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Estimating the Fractal Dimension
of Chaotic Time Series

study of chaos.

Fractals arise from a variety of sources: they have been observed in nature and on
computer screens. An intriguing characteristic of fractals is that they can be described
by noninteger dimensions. The geometry of fractals and the mathematics of fractal
dimension provide useful tools for a variety of scientific disciplines—in particular, the

A chaotic dynamical system exhibits trajectories that converge to a strange attrac-
tor. The fractal dimension of this attractor counts the effective number of degrees of
freedom in the dynamical system and thus quantifies the system’s complexity. This
article reviews the numerical methods that have been developed to estimate the
dimension of a physical system directly from the system’s observed behavior.

Introduction to Chaos

Chaos is a good thing, change is what comes of it.
—Septima Poinsette Clark

Chaos is the complicated behavior of simple
deterministic equations, and complicated be-
havior is ubiquitous in nature. This notion is
provocative, for it suggests that the irregular
fluctuations exhibited in nature (or atleast some
of them) can be explained in simple terms.
Indeed, researchers have observed chaotic
behavior in systems ranging from a dripping
faucet to the human body.

The study of chaos shows that even systems
that obey simple laws can exhibit exotic and
unpredictable behavior. The solution of the
equations that describe the motion of a simple
system can be an aperiodic trajectory for which
long-term prediction is virtually impossible. If
the system is dissipative, e.g., if friction is pres-
ent, the trajectory converges to a subset of the
system’s phase space, which is the set of all
instantaneous states available to the system.
The subset might be a type of fractal that is
referred to as a strange attractor. (Fractals are
geometric forms with irregular patterns that
repeat themselves at different scales. The forms
consist of fragments of varying size and orienta-
tion but similar shape.) Although details of the
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trajectory have a sensitive dependence on the
initial conditions, the geometrical structure of
the strange attractor is robust. The fractal
dimension of the strange attractor corresponds
to the number of active degrees of freedom in the
system.

Researchers have developed numerical
methods for detecting and quantifying deter-
ministic chaos. The algorithms first reconstruct
the phase space directly from the observations
and then estimate the fractal dimension of the
observed trajectory. The application of the algo-
rithms remains something of an art; practitio-
ners do not agree fully on what constitutes a
reliable estimate. Nonetheless, the promise of
the algorithms is difficult to resist: by merely
observing a single component of a potentially
complex physical system, one can actually
count the active degrees of freedom in the sys-
tem. Thus, given an observation of irregular
motion, it is possible to answer the question, is
it chaos or is it noise?

Self-Organization, Dissipation, and
Counting the Degrees of Freedom

One usually measures the complexity of a
physical system by the number of degrees of
freedom the system possesses. However, it is
possible for the many nominal degrees of free-
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dom that make up the complex system to be
combined into a few effective degrees of freedom.
This collective behavior, which in linear systems
would be called normal modes, is more generally
termed self-organization. Much of the interest in
self-organization as a principle has been stimu-
lated by the writings of Hermann Haken [1], an
early and enthusiastic advocate. “A system is
self-organizing,” according to Haken, “if it ac-
quires a spatial, temporal, or functional struc-
ture without specific interference from the out-
side.” The effect appears in the laminar flow of a
fluid, the spiral arms of a galaxy, or the regular
ticking of a mechanical clock.

Self-organization is intriguing because
thermodynamics seems to forbid it: a self-orga-
nizing system decreases its own entropy. For a
closed system, the first and second laws of
thermodynamics demand that energy be con-
served, and that entropy not decrease. But for
an open system, these thermodynamic laws do
not apply, and the system can undergo self-
organization.

Consider the pendulum. An ideal frictionless
pendulum (Fig. 1[a]) swings with an amplitude
and frequency that do not vary with time. How-
ever, the effect of an external perturbation is to
put the system into another orbit and make the
pendulum swing at a new amplitude and fre-
quency. In this closed system, the long-term
motionis dependent on theinitial condition, and
there is no attractor for the motion.

On the other hand, a pendulum with friction
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(Fig. 1[b]) does exhibit an attractor, albeit a
trivial one. Independent of its initial condition,
the pendulum will eventually come to rest. Per-
turbing the pendulum will start it swinging
again, but the motion will eventually dampen
out and the pendulum will stop. This final fixed-
point motion is called an attractor because
it is stable to perturbation.

Finally, consider a windup pendulum clock
(Fig. 1[c]). Here the pendulum is both damped
and driven. It will continue to swing at a fixed
frequency (at least until the spring runs out)
even if its motion is perturbed. A perturbation
may affect the phase of the motion, but its
amplitude and frequency will be altered only
temporarily. The attractor is a limit cycle, and
the stability of the limit cycle is what keeps the
clock running at the correct rate.

The pendulum in the windup clock is an open
system that receives energy from the spring and
dissipates energy through friction. Thus energy
is not conserved except as a long-term average.
The pendulum qualifies as a self-organizing
system because the property of swinging at a
stable frequency is a function of the pendulum
itself and does not depend on the details of the
input energy source.

In general, self-organization arises in dissipa-
tive dynamical systems whose post-transient
behavior involves fewer degrees of freedom than
the full system. For the pendulum, there are two
nominal degrees of freedom: angular position
and angular momentum. But when the pendu-
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lum is in its stable limit cycle, only one degree of
freedom—the phase angle—is required to de-
scribe the state of the system. The system is
attracted to a lower-dimensional phase space,
and the dimension of this reduced phase space
is the number of active degrees of freedom in the
self-organized system.

Attractors are not confined to fixed points and
limit cycles. For nonlinear systems with three or
more degrees of freedom, strange attractors may
arise. (If the nonlinear system is a discrete map,
then only two degrees of freedom are needed.
Figure 2 shows the strange attractors obtained
from the Ikeda map [2] and the Hénon map [3].)
Motion on such an attractor can be highly
irregular and essentially unpredictable.

Even systems that are nominally complex
(i.e., systems that have many available degrees
of freedom) may relax to a low-dimensional
attractor. Behavior that is irregular can be low-
dimensional or it can be essentially stochastic.
Distinguishing between the two types of irregu-
lar behavior is the motivation for quantifying
chaos. The estimation of dimension from a time
series is one way to detect and quantify the self-

organizational properties of natural and artifi-
cial complex systems.

Nonlinear Dynamical Systems

Strange attractors arise from nonlinear dy-
namical systems. Physically, a dynamical sys-
tem is anything that moves. (And if it doesn't
move, then it's a dynamical system at a fixed
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Fig. 1—Self-organized motion of the pendulum: (a) Orbits of
anisolatedfrictionless pendulum are closed curves in phase
space. The orbit of the pendulum’s motion depends on the
initial conditions, and the effect of an external perturbation
is to put the system into a different orbit. (b) The inclusion of
friction leads to a system that dissipates all of its energy. All
orbits evolve toward a fixed-point attractor that corresponds
to the pendulum hanging vertical and motionless. (c) The
inclusion of both friction and a driving force such as that
which might be applied by a windup springleads to a system
with a limit-cycle attractor. Even in the presence of external
perturbations, the system tends toward an orbit on the limit
cycle. Thus the amplitude and frequency are intrinsic to the
system, andthey depend neither on the initial conditions nor
on the details of the perturbations.

point.) Mathematically, a dynamical system is
defined by a state space (also called phase space)
RM that describes the instantaneous states
available to the system, and an evolution
operator ¢ that tells how the state of the system
changes with time. M is the number of degrees
of freedom in the system; ¢ can be thought of as
the physics of the system. An element X € RY
specifies the current state of the system. For a
pendulum, X might represent the two coordi-
nates of angular position and angular momen-
tum. If the pendulum contains a windup spring,
X might also contain a coordinate for the instan-
taneous torque being applied by the spring.
The evolution operator is a family of functions
o, RM — RM that map the current state of the
system into its future state at a time ( units
later. The operator ¢, satisfies q)o(X) = X and
d)“s(X) = ¢t(¢S(X)]. A dynamical system is nonlin-
earif in general ¢ (c X +¢, X)) #c ¢/(X ) +c,0,(X,).
where ¢, and c, are constants.

