D.B. Paul

“Speech Recognition Using
Hidden Markov Models

The Lincoln robust hidden Markov model speech recognizer currently provides state-
of-the-art performance for both speaker-dependent and speaker-independent large-
vocabulary continuous-speech recognition. An early isolated-word version similarly
improved the state of the art on a speaker-stress-robustness isolated-word task. This
article combines hidden Markov model and speech recognition tutorials with a
description of the above recognition systems.

1. Introduction

There are two related speech tasks: speech
understanding and speech recognition. Speech
understanding is getting the meaning of an
utterance such that one can respond properly
whether or not one has correctly recognized all
of the words. Speech recognition is simply tran-
scribing the speech without necessarily know-
ing the meaning of the utterance. The two can be
combined, but the task described here is purely
recognition.

Automatic speech recognitiori”and under-
standing have a number of practical uses. Data
input to a machine is the generic use, but in
what circumstances is speech the preferred or
only mode? An eyes-and-hands-busy user—
such as a quality control inspector, inventory
taker, cartographer, radiologist (medical X-ray
reader), mail sorter, or aircraft pilot—is one
example. Another use is transcription in the
business environment where it may be faster to
remove the distraction of typing for the nontyp-
ist. The technology is also helpful to handi-
capped persons who might otherwise require
helpers to control their environments.

Automatic speech recognition has a long
history of being a difficult problem—the first
papers date from about 1950 {1]. During this
period, a number of techniques, such as
linear-time-scaled word-template matching,
dynamic-time-warped word-template match-
ing, linguistically motivated approaches (find
the phonemes, assemble into words, as-
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semble into sentences), and hidden Markov
models (HMM]}, were used. Of all of the avail-
able techniques, HMMs are currently yielding
the best performance.

This article will first describe HMMs and their
training and recognition algorithms. It will then
discuss the speech recognition problem and
how HMMs are used to perform speech recogni-
tion. Next, it will present the speaker-stress
problem and our stress-resistant isolated-word
recognition (IWR) system. Finally, it will show
how we adapted the IWR system to large-vo-
cabulary continuous-speech recognition (CSR).

2. The Hidden Markov Model

Template comparison methods of speech
recognition (e.g., dynamic time warping [2])
directly compare the unknown utterance to
known examples. Instead HMM creates sto-
chastic models from known utterances and
compares the probability that the unknown
utterance was generated by each model. HMMs
are a broad class of doubly stochastic models for
nonstationary signals that can be inserted into
other stochastic models to incorporate informa-
tion from several hierarchical knowledge
sources. Since we do not know how to choose
the form of this model automatically but, once
given a form, have efficient automatic methods
of estimating its parameters, we must instead
choose the form according to our knowledge of
the application domain and train the parame-
ters from known data. Thus the modeling prob-
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Glossary

coarticulation the effect of an adjacent

CSR

decode

diphone
model

flat start

ML
MMI

monophone

model
observation

perplexity

phone on the current phone
continuous-speech
recognition

evaluation of p(OI M)

left- or right-phone context-
sensitive phone model

training initialization in
which all states have the
same parameter values

finite-state grammar
hidden Markov model
isolated-word recognition

a weighted sum of pdfs: the
weightsmustsumto 1 and be
non-negative

maximum likelihood

maximum mutual
information

context-insensitive phone
model

(1) generation: the parameter
emitted by the model: (2)
decoding: the measurement
absorbed by the model: may
be discrete or continuous
valued

probability distribution fune-
tion: may be discrete (i.e.. a
probabilistic histogram) or
continuous (e.g.. a
Gaussian or a Gaussian
mixture)

a measure of the recognition
task difficulty: geometric-
mean branching factor of the
language

phone

phoneme

TI1-20

TI-105

tied mixture

tied states

triphone
model

vg

the acoustic realization of a
phoneme: a phoneme may be
realized by one of several
phones

a linguistic unit used to con-
struct words

the DARPA 1000-word Re-
source Management CSR
database [3]

