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Estimating the Fractal Dimension
of Chaotic Time Series

Fractals arise from a variety of sources: they have been observed in nature and on
computer screens. An intriguing characteristic offractals is that they can be described
by noninteger dimensions. The geometry of fractals and the mathematics of fractal
dimension provide useful tools for a variety of scientific disciplines-in particular, the
study of chaos.

A chaotic dynamical system exhibits trajectories that converge to a strange attrac
tor. The fractal dimension of this attractor counts the effective number of degrees of
freedom in the dynamical system and thus quantifies the system's complexity. This
article reviews the numerical methods that have been developed to estimate the
dimension of a physical system directly from the system's observed behavior.

Introduction to Chaos

Chaos is a good thing, change is what comes oj it.
-Septima Poinsette Clark

Chaos is the complicated behavior of simple
deterministic equations, and complicated be
havior is ubiquitous in nature. This notion is
provocative, for it suggests that the irregular
fluctuations exhibited in nature (or at leastsome
of them) can be explained in simple terms.
Indeed, researchers have observed chaotic
behavior in systems ranging from a dripping
faucet to the human body.

The study of chaos shows that even systems
that obey simple laws can exhibit exotic and
unpredictable behavior. The solution of the
equations that describe the motion of a simple
system can be an aperiodic trajectory for which
long-term prediction is virtually impossible. If
the system is dissipative, e.g., if friction is pres
ent, the trajectory converges to a subset of the
system's phase space, which is the set of all
instantaneous states available to the system.
The subset might be a type of fractal that is
referred to as a strange attractor. (Fractals are
geometric forms with irregular patterns that
repeat themselves at different scales. The forms
consist offragments ofvarying size and orienta
tion but similar shape.) Although details of the
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trajectory have a sensitive dependence on the
initial conditions, the geometrical structure of
the strange attractor is robust. The fractal
dimension of the strange attractor corresponds
to the n umber ofactive degrees offreedom in the
system.

Researchers have developed numerical
methods for detecting and quantifying deter
ministic chaos. The algorithms first reconstruct
the phase space directly from the observations
and then estimate the fractal dimension of the
observed trajectory. The application ofthe algo
rithms remains something of an art; practitio
ners do not agree fully on what constitutes a
reliable estimate. Nonetheless, the promise of
the algorithms is difficult to resist: by merely
observing a single component of a potentially
complex physical system, one can actually
count the active degrees of freedom in the sys
tem. Thus, given an observation of irregular
motion, it is possible to answer the question, is
it chaos or is it noise?

Self-Organization, Dissipation, and
Counting the Degrees ofFreedom

One usually measures the complexity of a
physical system by the number of degrees of
freedom the system possesses. However, it is
possible for the many nominal degrees of free-
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dam that make up the complex system to be
combined into a few effective degrees offreedom.
This collective behavior. which in linear systems
would be called normal modes. is more generally
termed self-organization. Much of the interest in
self-organization as a principle has been stimu
lated by the writings of Hermann Haken [I], an
early and enthusiastic advocate. "A system is
self-organiZing," according to Haken. "if it ac
quires a spatial, temporal, or functional struc
ture without specific interference from the out
side." The effect appears in the laminar flow of a
fluid, the spiral arms of a galaxy, or the regular
ticking of a mechanical clock.

Self-organization is intrigUing because
thermodynamics seems to forbid it: a self-orga
nizing system decreases its own entropy. For a
closed system. the first and second laws of
thermodynamics demand that energy be con
served, and that entropy not decrease. But for
an open system, these thermodynamic laws do
not apply, and the system can undergo self
organization.

Consider the pendulum. An ideal frictionless
pendulum (Fig. I [a]) swings with an amplitude
and frequency that do not vary with time. How
ever, the effect of an external perturbation is to
put the system into another orbit and make the
pendulum swing at a new amplitude and fre
quency. In this closed system, the long-term
motion is dependent on the initial condition. and
there is no attractor for the motion.

On the other hand, a pendulum with friction

(Fig. I [b]) does exhibit an attractor, albeit a
trivial one. Independent of its initial condition.
the pendulum will eventually come to rest. Per
turbing the pendulum will start it swinging
again. but the motion will eventually dampen
out and the pendulum will stop. This final fixed
point motion is called an attractor because
it is stable to perturbation.

finally. consider a windup pendulum clock
(Fig. l[c]). Here the pendulum is both damped
and driven. It will continue to swing at a fixed
frequency (at least until the spring runs out)
even if its motion is perturbed. A perturbation
may affect the phase of the motion, but its
amplitude and frequency will be altered only
temporarily. The attractor is a limit cycle, and
the stability of the limit cycle is what keeps the
clock running at the correct rate.

The pendulum in the windup clock is an open
system that receives energy from the spring and
dissipates energy through friction. Thus energy
is not conserved except as a long-term average.
The pendulum qualifies as a self-organizing
system because the property of swinging at a
stable frequency is a function of the pendulum
itself and does not depend on the details of the
input energy source.

In general, self-organization arises in dissipa
tive dynamical systems whose post-transient
behavior involves fewer degrees of freedom than
the full system. For the pendulum, there are two
nominal degrees of freedom: angular position
and angular momentum. But when the pendu-
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Nonlinear Dynamical Systems

Strange attractors arise from nonlinear dy
namical systems. Physically. a dynamical sys
tem is anything that moves. (And if it doesn't
move, then it's a dynamical system at a fixed

lum is in its stable limit cycle, only one degree of
freedom-the phase angle-is required to de
scribe the state of the system. The system is
attracted to a lower-dimensional phase space,
and the dimension of this reduced phase space
is the number ofactive degrees of freedom in the
self-organized system.

Attractors are not confined to fixed poin ts and
limit cycles. For nonlinear systems with three or
more degrees offreedom, strange attractors may
arise. (lfthe nonlinear system is a discrete map,
then only two degrees of freedom are needed.
Figure 2 shows the strange attractors obtained
from the Ikeda map [21 and the Henon map [31.)
Motion on such an attractor can be highly
irregular and essentially unpredictable.

Even systems that are nominally complex
(Le., systems that have many available degrees
of freedom) may relax to a low-dimensional
attractor. Behavior that is irregular can be low
dimensional or it can be essentially stochastic.
DistingUishing between the two types ofiITegu
lar behavior is the motivation for quantifYing
chaos. The estimation of dimension from a time
series is one way to detect and quantify the self
organizational properties of natural and artifi
cial complex systems.

(I)lim V(rj>[ (B)) = O.
t---;~

Fig. 1-Self-organizedmotion ofthe pendulum: (a) Orbits of
an isolated frictionless pendulum are closedcurves in phase
space. The orbit of the pendulum's motion depends on the
initial conditions, and the effect of an external perturbation
is to put the system into a different orbit. (b) The inclusion of
friction leads to a system that dissipates all of its energy. All
orbits evolve towarda fixed-point a ttractor that corresponds
to the pendulum hanging vertical and motionless. (c) The
inclusion of both friction and a driving force such as that
which mightbe appliedbya windup spring leads to a system
with a limit-cycle attractor. Even in the presence of external
perturbations, the system tends toward an orbit on the limit
cycle. Thus the amplitude and frequency are intrinsic to the
system, and theydepend neither on the initial conditions nor
on the details of the perturbations.