The function ¢, can be defined either as a
discrete map or in terms of a set of ordinary
differential equations. Researchers have also
studied partial differential equations and differ-
ential delay equations. (In these last two cases,
M is infinite).

Dissipative Dynamics

A system is dissipative if the volume of a
reference chunk of phase space tends to zero as
t — « (Fig. 3). In other words, if B is a bounded
subset of RY with ordinary (Lebesque) volume
V(B), then

rli_l’)IDlOV((D[(B)) = 0. (1)
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Fig. 2—Two strange attractors: (top) The Ikeda map is acomplex map that derives from a model
of the plane-wave interactivity field in an optical ring laser [2]. The map is iterated many times,
and the points (Re(z,), Im(z,)) are plotted forn > 1000, where Re(z_) represents the real part
of the complex number z_and Im(z ) represents the imaginary part. Herea = 1.0,R = 0.9, ¢ =
0.4,andp =6. The fractal'dimension of this attractor is approximately 1.7. (bottom) The Hénon
map [3] witha = 1.4 and b = 0.3 gives an attractor that has a fractal dimension of about 1.3.
Note how much thinner the attractor of lower dimension appears.

66 The Lincoln Laboratory Journal, Volume 3. Number 1 (1990)



Theiler — Estimating the Fractal Dimension of Chaotic Time Series

Usually the dissipation is exponential, at least
on the average for large t;i.e., V(¢ (B)) ~ V(B)e ™,
where A is the rate of dissipation. In a conserva-
tive system, the volume is constant with time.
Although conservative dynamical systems can
also exhibit chaos, only dissipative dynamical
systems have strange attractors.

The attractor A of a dynamical system is the
subset of phase space toward which the system
evolves. Informally, one might write (_D[(B) — A
as t — . An initial condition X that is suffi-
ciently near the attractor will evolve in time
so that d)l(XO) comes arbitrarily close to the
set A as t — <. Since the volume V(¢ (B)) goes
to zero, the attractor is a zero-volume set. It
is possible, however, for a small volume to
grow longer even as it is growing thinner: the
volume converges to zero but the attractor
is not just a single fixed point (Fig. 3|[c]). In fact,
the set A can be a fractal and, in that case, the
attractor is said to be strange.

The Natural Invariant Measure

Equation 1 implies that V(A), the phase-space
volume of an attractor, is zero for a dissipative
system. To quantify the dynamics of an attractor
requires first the introduction of a new measure
u that is concentrated on the attractor. The
measure u is defined with respect to the
attractor A such that subsets B of the state
space R are associated with real values u(B)
that represent how much of the set A is con-
tained in B. The measure yu reflects the varying
density over the set A, and u(B) can be intuitively
regarded as the mass of B.

A particularly useful measure u is one that is
invariant to the dynamics of the system. The
proper way to define this is to write

u(B) = u(¢ (B)), (2)

where ¢ (B) =(X € R": ¢ (X) € B|. In general, Eq.
2 is not enough to define a unique invariant
measure for a dynamical system. For instance,
a measure that is concentrated on an unstable
fixed point satisfies Eq. 2 but has little to do with
the typical post-transient motion of the system.

The physically relevant measure for a dy-
namical attractor counts how often and for how
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long a typical trajectory visits various parts of
the set (Fig. 4). Here

.
. 1
1(B) = Tuirolj'[l,;(,@l(xo)]dt. (3)
0

where X is a typical initial condition, T is the
total time length of the trajectory, and I;(X) is the
indicator function for B: it is unity if X € B and
zero otherwise. Forvirtually all initial conditions
X, Eq.3 defines a unique invariant measure on
the attractor that is called the natural invariant
measure.

(@)

(b)

Fig. 3—Phase-space contraction: (a) The volume V of a
reference-chunk B of phase space decreases as the sys-
tem evolves. (b) Contraction of phase space in directions
perpendicular to the motion leads to limit cycles and other
non-strange attractors. (c) Contraction of phase space in
some directions with expansion in other directions in such
a way that the phase-space volume is decreasing leads to
a chaotic attractor.
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Sensitivity to Initial Conditions

The hallmark of a chaotic system is the sen-
sitivity of the system’s individual trajectories to

their initial conditions. (The overall structure of

the attractor, by contrast, is robust with respect
to changes in initial conditions.) The sensitivity
is usually quantified in terms of the Lyapunov
exponents and the Kolmogorov entropy [4]. The
Lyapunov exponents measure the rate of expo-
nential divergence of nearby trajectories and the
Kolmogorov entropy measures the rate of infor-
mation flow in the dynamical system.

Long-term predictions of chaotic systems are
virtually impossible. Even if the physics (i.e., ¢)
of a chaotic system is known completely, er-
rors in measuring the initial state propagate
exponentially.

Consider two nearby initial conditions X and
X+ €and evolve both forward in time. A Taylor
series expansion gives

0, (X + €)= 0,(Xp) +JI(t) €+ O(e?)

where the symbol O denotes the order of the
correction factor and J(t) is the Jacobian matrix
given by the linearization of ¢ around the point

X
J(t) = 20, (X;) _ JX(t) .
X, 20X (0)
The i, j element of the matrix is
g = 20
- r)Xj (0)

where X(,(l) is the ith component of the state
vector X at time t. The determinant of the
Jacobian matrix describes the overall contrac-
tion of phase-space volume (i.e., the dissipation
in the system), and the eigenvalues describe the
divergence of nearby trajectories. The Lyapunov
exponents (A1) quantify the average rate of expan-
sion of these eigenvalues.

A, = lim %loglnth eigenvalue ofJ(l)| ’
>0

By convention, the Lyapunov exponents are

Fig. 4—Invariant measure of the Ikeda attractor. The color of the pixel indicates how often a
typical orbit visits the site, from many visits (white) to few (blue) to none (black).
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indexed in descending order: 4,24,2...24,.
Unless the vector that connects a pair of initial
conditions happens to be precisely orthogonal
to the eigenvector that is associated with the
largest eigenvalue of the Jacobian matrix,
then the pair will separate at a rate dominated
by the largest Lyapunov exponent. And if the
largest Lyapunov exponent is positive, then
chaotic motion is assured. (Otherwise, trajecto-
ries will collapse to a fixed point, a limit cycle,
or a limit torus.) The sum of all the exponents
is negative for a dissipative dynamical system
and defines the rate of phase-space contraction:
A==, +. ..+ 4.

If the state X(t) of a system is known at time
t to some accuracy, then the future can be
predicted by X(t + Af) = ¢, (X(0) but the predicted
value will usually be less accurate. Therefore, to
observe or measure the state of the system again
at time t + At to the original accuracy is to learn
information that was previously unavailable. In
this respect, the system appears to be con-
stantly creating information. The average rate at
which it does so is quantified by the Kolmogorov
entropy, which is equal to the sum of the positive
Lyapunov exponents [4].