speaker dependent (train and
test on the same speaker)

speaker independent (train
and test on disjoint sets of

speakers)
the Texas Instruments 20-
word IWR database [4]

the Texas Instruments 105-
word [WR simulated-stress
database [5]

a set of mixtures in which
all mixtures share the same
elemental pdfs

a set of states that are con-
strained to have the same

parameters

left- and right-phone context-
sensitive phone model

vector quantizer: creates dis-
crete observations from con-
tinuous observations (mea-
surements) by outputting the
label of the nearest template
of a template set according to
some distance measure

word-boundary context de-
pendent (triphones)

word-boundary context free
(triphones)

lem is transformed into a parameter estimation

problem.

A.A. Markov first used Markov maodels to
model letter sequences in Russian [6]. Such a
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model might have one state per letter with
probabilistic arcs between each state. Each
letter would cause (or be produced by) a transi-
tion to its corresponding state. One could then




train the model (estimate the transition proba-
bilities) rom some text, and use the model to
compulte the probability of a letter sequence or
to generale letter sequences.

The theory of HMMs was developed in the
mid-to-late 1960s by Baum, Eagon, Petrie,
Soules, and Welss [7-10]. HMMs were first used
for speech recognition in the early 1970s by Jim
Baker at Carnegic-Mellon University (11, 12],
and shortly thereafter by Fred Jelinek's group
at IBM [13]. The techniques were inconsistent
with the prevailing philosophy of the time and
were not widely understood until a 1983 tutorial
by Levinson [14] became available. Since that
time, many, if not most, speech recognition
groups have switched to using HMMs.

In the Markov chain as used by Markov [6],
the state sequence is visible to the observer
through the observation (letter) sequence. The
critical difference in HMMs is that cach state
transition will emit (or absorb) an observalion
according to some probability density function
(pdl). The stale sequence cannot be uniquely de-
termined from the observation sequence and is
therefore hidden.

In speech recognition, HMMs are used to
model a nonstationary signal. However, they
have been used in a variety of fields such as
language, linancial, and biological modeling,
See Poritz [15] for a larger application list and
bibliography.

2.1 The Model

An HHIMM M is defined by a set of N states, K
observation symbols, and three probabilistic
matrices:

M = {11,A. B} (1)
where
Il = &, initial staie probabilities
A = @, , stale transition probabilitics
B = b, symbol emission probabilities.

A set of sample model topologies is shown in Mg,
1. The observation-symbol generation proce-
dure for topology 1(a) is as tollows:
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(1) Starl in state i with probability x,

12} L&

(3) Movc from state i to j with probability q,
and emit observation symbol o, = k wilh
probability h'__ ok

(4) (=t+1.

(5) Go to 3.

There are a number of possible variations on
this model: B=b,, depends only upon the source
state and D = b « depends only upon the des-
tination state. [’1 hcsr variations are tyings, de-
scribed in section 2.6.) Anolher variation is
substituting continuous observations for the
discrete observations used in the above delini-
tion. We use B= b/(0) in our speech recognition
systems where b, is a Gaussian or Gaussian-
mixture pdf dependent only upon the source
state and o is an observation vector. (Our pdfs

(c) Bakis Model

(y 3 Cp ()
OO

(d) Linear Model

Fig. 1—Sample four-state HMM lopologies.
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will be described in detail later.)

To use this HMM, thiree basic algorithms
must be understood: classification of an un-
known observation sequence (recognition),
training the modcls from a set of training data.
and evaluation of the probability ol an observa-
tion sequence. Classification is identification
of an unknown observation sequence by choos:
ing the most likely class to have produced the
observation sequence. To perform this identifi-
cation, one must compute the likelihood for a
model and choose the most likely class. Training
is estimation of the parameters of a model from
a set of known training data (observation se-
quences). Evaluation of the probability of an
observation sequence given a model (the de
code) is a critical computation used in both
training and classilication.