Dissipative DynamiCS

A system is dissipative if the volume of a
reference chunk of phase space tends to zero as
t ~ 00 (Fig. 3). In other words, if B is a bounded
subset of RM with ordinary (Lebesque) volume
V(B). then

point.) Mathematically. a dynamical system is
defined by a state space (also called phase space)
RM that describes the instantaneous states
available to the system, and an evolution
operator rj> that tells how the state of the system
changes with time. M is the number of degrees
of freedom in the system: rj> can be thought of as
the physics of the system. An element X E RM

specifies the current state of the system. For a
pendulum, X might represent the two coordi
nates of angular position and angular momen
tum. If the pendulum contains a windup spring.
X might also contain a coordinate for the instan
taneous torque being applied by the spring.
The evolution operator is a family of functions
rj>t: RM ~ RM that map the current state of the
system into its future state at a time t units
later. The operator rj>t satisfies rj>o(X) = X and
rj> (X) = ¢ (rj> (X)). A dynamical system is nonlin-

t+s t s
earifin general ¢1(C\X 1+c2X Z) :;tc

i
¢t(X 1) + CZ¢I(XZ)'

where c
1
and Cz are constants.

The function ¢t can be defined either as a
discrete map or in terms of a set of ordinary
differential equations. Researchers have also
studied partial differential equations and differ
ential delay equations. (In these last two cases.
M is infinite).

a-n
L...--+-------+------+-e

a

(e)
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Fig. 2-Two strange attractors: (top) The Ikeda map is a complex map thatderives from a model
of the plane-wave interactivity field in an optical ring laser [2]. The map is iterated many times,
and the points (Re(z ), Im(zn)) are plotted torn;;? 1000, where Re(z ) represents the real part
of the complex number z and Im(zn) represents the imaginary part.

n
Here a = 1. 0, R = 0.9, ¢ =

0.4, andp = 6. The fractatdimension of this attractor is approximately 1.7. (bottom) The Henan
map [3] with a = 1.4 and b =0.3 gives an altractor that has a fractal dimension of about 1.3.
Note how much thinner the attractor of lower dimension appears.
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Usually the dissipation is exponential, at least
on the average for large t; i.e., V(tP[(B)) - V(B)e-M ,

where ;\ is the rate of dissipation. In a conserva
tive system, the volume is constant with time.
Although conservative dynamical systems can
also exhibit chaos, only dissipative dynamical
systems have strange attractors.

The attractor A of a dynamical system is the
subset of phase space toward which the system
evolves. Informally, one might write tP((B) -7 A
as t -7 00. An initial condition Xo that is suffi
ciently near the attractor will evolve in time
so that tPt(Xo) comes arbitrarily close to the
set A as t -7 00. Since the volume V(tP[(B)) goes
to zero, the attractor is a zero-volume set. It
is possible. however, for a small volume to
grow longer even as it is growing thinner: the
volume converges to zero but the attractor
is not just a single fixed point (Fig. 3[cJ). In fact.
the set A can be a fractal and. in that case. the
attractor is said to be strange.

The NaturaL Invariant Measure

long a typical trajectory visits various parts of
the set (Fig. 4). Here

T

p(B) = lim .!.fls(tP((Xolldt. (3)
T--->= T

o

where Xo is a typical initial condition, T is the
total time length of the trajectory. and Is(X) is the
indicator function for B: it is unity if X E B and
zero otherwise. For virtually all initial conditions
Xo' Eq. 3 defines a unique invariant measure on
the attractor that is called the natural invariant
measure.

(a)

Equation 1 implies that V(A). the phase-space
volume of an attractor. is zero for a dissipative
system. To quantifY the dynamics ofan attractor
requires first the introduction of a new measure
p that is concentrated on the attractor. The
measure p is defined with respect to the
attractor A such that subsets B of the state
space R M are associated with real values p(B)
that represent how much of the set A is con
tained in B. The measure p reflects the varying
density over the setA. and p(B) can be intuitively
regarded as the mass of B.

A particularly useful meaSUre!1 is one that is
invariant to the dynamics of the system. The
proper way to define this is to write

p(B) = !L(tP- t (B)). (2)

(b)

(e)

B

where tP)B) == IX E R M
: tPt(X) E BI. In general, Eq.

2 is not enough to define a unique invariant
measure for a dynamical system. For instance.
a measure that is concentrated on an unstable
fixed point satisfies Eq. 2 but has little to do with
the typical post-transient motion of the system.

The physically relevant measure for a dy
namical attractor counts how often and for how

The Lincoln Laboratory JOW71a1. Volume 3. Number J (/990)

Fig. 3-Phase-space contraction: (a) The volume V of a
reference-chunk B ofphase space decreases as the sys
tem evolves. (b) Contraction ofphase space in directions
perpendicular to the motion leads to limit cycles and other
non-strange attractors. (c) Contraction of phase space in
some directions with expansion in other directions in such
a way that the phase-space volume is decreasing leads to
a chaotic attractor.
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Sensitivity to Initial Conditions

The hallmark of a chaotic system is the sen
sitivity of the system's individual trajectories to
their initial conditions. (The overall structure of
the attractor. by contrast, is robust with respect
to changes in initial conditions.) The sensitivity
is usually quantified in terms of the Lyapunov
exponents and the Kolmogorov entropy [4]. The
Lyapunov exponents measure the rate of expo
nential divergence ofnearby trajectories and the
Kolmogorov entropy measures the rate of infor
mation flow in the dynamical system.

Long-term predictions of chaotic systems are
virtually impossible. Even if the physics (i.e., 1/))

of a chaotic system is known completely, er
rors in measuring the initial state propagate
exponentially.

Consider two nearby initial conditions Xoand
X o+ £:: and evolve both forward in time. A Taylor
series expansion gives

I/)t(Xo + £) = I/)t(Xo ) + J(t)· £ + 0(£2)

where the symbol 0 denotes the order of the
correction factor and J(t) is the Jacobian matrix
given by the linearization of I/) around the point
Xo:

J(t) = al/)c (Xo) = aX(t) .
axo JX(O)

The i.j element of the matrix is

aXi (t)
Ji,j (t) = ax. (0)

J

where X(t) is the ith component of the state
1

vector X at time t. The determinant of the
Jacobian matrix describes the overall contrac
tion of phase-space volume (i.e., the dissipation
in the system), and the eigenvalues describe the
divergence ofnearby trajectories. The Lyapunov
exponents (A) quantify the average rate ofexpan
sion of these eigenvalues.

An = lim(~ loglnth eigenvalue of J(t)I).
t-->~ t

By convention, the Lyapunov exponents are

68

Fig. 4-lnvariant measure of the Ikeda attractor. The color of the pixel indicates how often a
typical orbit visits the site, from many visits (white) to few (blue) to none (black).
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indexed in descending order: Al ~ AZ ~ .•. ~ AM'
Unless the vector that connects a pair of initial
conditions happens to be precisely orthogonal
to the eigenvector that is associated with the
largest eigenvalue of the Jacobian matrix.
then the pair will separate at a rate dominated
by the largest Lyapunov exponent. And if the
largest Lyapunov exponent is positive. then
chaotic motion is assured. (Otherwise, trajecto
ries will collapse to a fixed point, a limit cycle.
or a limit torus.) The sum of all the exponents
is negative for a dissipative dynamical system
and defines the rate ofphase-space contraction:
;\ = - (AI + ... + AM)'

If the state X(t) of a system is known at time
t to some accuracy, then the future can be
predicted by X(t+ M) =rfl,.)X(t)) but the predicted
value will usually be less accurate. Therefore, to
observe or measure the state ofthe system again
at time t + M to the original accuracy is to learn
information that was preViously unavailable. In
this respect, the system appears to be con
stantly creating information. The average rate at
which it does so is quantified by the Kolmogorov
entropy, which is equal to the sum of the posi tive
Lyapunov exponents [4].

