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The Advanced Detection Technology Sensor can detect, discriminate, and classify sta­
tionary ground targets-during the day or night-even through cloud cover, fog, smoke,
dust, or rain. The sensor is a coherent, fully polarimetric, 35-GHz synthetic-aperture
radar (SAR) with a resolution of 1 ft x 1 ft. And, to minimize SARspeckle while preserving
image resolution, it uses the polarimetric whitening filter, our recently developed
method for processing fully polarimetric data into SAR imagery.

The Advanced Detection Technology Sensor
(ADTS) is a fully polarimetric, 35-GHzsynthetic­
aperture radar. The polarimetric capability of
the radar is used to enhance the qUality of the
imagery taken from a small aircraft; the syn­
thetic aperture permits data to be processed
to a resolution of 1 ft by 1 ft at a slant range
of 7 km. The sensor was developed to provide
a high-quality database of clutter and target­
in-clutter imagery, and to perform station­
ary-target detection, discrimination, and
identification.

An example of the quality ofADTS images is
presented in Fig. 1. This synthetic aperture
radar (SAR) image of a farmhouse in Stock­
bridge, N.Y., has undergone the optimal
speckle-reduction processing described in
this article. Because of its high resolution,
the ADTS can resolve individual trees and
bushes, as well as the house itself. This image
was obtained under clear weather conditions.
However, the quality and resolution of the
ADTS SAR would not be degraded ip the pres­
ence of dense fog or thick cloud cover. Thus
the ADTS sensor has a significant advantage
over optical sensors: the image quality is not de­
pendent on weather conditions, and the sensor
can be used either dUring the day or at night.

Figure 2(a) shows theADTS and lists some of
its specifications. The ADTS is an airborne,
instrumentation-quality radar carried on a
Gulfstream G 1 aircraft (Fig. 2[b]). One reason
that this aircraft was selected was its low oper­
ating costs. The radar antenna is housed in a
specially designed radome mounted beneath

The Lincoln Laboratory Journal, Volume 3, Number 2 (1990)

the aircraft. The radar transmitter, dual-chan­
nelreceiver, and digital recording equipment are
all carried by the airplane

Since one of the principal objectives of the
Advanced Detection Technology program is to
evaluate the benefits of fully polarimetric radar
data for stationary-target detection, polariza­
tion purity is essential. To achieve polarization
pUrity, a corrugated horn antenna with a
Fresnel lens was designed. providing very pure
horizontally and vertically polarized transmit
waves. The radome was designed to minimize
cross coupling between the horizontal and

,vertical polarizations. The radar transmits hori­
zontal and vertical polarizations on alter­
nate pulses; dual receiver channels measure
both returns simultaneously. Inertial velocity
estimates compensate for aircraft motion
between the horizontal and vertical transmit
pulses.

An in-scene calibration array-comprised of
several high-quality trihedrals and dihedrals
oriented atO°, 22.5°, and 45°-isused forpolari­
metrically calibrating the imagery. The polari­
metric calibration scheme is described in
Ref. 1.

During each flight, data are gathered and
digitized in real time with a 28-channel Ampex
recorder. The data are then brought to the
Lincoln Laboratory ground processing facility,
where SAR image formation is performed. Spe­
cial-purpose, high-speed digital processing
hardware is used to construct the imagery and
perfonn the polarimetric calibration.

A SAR is a radar that synthesizes a long
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Fig. 1-ADTS SAR image of farmhouse in Stockbridge, N. Y. (1-ft x 1-ft resolution). The sensor was flown at an
altitude of2 km with a look-down (depression) angle of22.5°, giving a slant range of 7km. PWFprocessing was
used to produce this minimum-speckle image. The radar is located at the top of the image, looking down;
therefore, the radar shadows go toward the bottom of the page.

aperture as an aircraft flies along its path. Thus
a SAR can achieve cross-range resolutions that
could otherwise be attained only with a long
antenna. In SAR mode the ADTS has 1-ft x 1-ft
resolution. Range resolution is achieved by
using 600-MHz bandwidth pulses. To achieve
loft azimuth resolution, a synthetic aperture of
approximately 150-m length is constructed
by processing 1 sec of data as the plane flies.

SAR processing can produce high-resolution
images, but the process is subject to a consider-
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able amount of speckle in the images because of
the coherent nature ofthe image process. Figure
3 presents a side-by-side comparison ofa single­
channel image and of the same image after
polarimetric whitening filter (PWF) processing.
Note that the PWF processing has reduced the
image speckle significantly, making the dirt
roads and other features more visible. The re­
duction of image speckle is essential for good
target detection, discrimination, and classi­
fication. Reducing image speckle can also im-
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(a)

Fig. 2-The Advanced Detection Technology Sensor. (a)
The sensor platform is a Gulfstream G1aircraft, shown in
flight. (b) The AOTS radome, located at the bottom of the
aircraft, was built by the Loral Corp.

prove the performance of image segmentation
algorithms, as will be discussed later in this
article.