The following discussion of the basic algo:
rithms will use discrete-observation terminol
ogy. However, the discussion also applies Lo
continuous observations by substituting b, (o)
for bn.;.k‘

2.2 HMM Networle Topologics

The topology of Fig. 1(a) is called an ergodic
network because any state can be reached from
any other state. This topology is inappropriate
for speech recognition because speech consists
of an ordered sequence of sounds. Instead we
generally use a topology from the class of left-to
right models. In a left to-right model a state,
once left, cannot be revisited. (Equivalently, the
states can be numbered such that the A matrix
is upper-triangular.} This restriction forces an
ordering on the state sequence—a transition
can only stay in the same state or go 1o a higher
numbered state. Figures 1(b) through 1(d) are
all left-to-righl models. Figure 1(b) is the general
left-to-right topology. Figure 1{c), a Bakis model
[16] [stay, move, or skip one), and Fig, 1(d), a
linear (stay or move) model, are commonly used
for speech recognition. The topologies 1(b)
through1(d) are progressively more restrictive:
all start in state 1, finish in state N, and have
additional disallowed transitions. In fact, they
are just special cases of Fig. 1(a), in which some
ol the transition probabilitics have been sel o
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zero. The mathematics of all cases is identical,
so no special attention need be paid to the
restrictive cases. There is also a pragmatic
trade-off: the more restrictive topologies gener-
ally require less training data and thus a simpler
maodel may give better performance than a more
complex model.

The topologies in Figs. 1(b) through 1(d) are
drawn with network entry and end-ol-data arcs.
The entry arc emphasizes that paths in these
topologies can only start in state 1. The exit arc
isa special end-of-data are thal can be transited
only at the end of data. In effect, there is a special
end-of-data observation symbol for which
b, reena = O except for the final arc on which

R —— 1. This convention allows all
states (o be identical in lorm and anticipates
concatenating phone models to ereate word
models and concatenating word models to cre-
ate sentence models (described in more detail in
sections 5 and 6). Otherwise state N must have
a self-transition probability of 1, which will
make it behave differently from the other states.

The figures for the following algorithms will
use the linear lopology of Fig. 1(d) because it is
the simplest practical lopology [or speechrecog-
nition. The equations presented below, how-
cver, are fully general.

2.3 Classification Using HMMs

HMMs use a maximuim a posteriorilikelihood
classiflication (recognition) rule—choose the
most likely class given the observations. For

some observation sequence O=0,, 0,, ..., 0.
chosen_class = argmax [P( M,‘,,,M_IO)] : (2)
clnss

By Bayes rule,

P(O|M s )p( class)

3
p(0) 5

p( Ml’"ﬂh& I()) -

But since the observation probability plO) is the
same for all classes, it need not be computed,
and the a posteriori likelihood is used instead ol
the a posteriori probability:

UM 1ass]0) = P(OM s ) Plelass).  (4)
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The optimal recognition-model parameters for
each class are the same as the parameters for
cach class in the generation model. (However, in
many cases, the generator is not an HMM or the
generation model paramelers are not available.)
Evaluation of p(O| M) will be discussed in section
2.4, and plclass) allows us to apply constraints
from higher-level knowledge sources such as a
language model (word scquence probabilities)
as will be described in section 5.

2.4 [Evaluation of p(O| M)

Numerical evaluation ol the conditional
probability p{O] M) from Eq. 4 is vital to both the
training and recognition processes. (This com-
putation is commonly called a decode due to a
similar operation used in communication the
ory.) This is the probability that any path (i.e.,
the sum of the probabilities of all paths) through
the network has generated the observation
sequence (). Thus for the set ol possible state
sequences [S)

p(O|M) = Z{m. ﬁ TS - ] (5)

(spt

The complexity of this computation is on the
order of N (O(N")) and therefore completely
intractable for any nontrivial model.