Delay-Time Embedding

Confronted with a physical system, an experi
mentalist measures at regular and discrete in
tervals of time the value of some state variable
(e.g., voltage) and records the time series: x(io),
x(t

l
), x (t z)' ... , with x(t) E Rand t

i
= to + iM.

From this time series. the experimentalist at
tempts to infer something about the dynamics
(i.e.. the physics) of the system. The measure
ment x(t) represents a projection 1C from the
full state vector X(t) E R M

.

1C: R M
-? R.

Because a time series is one-dimensional, it is
an incomplete description of a system during a
time evolution. Nonetheless, many properties of
the system can still be inferred from the time
series.

Packard, Crutchfield, Farmer, and Shaw [5]
devised an elegant and remarkably simple
scheme to reconstruct the state space by em-
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bedding the time series into a higher-dimen
sional space. From time-delayed values of the
scalar time series. vectors X E R m are created:

A T
X(t) = [x(t). x(t - r) .... , x(t - (m - l)r)]

where r (the delay time) and m (the embedding
dimension) are parameters of the embedding
procedure. (The superscriptTdenotes the trans
pose and the symbol A denotes the reconstruc
tion of a vector.) Here X(t) represents a more
complete description of the state of the system
at time t than does x(t) and can be thought of
as a mapping from the full state X(t) to the

A

reconstructed state XU) = 1C111~(X(t)):

An embedding dimension of m > 2D + I . where
D is the fractal dimension of the attractor.
almost always ensures the reconstruction of the
topology of the original attractor. That is. 1C 1t11)

restricted to A is a smooth one-to-one map from
the original attractor to the reconstructed at
tractor. It should be noted, however, that as long
as m > D, the reconstructed set will almost
always have the same dimension as the attrac
tor-an assumption that is usually suffiCient for
the purposes of dimension estimation. Figure 5
shows that with delay-time embedding. the
mapping from the actual phase space to a recon
structed phase space is generically smooth.

Delay-time embedding is a powerful tool. For
example, if one believes that the brain is a
deterministic system, then it might be possible
to study the brain by looking at the electrical
output of a single neuron. This is an ambitious
example, but the point is that the delay-time
embedding makes it possible to analyze the self
organizing behavior of a complex dynamical
system without knowledge of the system's full
state at any given time.

In principle, almost any delay time rand
embedding dimension m> D will work (i.e .. if
unlimited infinitely precise data are available).
However, choosing the optimal parameters for
real data is a nontrivial process. For instance, if
the product (m - l)r is too large. then the
components x(t) and xU + (m - l)r) of the recon
structed vector it will be effectively decorrelated,
which will inflate the estimated dimension. On
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Fig. 5-Delay-time embedding. A plausibility argument illustrates that the mapping from the original phase space to
a reconstructed phase space using the delay-time embedding is generically smooth. The dynamics will be assumed to be
given by the differential equations x = f(x, y) and y= 9 (x, y) where f and 9 are smooth functions of the actual phase-space
variables x and y. Note that a succession of smooth transformations leads to the delay-time coordinates: (a) A plot ofxM
versus y(l) gives the original phase space of the system. (b) A plot ofx versus f(x, y) is clearly a smooth transformation of
coordinates, since f is a smooth function. Because x = f(x, y), this plot is equivalent to a plot of x versus x. Furthermore,
one can write x= limo [x (I + 1'>1) - x(1)}l1'>1. (c) Since x(t) is a smooth function of I, it is plausible to assume that the function

"I ~
[x(t + 1'>1) - x(1)}ll'>t is a smooth function of 1'>1. Therefore, making 1'>1 finite is a smooth transformation from the system in
part b. (d) A linear change of coordinates from those in part c leads to the delay-time variables x(I) versus x(t + I'>t). Note
that the reconstructed phase space of part d is just a smooth transformation of the original phase space in part a.

the other hand, if(m- 1)1'is too small, then the
components x{t), ... , x{t + (m - 1)1') will all be very
nearly equal and the reconstructed attractor will
look like one long diagonal line. It is also ineffi
cient to make l' very small, even for large m,
because if x{t) == x{t + 1'), successive components

A

of X become effectively redundant.
Generally speaking, one wants both l' not

too much less than and (m - 1)1' not too much
greater than some characteristic decorrela
tion time. One such characteristic time is
defined in terms of the autocorrelation function
A(1') =«(x(t) - (x»)(x(t + r) - (x»)), where the angle
brackets () represen t an average over time t. The
autocorrelation time is given by f ~A(1')!A(O)d1'.
Fraser and Swinney [6] used mutual informa-

tion in place of autocorrelation to provide a
more sophisticated (and in many cases better)
choice of characteristic time.

Typically, having chosen 1', one performs the
dimension analysis for increasing values of m
and looks for a plateau in the plot of Dversus m.

Fractals and Fractal Dimension

Clouds are not spheres, mountains are not cones,
coastLines are not circles. and bark is not smooth. nor
does lightning travel in a straight line.

-Benoit B. Mandelbrot

The modern study of fractals originated with
Mandelbrot [7]. who coined the term and who
remains an ardent spokesman.
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Fractals are crinkly objects that defy conven
tional measures like length and area. Yet frac
tals are beguilingly far from formless. Clouds.
mountains, coastlines. bark. and lightning bolts
all exhibit nonsmooth shapes that can be de
scribed as fractal. Fractal objects. as Leo Kada
noff notes in Ref. 8. "contain structures nested
within one another like Chinese boxes or
Russian dolls." This self-similar struc
ture is perhaps the main reason for the
striking visual beauty of fractals. Self-simi
larity also implies a scale-invariant property.
There are crinkles upon crinkles, but no pre
ferred crinkle size.

Mathematically speaking, a set is strictly self
similar if it can be expressed as a union of sets
each of which is a reduced copy of (i.e., is geo
metrically similar to) the full set. However, not
all fractal objects exhibit this precise form. In
a coastline. for instance. there is an irregular
nesting of gulfs, bays. harbors. and coves
that are observed over a broad range of spa
tial scales (Fig. 6). A magnified view of one part
of the coastline may not precisely reproduce
the full picture, but it will have the same quali
tative appearance. A coastline displays the
kind of fractal behavior that is called statis
tical self-similarity.

(c)

Fig. 6-Self-similar fractals: (a) The Koch curve is a fractal curve, each segment of which is a smaller copy of the full figure.
(b) This variant of the Koch curve includes an element of randomness. Here, although no one segment is precisely similar
to any other segment, there is a statistically self-similar structure to the figure. (c) Alaska's Prince William Sound has been
colored to highlight the fractal appearance of the coastline.
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Quantifying Fractals of an object's bulk with its size.

dimension = lim log( bulk)
size--->O log( size)

where sup is the supremum, or maximum, and
IIX - YII is the distance between points X and Y.
How this distance is calculated depends on the
nonn of the embedding space. If Xi is the ith
component of the vector X E R m

, then the L
s

norm gives distance according to

Here the term bulk can correspond to a volume,
a mass, or even a measure of information con
tent, and the term size is a linear distance. For
a line, bulk and size are the same thing, and so
a line has a dimension ofone. The area ofa plane
figure grows quadratically with its size, and
so it has a dimension of two. The definition of di
mension is usually cast as an equation of
the form

(4)bulk _ sizedimension .

where the limit of size ~ 0 is used to ensure
invariance over smooth coordinate changes. The
small-size limit also implies that dimension is a
local quantity, and that any global definition of
fractal dimension will require some kind of
averaging.

Although other notions of bulk are also pos
sible, the obvious relevant measure of bulk for a
subset B of a dynamical attractor is the attrac
tor's natural invariant measure .u(B).