Noncoherent spatial averaging of high-reso­
lution pixel intensities can reduce image

Speckle has long been recognized as a funda ­
mental problem in SAR imaging systems.
Speckle reduction improves the visual quality of
SAR imagery, and it permits the application of
sophisticated image-processing and machine­
vision algorithms to the SAR-image interpreta­
tion problem. Although spatial, noncoherent
averaging of high-resolution pixel intensities
reduces speckle, it does so at the expense of
image resolution. But with the recent availabil­
ity offully polarimetric SAR data, it is possible to
reduce speckle polarimetrically while preserv­
ing image resolution.

We have, in fact, developed an optimal
method of processing polarimetric radar data
into pixel intensity that minimizes image
speckle. This method is based on a mathemati­
cal model that characterizes fully polarimetric
radar returns from clutter. By using this polari-

Polarimetric Clutter Model

speckle. We have significantly reduced image
speckle by averaging 4-pixel x 4-pixel clusters
from ADTS data into effective I-m x I-m reso­
lution pixels. However, the speckle reduction
was obtained at the cost of degraded image
resolution.

A new technique, the polarimetric whitening
filter, uses a polarimetric method of speckle
reduction that preserves image resolution [2, 31.
This algorithm processes the complex (HH, HV,
VV) data into full-resolution pixel intensities in
a way that minimizes SAR image speckle. We
have recently begun testing the PWF on actual
polarimetrically calibrated ADTS data. And, at
I-ft resolution, the PWF has reduced the clutter
log standard deviation by 2.5 dB relative to the
single-channel system.

It is possible to combine the two methods of
speckle reduction, by first reducing the speckle
polarimetrically while preserving the 1-ft x 1-ft
resolution, and then using noncoherent spatial
averaging of the I-ft x I-ft pixel intensities into
I-m x I-m resolution pixels. This method
yielded a clutter log standard deviation 0.5 dB
lower than noncoherent averaging of HV data
and 0.7 dB lower than noncoherent averaging of
HH data.

33 GHz
1ftx1ft
2°
1000/1
Signal to Noise = 10 for

1/1000 m2 Radar
Cross Section

(b)

System Parameters
Frequency
Resolution (SAR)
Beamwidth
Polarization Isolation
Sensitivity (SAR Mode)

(7-km Range)
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(a) (b)

Fig. 3-(a) HH image oftrees and a meadow with several dirt roads. (b) The same image after PWFprocessing.
The brightspots in the centerofeach image are registration reflectors. The dirt roads, which are virtually invisible
in the single-channel image, can be clearly seen in the PWF image.

Y = 9 X.

The joint probability density function (PDF) of
the complex vector X is given by the expression

where L = E(XXt )is the polarization covar­
iance matrix. The vector X is zero mean
[E (X) = 0]. The covariance matrices that we
use for clutter data take the following form (in
linear-polarization basis):

texture variable .J9 .That is.

(1)

2 E(IHVI2)
E(IHHI ). £ = ( 2)'E IHHI

E(HH' w*)
P = I'

[E(IHHJ2) .E(IWI2)p:

f(X) = Jr3~LI exp (_x t L- 1
X)

and

where

(
HH] [HH' +~HHg]Y= HV = HV, +JHVg
W W,+jWg

where HH, and HHg. for example. are the in­
phase and quadrature components of the com­
plex HH measurement. Y is assumed to be the
product of a complex Gaussian vector X (repre­
senting the speckle) and a spatially varying

metric clutter model. we can derive an algorithm
that shows how fully polarimetric data can be
combined into minimum-speckle imagery.

In this article a non-Gaussian product model
is used to characterize clutter. Note that with a
Gaussian model, each pixel of clutter in a spa­
tially homogeneous region of an image has the
same average polarimetric power. A number of
authors have stated that it is more realistic to
assume that ground clutter and sea clutter, for
example. are spatially nonhomogeneous. Anon­
Gaussian model consistent with this more real­
istic assumption has been proposed [4-6], and.
in fact. the Gaussian model is actually a special
case of the non-Gaussian model.

We assume that the radar measurement
vectorY consists ofthree complex elements: HH.
HV. and W. Therefore.