Delay-Time Embedding

Confronted with a physical system, an experi-
mentalist measures at regular and discrete in-
tervals of time the value of some state variable
(e.g., voltage) and records the time series: x(¢,),
x(tl), x(t2), ..., with x(ti) e R and t = ‘o + AL
From this time series, the experimentalist at-
tempts to infer something about the dynamics
(i.e., the physics) of the system. The measure-
ment x(f) represents a projection r from the
full state vector X(f) € RY.

m:RM 5 R,

Because a time series is one-dimensional, it is
an incomplete description of a system during a
time evolution. Nonetheless, many properties of
the system can still be inferred from the time
series.

Packard, Crutchfield, Farmer, and Shaw [5]
devised an elegant and remarkably simple
scheme to reconstruct the state space by em-
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bedding the time series into a higher-dimen-
sional space. From time-delayed values of the
scalar time series, vectors X € R™are created:

X(t) = [x(0). x(t = 7).....x(t = (m - 1)7)]"

where 7 (the delay time) and m (the embedding
dimension) are parameters of the embedding
procedure. (The superscript T denotes the trans-
pose and the symbol " denotes the reconstruc-
tion of a vector.) Here JA((t) represents a more
complete description of the state of the system
at time ¢ than does x(f) and can be thought of
as a mapping from the full state X(f) to the
reconstructed state X(t) = 7™ (X(1)):
™. RY s R™,

An embedding dimensionof m>2D+ 1, where
D is the fractal dimension of the attractor,
almost always ensures the reconstruction of the
topology of the original attractor. That is, 7'
restricted to A is a smooth one-to-one map from
the original attractor to the reconstructed at-
tractor. It should be noted, however, that aslong
as m > D, the reconstructed set will almost
always have the same dimension as the attrac-
tor—an assumption that is usually sufficient for
the purposes of dimension estimation. Figure 5
shows that with delay-time embedding, the
mapping from the actual phase space toarecon-
structed phase space is generically smooth.

Delay-time embedding is a powerful tool. For
example, if one believes that the brain is a
deterministic system, then it might be possible
to study the brain by looking at the electrical
output of a single neuron. This is an ambitious
example, but the point is that the delay-time
embedding makes it possible to analyze the self-
organizing behavior of a complex dynamical
system without knowledge of the system'’s full
state at any given time.

In principle, almost any delay time 7 and
embedding dimension m > D will work (i.e., if
unlimited infinitely precise data are available).
However, choosing the optimal parameters for
real data is a nontrivial process. For instance, if
the product (m - 1) is too large, then the
components x(t) and x(t + (m- 1)7) of the recon-
structed vector X will be effectively decorrelated,
which will inflate the estimated dimension. On
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Fig. 5—Delay-time embedding. A plausibility argument iflustrates that the mapping from the original phase space to
a reconstructed phase space using the delay-time embedding is generically smooth. The dynamics will be assumed to be
given by the differential equations x =f(x, y) andy =g(x, y) wheref and g are smooth functions of the actual phase-space
variables x and y. Note that a succession of smooth transformations leads to the delay-time coordinates: (a) A plot of x(t)
versus y(t) gives the original phase space of the system. (b) A plot of x versus f(x, y) is clearly a smooth transformation of
coordinates, since f is a smooth function. Because x = f(x, y), this plot is equivalent to a plot of x versus x. Furthermore,
one can write x =_“/I'[UO [x @t +At) —x@t)J/At. (c) Since x(t) is a smooth function of t, it is plausible to assume that the function
Xt + At) — x(t)J/At is a smooth function of At. Therefore, making At finite is a smooth transformation from the system in
part b. (d) A linear change of coordinates from those in part ¢ leads to the delay-time variables x(t) versus x(t + At). Note
that the reconstructed phase space of part d is just a smooth transformation of the original phase space in part a.

the other hand, if (m- 1)ris too small, then the
components x{f), . . ., x(t+ (m-1)7) will all be very
nearly equal and the reconstructed attractor will
look like one long diagonal line. It is also ineffi-
cient to make 7 very small, even for large m,
begause if x{t) = x(t + 1), successive components
of X become effectively redundant.

Generally speaking, one wants both 7 not
too much less than and (m- 1)t not too much
greater than some characteristic decorrela-
tion time. One such characteristic time is
defined in terms of the autocorrelation function
A7) = ((x(8) — (X)) (x(t + 1) — (X)), where the angle
brackets () represent an average over time t. The
autocorrelation time is given by [ “A(7)/A(0)dz.
Fraser and Swinney [6] used mutual informa-
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tion in place of autocorrelation to provide a
more sophisticated (and in many cases better)
choice of characteristic time.

Typically, having chosen 7, one performs the
dimension analysis for increasing values of m
and looks for a plateau in the plot of Dversus m.

Fractals and Fractal Dimension

Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line.

—Benoit B. Mandelbrot

The modern study of fractals originated with
Mandelbrot [7], who coined the term and who
remains an ardent spokesman.

The Lincoln Laboratory Journal, Volume 3, Number 1 (1990)
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Fractals are crinkly objects that defy conven-
tional measures like length and area. Yet frac-
tals are beguilingly far from formless. Clouds,
mountains, coastlines, bark, and lightning bolts
all exhibit nonsmooth shapes that can be de-
scribed as fractal. Fractal objects, as Leo Kada-
noff notes in Ref. 8, “contain structures nested
within one another like Chinese boxes or
Russian dolls.” This self-similar struc-
ture is perhaps the main reason for the
striking visual beauty of fractals. Self-simi-
larity also implies a scale-invariant property.
There are crinkles upon crinkles, but no pre-
ferred crinkle size.

Mathematically speaking, a set is strictly self-
similar if it can be expressed as a union of sets
each of which is a reduced copy of (i.e., is geo-
metrically similar to) the full set. However, not
all fractal objects exhibit this precise form. In
a coastline, for instance, there is an irregular
nesting of gulfs, bays, harbors, and coves
that are observed over a broad range of spa-
tial scales (Fig. 6). A magnified view of one part
of the coastline may not precisely reproduce
the full picture, but it will have the same quali-
tative appearance. A coastline displays the
kind of fractal behavior that is called statis-
tical self-similarity.

Fig. 6—Self-similar fractals: (a) The Koch curve is a fractal curve, each segment of which is a smaller copy of the full figure.
(b) This variant of the Koch curve includes an element of randomness. Here, although no one segment is precisely similar
to any other segment, there is a statistically self-similar structure to the figure. (c) Alaska's Prince William Sound has been
colored to highlight the fractal appearance of the coastline.
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Quantifying Fractals

The most natural quantity by which a fractal
can be characterized is its fractal dimension.
One motivation is described by H. Eugene
Stanley [9], who has outlined a program for the
practicing scientist who wants to study fractals.

If you are an experimentalist, you try to
measure the fractal dimension of things in
nature. If you are a theorist, you try to
calculate the fractal dimension of models
chosen to describe experimental situations;
if there is no agreement then you try another
model.

This pithy advice applies to strange attractors
as well as to solid fractal objects: fractal dimen-
sion provides a benchmark against which the-
ory can be compared to experiment. In the case
of strange attractors, however, there is further
reason for wanting to know the dimension. The
dimension is what counts the number of degrees
of freedom in a system, and thus provides a
useful measure of the system's complexity.