A good quantity for the size of a set is its
radius or its diameter, the latter of which is
defined by

8(B) == sup{IIX - YII: X, Y E B}

The most useful of these norms are L
2

, the
Euclidean norm, which gives distances that are
rotation invariant; L

1
, called the taxicab norm,

which is very easy to compute; and L~, the
maximum norm, which is also easy to compute.
It is not difficult to show that fractal dimension
is invariant to choice of norm.

For instance, the pointwise dimension is a
local measure of the dimension ofa fractal set at

If you are an experimentalist. you try to
measure the fractal dimension of things in
nature. If you are a theorist. you try to
calculate the fractal dimension of models
chosen to describe experimental situations:
if there is no agreement then you try another
model.

Local Scaling oj Bulk with Size

The geometrically intuitive notion of dimen
sion isas an exponent that expresses the scaling

Definitions oj Fractal Dimension

In 1919, Felix Hausdorff [IOj gave a com
pletely rigorous defini tion ofdimension, bu tit is
a definition that does not lend itselfto numerical
estimation. Much interest in the last decade has
focused on the numerical study of chaos, and it
is useful to consider more operational defini
tions of dimension, i.e., those definitions which
can be translated into algorithms for estimating
dimension from ajinite sample of points.

In the follOWing sections, two different ways of
thinking about dimension will be discussed:
first as an exponent that characterizes the scal
ing of a bulk with a size, then as a number that
counts how many active degrees of freedom a
system contains. Both definitions give the same
number and both can be extended to define a
generalized dimension, but each attempts to
provide a different intuition for understanding
what that dimension means.

This pithy advice applies to strange attractors
as well as to solid fractal objects: fractal dimen
sion provides a benchmark against which the
ory can be compared to experiment. In the case
of strange attractors, however, there is further
reason for wanting to know the dimension. The
dimension is what counts the number ofdegrees
of freedom in a system. and thus provides a
useful measure of the system's complexity.

The most natural quantity by which a fractal
can be characterized is its fractal dimension.
One motivation is described by H. Eugene
Stanley [9), who has outlined a program for the
practicing scientist who wants to study fractals.
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Injormation Dimens ion

D (X) = lim log B x (r)
P r--->O log r

The scaling of the mass function atX with the
radius r defines D (X), the pointwise dimension

p
atX:

(8)

Box-Counting Dimension

specified). And similarly. 3k bits are needed for
a three-dimensional cube. For the general case,
SIr) is equal to -dlo~r, where S(rJ is the number
of bits of information that are needed to specify
a position on a unit d-dimensional hypercube to
an accuracy r. Solving the equation for d leads
to a natural definition for the information dimen
sion (0/) of a set.

D I· -SIr) (7)
1 = Im---.

1'--->0 logzr

By identifying the bulk ofEq. 4 with the expres
sion 2-S

(rj in Eq. 7, one can still interpret D
1
as a

scaling of bulk with size.
If a fractal is partitioned into boxes B. of size

I

r, then determining the position of a point to an
accuracy r requires specifYing which box the
point is in. The average information needed to
specifY one box is given by Shannon's formula

where Pi is the probability measure of the ith

box: Pi = ,u(B)/II(A). Equation 8 can be substi
tuted into the definition of D

1
(Eq. 7):

I.PjlogZPi
Df = lim I .

1'--->0 logzr

The eqUivalence ofD
1
(the information dimen

sion) and D (the average pointwise dimension)
P

can be seen by treating the sum L. Flog P. as a
. I Z I

weighted average of log ~, and comparing this
quantity to the weighted average of log Bx!r) in
Eq.6.

Historically. the first numerical estimates of
dimension were based on partitioning the state
space into a grid of boxes, each of size r. and
counting how many boxes contained points. The
scaling of this number with r defines an upper
bound on the Hausdorff dimension, which is
referred to as the capacity. the box-counting
dimension, or the fractal dimension. The last
term. however, has come to be used in a generic
sense for any dimension tha~ might be noninte
gral. With the grid size r and the count of

(5)

(6)

Bx (r) = ILlBx (r)).

D p = f D p (X)d,u (X)

A

D (X) is a local quantity. but one can define
P

the average pointwise dimension to be a global
quantity.

a point on the attractor. Let Bx(r) denote a ball of
radius r centered at the point X. Define the
pointwise mass function Bx(r) as the natural
invariant measure

= lim 10gH(r)
r--->O log r

where H(r) =explf
A

log [Bx(r)]d,u(X)1 is a weighted
geometric average of the pointwise mass
function Bx(r).

As an alternative to the scaling of mass with
size, the dimension of a set can be thought of in
terms of how many real numbers are needed to
specify a point on that set. For instance. the
position of a point on a line can be labeled by a
single real number, the position on a plane by
two Cartesian coordinates, and the position in
ordinary three-dimensional space by three coor
dinates. Here dimension is something that
counts the number of degrees of freedom. For
sets more complicated than lines, surfaces, and
volumes. however. this informal definition of
dimension needs to be broadened.

One way to extend the definition is to deter
mine not how many real numbers bu t how many
bits of information are needed to specify a point
to a given accuracy. On a line segment of unit
length, k bits divide the segment into 2 k subseg
ments. and therefore specifY the position of a
point to within an accuracy r = 2- k

. For a unit
square, 2k bits are needed to achieve the same
accuracy (k bits for each of the two coordinates
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5 q (r) = _1_ log"" P/I (l0)
q - 1 LJ

I

. -Sq(r)
DC! = hm ---"-

1'--.0 log r

1 10gLPiq

= --lim I

q - 1 1'--.0 log r

that reduces to Shannon's formula in the limit
q 4 1. The generalized information dimension
associated with the Renyi entropy is just the
generalized dimension that was defined earlier
by another approach. That is, from Eqs. 7 and
10, the Renyi generalized dimension is given by

The above equations show that the maximum
dimension D_~ is associated with the least dense
points on the fractal; the minimum dimension
D~ corresponds to the most dense points.

The notion of generalized dimension first
arose out of a need to understand why different
algorithms gave different answers for dimen
sion. A further motivation comes from the need
to characterize fractals more fully. Rather than
measure just one dimension of a fractal, one
can compute the full spectrum of dimensions
from D_~ to D~.

In Ref. II, Renyi defined a generalized infor
mation measure

andD~

a scaling of bulk with size. (The angle brackets
( ) denote the weighted average.)

Note that for q = 2. the generalized average is
the ordinary arithmetic average, and for q =3 it
is a root-mean-square average. The limit q 4 1
leads to a geometric average and corresponds to
the information or average pointwise dimension.
Finally, q =0 gives the box-counting dimension.

For a uniform fractal (i.e., all P. equal), the
I

generalized dimension D does not vary with q.
C!

For a nonuniform fractal, the variation of D with
Cf

q quantifies the nonuniformity; e.g.,

. log [ mF Pi]
= hm ,

1'--.0 log r

. log [ m/n ~ ]
= hm .

1'--.0 log r

log"" p.CfI LJ· I
D = -- lim I (9)

Cf q _ 1 1'--.0 log r

where q is a parameter that specifies the dimen
sion being referred to. Writing the sum of Piq as
a weighted average, IiP/I=Ili(Pt')=(pt),one
can associate bulk with the generalized average
probability per box q-I.)(p(I"), and identify D as

I q

Generalized Dimension

In computing the box-counting dimension,
one makes the decision to count or not count a
box according to whether there is at least one
pointin the box. No provision is made for weight
ing the box count according to how many points
are inside the box.