276 The Lincoln Laboratory Journal. Volume 3. Number 2 (1990)



Novak et aI. - Optimal Processing oJPolarimetric
Synthetic-Aperture RadarImagery

where A is a weighting matrix that is assumed
to be Hermitian symmetric and positive definite,
thus keeping y positive. To find the optimal
weighting matrix A' (Le., the one that results in
an image whose pixel intensities have the
minimum possible s/m), we use the following
results:

We model the product multiplier 9 as a
gamma-distributed random variable. This as­
sumption is not universal; the log-normal and
Weibull models are also widely used. But if we
assume that the gamma distribution is reason­
able, the PDF of the product multiplier 9 is
specified by

( )

(V.I) ()1 9 1 -g
fG(g) = 9 9 r(v) exp 9

from the quadratic

y = ytAY = gXtAX (4)

(2)

(3)

where the parameters 9 and v are related to the
mean and variance of the random variable g:

E(g) gv

E(g2) = g2 V(V + 1).

With the assumption thatgisgammadistrib­
uted, the PDF of the resulting vector Y= gX is
the modified Bessel function, or generalized
K-distribution, given in Ref. 4.

(
Yt~-IY]

K 3 - v 2
9

(
- I )(3. v)/2
gY~- Y

- 1
Ifwe set 9 = - so that the mean ofthe texturev

variable is unity, then in the limit as v ~ 00, this
model reduces to the Gaussian model.

Minimum-Speckle Image
Processing

In this section we consider how to process the
three complex measurements-HH, HV, and W
(Le., the vector Yj-into pixel intensity in a way
that minimizes speckle. The clutter product
model is used to derive the optimal method of
polarimetric speckle reduction, which can be
interpreted as a PWF. Then the amount of
speckle reduction that can be achieved by using
the PWF is determined theoretically.

The measure of speckle we use is the ratio of
the standard deviation of the image pixel inten­
sities to the mean of the intensities (s/m):

s _ st. dev. (y)
m - mean (y)

where the random variable y denotes pixel
intensity. Given the measurements HH, HV,
and W, we wish to construct an image

The Lincoln Laboratory Journal. Volume 3. Number 2 (1990)

3

E(xtAX) = tr (~. A) =L Ai (5)
i=1

3

VAR(XtAX) = tr (~. A)2 = L A7 (6)
i=1

where E is the expected value, tr is the trace,
VAR is the variance, and AI' A2, and A3 are
the eigenvalues of the matrix ~. A. Com­
bining Eqs. 2 through 6 yields

3

v+1
L A7

1i=1

(tA,j'
+-

v v

By using the approach of Cadzow [7), we can
show that matrixA' must make the eigenvalues
of ~. A all equal

Al = A2 = A3'

Therefore, the optimal solution is

Note that any constant multiple of A" is also
optimal, because the s/m is invariant to scale
change.

This solution is eqUivalent to applying a
whitening filter to the polarimetric vectorYprior
to forming the image. The vector Y is passed
through the whitening filter ~-1/2 to obtain
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I I

W = 1:-2 y = {9r.-"2X .

The v parameter of the gamma multiplier
appears in Eqs. 7 and 8 because the s/m in­
cludes fluctuations in the texture variable g. For
the ideal speckle-free image, in fact, fluctua­
tions in the terrain reflectivity across the image
are still present, so the s/m is given by

(~teal = ~.

.SimPle[:~e]'P'T;o~f21 [vv_~ HH]
Y = HV .. L "W=

VV vy(1-IPI2)
'- ./

Whitening Uncorrela;ed Images
Filter

• Form Noncoherent Sum of 3 Uncorrelated Images

2 I HVI
2

/VV-P*VYHHI
2

y = IHH I + - +
YT VY(1-IPI2)

Fig. 4-Minimum-speckle image processing. Y is a com­
plex vector containing the three linear-polarization mea­
surements. Using the whitening filter gives a newpolariza­
tion basis W. In this basis the three elements are uncorre­
lated and have equal expected power. The PWF image is
then y, the noncoherent sum of the uncorrelated images.

Fig. 5-0ptical photograph of farm area near Stockbridge,
N. Y. This aerialphotograph was taken in April 1989. Some
visible features include furrows in plowed fields, farmhouse
(left of center), tree-lined river edge (right), tree area (bot­
tom left), road intersection (right ofcenter). Nofe that, unlike
radar imagery, aerialphotographyofthis qualitycan onlybe
taken under clear conditions.

1 1 ( 1 )- + - 1 + - (7)
v 3 v

(w - p. {YHH)1.
~Y(1_lpI2 )

HV
-fi'

The elements ofW are independent, complex
Gaussian random variables with equal expected
power. The covariance ofW is a scaled identity
matrix; thus W is said to be white. Now the
optimal solution of the speckle-reduction prob­
lem is simply the noncoherent sum of powers in
the elements ofW:

y = WtW,

hence the name-polarimetric whitening filter.
Observe that, as illustrated in Fig. 4, this

process is simply a change of polarimetric basis
from linear polarization (HH, HV, VV) to a new
basis given by

In the new basis, the three polarimetric chan­
nels are uncorrelated and have equal expected
power. Thus the optimal way to reduce speckle
polarimetrically is to sum the powers noncoher­
ently in these three polarimetric channels.

