that
(u” ( T)' Um ( T)} =

so that the set {un(r)ln
functions.

One of the elements of the set S_is the solution
of the linear subproblem. From Eq. A4, this solution
can be written in terms of the unknown am-
plitude parameters An as

0 whenever n # m,

consists of orthogonal

N
s(@r. 7)) = D Anuy (2)(0). (A5)
n=-N

Because the u (1) are orthogonal, the construction of
the partlcular Set [AHI that solves this best-approxi-
mation problem is well known.

Clearly, for each m, um(r) is the element of S
obtained by setting A = 1 in Eq. A4 for n=m and
A =0 otherwise. Also, ‘the orthogonality condition of
Eq 3 satisfied by the solution of the linear subprob-
lem holds for each element of S_. In particular,

<r—s(d,. r)‘u,l(r)> =0

where ris the observed receiver signal. Substituting
Eq. A5 into Eq. A6 yields

N
{reti; (%)= 2 At { Tt (7))
m=-N

2
||

forn=-N toN (A6)

= An ||un ( T
Hence
A - <r.u”(t)>
Jutn (0

Substituting Eq. A7 into Eq. A5 gives the solution of
the best-approximation linear subproblem as

I r.u,(7
(G, 7)(t) = Z %un(r)m-

n=-N Hun ( T

forn =—-N to N. (A7)
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