It is possible to generalize the definition of
dimension in a way that takes into account the
number of points in the box. Let B

i
denote the

ith box and let Pi = .u(Bi)/jl(A) be the normal
ized measure of this box. EqUivalently, Pi is
the probability that B

i
contains a randomly

chosen point on the attractor and the quantity
is estimated by counting the number of points
that are in the ith box and dividing by the total
number of points.

The generalized dimension D can be defined
Cf

by

Here the local notion of bulk is replaced with a
global one: because each nonempty box con
tains on average 1/n(r) of the whole fractal, the
quantity 1/ n(r) is the average bulk of each non
empty box.

Though the box-counting dimension is not
necessarily equal to the information dimension.
the difference is usually small. so that for the
purposes of estimating the complexity of a
physical system it may not really matter which
definition of dimension is used. However. pre
cise comparisons of theory and experiment
require that both are referring to the same quan
tity. The discrepancy will be resolved by extend
ing the definitions to a generalized dimension.

nonempty boxes n(rl. the box-counting
dimension D

H
is given by

D
H

= lim log (l/n(r)) .
r-lO log r
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which can be rewritten as

If r(q) andJ(a) are differentiable, then the follow-

(14)

ing simpler forms ofEqs. 12 and 13 can be used:

d'I
a = dq' J = aq - 'I; and

q = ~~, 'I = aq - J.

is the set ofall points in A for which the pointwise
dimension is a. The Hausdorff dimension of the
set Sa is given byJ(a).

Figure 7 shows the relationships between D ,q
a, f and q for a typical multifractal.

A Survey of Algorithms for
Computing Dimension

Notions oj quantity are possible only where there
exists already a general concept which allows various
modes ojdetermination.

-George Friedrich Bernhard Riemann

The previous section introduced an algorithm
based on box counting. For practical computa
tion. however, the box-counting algorithm is
plagued with a number ofinefficiencies, particu
1arly at high embedding dimensions. A variety of
other algorithms for estimating dimension have
been developed in recent years. This section will
survey those algorithms.

The most popular way to compute dimension
remains the correlation algorithm of Grass
berger and Procaccia [13], which estimates
dimension based on the statistics of pairwise
distances. The main advantage of pairwise
distance algorithms is that they permit one to
probe the scaling of the attracting set to very
small length scales r. It is the small-rbehavior
that is important. and interpoint distances can
probe down to an r value as small as the near
est interpoint distance. If an eqUivalently small

Although Eqs. 12 to 14 were obtained with
informal scaling arguments, the equations serve
as the formal definition of the spectrum of
scaling indices J(a).

The scaling n(a, rj - r-jla)suggests interpreting
J(a) as the dimension of the points with scaling
index a. Indeed, the scaling index a is associated
with the pointwise dimension D . The set

p

(11)

a

= fr-jla)rCfada

= fr Cfa -jla)da

_ r(J

which is the same equation as the definition
given in Eq. 9.

'I(q) = minlqa - j(a)!. (12)
a

Ita) = min(qa - 'I(q)l. (13)
q

Spectrum oj Scaling Indices: [(a)

The exponent eisgiven by min (qa-j(all because
a

the integral will be dominated by the smallest
power of r when r ~ O. Comparing Eq. 11 to the
definition of generalized dimension in Eq. 9,
which gives IPq - rlq-lJDq = rf1q ) one obtains

I I '

An alternative interpretation of generalized
dimension is provided by the spectrum of scal
ing indices J(a), which was introduced in
Ref. 12. Although J(a) is formally defined as a
Legendre transformation of the function r(q),

in which r(q) == (q - l)D , a transformation can
Cf

be obtained by interpreting J as a kind of fre-
quencyof occurrence of pointwise dimensions
a throughout the fractal.

Suppose the attractor is partitioned into
many small sets, and the ith such set has a
measure J.L. and a size O. < r, where rrepresents

, I

the coarseness of the partition. Then a. is de-
I

fined by the local scaling p. = oa;. Let n(a. r) be
I ,

the number of these small sets that have a
scaling index between a and a + tla. Final
ly, the spectrum J(a) is defined by the scaling
n(a, rj = r-]la)tla.

Now take the case in which the attractor is
partitioned into fixed-size boxes and consider
the sum I pq. The number of terms in this sum, ,
for which P is equal to r a is given by n(a, r).,
Thus the sum can be written as
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u.

Recall the definition of the pointwise mass
function in Eq. 5: Bx(T] =.u(Bx(r)), where Bx(r) is

Average-Pointwise-Mass Algorithms

with size for boxes or grids of fixed sizes. An
alternative approach uses fixed-mass boxes,
usually by looking at the statistics of distances
to kth nearest neighbors. Both fixed-size and
fixed-mass algorithms can be applied to the esti
mation of generalized dimension D , although

q
fixed-size algorithms do not work well for q < 1.

Some algorithms directly involve the dynami
cal properties of the strange attractor. For ex
ample. the Kaplan-Yorke conjecture (described
later) relates dimension to the Lyapunov expo
nents. Recently. interest has focused on trying
to ferret out the unstable periodic orbits of the
attractor. The most direct use of the dynamics is
to make predictions of the time series. Accurate
predictions provide a reliable indication that
the dynamics is indeed deterministic and low
dimensional.

Finally, the idea of intrinsic dimension is dis
cussed. Methods in this category look for local
hyperplanes that confine the data; the integer
dimension of the local hyperplanes provides an
upper bound on the fractal dimension of the
attractor.

A number of these algorithms can be ex
tended to compute generalized dimension, al
though the usefulness of this extension is, in
many practical cases, limited. A generalized
dimension is useful for quantifying the nonuni
formity of the fractal and for comparing an exact
and predictive theory to an experimental result.
But the goal of dimension estimation is very
often more qualitative in nature. One may only
want to know whether the number of degrees of
freedom is very large or reasonably small. To
answer the question, is it chaos or is it noise? a
robust estimate of dimension is more important
than a precise estimate. In these cases, for
example, the subtle distinction between the
information dimension at q = 1 and correlation
dimension at q = 2 may not be as important as
the grittier issues that arise from experimental
noise, finite samples, or even computational
efficiency.

Fig. 7-Generalized dimension: (top) D as a function ofq
for a typical multifractal. Also shown ar~ both f and a as a
function of q for the same multifractal. (bottom) f as a
function of a. The curve is always convex upward, and the
peak of the curve occurs at q = o. At this point, f is equal to
the fractal dimension Do. Note that thef(a) curve is tangent
to the curve f =a and the point of tangency occurs atq = 1.
In general, the left branch of the curve corresponds to
q > 0 and the right branch to q < o.

value of r were used in a box-counting algo
rithm, many of the tiny boxes would be improp
erly considered empty because there would not
be enough 'Joints in the data set to fill the appro
priate boxes. Furthermore, correlation algo
rithms have the advantage that they compute
their measure of bulk for many different box
sizes at once, whereas the box-counting algo
rithm requires that new grids be laid down for
each different box size.

The box-counting and correlation algorithms
are both in the class offlXed-size algorithms be
cause they are based on the scaling of mass
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In words. Eq. 16 can be written in the following
way:

Thus the correlation algorithm provides an
estimate of dimension based purely on the sta
tistics of pairwise distances. Not only is this an
elegant formulation. but it has the more sub
stantial advantage that it probes the attractor to
much finer scale than. for instance. the box
counting algorithm. For N pOints. the C(N, rl
function of the correlation method ranges from
2/N 2 to 1. In a logarithmic sense. this range is
twice that available to the box-counting
method's n(N. r) function, which ranges from 1

to N. The correlation integral also exhibits
twice the logarithmic range of the single-point
mass functions Bx(N. r).