We have shown that the PWF processes the
polarimetric measurementvectorY in a way that
minimizes SAR image speckle. Furthermore, the
PWF is the maximum-likelihood estimate (MLE)
of the spatial multiplier g. The MLE is also an
unbiased, minimum-variance estimator of g;
Le., it achieves the Cramer-Rao lower bound (see
Appendix I for proofs).

Next we shall determine the amount of
speckle reduction that can be achieved by using
the PWF. Although the PWF solution is inde­
pendent ofthe PDF ofthe spatial multiplier gin
the product model, the resulting s/m after
speckle reduction does depend upon fc(g). Thus
the s/m for the PWF is

and the s / m for a single polarimetric channel
image is
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The v parameter is closely related to the log
standard deviation ((}c in dB) of the texture
component ofthe clutter. This relation is derived
in Appendix 2. and values of the v parameter
for clutter regions that have (}c of 1 dB to 3 dB
are tabulated. By using Eqs. 7 and 8 and the
results given in Appendix 2. we can calculate the
reduction in the standard-deviation-to-mean
ratio achieved with the PWF (relative to a
single-polarimetric-channel image). For clutter
with a spatial log standard deviation of 1 dB.
the s/m ratio of single-channel data is 1.66
times larger (i.e., 4.4 dB larger) than the s/m
ratio of PWF data. For clutter with a spatial
log standard deviation of 3 dB, the s/m ratio of
single-channel data is 1.45 times larger (i.e..
3.2 dB larger) than that of PWF data. In the
next section, these theoretical predictions
will be compared with actual measurements
made on ADTS data.

Speckle-Reduction Results

In the preceding section. we determined that
the optimal polarimetric processing for speckle
reduction is the PWF, and we derived formulas
to calculate the amount of speckle reduction
achievable by using the PWF. In this section we
show ADTS imagery of a farm located near
Stockbridge. N.Y. Then we use polarimetrically
calibrated ADTS clutter data to calculate polari­
zation covariances of trees. grass. mixed scrub.
and shadows. Finally. we apply PWF processing
to these clutter data and compare the actual
amount ofspeckle reduction with the theoretical
prediction.

Figure 5 shows a photograph of the Stock­
bridge farm that was imaged by the ADTS.
The corresponding SAR image of the farm is
shown in Fig. 6. The SAR image was constructed
by first reducing speckle polarimetrically
(using PWF processing while preserving the
I-ft x I-ft resolution) and then using non­
coherent spatial averaging of the I-ft x I-ft
PWF pixel intensities into effective I-m by I-m
resolution pixels.

The area of the image shown in Fig. 6 is
approximately 500 m by 500 m. Clearly visible in
the SAR image are several roads. plowed fields.
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a farmhouse surrounded by several trees, and a
larger set of trees located below the farmhouse.
Note that, although the optical photograph gives
an excellent image under conditions of good
visibility, only the SAR image would be unaf­
fected by such phenomena as rain. cloud cover.
or fog.

Higher-resolution PWFimages (512 ftx 512 ft
at I-ft x I-ft resolution) of the farmhouse area
and tree area are shown in Figs. 1 and 7. In
general PWF processing enhances the imagery
in two ways: (1) the amount of speckle in the
imagery is reduced. and (2) the edges of roads.
fields. and other objects are more clear. The
improvement in the sharpness ofedges is due to
the use of polarimetric measurements-the
HV and W polarizations fill in edges and areas
of objects that do not show up in the HH
polarization.

Polarization-Covariance Calculations

Four types of clutter regions were considered
in these studies: shadows. grass. mixed scrub.
and trees. Each region contained 2000 to 8000
pixels. representing an area of several hundred
square meters. We evaluated the clutter polari­
zation-covariance parameters (}HH' E. Yo and p
as defined in Eq. 1. The results are given in
Table 1.

Since the standard-deviation-to-mean ratio
is invariant with respect to scale. and since the
normalized polarization covariance parameters
(E. y. p) of trees, scrub. and grass were found to
be very similar (Table 1), a single clutter polari­
zation covariance could be used to whiten the
entire image without sacrificing speckle-reduc­
tion performance significantly. The images in
this article were all created with a single PWF.
which used only the grass polarization-covari­
ance parameters.

The polarization-covariance parameters of
targets are qUite different from those of trees.
grass. and other types of clutter. The effect of
PWF processing on target detection was theo­
retically analyzed in Ref. 8, where it was shown
that the performance of a PWF detector was
comparable to that of an optimal polarimetric
detector.
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Fig. 6-SAR image of farm area (1-m x 1-m resolution) corresponding to aerialphotograph shown in Fig. 5. This
image was formed by first applying PWF processing to the 1-ft coherent data, then spoiling (4 x 4 noncoherent
averaging) to an effective 1-m resolution.