Definitions of Fractal Dimension

In 1919, Felix Hausdorff [10] gave a com-
pletely rigorous definition of dimension, but it is
adefinition that does not lend itself to numerical
estimation. Much interest in the last decade has
focused on the numerical study of chaos, and it
is useful to consider more operational defini-
tions of dimension, i.e., those definitions which
can be translated into algorithms for estimating
dimension from a finite sample of points.

In the following sections, two different ways of
thinking about dimension will be discussed:
first as an exponent that characterizes the scal-
ing of a bulk with a size, then as a number that
counts how many active degrees of freedom a
system contains. Both definitions give the same
number and both can be extended to define a
generalized dimension, but each attempts to
provide a different intuition for understanding
what that dimension means.

Local Scaling of Bulk with Size

The geometrically intuitive notion of dimen-
sionisasan exponent that expresses the scaling
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of an object’s bulk with its size.

bulk ~ sizedimension (4)

Here the term bulk can correspond to a volume,
a mass, or even a measure of information con-
tent, and the term size is a linear distance. For
a line, bulk and size are the same thing, and so
aline has adimension of one. The area of a plane
figure grows quadratically with its size, and
so it has a dimension of two. The definition of di-
mension is usually cast as an equation of
the form

dimension = lim log(bulk)
size—0 10g(size)

where the limit of size — 0O is used to ensure
invariance over smooth coordinate changes. The
small-size limit also implies that dimension is a
local quantity, and that any global definition of
fractal dimension will require some kind of
averaging.

Although other notions of bulk are also pos-
sible, the obvious relevant measure of bulk for a
subset B of a dynamical attractor is the attrac-
tor’s natural invariant measure u(B).

A good quantity for the size of a set is its
radius or its diameter, the latter of which is
defined by

§(B) = sup{|X - Y|: X,Y e B}

where sup is the supremum, or maximum, and
|IX - Y] is the distance between points X and Y.
How this distance is calculated depends on the
norm of the embedding space. If X, is the ith
component of the vector X € R™, then the L
norm gives distance according to

m 1/s
[Z|Xi - Y,f} :

i=1

|x - Y]

The most useful of these norms are L, the
Euclidean norm, which gives distances that are
rotation invariant; Ll, called the taxicab norm,
which is very easy to compute; and L _, the
maximum norm, which is also easy to compute.
It is not difficult to show that fractal dimension
is invariant to choice of norm.

For instance, the pointwise dimension is a
local measure of the dimension of a fractal set at

The Lincoln Laboratory Journal, Volume 3, Number 1 (1990)
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apointon the attractor. Let B, (r) denote a ball of
radius r centered at the point X. Define the
pointwise mass function By(r) as the natural
invariant measure

By (r) = u(By (r)). (5)

The scaling of the mass function at X with the
radius r defines DP(X), the pointwise dimension
at X:

D,,(X) = lim M‘
r—0 logr

D (X) is a local quantity, but one can define
the average pointwise dimension to be a global
quantity.

D, = | D, (X)du(x)

A
(6)
= Ity SOEAAT)
r—0 logr

where H(r) = exp{JAlog [Bg(nldu(X)} is a weighted
geometric average of the pointwise mass
function Bx(r).

Information Dimension

As an alternative to the scaling of mass with
size, the dimension of a set can be thought of in
terms of how many real numbers are needed to
specify a point on that set. For instance, the
position of a point on a line can be labeled by a
single real number, the position on a plane by
two Cartesian coordinates, and the position in
ordinary three-dimensional space by three coor-
dinates. Here dimension is something that
counts the number of degrees of freedom. For
sets more complicated than lines, surfaces, and
volumes, however, this informal definition of
dimension needs to be broadened.

One way to extend the definition is to deter-
mine not how many real numbers but how many
bits of information are needed to specify a point
to a given accuracy. On a line segment of unit
length, k bits divide the segment into 2* subseg-
ments, and therefore specify the position of a
point to within an accuracy r = 2°%. For a unit
square, 2k bits are needed to achieve the same
accuracy (k bits for each of the two coordinates
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specified). And similarly, 3k bits are needed for
a three-dimensional cube. For the general case,
S(r) is equal to —d log2 r, where S(r) is the number
of bits of information that are needed to specify
a position on a unit d-dimensional hypercube to
an accuracy r. Solving the equation for d leads
to a natural definition for the information dimen-
sion (D)) of a set.
-S(r)

r—0 log,r

D, - (7)
By identifying the bulk of Eq. 4 with the expres-
sion 25 in Eq. 7, one can still interpret D, asa
scaling of bulk with size.

If a fractal is partitioned into boxes B, of size
r, then determining the position of a point to an
accuracy r requires specifying which box the
point is in. The average information needed to
specify one box is given by Shannon's formula

S(r) = - ) Plog,P, (®)

where P is the probability measure of the ith
box: P, = u(B)/u(A). Equation 8 can be substi-
tuted into the definition of D, (Eq. 7):

D; = lim
r—0 log,r

The equivalence of D, (the information dimen-

sion) and Dp (the average pointwise dimension)

can be seen by treating the sum X P,log, P, as a

weighted average of log P, and comparing this

quantity to the weighted average of log B, (r) in
Eq. 6.

Box-Counting Dimension

Historically, the first numerical estimates of
dimension were based on partitioning the state
space into a grid of boxes, each of size r, and
counting how many boxes contained points. The
scaling of this number with r defines an upper
bound on the Hausdorff dimension, which is
referred to as the capacity, the box-counting
dimension, or the fractal dimension. The last
term, however, has come to be used in a generic
sense for any dimension that might be noninte-
gral. With the grid size r and the count of
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nonempty boxes n(r), the box-counting
dimension D,, is given by

Dy, = lim 198 (W/R{r))
r—-0 log r

Here the local notion of bulk is replaced with a
global one: because each nonempty box con-
tains on average 1/n(r) of the whole fractal, the
quantity 1/n(r) is the average bulk of each non-
empty box.

Though the box-counting dimension is not
necessarily equal to the information dimension,
the difference is usually small. so that for the
purposes of estimating the complexity of a
physical system it may not really matter which
definition of dimension is used. However, pre-
cise comparisons of theory and experiment
require that both arereferring to the same quan-
tity. The discrepancy will be resolved by extend-
ing the definitions to a generalized dimension.

Generalized Dimension

In computing the box-counting dimension,
one makes the decision to count or not count a
box according to whether there is at least one
pointin the box. No provision is made for weight-
ing the box count according to how many points
are inside the box.

It is possible to generalize the definition of
dimension in a way that takes into account the
number of points in the box. Let B, denote the
ith box and let Pl. = H(B,.]/ll(A] be the normal-
ized measure of this box. Equivalently. P, is
the probability that B, contains a randomly
chosen point on the attractor and the quantity
is estimated by counting the number of points
that are in the ith box and dividing by the total
number of points.

The generalized dimension Dq can be defined

by
log ) P
L jim 2‘ (9)
qg-1r-0 log r

D, =

where qis a parameter that specifies the dimen-
sion being referred to. Writing the sum of P? as
a weighted average, ¥ P9=3 P(P")=(P"), one
can associate bulk with the generalized average
probability per box q'l\/(P(.""). and identify Dq as
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a scaling of bulk with size. (The angle brackets
() denote the weighted average.)

Note that for g = 2, the generalized average is
the ordinary arithmetic average, and for g = 3 it
is a root-mean-square average. The limit g — 1
leads to a geometric average and corresponds to
the information or average pointwise dimension.
Finally, g = O gives the box-counting dimension.