A more general average G (1') than the directq
arithmetic average used above is given by the
following equation:

the ball of radius I' around the point X. The
scaling of the quantity Bx(r) with I' is what de
fines the local pointwise dimension at X.
The average pointwise dimension is then defin
ed by computing the pointwise dimension D (X)

p
at each point X and averaging over the attrac-
tor. An alternate approach is to take some
average of the pointwise masses and to define
the dimension as the scaling of this average
with r.

The most natural such averaging strategy
was introduced by Grassberger and Procaccia
[13]. Here a direct arithmetic average of the
pointwise mass function gives what Grass
berger and Procaccia call the correlation integral
C(rl:

C (1') = (Bx ( I' ) ) .

From this. the correlation dimension v is de
fined as

v = lim log e(r) .
r.-;O log I'

Here Bx)rl can be approximated from a finite
data set of size N by the equation

C( N. 1') = # of distances less than I' .

# of distances altogether
(17)

(18)

Bx . (1') == Bx . (N. 1')
J J

_ # {Xi: i '" j and II Xi - X j II ~ r}
N - 1

= N ~ 1 I 0(1' -IIXi - Xjll) (15)

i=l
i*j

where 0 is the Heaviside step function: 8(z) is
zero for z < 0 and one for z ~ O. One generally
excludes the distance ofa point to itself(Le.. the
case in which i =j). It is now straightforward to
approximate C(r) with a finite data set:

1 N
C(N. 1') = - ~ Bx . (1')

N.LJ J
j=1

The Lincoln Laboratory Joumal. Volume 3. NLlmber 1 (1990)

The scaling of this average with r. Le .. G (r) - r Dq,
q

gives the generalized dimension D :
q

logGq (r)
D = lim .

q r.-;O log r

From Eqs. 15 and 18, G (1') can be approxi
q

mated with a finite set of points by

where Bxc(N. r) is defined in Eq. 15. The formula
is easiest to evaluate when q = 2. in which case
it reduces to the simple form of Eq. 16. The
formula, however. does not work well for q ~ 1
because the term raised to the power of q - 1 is
often zero for r much larger than the smallest
interpoint distance.

Grassberger [141 suggested a q-point correla
tion integral defined by counting q-tuples of
points that have the property that every pair
of points in the q-tuple is separated by a dis-
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tance that is less than r.

Cq(N. r) = _1_# {(X j •••• ,Xj ):
Nq I q

IIXn - Xmll ~ r for all n. m E lil, .... iqd.
which has the scaling behavior C (r) _ ~q-I)Dq.

q
Thus

D = _1_ lim lim log Cq ( N, r)
q q -1 r-->ON-->= log r (19)

Equation 19 can in principle be applied to all
integer q ~ 2. However. the equation's imple
mentation is unwieldy for q ~ 3 because the
number of q-tuples (which is given by Nq) grows
very rapidly with N when q ~ 3.

The kth-Nearest-Neighbor
(Fixed-Mass) Algorithms

The average pointwise mass functions de
scribed in the previous section consider the
variation of mass inside fixed-size boxes. In
contrast to that approach. the nearest-neighbor
algorithms consider the scaling of sizes in fixed
mass boxes.

An early implementation of this notion in a
chaotic dynamics context was suggested by
Termonia and Alexandrowicz [15]. Here one
computes (r

k
). the average distance to the Idh

nearest neighbor. as a function of Ie. Let R(X. k)
denote the distance between point X and its
Idh nearest neighbor. (By convention, the
zeroth nearest neighbor is the point itself, so
R(X. 0) = 0 for all X.) The average is

1 N
(rk ) = N LR(Xj,k).

j=1

The scaling (r
k

) - k i/D defines the dimension.
Badii and Politi [161 considered the moment y

of the average distance to the lcth-nearest neigh
bor. They recommended keeping k fixed and
computing a dimension function D(y) from the
scaling of average moments of r

k
with total

number of points N:

(r,n - (k/N)yID(yl.

This dimension function D(y) is related to the

78

generalized dimension by the implicit formulas

y = (q - l)Dq ; D(y) = D q . (20)

Grassberger [17) derived Eq. 20 independ
ently and used the f-function to provide a small
k correction to the scaling of (r/> with Ie:

( r y) _ [ f (Ie + y/ D) ]( k / N )yI D .
k r(k)ky/D

The term contained in the square brackets
approaches unity as k becomes large.

Algorithms That Use Dynamical
Information

Let Tx (r) be the r-recurrence time ofan initial
o

condition Xo' This time is the minimum amount
necessary for the trajectory of Xo to come back
to within r of Xo' Thus the inverse recurrence
time, which is related to the time the trajectory
is within r of X

O
' provides an estimate of the

pointwise mass function. In other words, one
expects

1
--- - Bxo(r).
Txo(r)

Consequently. the scaling of the average recur
rence time with r can be related to the general
ized dimension [141:

Another algorithm-the Kaplan-Yorke con
jecture [18J-relates the fractal dimension of a
strange attractor to the Lyapunov exponents.
The conjectured formula defines what has come
to be called the Lyapunov dimension (d

L
):

I/ kd
L

j + j-I 1

IAj+11
where lA

J
•...• Ami are the Lyapunov exponents

in decreasing order. andj is given by

j = supf k: t Aj > o}.
1 1=1
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-Samuel Johnson

Extraction oj the Slope

or one can fit a chord through two points on the

Practical Estimation of the
Correlation Dimension

(21)

(22)

v (r) = d log C ( N, r)
d log r

dC (N, r)/dr

C(N, r)/r '

I, I' log C (N, r)
V = In1 1m ,

r->o N->~ log r

No estimate is more in dangerojerroneous caLculations
than those by which a man computes theJorce oj his
own genius.

fit to the D-dimensional hyperplane more effi
cient. The prediction algorithms of Fanner and
Sidorowich [19,22] can also be used to estimate
intrinsic dimensions. Basically. the smallest
embedding dimension for which good predic
tions can be made is a reliable upper bound on
the number of degrees of freedom in the time
series.

The most popular, and for many purposes the
best, algorithm for estimating dimension is the
correlation algorithm of Grassberger and Pro
caccia [13). For one thing, the correlation algo
rithm is very easy to implement: one computes
the correlation integral C(N, ri merely by count
ing distances. Equation 17 defines the esti
mated correlation integral C (N. ri as the fraction
of distances less than r. From this the correla
tion dimension is in principle given by

However, a variety ofpractical issues and poten
tial pitfalls come with making an estimate from
finite data.

Extracting dimension directly from the corre
lation integral according to Eq. 21 is extremely
inefficient, since the convergence to vas r~ 0 is
logarithmically slow.

Taking a slope solves this problem. One 'can
either take the local slope

The conjecture is that the Lyapunov dimension
corresponds to the information dimension D ,

q
where q = 1.

When the equations of motion are available,
the Jacobian matrix J(t) can be computed di
rectly and the direct computation improves the
calculation of Lyapunov exponents and the
resulting Lyapunov dimension. In this case,
computing the Lyapunov dimension is the best
strategy for estimating dimension. In fact, it is
the only approach that has been shown to work
with dimensions larger than 10.

In discussing algorithms for predicting the
future of time series, Farmer and Sidorowich
[19J suggested several ways that the prediction
algorithms might be used to make more accu
rate and reliable dimension estimates. One
promising possibility is to use booLstrapping, in
which a short time series of length N is extrapo
lated far into the future, and the resulting time
series is used in a conventional dimension algo
rithm. This method is appropriate when only a
small data set is available and computation time
is not the limiting factor.