Fortunately, there is an ilerative method of
cvaluation that is tar more efficient than the
direct method:

a(i)=m, 1<i<N (6.1)
For't=1:2. cas T
N
ahl(j):Za'(i"‘i‘ybi,'_a, 1< jsN [(6.2)
=1
ploM)= N a0, 6.3)

e {tenminal stales)

This same procedure is shown graphically in
Fig. 2(a) for the lincar topology ol Fig. 1(d). The
lower-left lattice point is initialized to 1 since the
topology delines state 1 as the start (Eq. 6.1). All
other lattice points are initialized to 0. The paths
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for this topology can cither stay in a state (the
horizontal arcs) or move to the next state (the
diagonal ares). In each case, the are probability
is the product of the source lattice-point
probability (i), the transition probability q, .r
and the observation probability b, - IZach lal-
tice point at time ( + 1 sums the probabilities of
theincomingarcs (Eq. 6.2). Thus the probability
al each lattice point is the probability of getting
from the start state(s) to the current state at the
current time. The final probability is the sum ol
the probabilitics on the exil slates (Eq. 6.3).
(There is only one exit state in topology 1[d).)
This operation is the forward decoder. Time-
synchronous (i.c.. all states are updated at the
same time) left-to-right models can be computed
in place by updating the state probabilities in
reverse (state number) order.

The backward decoder starts at the exil
states and applies the observations in reverse
order (I'ig. 2|b]):

p'l'al(i)=l
Fort=T. T=1,s i '}

i € {terminal states} (7.1)

N
B)= D ai bijo Biali) 1sisN  (7.2)
, J=1

N
p(OM) = Z xBi(1) . (7.9)
t=1

The probability of each laltice pointis the proba-
bility ol getting from the eurrent state and time
to the exit state(s) at time T +1. This decoder
produces the same result as the forward decoder
and can also be computed in place for a time-
synchronous lefl-to-right model. While either
decoder can be used for classification, usually
only the forward is used because the computa-
tionn can begin belore all of the observations
are available. [However, both are required for
the forward-backward training algorithm
described in scction 2.5. Both decoders
are O(N?T) for ergodic models and O[NT)
for typical speech models, which is praclical
to compule for the models used in speech

recognition.
The combined decoders have the propertly
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Fig. 2—Decuder lattices for four-stata linear model oi Fig. 1(d): (a) forward decoder laltice, (b) backward decoder

lattice.

thal the sum of the products ol the forward and
backward probabililies ol all slates at any given
time is plO1 M):

N

p(OM) = Y ex, (0B, (i)

1st<T+1. [8)

Eqs 6.3 and 7.3 are special cases of this equation
for t = T+1 and t =1, respectively.

The above lull decoders compute the proba:
bility of any state sequence that generates the
observations. The full decoders are theoretically
optimum for the classification (recognition)
task. The suboptimum Viterbi decoder, p (O M),
is often used beeause it computes the probabil
ity of the best state sequence. (The full decoder
does not produce the single best path-—it uses
all possible paths.) In the Viterbi decoder the
maximumof the entering probabilities is used in
I2q. 6.2 rather than the sum. II'the backpointers
(pointers that indicate highest-probability en
tering arc) are recorded. the best path can be
constructed by tracing back from the best exit
state (the Viterbi backlrace). This best path,
which assigns obscervalions lo ares, aligns the
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data to the model. Viterbi decoder-based speech
recognizers usually produce similar recognition
results to the full decoder-based systems.

2.5 Training the Model

Given an HMM topology and a set of training
observalions, il is possible to train (or choose an
optimum set of parameters lor) the models, The
Jorward-backward, or Baum-Welch, reestima-
tion algorithm (rains the HMMs according to a
maximum-likelihood (ML) eriterion:

max’!:nlzc P[ Orraining|M ) ; (9)

This is an expectation-maximization, or esti-
male-maximize (EM). algorithm: the expecta-
tion phase aligns the training data to the model
and the maximization phase reestimates the
parameters of the model, The expectation phase
consists ol compulting the probability of travers-
ing a laltice arc at time t given the observation
sequence 0:

Pare(l, ] 1) = fr:(')fh.;"s.;.qﬂn|(J)/.0(01M)- (10
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The e term is the probability of getting from ihe
start state(s) to state i al time f, the a term is
the probability of transitioning Irom state i {a
state j. the b term is the probability that the
observation 0, occurs on the transition from (
to j, and the B term is the probability ol getting
from state j at time { + 1 to the exil(s) of the
network. The p(OI M) term serves to normalize
p,,. such that

N N

Zzpm(w.f) =

i=1 j=1

J =R ET [11)

due to Eq. 8.