PWF Speckle Reduction

To validate the speckle-reduction formulas,
we selected four clutter regions-shadow,
grass, mixed scrub, and trees. For each region
we calculated the standard-deviation-to-mean
ratios for the HH, HV, and W data, and for the
PWF data. The results are given in Table 2, and
they show lower-and better-numbers for the
PWF approach.

Notice that the s/m ratios for trees are larg­
er than for mixed scrub, and the s/m ratios
for mixed scrub are larger than for grass.
This happens because the sl m ratio de­
pends not only on speckle, but also on terrain
roughness.
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The single-polarimetric-channel s/m ratio
given in Table 2 can be used to compute the
rms standard-deviation-to-mean ratio for
each clutter region. Equation 8 was used to
estimate the approximate v for each region,
and Equation 7 was used to predict the s/m
ratio of the PWF data. In Table 3, the theo­
retical predictions are compared with the
actual measured values, and the agreemellt
between the theory and the measurements
turns out to bevery good-within 5% in all
cases.

Although the s / m figures given in Table 2
clearly show that the PWF reduces 8AR speckle,
the more important question is whether the
clutter log standard deviation has a correspond-
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ing decrease, because the log standard deviation
directly affects target-detection performance.
Shown inTable 4 are the log standard deviations
computed from the I-ft-resolution HH, HV, and
VV data, and the 1-£1 PWF data.

The PWF reduces the log standard deviation
by approximately 2.0 to 2.7 dB over single­
channel I-ft data.

PWF versus Adaptive PWF

In Ref. 2 an adaptive PWF was proposed and

Novak et al. - Optimal Processing ojPolarimetric
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analyzed. This algorithm adaptively estimates
polarization covariances of various regions of
clutter over the image and uses these same
estimated covariances to minimize the speckle
within each clutter region. Since the polariza­
tion covariances of grass, trees, and shadow
regions were found to be very similar (Table I),
we investigated the improvement in speckle
reduction achievable through the use of adap­
tive PWF.

We compared the log standard deviation

Fig. 7-PWF image of trees (1-ft x 1-ft resolution). This image, taken from an area near the farmhouse, shows
the detail obtained from PWFprocessing ofADTS data. Note the bright leading edges of the trees and the radar
shadows directly behind the trees.

The Lincoln Laboratory Journal. Volume 3. Number 2 (1990) 281



Novak et aI. - Optimal Processing ojPolarimetric
Synthetic-ApertureRadarImagery

Table 1. Polarization Covariance
Parameters of ADTS Data

I O"HH I € I y I PVY
Trees 0.256 0.16 0.89 0.61

Mixed 0.098 0.19 1.08 0.60

Grass 0.086 0.19 1.03 0.53

Shadow 0.006 0.43 1.18 0.49

of the clutter regions after they were whitened
with the covariance of grass versus the result
when they were whitened with the proper co­
variance (e,g., trees whitened with tree co­
variances). As the data in Table 5 indicate, the
use of the proper covariances made virtually
no change in the log standard deviations.
Thus, because the covariances of the differ­
ent regions are so similar, the extra computa­
tional time required for adaptive PWF is not
warranted.

Polarimetric Averaging versus
Spatial Averaging

As mentioned earlier in this article, speckle
can be reduced by noncoherent spatial averag­
ing, or spoiling, of the high-resolution data.
However, spatial averaging degrades image
resolution. The log standard deviations of l-ft
and l-m PWF data are clearly superior to the
l-ft and l-m single-polarimetric-channel data,
as is shown by the results presented in Table 6
for the PWF and HH channels.

For grass regions, PWF data at l-ft resolution
were measured to have a log standard deviation

Table 2. s/m of ADTS Data

I HH I HV I vv I PWF

Trees 1.59 1.69 1.39 1.10

Mixed 1.43 1.27 1.38 0.94

Grass 1.12 1.06 1.16 0.67

Shadow 0.99 0.99 1.02 0.60
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of 3.0 dB. At the same resolution, the HH data
were measured to have a log standard deviation
of 5.7 dB and the HV data had a log standard
deviation of5.6 dB. Thus polarimetric averaging
improved the results over single-channel data
by 2.7 dB. Noncoherently spoiling the single­
channel data to l-m resolution (Le., 4 x 4
averaging) reduced (Jc by approximately 3.7 dB,
1 dB better than polarimetric averaging-but
image resolu tion was sacrificed for the improve­
ment. Spoiling the PWF data to l-m resolution

Table 3. s/m Theory
vs. Measurement

I Predicted I Measured

Trees 1.13 1.10

Mixed 0.90 0.94

Grass 0.70 0.67

Shadow 0.58 0.60

yielded the clutter log standard deviation of 1.3
dB, an D.7-dB improvement over the l-m HH
data, and an D.5-dB improvement over the l-m
HV data. Similar results were obtained for tree
clutter and for shadows.