For a uniform fractal (i.e., all Pi equal), the
generalized dimension D_does not vary with gq.
For a nonuniform fractal, the variation of Dq with
g quantifies the nonuniformity; e.g.,

log | max P, |
D. = lim ——————= and
r—0 log r
log {mlin R]
D, =lim———=
r—0 log r

The above equations show that the maximum
dimension D _is associated with the least dense
points on the fractal; the minimum dimension
D_ corresponds to the most dense points.

The notion of generalized dimension first
arose out of a need to understand why different
algorithms gave different answers for dimen-
sion. A further motivation comes from the need
to characterize fractals more fully. Rather than
measure just one dimension of a fractal, one
can compute the full spectrum of dimensions
from D _to D .

In Ref. 11, Renyi defined a generalized infor-
mation measure

S,(r) =

1 q
q_llogZPi‘ (10)

that reduces to Shannon'’s formula in the limit
q — 1. The generalized information dimension
associated with the Renyi entropy is just the
generalized dimension that was defined earlier
by another approach. That is, from Eqgs. 7 and
10, the Renyi generalized dimension is given by

D m 1L

q

Il
'
=
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which is the same equation as the definition
given in Eq. 9.

Spectrum of Scaling Indices: f(o)

An alternative interpretation of generalized
dimension is provided by the spectrum of scal-
ing indices f(a), which was introduced in
Ref. 12. Although f(¢) is formally defined as a
Legendre transformation of the function 7(qg),
in which 7(q) = (q - l)Dq, a transformation can
be obtained by interpreting fas a kind of fre-
quency of occurrence of pointwise dimensions
o throughout the fractal.

Suppose the attractor is partitioned into
many small sets, and the ith such set has a
measure (4, and a size 6, < r, where rrepresents
the coarseness of the partition. Then ¢, is de-
fined by the local scaling u, = . Let n(e, r) be
the number of these small sets that have a
scaling index between « and o + Ac. Final-
ly, the spectrum f(¢) is defined by the scaling
nle, N = r/9ac.

Now take the case in which the attractor is
partitioned into fixed-size boxes and consider
the sum 2 P The number of terms in this sum
for which P is equal to r” is given by n(a, 7).
Thus the sum can be written as

ZP{’ = Zn(a,r)r""
t a
= Jr-f[(i)rqada (l l)

- Jrq(z—f(a)da

The exponent 61is given by min {qo:— flo)} because
the integral will be dominated by the smallest
power of rwhen r — 0. Comparing Eq. 11 to the
definition of generalized dimension in Eq. 9,
which gives ¥ P ~ r@VPa= 714 one obtains
7(q) = min{qa - f(a)}, (12)
¢4
which can be rewritten as
fla) = min{ga - t(q)}. (13)
q
If 7(q) and f(e) are differentiable, then the follow-
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ing simpler forms of Egs. 12 and 13 can be used:

a=%.f=aq—r: and

< (14)
ngi, T=oaq- f.

o

Although Egs. 12 to 14 were obtained with
informal scaling arguments, the equations serve
as the formal definition of the spectrum of
scaling indices f(q).

The scaling n(e, I ~ 1/ suggests interpreting
f(e) as the dimension of the points with scaling
index a. Indeed, the scaling index «is associated
with the pointwise dimension Dp. The set

S, ={X e A: DP[X) = Gt

is the set of all points in A for which the pointwise
dimension is a. The Hausdorff dimension of the
set 8§ _is given by f(a).

Figure 7 shows the relationships between Dq.
o, f. and q for a typical multifractal.

A Survey of Algorithms for
Computing Dimension

Notions of quantity are possible only where there
exists already a general concept which allows various
modes of determination.

—George Friedrich Bernhard Riemann

The previous section introduced an algorithm
based on box counting. For practical computa-
tion, however, the box-counting algorithm is
plagued with anumber of inefficiencies, particu-
larly at high embedding dimensions. A variety of
other algorithms for estimating dimension have
been developed in recent years. This section will
survey those algorithms.

The most popular way to compute dimension
remains the correlation algorithm of Grass-
berger and Procaccia [13], which éstimates
dimension based on the statistics of pairwise
distances. The main advantage of pairwise-
distance algorithms is that they permit one to
probe the scaling of the attracting set to very
small length scales r. It is the small-r behavior
that is important, and interpoint distances can
probe down to an r value as small as the near-
est interpoint distance. If an equivalently small
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Fig. 7—Generalized dimension: (top) D_ as a function of q
for a typical multifractal. Also shown are both f and o as a
function of q for the same multifractal. (bottom) f as a
function of .. The curve is always convex upward, and the
peak of the curve occurs atq = 0. At this point, f is equal to
the fractal dimension D . Note that thef(a) curve is tangent
to the curve f = a and the point of tangency occurs atq = 1.
In general, the left branch of the curve corresponds to
q > 0 and the right branch to q < 0.

value of r were used in a box-counting algo-
rithm, many of the tiny boxes would be improp-
erly considered empty because there would not
be enough voints in the data set to fill the appro-
priate boxes. Furthermore, correlation algo-
rithms have the advantage that they compute
their measure of bulk for many different box
sizes at once, whereas the box-counting algo-
rithm requires that new grids be laid down for
each different box size.

The box-counting and correlation algorithms
are both in the class of fixed-size algorithms be-
cause they are based on the scaling of mass
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with size for boxes or grids of fixed sizes. An
alternative approach uses fixed-mass boxes,
usually by looking at the statistics of distances
to kth nearest neighbors. Both fixed-size and
fixed-mass algorithms can be applied to the esti-
mation of generalized dimension D , although
fixed-size algorithms do not work well for g < 1.

Some algorithms directly involve the dynami-
cal properties of the strange attractor. For ex-
ample, the Kaplan-Yorke conjecture (described
later) relates dimension to the Lyapunov expo-
nents. Recently, interest has focused on trying
to ferret out the unstable periodic orbits of the
attractor. The most direct use of the dynamics is
to make predictions of the time series. Accurate
predictions provide a reliable indication that
the dynamics is indeed deterministic and low-
dimensional.

Finally, the idea of intrinsic dimension is dis-
cussed. Methods in this category look for local
hyperplanes that confine the data; the integer
dimension of the local hyperplanes provides an
upper bound on the fractal dimension of the
attractor.

A number of these algorithms can be ex-
tended to compute generalized dimension, al-
though the usefulness of this extension is, in
many practical cases, limited. A generalized
dimension is useful for quantifying the nonuni-
formity of the fractal and for comparing an exact
and predictive theory to an experimental result.
But the goal of dimension estimation is very
often more qualitative in nature. One may only
want to know whether the number of degrees of
freedom is very large or reasonably small. To
answer the question, is it chaos or is it noise? a
robust estimate of dimension is more important
than a precise estimate. In these cases, for
example, the subtle distinction between the
information dimension at g = 1 and correlation
dimension at g = 2 may not be as important as
the grittier issues that arise from experimental
noise, finite samples, or even computational
efficiency.

Average-Pointwise-Mass Algorithms

Recall the definition of the pointwise mass
function in Eq. 5: By (1) = u(By(r), where By(r) is
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the ball of radius r around the point X. The
scaling of the quantity By(r) with r is what de-
fines the local pointwise dimension at X.
The average pointwise dimension is then defin-
ed by computing the pointwise dimension DP(X]
at each point X and averaging over the attrac-
tor. An alternate approach is to take some
average of the pointwise masses and to define
the dimension as the scaling of this average
with r.