The maximizalion phase consists ol estimat-
ing the model parameters to obtam a new
model, M:

N

= Z pmc(i' i
=1

_ a(i)Ai(1)
p(O|M)

i i nt)

1 _t=1
e Ty

=y :
2 Pare(i.Jit)

=1 t=

A=1) 1<isN

(12.1)

e I1<i,)sN. {12.2)

For a discrete-observation system

an (& JuL)

R lE{a‘ -k} lsk s K,
b ju = E— N (12.3)

1<ije
Zp‘.m(:- j.0)

For a cuntmumlh—uhh(:r\rmitm system with
Gaussian pdfs

ipmlt. J.ut)

=4 —— 124, j< N (024)
Zpuﬂ
1=1
T
Z mrll' f"}"l“l'
- R {'
Ly, = (] P ————— Uy, 112.5)
are ".[
Zp bl 1<i, j< N
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where o, is the observation vector, jis the mean
vector, trdenotes vector transpose, and X is the
correlation matrix, (A Gaussian pdlis, of course,
deflined by its g and L.)

The interpretation of these equations is
very simple. The term pm‘_(i. J. 0 is simply a
probabilistic count of the number of times the
arc from state i tojis traversed at time (. Thus
Eq. 12.1 is the number of times the path slarts
in state i, Eq. 12.2 is the number of times
are i, j is traversed divided by the lotal num-
ber ol departures from state {, and Eq. 12.3
is the number of times the symbol Ik is emit-
ted from are i, j divided by Lhe total number
of symbols emitted from arc i, j. Similarly, Eqgs.
124 and 12.5 arc just (arc) weighted aver-
ages for computing the mean vector u and
covariance maltrix Z,

The above equations assume one (raining
token (a token is an observation sequence gen-
erated by a single instance ol the event, such as
a single instance of a word). The extension (o
multiple training tokens simply compultes the
sums over all tokens, which maximizes

[ 1r(0dm).

i=tokens

The proof of this reestimation procedure [8, 10,
14] guarantees-that p(Ol M) > p(O1 M). This train-
ing procedure acts much like a gradient hill
climb with automalic step sizing—il slarts
with an initial set of parameters and improves
them with each iteration until it reaches a local
maximuin.

Inspection of the forward-backward algo-
rithm shows it to be a collection ol local ML
oplimizatlions. Each individual parameter—the
transition probabilities leaving a single state or
the observation pdf from a single arc—is set (o
its ML value given the data alignment from the
expectation phase. The proof also guarantees
that the total ellect of any subset of these local
oplimizations is p{OIﬂ?} = plOIM). Thus one
can choose to train only some of the para-
meters while leaving the others fixed.

The forward-backward algorithm simultane-
ously considers all possible alignments of the
data to the model (paths), each weighted by its
probability. The Viterbi training procedure uses
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a Viterbi decoder to derive the counts from the
backtrace (section 2.4). (The counts P, arenow
I's or O's and fit into the same reestimation
equations.) This procedure, unlike the forward-
backward algorithm, considers only the best
path through the model. As a resuli, it is much
more sensitive lo the initial model parameters.

The restricted (opologies can be viewed as
fully connected models with some of the transi-
tion probabilities set to zero. The forward-back-
ward and Viterbi training algorithms maintain
these zero probabilities beeause a = 0im-
plies p__ (i j. t) =0 for all t and thus the numer-
ator of Eq. 12.2 and l'l'__J must also be zero. The
training algorithms can set a transition or sym-
bol emission probability to zero. but once zero it
remains zero.