Polarimetric Segmentation

Recent improvements in the resolution and
quality of polarimetric SAR imagery now permit
the use of advanced image-processing and
machine-vision techniques in the analysis of
radar imagery. Until recently, a major impedi­
ment to the use ofsuch techniques had been the

Table 4. Log Standard Deviations (dB)
of 1-ft-Resolution Data

I HH I HV I vv I PWF

Trees 6.67 6.14 6.35 4.13

Mixed 6.28 6.00 6.36 3.90

Grass 5.67 5.59 5.67 2.97

Shadow 5.20 5.24 5.46 2.81
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Table 5. Log Standard Deviations
(dB) of PWF vs. Adaptive PWF

I PWF I APWF

Trees 4.13 4.10

Mixed 3.90 3.89

Grass 2.97 2.97

Shadow 2.18 2.17

presence of speckle in the imagery. Progress in
polarimetric SAR sensor technology, coupled
with the optimal processing described in
this paper, have made it possible to reduce
image speckle significantly-while preserving
very high resolution. Hence the develop­
ment of machine-vision techniques may
have significant potential for SAR image
analysis.

In this section we consider the application of
advanced image-processing and machine­
vision techniques to clutter segmentation­
the problem of partitioning a SAR image into re­
gions of homogeneous terrain types (grass re­
gions, tree regions, roads). Partitioning an
image in this way is desirable because such
classical radar detection algorithms as con­
stant false-alarm rate (CFAR) assume a homo­
geneous clutter background when setting
the detection threshold. In nonhomogeneous
regions, the assumption of homogeneity
may cause the CFAR threshold to be set too
high, thus reducing detection performance
along, for example, tree lines. By first segment­
ing the clutter, we can set the CFAR detec­
tion threshold more appropriately, which
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will improve detection performance.
Earlier attempts to partition clutter regions in

polarimetric SAR imagery have focused on the
use ofBayes classifiers on a pixel-by-pixel basis.
J.A. Kong et al. [91. showed that an optimal
Bayes classifier provides unacceptable error
(37.4%) in discriminating between grass and
trees. S.R. De Graaf [10] showed that excellent
performance can be obtained by the optimal
classifier for some clutter types, but that excep­
tionally poor performance is obtained for others.
H.A. Yueh etal. [11] developed an optimal Bayes
classifier for normalized polarimetric data, Le.,
data that don't include absolute radar cross­
section information. Although this classifier is
less sensitive to changes in the operating char­
acteristics of the radar than an optimal Bayes
classifier that uses the absolute radar cross
section, its performance is poorer. Hence we can
conclude that a Bayes classifier applied to indi­
vidual pixels typically provides unacceptable
results.

Improved segmentation results have been
obtained by coupling a spatial processing
method and a pixel-by-pixel PWF classifier. In
this scheme, each pixel is classified by using the
PWF output as the discrimination statistic. The
initial segmentation is then improved by using a
voting filter, in which isolated pixels with a
different classification from surrounding pixels
are relabeled to match the classification of their
neighbors. The output of the PWF is a reason­
able choice for a discrimination statistic be­
cause it minimizes the spread (standard devia­
tion) of the clutter PDF, as illustrated in Figs. 8
and 9. Figure 8 shows the PDFs of the HH
channel for selected areas of shadow, tree, and
grass clutter. Figure 9 shows the PDFs of the

Table 6. Log Standard Deviations
of 1-ft- and 1-m-Resolution Data

I 1-ft HH I 1-ft PWF I 1-m HH I 1-m PWF

Trees 6.7 4.1 3.5 2.8

Grass 5.7 3.0 2.0 1.3

Shadow 5.2 2.8 1.7 1.0
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20

PWF-Image

Fig. 1O-PWF image of road intersection (1-ft x 1-ft reso­
lution). Note that this image has several transition bounda­
ries: river-tree, tree-shadow, shadow-meadow, and
meadow-road.

-10 0 10

Pixel Amplitude (dB)

Fig. 9-PDFs of PWF data (1-ft x 1-ft resolution). Here the
PDFs of the pixel amplitudes for the same clutter data as in
Fig. a have much less overlap in their distributions (smaller
standarddeviation) than in the single-channelcounterpart.

image have been accurately captured by the
segmentation process.