The most natural such averaging strategy
was introduced by Grassberger and Procaccia
[13]. Here a direct arithmetic average of the
pointwise mass function gives what Grass-
berger and Procaccia call the correlation integral

C(n:
C(r) = (Bgl(r)).

From this, the correlation dimension v is de-
fined as

Here By ’_[r) can be approximated from a finite
data set of size N by the equation

ij(r) = ij(N.r)
#{X,-: i # j and HX,- —XjH < r}
N -1

T (15)
Vjﬂd“%ﬁﬁw
i#j

I

where © is the Heaviside step function: ©(2) is
zero for z < 0 and one for z > 0. One generally
excludes the distance of a point to itself (i.e., the
case in which i =j). It is now straightforward to
approximate C(r) with a finite data set:

1 N
szy)
J=

N N
- s Yol - [x - x,

j=1 i=1

C(N, r)

i (16)
N N

- &, 200 Ik )
Jj=li=j+
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In words, Eq. 16 can be written in the following
way:

# of distances less than r
CIN, )= - - (17)
# of distances altogether

Thus the correlation algorithm provides an
estimate of dimension based purely on the sta-
tistics of pairwise distances. Not only is this an
elegant formulation, but it has the more sub-
stantial advantage that it probes the attractor to
much finer scale than, for instance, the box-
counting algorithm. For N points, the C(N, n
function of the correlation method ranges from
2/N? to 1. In a logarithmic sense, this range is
twice that available to the box-counting
method’s n(N, r) function, which ranges from 1
to N. The correlation integral also exhibits
twice the logarithmic range of the single-point
mass functions BX(N. i

A more general average G (r) than the direct
arithmetic average used above is given by the
following equation:

o gl RVETY
Gq(r) = 4{(Bx(r)?) . (18)
The scaling of this average with r, i.e., Gq[r) ~rPy
gives the generalized dimension Dq:

log G, (r
Dq — lin] g—q(’)
r—-0 logr

From Egs. 15 and 18, Gq(r) can be approxi-
mated with a finite set of points by

N 1/(g-1)

Gy (N, r) = %Z[Bx'(N. n]""

i=1

where Bx,(N' r) is defined in Eq. 15. The formula
is easiest to evaluate when g = 2, in which case
it reduces to the simple form of Eq. 16. The
formula, however, does not work well for g < 1
because the term raised to the power of g— 1 is
often zero for r much larger than the smallest
interpoint distance.

Grassberger [14] suggested a g-point correla-
tion integral defined by counting g-tuples of
points that have the property that every pair
of points in the g-tuple is separated by a dis-
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tance that is less than r.

1
C,(N, r) = W#{‘Xf' ..... X, ):

<rforall n, m e {i;,.... i }},
m” 1 q

|x, - x

which has the scaling behavior Cq(r) ~ pa1)Dq
Thus

log C,(N, r)
lim lim ——4——
q—-1r-0N-e logr

D:

4 (19)
Equation 19 can in principle be applied to all
integer g = 2. However, the equation’s imple-
mentation is unwieldy for g = 3 because the
number of g-tuples (which is given by N9) grows
very rapidly with N when g = 3.

The kth-Nearest-Neighbor
(Fixed-Mass) Algorithms

The average pointwise mass functions de-
scribed in the previous section consider the
variation of mass inside fixed-size boxes. In
contrast to that approach, the nearest-neighbor
algorithms consider the scaling of sizes in fixed-
mass boxes.

An early implementation of this notion in a
chaotic dynamics context was suggested by
Termonia and Alexandrowicz [15]. Here one
computes (r, ), the average distance to the kth
nearest neighbor, as a function of k. Let R(X, k)
denote the distance between point X and its
kth nearest neighbor. (By convention, the
zeroth nearest neighbor is the point itself, so
R(X, 0) = O for all X.) The average is

N
1
(i) = Z R(X,. k).

The scaling (r,) ~ k'/" defines the dimension.

Badii and Politi [16] considered the moment y
of the average distance to the kth-nearest neigh-
bor. They recommended keeping k fixed and
computing a dimension function D(y) from the
scaling of average moments of r, with total
number of points N:

() ~ (k/NYIP,

This dimension function D(y) is related to the
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generalized dimension by the implicit formulas
vy = (g -1)Dg; D(y) = D,. (20)

Grassberger [17] derived Eq. 20 independ-
ently and used the I'-function to provide a small
ke correction to the scaling of (rkV) with k:

’ I'(k + y/D) ,
I e || e L v/D
(2 ~ | S22 Jieryr
The term contained in the square brackets
approaches unity as k becomes large.

Algorithms That Use Dynamical
Information

Let Txo(r] be the r-recurrence time of an initial
condition X . This time is the minimum amount
necessary for the trajectory of X, to come back
to within r of X . Thus the inverse recurrence
time, which is related to the time the trajectory
is within r of X, provides an estimate of the
pointwise mass function. In other words, one
expects

1
Txo(r)

~ By, (r).

Consequently, the scaling of the average recur-
rence time with r can be related to the general-
ized dimension [14]:

D,

e \<7?XW> - qvl\s;<BxT)q'1> - e,

Another algorithm—the Kaplan-Yorke con-
jecture [18]—relates the fractal dimension of a
strange attractor to the Lyapunov exponents.
The conjectured formula defines what has come
to be called the Lyapunov dimension (dL):

where{d,, . . .., A_Iare the Lyapunov exponents
in decreasing order, and j is given by

K
I= sup{k:Z/li 5 0}.
i=1
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The conjecture is that the Lyapunov dimension
corresponds to the information dimension D,
where g = 1.

When the equations of motion are available,
the Jacobian matrix J(f) can be computed di-
rectly and the direct computation improves the
calculation of Lyapunov exponents and the
resulting Lyapunov dimension. In this case,
computing the Lyapunov dimension is the best
strategy for estimating dimension. In fact, it is
the only approach that has been shown to work
with dimensions larger than 10.

In discussing algorithms for predicting the
future of time series, Farmer and Sidorowich
[19] suggested several ways that the prediction
algorithms might be used to make more accu-
rate and reliable dimension estimates. One
promising possibility is to use bootstrapping, in
which a short time series of length Nis extrapo-
lated far into the future, and the resulting time
series is used in a conventional dimension algo-
rithm. This method is appropriate when only a
small data set is available and computation time
is not the limiting factor.

A second possibility is to scale the prediction
error with N, the number of points from which
the prediction is made. The N-scaling can be
related to the fractal dimension. Moreover, it has
the desirable property that if it is observed—i.e.,
if the prediction error noticeably reduces with
increasing N—then the system can reliably be
considered low-dimensional.

Instead of trying to determine the exact frac-
tal dimension, other algorithms count the
number of degrees of freedom in a more approxi-
mate way by finding the minimum embedding
dimension (called the intrinsic dimension) for
the time-series data. The estimate is necessarily
coarser, but possibly more reliable.

The idea of seeking minimum embedding
dimensions was first discussed in the context of
dynamical systems by Froehling, Crutchfield,
Farmer, Packard, and Shaw [20]. In Ref. 20, the
authors attempted to find a linear fit of points in
a local region to a D-dimensional hyperplane of
an m-dimensional reconstructed embedding
space. Broomhead and King [21] suggested
using singular-value decomposition to make the
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fit to the D-dimensional hyperplane more effi-
cient. The prediction algorithms of Farmer and
Sidorowich [19, 22] can also be used to estimate
intrinsic dimensions. Basically, the smallest
embedding dimension for which good predic-
tions can be made is a reliable upper bound on
the number of degrees of freedom in the time
series.