There are two other training methods avail-
able for HMMs: gradient hill climbing and simu-
lated annealing. The gradient method [14]),
which must be modified to bound the values of
the probabilities by zero and one, is computa-
tionally expensive and requires step-size esli-
mation. Simulated annealing has also been
tested as a training method [17). li demands far
more computation and discards the initial
model paramelers—which convey useful infor-
mation into the models by helping to choose the
local maximum.

The ML criterion is not the only possible
training criterion. Several other criteria that
consider the incorrect as well as the correet
words—such as maximum muinal information
(MMI) [18]—have been proposed. These eriteria
generally require significantly more computa-
tion than the forward-backward algorithm and
have not shown improved speech recognilion
performance on any but very small tasks. A
philosophically related procedure called correc-
tive training [19]. which modities ML models
based upon possible confusions obtained from
a modified recognizer, has provided modesl
performance improvements.

2.6 Tied States, Null Arcs,
and Null States
A very uselul tool for IIMMs is fied states.

Tied states are a set of states in which all states
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have the same transition probabilities and ob-
servation pdfs. States may also be pariially
tied by tying only some of the state parame-
ters. This allows us to constrain the models
such that, for example, all instances of a par-
ticular phone have the same model and this
model is trained on all instances of the phone
in the training data. It also reduces the num-
ber of paramelers that must be estimated
from the necessarily finite amount of training
data.

Another useful tool is the null are, which does
not emitan observation symbol. A single null arc
is equivalent to arcs from all immediately pre-
ceding states to all immediately following states
with appropriate tyings on the transition proba-
bilities. (Successive null arcs are more compli-

ated but are an extension of the single nullare.)

The null arc is associated with the state rather
than its surrounding states, and thus may be
more convenient and require fewer parameters
than the equivalent network without the null
ares.

A similarly useful tool is the null state, which
has no self-transition and only null exiting arcs.
Itis a path redistribution point that may be used
to induce tyings on the previous stales with
a simplified organization. For example, if mod-
els of the form shown in Fig. 1(c) were con-
catenaled, null states might be placed at the
junctions.

2.7 Discrele Observations

Some tasks, such as the letter sequence task
used by Markov [6), inherently use a finite al-
phabet of discrete symbols. Many other tasks,
including speech recognition. have continuous-
valued observations (mecasurcments). A vector
quantizer (VQ) [20] can be used to convert the
measurements into discrete observations. A
typical VQ used in specch recognition contains
a set of spectral veetor templates (sometimes
called the codebook) and oulpuls the label of the
closest template according to a distance mea-
sure. This operation converts a sequence of
spectral vectors into a sequence of best tem-
plate labels, which is the discrete-observation
sequence,
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2.8 Continuous Observations

The preceding sections describe the discrete
obhservation and continuous observation with
single-Gaussian-pdf-per state models. The
(saussian pdf, while not the only continuous-
gbservalion pdf for which convergence of the
torward-backward algorithm has been proved,
has simple mathematies and is the most com-
monly used continuous-observation pdf for
HMM speech recognition. Only the Gaussian
pdf will be discussed here. The single Gaussian
model has the disadvantage that it isa unimodal
distribution. A mullimodal disiribution can be
obtained from a Gaussian mixture, or weighted
sum ol Gaussians (G):

Z(T!G{O,ﬂ| 'EI’

{

Zc,;l. ¢, 20.

i

(13)

The Gaussian mixture can be redrawn as a
subnet of single Gaussian {per state) staies by
using null and tied states and is therefore a
convenience, but not a fundamental extension
to HMMs.