The development of image-analysis and
machine-vision algorithms for SAR imagery is in
its infancy. But improvements in SAR sensor
technology and in polarimetric processing capa­
bilities-such as the polarimetric whitening
filter-have opened a wide range of possibilities
for automatic interpretation of SAR imagery.
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Fig. a-Probability density functions (PDF) of HH data
(1-ft x 1-ft resolution). The PDFs of the pixel amplitudes
for three clutter types (shadow, grass, and trees) show that
the single-polarimetric-channel data has considerable
overlap in the distributions, making it hard, for example, to
separate grass and trees on the basis of amplitude.

0.10,.....,.---....,...----,.....-----r-------,

HH-Image

PWF for these same areas of clutter. These
clutter types are much more separable in the
PWF imagery than in the HH imagery, clearly
showing the advantage of the polarimetric
method. The histogram in Fig. 9 can be used to
select thresholds that minimize the misclassifi­
cation error. A sample PWF image (at 1-ft x 1-ft
resolution) is shown in Fig. 10; the segmentation
of this image into three clutter types (grass,
trees, and roads and shadows) is shown in Fig.
II.

An alternate approach to segmentation that
uses minimum speckle PWF imagery is cur­
rently under development. Preliminary results
of this edge-based segmentation algorithm
applied to Fig. 6 (the farm scene at 1-m x 1-m
resolution) are shown in Fig. 12. This algo­
rithm uses a Marr-Hildreth edge detector [12)
to identitY boundaries between relatively bright
regions and dim regions in the image. The
boundaries are grouped to form regions with
a threshold relaxation technique that in­
corporates a smoothness constraint. The al­
gorithm produces a binary image in which rel­
atively dim areas (shadows, rivers, and roads)
are represented as black, and relatively bright
areas (grass, fields, and trees) are represented
as white. Comparison of the original image
(Fig. 6) with the segmentation output (Fig. 12)
indicates that the coarse features of the
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Fig. 11-Segmented version of PWF road intersection
image (shown in Fig. 10) into three clutter types-grass,
trees, and roads and shadows.

Right now, clutter segmentation can improve
the performance of classical target-detection
and target-classification algorithms. In the fu­
ture, machine-vision algorithms applied to
SAR imagery should lead to more sophisti­
cated and robust approaches to target detec­
tion and classification.

Conclusions

We have investigated polarimetric speckle
reduction by using the polarimetric whitening
filter; the polarimetric whitening filter reduced
synthetic-aperture-radar image speckle with­
out degrading the spatial resolution of the im­
age. Results obtained with ADTS SAR data show
that the PWF reduces speckle-and it signifi­
cantly reduces clutter log standard deviations.
At 1-ft resolution, the log standard deviation of
clutter is reduced by approximately 2.5 dB

The Lincoln Laboratory Journal. Volume 3. Number 2 (1990)
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Fig. 12-Segmentedversion ofPWFfarm image (shown in
Fig. 6) into two clutter types: bright and dim.

relative to a single-channel system. This im­
provement in log standard deviation provides
improved detection performance. The PWF tech­
nique also has potential application to the prob­
lem of clutter segmentation.

Another potential application of minimum­
speckle imagery is in the discrimination of
man-made objects from natural tree clutter by
using texture features [13). We are planning
future studies of PWF-processed SAR data to
evaluate the improvement in texture discri­
mination by using PWF data.
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Appendix 1: The PWF
as an Estimator

In this appendix, we show that for a given polari­
metric measurement vector Y, the PWF is the maxi­
mum-likelihood estimate (MLE) of the clutter texture
parameter g. We then show that the PWF is an
unbiased, minimum-variance estimator (Le., it
achieves the Cramer-Rao lower bound) of the texture
parameter g. Finally, we derive the maximum apos­
teriori (MAP) and conditional mean (Bayes) estimates
of 9 and show that these estimates are related to the
PWF. A text by H.L. Van Trees gives an excellent
description ofthe mathematics used in this appendix
[ 1].

Maximum-Likelihood Estimate

In MLE, the parameter 9 is treated as if it were
deterministic (nonrandom) but unknown. We seek
the value of parameter 9 that makes the observed
vector Y most likely. If we denote the MLE of 9 for a
given Y by gMLE' then gMLE is implicitly defined by

~p(Ylg)1 = 0ag g=gMLE

where p(Y Ig) is the conditional probability density
function (PDF) ofthe vectorYgiven g. This conditional
PDF is easy to evaluate since, given g, the vector Y is
complex Gaussian with mean 0 and covariance g~.

Thus

where p = the number of polarizations (p = 3 in our
case). To obtain the MLE, we need to find the value of
9 for which p(Y Ig) is maximum. Equivalently, we can
find the value of 9 for which log P(Y Ig) is maximum.