A second possibility is to scale the prediction
error with N, the number of points from which
the prediction is made. The N-scaling can be
related to the fractal dimension. Moreover, it has
the desirable property that if it is observed-Le.,
if the prediction error noticeably reduces with
increasing N-then the system can reliably be
considered low-dimensional.

Instead of trying to determine the exact frac
tal dimension, other algorithms count the
number ofdegrees offreedom in a more approxi
mate way by finding the minimum embedding
dimension (called the intrinsic dimension) for
the time-series data. The estimate is necessarily
coarser. but possibly more reliable.

The idea of seeking minimum embedding
dimensions was first discussed in the context of
dynamical systems by Froehling, Crutchfield,
Farmer, Packard, and Shaw [20J. In Ref. 20, the
authors attempted to find a linear fit ofpoints in
a local region to a D-dimensional hyperplane of
an m-dimensional reconstructed embedding
space. Broomhead and King [21) suggested
using singular-value decomposition to make the
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(23)

Comparison with Filtered Noise

It is a common and well-advised tactic to
compare the correlation dimension computed

The more unwieldy form ofEq. 25 is meant to be
compared to Eq. 22 for the local slope.

Not only does the Takens estimator provide
an efficient means to squeeze an optimal esti
mate out of the correlation integral, it also
supplies an estimate of the statistical error,
namely (J = v/J(N*) [231. where N* is the num-v
ber of distances less than roo However, this error
estimate makes the assumption that the N*
distances are statistically independent, and is
only valid if N* s:; N [25].

Reference 26 points out that even though the
Takens estimator uses all distances less than ro'
the estimator is still sensitive to oscillations in
the correlation integral.

(25)

v( r
o

) = __C---,--(r-,,-o..:....)__

f~O [C (r)/r ]dr

IO [dC (r)/dr ]dr

f~O [C (r )/ r ]d r

be written [241 as the following:

Computation

Although there are O(N 2 ) interpoint dis
tances to be considered in a time series of N
points. most of the distances are large, i.e., on
the same order as the size of the attractor.
Because the short distances are the most impor
tant, and because there are so few of them. it is
advantageous to organize the points on the
attractor so that only the short distances are
computed. The algorithm in Ref. 27 prOVides a
way to compute the O(Nl shortest distances with
only O(N log Nl effort by placing the points in
boxes of size roo Farmer and Sidorowich [191
organized points in a "Ie-d tree" for their predic
tion algorithm; such an organization of points
would also be useful for the Ie-nearest-neighbor
algorithms that were discussed earlier.

-1
0~)= ~~

(log (ri. j / ro ))

where the angle brackets <) refer to an average
over all distances r.. that are less than roo In

l.J
terms of the correlation integral, Eq. 24 can

curve in the following way:

v(r) = ~ log C (N, r)
~log r

_ logC(N,r2 ) -logC(N,rj )

log r2 - log rl

However, implementing the chord strategy re
quires the choice of two length scales r2 and r

1
•

The larger scale is limited by the size of the
attractor, and the smaller scale is limited by the
smallest interpoint distance.

The direct difference in Eq. 23 fails to take full
advantage of the information available in C(N, ri
for values of r between r

1
and r2. To use those

values, one might be tempted to fit a slope by
some kind of least-squares method, but this
approach is problematic. Unweighted least
squares are particularly poor, because the esti
mate of c(ri by C(N, r) is usually much better for
large r than for small r. Weighted fits can com
pensate for this effect. but there is still a prob
lem because successive values of C(N, r) are
not independent. Since C(N, r + M) is equal to
C(N, ri plus the fraction of distances between r
and r + ~r, it is a mistake to assume that
C(N, r+ M) is independent of C(N, rl. An estimate
of dimension will depend on whether C(N, r) is
sampled at logarithmic intervals (r = 0.00 1,
0.0 1, 0.1, ...) or at uniform intervals (r = 0.00 1.
0.002, 0.003....). Furthermore, the error esti
mate that the least-squares fit naturally pro
vides will have very little to do with the actual
error in the dimension estimate.

Because of the limitations of the least
squares approach, Takens [23] developed a
method in which the intermediate-distance in
formation could be incorporated in a consistent
way. Using the theory ofbest estimators, Takens
derived an estimator for v that makes optimal
use of the information in the interpoint dis
tances r... In fact, the method uses all distances

I.J
less than an upper bound ro so that a lower
cutoff distance need not be specified.
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ment can be made: not only is the original time
series not white noise. it could not have been
produced by any linear filter of white noise.

Sources ojETTor

The estimation of dimension from a time
series is prone to two fundamental sources of
error: statistical imprecision and systematic
bias. The first type of error results directly from
the finite sampling of data; as such, the error is
reasonably tractable. The second type of error
comes from a wide variety of sources. Indeed.
that wide variety has led to great difficulty in
verifying results as reliable.

The following sections present a brief survey
of the kinds ofproblems that arise in the compu
tation of correlation dimension.

Finite Sampling and Statistical ETTor

2 3 4 5 6 7 8

Embedding Dimension

Fig. 8-Plot of an idealized correlation integral C(N, r)
versus r on log-log axes. In the ideal case, C(N, r) scales as
rm for the embedding dimension m < v, and as r" for m > v
over a range from C (N, r) =2'N2 to saturation at C(N, r) = t.
Here v is somewhere between 2 and 3. This idealization,
however, is only approximated by correlation integrals
computed from actual samples of time-series data. The
value 8

0
is the diameter of the attractor.

for a given time series against a set of test data
whose properties are known in advance. For
example. if the given time series has a signifi
cantly different dimension than does white noise
(i.e. random noise), then one can rule out the
null hypothesis that the original time series is
white noise. However, the original time series
might still be colored noise; i.e.. the time-series
data might be correlated with itself (called auto
correlation).

A more stringent test is to create a time series
with the same Fourier spectra as the original
time series. For instance, one could take a
Fourier transform of the original time series,
randomize the phases, and then invert the
transform. If the C(N, r) obtained from the new
time series is significantly different from that of
the original time series, then a stronger state-

The Lincoln Laboratory Joumal. Volume 3. Number 1 (1990)

What finally limits an estimate of dimension
is that only a finite number of points sample the
attractor. Many of the systematic effects dis
cussed in the following sections can be elimi
nated in the N -1 00 limit.

First. a finite sample of N points limits the
range of interpoint distances. The correlation
integral. which is approximated by erN. r) - rD.

varies from 21N2 to I, so that any fit has only
this range to work with (Fig. 8). In particular, any
fit over a range R ofdistances requires N212 ~ RD.
so thatatleast N=.J(2RD ) points are required. (R

is the ratio of the largest to the smallest r.) This
scaling, however. is an absolute lower bound. In
practice, many more points are required. due in
most cases to the variety of systematic effects
(discussed below) that must be overcome.

The statistical error in an estimate of dimen
sion typically scales as 11m. where the coeffi
cient of the scaling depends on the fluctuations
in the pointwise masses Bx(r) [25]. In special
cases, the coefficient can be zero. in which case
1IN scaling can be observed.

Edges and Finite Size

The finite size of a compact fractal object
limits the range over which C(n scales as rV

•
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Noise

Fig. 10-The effect of noise is seen in this figure. Where (J

is the amplitude of the noise, one sees that for r« (J, a slope
that approaches the embedding dimension m is observed.
For r » (J. the effect of the noise is unimportant.
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Noise, the ultimate corrupter of measure
ments, is usually the first concern of the experi
mentalist. [n the case of dimension estimation,
however, the effect of low-amplitude noise is
often not as significant as other effects.