Recently a new form of mixture has emerged
in the speech recognition field: the tied mixture

{TM) [21-23). Gaussian tied mixtures area set of

mixtures that share the same set of Gaussians.
The traditional discrete-observation system
used for speech recognition—a VQ followed by a
discrete-observation HMM-—is a special case of
a'TM system. It is a pruned TM system in which
only the single highest-probability Gaussian is
used. (A TM system can also be viewed as an
extension of a discrete-observation system in
which all observation symbols are used all of the
tirne, but weighted according to their probabili-
ties.) The pdf of the TM system combines the
generalily of the nonparametric (probabilistic
histogram) pdf of the diserete-observation sys-
tem with the direet access (o the measure-
ments) of the continuous-observation system

and the pdf smoothing of the Gaussian pdl

systems. Unlike the traditional discrete-obser
vation system, TM systems allow simullaneous
optimization ol both the Gaussians, which cor-
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respond to the VQ spectral templates, and the
weights, which correspond to the discrete pdf.

2.9 Pragmatic Issues

The preceding sections describe the basie
techniques of HMMs. In addition, several prag-
matic issues must be addressed if one wishes to
use HMMs. The first is numerical underflow.
After several probabilities have been multiplied,
the numbers become so small that most com-
puters will underflow. (The Lincoln Laboratory
system routinely produces likelihoods on the
order of 10°2%9 ) Thus these systems musl store
the numbers in a log format or use scaling.

Second, for best performance the complexity
of the model must be matched to the amount of
training data. Tying stales or parameters is one
method of reducing the number of free variables
to be trained. The form of the observation pdl
must also be chosen with consideration for this
limitation. Frequently, the parameters are
smoothed with less-detailed bul better-trained
models. Deleted interpolation [24]) is an HMM-
based method that automatically determines
the smoothing weights. Smoothing ol phonetic
models will be deseribed in section 6.2

Finally, a discrete-observation MM has a
missing observation problem. A test token may
result in an observation symbol that was not
seen during training ol the class. The symbol's
probability will have been set to zero during
training and thus the class probability will go to
zero. To prevent this problem, a lower limit is
placed upon the values of the observation pdl.
This limit prevents a small number of previously
unobserved symbols from eliminating the cor-
rect class from consideration.

3. Basic HMM Isolated-Word
Recognition

Normally we speak in continuous sequences
of words called sentences. In continuous
speech, there is considerable variation due to
the sentence structure (prosodics) and interac-
tion between adjacent words (cross-word coar-
ticulation). In addition, no elear acoustic mark-
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Fig. 3—Viterbidecoder alignment for the word "histogram.”

ers delineate the word boundaries. Therefore, il
is simpler to recognize isolated words. The word
pronunciations are much more uniformand the
boundaries are much easier to locate than in
continuous speech. Therefore, isolated-word
recognition will be described first.

In performing recognition upon a naturally
occurring signal, such as human speech, we do
not have access to the generator and therefore
are unable to determine its structure directly. (It
is almost certain that humans do not use HMM
models. Even if the speech generator does not
use [ IMMs, we have found that we can maodel the
speech signal fairly well with HMMs.) Thus we
must guess the topology of the model. For IWR
Bakis and linear models have been found to
work well, but the number of states N nceds to
be determined.

The speech signal itsell is nol a good obscrva-
tion. However, work in psychoacoustics and
voice coding has found the short-term spectral
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envelope to be a good way to represent the
speech. Thus most speech recognition systems
use some representation of the spectral enve-
lope, computed at 10-t0-20-ms intervals as the
basic measurement. A continuous-observation
system uses this measurement directly, bul a
discrete-observation system must use a V@ to
convert each measurement into one of the set of
observation symbols. This preprocessor is
called the front end.

The basic system outlined here uses word
models. Word models treat the word as the
fundamental unit to be modeled as a sequence
of sounds. Each word model is completely inde-
pendent—it does not make use of the fact
that words are built from a small inventory of
phonemes.

To train the system, onc records several
tokens of cach word in the vocabulary and
processes them with a front end to create the
observalion sequences corresponding to ecach

The Lincoln Laboratory Journal, Volume 3, Number 1 (1990)



token. The model might be initialized to a Jlat
slart (all states have the same initial parame-
ters) and trained by using the forward-backward
algorithm. The training data need only be iden-
tified by its word label (orthographic transcerip-
tion)—no detailed internal marking is required.
The training will dynamically align each lraining
token to the model and customize the states and
ares.