Differentiating with respect to 9 yields

a p yt~-ly
- log[p(Ylg)] = --+ = 0
ag 9 g2

(AI)

which is precisely the PWF solution. Next, we inves­
tigate the estimate gMLE and determine (1) that the
estimate is unbiased, and (2) that the estimate
achieves the Cramer-Rao lower bound on variance of

The Lincoln Laboratory JournaL. Volume 3. Number 2 (1990)

the error (thus gMLE is an efficient estimate of the
texture parameter g).

First we demonstrate that gMLE is unbiased. From
Eq. Al we have

_ 1 yh.-1y _ 1 X h -- 1XgMLE - - L. - - 9 L. .

P P

Taking the expectation with respect to X gives

But Eq. 5 on p. 277 gives

tr [~ -1 E (xxt ) ]

tr (~- 1~) = p.

Thus we have verified that the MLE estimate, and
gMLE. is unbiased. That is,

Next we verify that gMLE satisfies the Cramer-Rao
lower bound, which states that the variance of any
unbiased estimate, [}, must satisfy the inequality

Omitting the details of the derivation, one may easily
show that

a2 p 2yt~-1y
-2 log[p(Ylg)] = 2" - 3 .
ag 9 9

Evaluating the expectation of the above, again using
Eq. 5, yields the result

E{ a
2

2 IOg[P(YI9)]} = -f.
ag 9

Thus the variance of any unbiased estimator of the
texture parameter 9 must satisfy the Cramer-Rao
bound

2
VAR ([}) ~ JL.

p

Finally, we can verilY that the unbiased estimate

gMLE achieves the lower bound.

287



Novak et al. - Optimal Processing oJPolarimetric
SynLhetic-Aperturl? RadarImagery

VAR (gMLE) = VAR (* 9 X+1:-
1
X )

2

~2 VAR(X+1:- 1X).

Evaluating the above, using Eq. 6 on p. 277, yields
the result

Maximum a Posteriori Estimate

The maximum a posteriori (MAP) estimate of 9
(also known as the conditional mode estimate) is
defined as

~[p(gIY)]1 _ = o.
(jg g-gMAP

+ exp (-) x (v - 1 _ p) 9 u-2- P

g(U-2- P) exp(-)

x [ - ~ + Y+1:- l
y 19 + (v - 1 - p) l

Therefore.
2 - - + -I

9 -g(v-l-p)g-gY1: Y=O.

Because this is a quadratic equation in g. the solution
is given by

- [ + I ]g(v-l-p) 4Y1:-Y
gMAP = . 1 ± 1 + 2 .

2 g(v-l-p)

Observe that gMAP is a nonlinear function of the
PWF.

•

Conditional Mean Estimate

Finally, we present the conditional mean estimate
(also known as the Bayes estimate).

gSayes = rgp(gl Y) dg.

The derivation is complex; therefore. only the final
result is presented.

Although the MAP estimate appears to be very similar
to the MLE estimate. the MAP estimate treats 9 as a
random variable with a known PDF. This can easily be
seen from the Bayes theorem.

( )
p(YI g) . fc(g)

P glY = p(Y) .

The MAP estimate is obtained by differentiating
this expression with respect to 9 and setting the result
to O. (Note thatwe can neglect p(Y).) Proceeding in this
way, we find

~[p(gIY)]
(jg

I

_ (-y+~-ly)2.gSayes - 9 L.

(
+ 1 - )Kp - u-1 2 Y1:-Y/g

K p - u ( 2~Y+1:-1y Ig )

= g(U-I-P) exp(-) x (-~ + _Y_+1:_-_
I
Y_J

9 g2
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Again. the estimate is found to be a nonlinear function
of the PWF.
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Appendix 2: Relating ()c and v

The log standard deviation of the texture variable
9 (denoted <Yc) is defined to be

<Yc = ~VAR (10 logla g) (dB).

The relation between <Yc and the shape parameter vof
the gamma PDF can be described as

E(logg) = 1_ Joo(log9) gV-I exp (-g) dg.
f(v)gV a 9

From Ref. 1, Eq. 4.352.1, we have

E (log g) = 'II ( v) + log 9

E[(1ogg)2]= 1_ Joo (IOgg)2gV-Iexp(-g)d9.
f(v)gV a 9

Ref. 1, Eg. 4.358.2, also gives

Thus

VAR (log g) = ((2, v)
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and

VAR (10 logla g) = VAR( 10 log g) = (4.34)2 ((2, v).
log 10

Table A lists the value of the gamma parameter as
a function of the clutter standard deviation for typical
clutter standard deviations.

Table A. Gamma Parameter (v)
vs. <Jc(dB)

<Yc I v

1.0 19.3

1.5 8.9

2.0 5.2

2.5 3.5

3.0 2.6

Reference
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