Practical Estimation of the
Correlation Dimension

Noestimate is more indanger of erroneous calculations
than those by which a man computes the force of his
own genius,

—Samuel Johnson

The most popular, and for many purposes the
best, algorithm for estimating dimension is the
correlation algorithm of Grassberger and Pro-
caccia [13]. For one thing, the correlation algo-
rithm is very easy to implement: one computes
the correlation integral C(N, r) merely by count-
ing distances. Equation 17 defines the esti-
mated correlation integral C(N, r) as the fraction
of distances less than r. From this the correla-
tion dimension is in principle given by

v = lim lim lo_gm

(21
r-o N—-ow log I

However, a variety of practical issues and poten-
tial pitfalls come with making an estimate from
finite data.

Extraction of the Slope

Extracting dimension directly from the corre-
lation integral according to Eq. 21 is extremely
inefficient, since the convergence to vas r— 0O is
logarithmically slow.

Taking a slope solves this problem. One can
either take the local slope

dlog C (N, r)
dlogr

_ dC (N, r)/dr

~ C(N. r)/r

or one can fit a chord through two points on the

v(r)

(22)
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curve in the following way:

i) = AloAgIC(N, r)
ogr (23]
_logC(N,ry)-1og C(N.nr)
- log r, —log ny '

However, implementing the chord strategy re-
quires the choice of two length scales r, and r,.
The larger scale is limited by the size of the
attractor, and the smaller scale is limited by the
smallest interpoint distance.

The direct difference in Eq. 23 fails to take full
advantage of the information available in C(N, r
for values of r between r, and r,. To use those
values, one might be tempted to fit a slope by
some kind of least-squares method, but this
approach is problematic. Unweighted least
squares are particularly poor, because the esti-
mate of C(r) by C(N, ) is usually much better for
large r than for small r. Weighted fits can com-
pensate for this effect, but there is still a prob-
lem because successive values of C(N,r) are
not independent. Since C(N, r + Ar) is equal to
C(N, 1 plus the fraction of distances between r
and r + Ar, it is a mistake to assume that
C(N, r+ Ar) is independent of C(N, r). An estimate
of dimension will depend on whether C(N, r) is
sampled at logarithmic intervals (r = 0.001,
0.01,0.1, .. .)oratuniformintervals (r=0.001,
0.002, 0.003, . . .). Furthermore, the error esti-
mate that the least-squares fit naturally pro-
vides will have very little to do with the actual
error in the dimension estimate.

Because of the limitations of the least-
squares approach, Takens [23] developed a
method in which the intermediate-distance in-
formation could be incorporated in a consistent
way. Using the theory of best estimators, Takens
derived an estimator for v that makes optimal
use of the information in the interpoint dis-
tances r . Infact, the method uses all distances
less than an upper bound r, so that a lower
cutoff distance need not be spemfled

-1
log (r,; / 15))
where the angle brackets () refer to an average

over all distances r, . that are less than r. In
terms of the correlatlon integral, Eq. 24 can

virg) = < (24)
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be written [24] as the following:

] = _ Clrp)
C(r)/r
0
(25)
j [dC (r)/dr]dr
0

J [C(r)/r]dr
)

The more unwieldy form of Eq. 25 is meant to be
compared to Eq. 22 for the local slope.

Not only does the Takens estimator provide
an efficient means to squeeze an optimal esti-
mate out of the correlation integral, it also
supplies an estimate of the statistical error,
namely o,= v/ \/W‘] [23], where N* is the num-
ber of distances less than r,. However, this error
estimate makes the assumption that the N*
distances are statistically independent, and is
only valid if N* < N [25].

Reference 26 points out that even though the
Takens estimator uses all distances less than r,
the estimator is still sensitive to oscillations in
the correlation integral.

Computation

Although there are O(N?) interpoint dis-
tances to be considered in a time series of N
points, most of the distances are large, i.e., on
the same order as the size of the attractor.
Because the short distances are the most impor-
tant, and because there are so few of them, it is
advantageous to organize the points on the
attractor so that only the short distances are
computed. The algorithm in Ref. 27 provides a
way to compute the O(N) shortest distances with
only O(N log N) effort by placing the points in
boxes of size r,- Farmer and Sidorowich [19]
organized points in a “k-d tree” for their predic-
tion algorithm; such an organization of points
would also be useful for the k-nearest-neighbor
algorithms that were discussed earlier.

Comparison with Filtered Noise

It is a common and well-advised tactic to
compare the correlation dimension computed
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Fig. 8—Plot of an idealized correlation integral C(N, r)
versusronlog-log axes. Inthe ideal case, C(N, r) scales as
r™ for the embedding dimensionm < v, and asr" form > v
overarange fromC(N, r) = 2IN? to saturation atC(N, r) = 1.
Here v is somewhere between 2 and 3. This idealization,
however, is only approximated by correlation integrals
computed from actual samples of time-series data. The
value &, is the diameter of the attractor.

for a given time series against a set of test data
whose properties are known in advance. For
example, if the given time series has a signifi-
cantly different dimension than does white noise
(i.e. random noise), then one can rule out the
null hypothesis that the original time series is
white noise. However, the original time series
might still be colored noise; i.e., the time-series
data might be correlated with itself (called auto-
correlation).

A more stringent testis to create a time series
with the same Fourier spectra as the original
time series. For instance, one could take a
Fourier transform of the original time series,
randomize the phases, and then invert the
transform. If the C(N, r) obtained from the new
time series is significantly different from that of
the original time series, then a stronger state-
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ment can be made: not only is the original time
series not white noise, it could not have been
produced by any linear filter of white noise.

Sources of Error

The estimation of dimension from a time
series is prone to two fundamental sources of
error: statistical imprecision and systematic
bias. The first type of error results directly from
the finite sampling of data; as such, the error is
reasonably tractable. The second type of error
comes from a wide variety of sources. Indeed,
that wide variety has led to great difficulty in
verifying results as reliable.

The following sections present a brief survey
ofthe kinds of problems that arise in the compu-
tation of correlation dimension.

Finite Sampling and Statistical Error

What finally limits an estimate of dimension
is that only a finite number of points sample the
attractor. Many of the systematic effects dis-
cussed in the following sections can be elimi-
nated in the N — oo limit.

First, a finite sample of N points limits the
range of interpoint distances. The correlation
integral, which is approximated by C(N, r) ~ rP?,
varies from 2/N? to 1, so that any fit has only
this range to work with (Fig. 8). In particular, any
fit over a range R of distances requires N?/2 > RP,
so that at least N=V(2RP) points are required. (R
is the ratio of the largest to the smallest r.) This
scaling, however, is an absolute lower bound. In
practice, many more points are required, due in
most cases to the variety of systematic effects
(discussed below) that must be overcome.

The statistical error in an estimate of dimen-
sion typically scales as 1/\/ﬁ. where the coeffi-
cient of the scaling depends on the fluctuations
in the pointwise masses Bx(r) [25]. In special
cases, the coefficient can be zero, in which case
1/N scaling can be observed.

Edges and Finite Size

The finite size of a compact fractal object
limits the range over which C(r) scales as r".
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Fig. 9—An actual correlation integral for a two-dimensional
chaotic attractor withembedding dimensionsm = 1 through
m = 6. The finite sample size leads to poor statistics at small
r, and the finite size of the attractor (the edge effect) limits
the scaling at large r. Nonetheless, the slopes are more or
less constant over a range of C(N, r) of order N°.