One expects that the fractal scaling of bulk
with size will break down at length scales equal
to the noise amplitude. But unless the system
amplifies noise excessively, one does not expect
the scaling to be affected at length scales much
larger than the noise amplitude (Fig. 10). Al
though noise is amplified along the expansion
directions of a chaotic attractor, this effect does
not have much influence on the dimension
estimation because the noise is amplified back
onto the attractor. In other words, the noise is
drawn to the attractor and consequently has
little effect on the scaling. Thus at relatively high
SNRs there is still a good range over which a
fractal may be scaled.

Because noise often possesses a much higher
characteristic frequency than the deterministic
attractor, it is tempting to subject the signal
to a low-pass filter to reduce the noise effects.
As a rule, however, the use of a [ow-pass filter
is not recommended because the filter can
actually increase the dimension of the time
series [28J.

r

Fig. 9-An actual correia tion integral for a two-dimensional
chaoticattractorwith embedding dimensions m= 1 through
m = 6. The finite sample size leads to poorstatistics at small
r, and the finite size of the attractor (the edge effect) limits
the scaling at large r. Nonetheless, the slopes are more or
less constant over a range of CiN, r) of order N2

v(r) = c~r)(~~) = m(~~:r):::: m(l-~).

so that the relative error is Iv(r) - ml /m:::: r/2.
Here is an explicit demonstration of the need for
the r ~ 0 limit in an estimate of dimension.

For r greater than the diameter of the attractor
(°

0
), the correlation integral saturates at C(r) =1.

This finite-size effect is not necessarily a prob
lem in dimension calculations. As long as the
effect is confined to length scales larger than
some ro ::::°

0
, then accurate estimates of dimen

sion can still be obtained in the r S; ro range
from the slope of a plot of log C(r) versus log r
(Figs. 8 and 9).

The real problem stems from the edges that
finite-sized objects in R m all have. The neighbor
hoods around points near the edge have differ
ent scaling from neighborhoods further in the
interior.

Although any model ofedge effect will depend
on the shape of the fractal. a tractable and
reasonably generic model assumes that the
fractal is a uniform hypercube of unit length
and dimension m In such a case, the corre
lation integral can be derived exactly [24):
C(N, r) = (2r- r 2),11. The local slope at rofthe log
log curve is given by

10
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16
2
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-4

$ 10
0

10-6

10-8

-5 -4 -3 -2 -1 0
10 10 10 10 10 10

82 TI,e Lincoln Laboratory Journal. Volume 3. Number 1 (1990)



Theiler - Estimating the Fractal Dimension ojChaotic Time Series

Autocorrelation

the usual log C(r) versus log r.

0.10.01
0.01

0.001

$ 0.1
()

Lacunarity

r

Fig. 12-Lacunarity leads to an intrinsic oscillation in the
correlation integral. The oscillation inhibits accurate deter
minations of slope. The example here is the correlation
integral of the middle-thirds Cantor set [7].

Dimension is not the only way to gauge how
fractal a set is. Mandelbrot [7J pointed to lacu
nanty as another measure. He describes lacu
narity in the following way: for two fractals
having the same dimension. the one that is more
textured and appears more fractal has greater
lacunarity.

From the point of view of dimension compu
tation. lacunarity has the effect of introducing
an intrinsic oscillation into the correlation inte
gral (Fig. 12). If the range over which the slope is
estimated is long enough to encompass several
periods of the oscillation. then the effect of the
oscillation will be minimized. On the other hand,
if attempts to compute dimension are based on
a local slope of the correlation integral. lacu
narity can prevent the dimension estimator
from converging.

Autocorrelation is very common in time-se
ries data. For continuous signals x(t), there is
always some time rover which x(t) and x(t+ 1} are
strongly correlated. If this autocorrelation time
ris long compared to the sampling time. then an

10°

10-1

16
2

'-

$ 16
3

() ,,
-4 ,,

10 ,,

10-5 E

0.001 0.01 0.1

Discretization

r

Fig. 11-The effect of discretization is to introduce stair
steps into the correlation integral. The steps are all ofequal
width, but the log-log plot magnifies those at small r. The
effect is minimized if one plots log CiN. r) versus log r for
r = (k + d2) where k is an integer and E is the level of
discretization (dashed curve).

Discretized time series are of the form x, =k.t:,
I I

where k
i
is an integer and £ is the discretization

level. Such discretization is a natural artifact of
digital measuring devices. In fact. many algo
rithms work much faster with integers than with
floating-point numbers. so that it may be com
putationally wise to make the conversion; the
conversion involves multiplication by some
large factor. followed by rounding to the nearest
integer. The multiplicative factor does not affect
the slope of a log-log plot, but the rounding is
eqUivalent to a discretization.

Distances between pairs ofdiscretized points
will themselves be discrete multiples of £. This
effect is most prominent at small r; indeed.
pairs of points with r= 0 occur with finite proba
bility and a plot of log C(r) versus log r must
deal with the r = 0 points. A model of points
on an m-dimensional lattice. with the lattice
points separated by £, leads to a scaling of
C(r) - (r + £/2)m to the first order of £ [24].
This result suggests that an appropriate plot for
a general discretized time series is log C(r) ver
sus log (r + £/2), as shown in Fig. 11.

An alternate approach [29) deliberately adds
noise of amplitude £ (the process is called dith
ering) to the original time series and then plots
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Fig. 13-Autocorrelation in the time-series data can lead to
an anomalous shoulder in the correlation integral. The
effect is most highly pronounced for high-dimensional at
tractors. In this example, the input time series was autocor
related Gaussian noise and the correlation integral
was computed for various large embedding dimensions
(m = 4 to m = 28). Eq. 26 can be used to correct for this
effect.

anomalous shoulder (Fig. 13) could appear in
the correlation integral. The shoulder is a prob
lem in that it can lead to inaccurate and possibly
spurious estimates of dimension [301.

One solution is to increase the sampling time.
The increase, however, may have adverse side
effects: e.g.. it could further limit the available
data, and it could also affect the delay-time
embedding strategy. A more effective solution
can be obtained by rewriting the definition of the
correlation integral from Eq. 16:

2
C (W N r) = --------

.. (N+I-W)(N-W)

Eq. 26 computes distances between all pairs of
points except for those that are closer together in
time than W sampling units. Note that the case
in which W = 1 is just the standard algorithm.
Eliminating this small selection of offending
pairs eliminates the anomalous shoulder with
out sacrificing the statistics of O(N1) distance
calculations.

84

The definition of the correlation integral in
Eq. 17 is now adjusted so that the numerator is
equal to the number of distances less than r
except for those distances from pairs of points
closer together in time than W.

Summary

Accurate and foolproof estimation of fractal
dimension remains an elusive task. Prediction
based algorithms appear to hold the most prom
ise. but they are still in an early stage of devel
opment. The standard tool is the correlation
integral ofGrassberger and Procaccia. Although
the algorithm is subject to a variety of practical
limitations, most of them are now well known
and many can be remedied, or at least compen
sated for. When the Grassberger and Procaccia
algorithm is carefully applied, it can distinguish
stochastic from low-dimensional deterministic
behavior even if the latter is represented by a
finite (but not too small) time series of noisy (but
not too noisy) data.

Direct estimation of dimension is one way to
quantify the complexity of nonlinear systems
that have only a few active degrees of freedom.
For systems with more than a few (in practice,
more than abou t eight), direct estimation from a
time series will probably not be possible. To
understand and quantify the self-organization
of more complicated systems is a more interest
ing and proportionately more difficult problem.
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