For r greater than the diameter of the attractor
(6,). the correlation integral saturates at C(r) = 1.
This finite-size effect is not necessarily a prob-
lem in dimension calculations. As long as the
effect is confined to length scales larger than
some r, =6, then accurate estimates of dimen-
sion can still be obtained in the r < r, range
from the slope of a plot of log C(r) versus log r
(Figs. 8 and 9).

The real problem stems from the edges that
finite-sized objects in R™ all have. The neighbor-
hoods around points near the edge have differ-
ent scaling from neighborhoods further in the
interior.

Although any model of edge effect will depend
on the shape of the fractal, a tractable and
reasonably generic model assumes that the
fractal is a uniform hypercube of unit length
and dimension m. In such a case, the corre-
lation integral can be derived exactly [24]:
C(N, 1) = (2r-r?™ The local slope at rof the log-
log curve is given by

I (dcj:m(2—2r) =m(1—£j

vir) = ——| —
Clr)\ dr 2-r1 2

so that the relative error is | v(n - m| Im=1]2.
Here is an explicit demonstration of the need for
the r — O limit in an estimate of dimension.
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Noise

Noise, the ultimate corrupter of measure-
ments, is usually the first concern of the experi-
mentalist. In the case of dimension estimation,
however, the effect of low-amplitude noise is
often not as significant as other effects.

One expects that the fractal scaling of bulk
with size will break down at length scales equal
to the noise amplitude. But unless the system
amplifies noise excessively, one does not expect
the scaling to be affected at length scales much
larger than the noise amplitude (Fig. 10). Al-
though noise is amplified along the expansion
directions of a chaotic attractor, this effect does
not have much influence on the dimension
estimation because the noise is amplified back
onto the attractor. In other words, the noise is
drawn to the attractor and consequently has
little effect on the scaling. Thus at relatively high
SNRs there is still a good range over which a
fractal may be scaled.

Because noise often possesses a much higher
characteristic frequency than the deterministic
attractor, it is tempting to subject the signal
to a low-pass filter to reduce the noise effects.
As a rule, however, the use of a low-pass filter
is not recommended because the filter can
actually increase the dimension of the time
series [28].

0
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S
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r

Fig. 10—The effect of noise is seen in this figure. Where ¢
is the amplitude of the noise, one sees thatforr << o, a slope
that approaches the embedding dimensionm is observed.
Forr >> o, the effect of the noise is unimportant.
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Fig. 11—The effect of discretization is to introduce stair
steps into the correlation integral. The steps are all of equal
width, but the log-log plot magnifies those at small r. The
effect is minimized if one plots log C(N, r) versus log r for
r = (k + €&2) where k is an integer and ¢ is the level of
discretization (dashed curve).

Discretization

Discretized time series are of the form x, = kg,
where k, is an integer and ¢is the discretization
level. Such discretization is a natural artifact of
digital measuring devices. In fact, many algo-
rithms work much faster with integers than with
floating-point numbers, so that it may be com-
putationally wise to make the conversion; the
conversion involves multiplication by some
large factor, followed by rounding to the nearest
integer. The multiplicative factor does not affect
the slope of a log-log plot, but the rounding is
equivalent to a discretization.

Distances between pairs of discretized points
will themselves be discrete multiples of €. This
effect is most prominent at small r; indeed,
pairs of points with r= 0 occur with finite proba-
bility and a plot of log C(r) versus log r must
deal with the r = O points. A model of points
on an m-dimensional lattice, with the lattice
points separated by ¢, leads to a scaling of
C(n) ~ (r + &/2)™ to the first order of ¢ [24].
This result suggests that an appropriate plot for
a general discretized time series is log C(r) ver-
sus log (r + ¢/2), as shown in Fig. 11.

An alternate approach [29] deliberately adds
noise of amplitude ¢ (the process is called dith-
ering) to the original time series and then plots

The Lincoln Laboratory Journal, Volume 3, Number 1 (1990)

the usual log C(r) versus log r.

Lacunarity

Dimension is not the only way to gauge how
fractal a set is. Mandelbrot [7] pointed to lacu-
narity as another measure. He describes lacu-
narity in the following way: for two fractals
having the same dimension, the one that is more
textured and appears more fractal has greater
lacunarity.

From the point of view of dimension compu-
tation, lacunarity has the effect of introducing
an intrinsic oscillation into the correlation inte-
gral (Fig. 12). If the range over which the slope is
estimated is long enough to encompass several
periods of the oscillation, then the effect of the
oscillation will be minimized. On the other hand,
if attempts to compute dimension are based on
a local slope of the correlation integral, lacu-
narity can prevent the dimension estimator
from converging.

Autocorrelation

Autocorrelation is very common in time-se-
ries data. For continuous signals x(t), there is
always some time rover which x(f) and x(t+ 1) are
strongly correlated. If this autocorrelation time
tislong compared to the sampling time, then an

1 T T T oo T T 1T T 117

C(N.r)

001 1 Lol L Ll 1 Ll 111l

0.001 0.01 0.1 1
F

Fig. 12—Lacunarity leads to an intrinsic oscillation in the
correlation integral. The oscillation inhibits accurate deter-
minations of slope. The example here is the correlation
integral of the middle-thirds Cantor set [7].
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Fig. 13—Autocorrelationin the time-series data can lead to
an anomalous shoulder in the correlation integral. The
effect is most highly pronounced for high-dimensional at-
tractors. In this example, the input time series was autocor-
related Gaussian noise and the correlation integral
was computed for various large embedding dimensions
(m =4 tom = 28). Eq. 26 can be used to correct for this
effect.

anomalous shoulder (Fig. 13) could appear in
the correlation integral. The shoulder is a prob-
lem in that it can lead to inaccurate and possibly
spurious estimates of dimension [30].

One solutionis toincrease the sampling time.
The increase, however, may have adverse side
effects; e.g., it could further limit the available
data, and it could also affect the delay-time
embedding strategy. A more effective solution
can be obtained by rewriting the definition of the
correlation integral from Eq. 16:

C(W, N, r)= =
(N+1-W)(N-W)
N-1| N-1-n (26)
’ Z Z@(r _||xi - Xi+n|l) ’
n=W i=0

Eq. 26 computes distances between all pairs of
points except for those that are closer together in
time than W sampling units. Note that the case
in which W =1 is just the standard algorithm.
Eliminating this small selection of offending
pairs eliminates the anomalous shoulder with-
out sacrificing the statistics of O(N?) distance
calculations.
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The definition of the correlation integral in
Eqg. 17 is now adjusted so that the numerator is
equal to the number of distances less than r
except for those distances from pairs of points
closer together in time than W.

Summary

Accurate and foolproof estimation of fractal
dimension remains an elusive task. Prediction-
based algorithms appear to hold the most prom-
ise, but they are still in an early stage of devel-
opment. The standard tool is the correlation
integral of Grassberger and Procaccia. Although
the algorithm is subject to a variety of practical
limitations, most of them are now well known
and many can be remedied, or at least compen-
sated for. When the Grassberger and Procaccia
algorithm is carefully applied, it can distinguish
stochastic from low-dimensional deterministic
behavior even if the latter is represented by a
finite (but not too small) time series of noisy (but
not too noisy) data.

Direct estimation of dimension is one way to
quantify the complexity of nonlinear systems
that have only a few active degrees of freedom.
For systems with more than a few (in practice,
more than about eight), direct estimation from a
time series will probably not be possible. To
understand and quantify the self-organization
of more complicated systems is a more interest-
ing and proportionately more difficult problem.
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