The recognition process must lirst choose a
probability for each word. Usnally, all words are
assumed to have equal probability, but unequal
probabilities are used in some applicalions.
[cach unknown word is then processed with the
front end and passed to the HMM, which
chooses the most likely word according to I£q. 4.
If the likelihood is ton low. the recognizer can
reject the utterance. (Rejection can help Lo
eliminate out-of-vocabulary words, poor pro-
nunciations, or extraneous noises.)

A sample decode for the word “histogram” is
shown in Fig. 3. An eight-state linear model for
the word was trained from a flat start and was
used to perform a Viterbi decode. Vertical lines
have been drawn on a spectrogram of the word
to show the location of the state transitions. The
figure shows how the model tends to place each
stationary region into a single state; however,
the /h/ and /1/—which are very dissimilar—
were lumped into state 1. This occurred because
the training procedure is a collection of local
optimizations and the topological constraints—
the model was unable to split stale | into two
states during training. The dccode also at-
tempted to discard state 8 but could not be-
cause no skip path was provided. Slate 8 proba-
bly modeled an alternative pronunciation and
the highesl likelihood was obtained by minimiz-
ing the amount of time spent in the state.

4. The Lincoln Robust IWR

Our initial goal was to improve the accuracy
of speech recognition in the cockpit of a modern
high-performance aireraft. The pilot is in a noisy
environmenl and under task, mental, and
physical stress, all of which affect speech and
degrade recognition performance. (The same
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factors occur in a wide varicty of military and
civilian environments.) These factors cause a
variety ol effects in speech—loud speech, the
Lombard effect [25], careless speech, fast
speech, or even a speech block. These effects, in
turn, cause a number of acoustic effects such as
changed spectral tilts, changed formant (vocal-
tract resonance) positions, changed energies,
changed timings, and changes in the phonology
126, 27]).

We felt that the VQ required by a discrete-
observation system would impose a barrier
between the signaland the HMM. Thus we chose
a continuous-observation HMM for our robust-
ness work. The following scetions deseribe our
front end, our baseline system, and our robust
[WR system.

4.1 The Lincoln Front End

The Lincoln Laboratory IWR and CSR sys-
lems use a pseudo-filter-bank [28] front end.

This front end produces a 100-per-second mel-

cepstral observation vector by the following

signal processing. The input speech can be

sampled at rates between 8 and 20 klHiz.

[l) Apply a 20-ms Hamming window and
zero pad to 256 or 512 points.

(2) FI'T (— complex spectrum).

(3) Magnitude squared (- power spectrum

S, [y

(4) Preemphasize S(J)-b(f)[n[soouz) ]

(5) Mel-bandpass weighted summations
(— mel-power spectrum) using con-
slant arca (riangular filters: 100-1z
spacing 0.1 kHz to 1 kliz, 10% above;
width = 2x spacing.

(6) Convert mel-power spectrum to db
(db(x) = 10 log | (x).

(7) Modilied cosine transform (28] (— mel-
cepstrum ¢).

(8) Truncate the mel-cepstrum o the de-
sired number of components.

{9) Advance signal 10 ms and repeat from
step 1.

The mel-scale is a nonlinear [requency scale

[29]), consislent with several phenomena ob-
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served in human hearing, that can be approxi-
mated by a linear scale below 1 kHz and a
logarithmic seale above 1 kllz. The mel-cep-
sbrum of speech is also a relatively orthogonal
feature set. Thus the mel-cepstrum has both
good psychoacoustic properties and good pat-
tern recognition properties, The mel-cepstrum
is a transform of the specch spectral envelope—
which carries most of the desired informaltion in
the English and the Enropean languages. (Pitch
is phonemic in some other languages.) The
truncation in step 8 removes mel-cepstral com-
ponents that can be allected by the speaker's
pitch.

4.2 The Tl Simulated-Slress
IWR Database

Sinee large amounts ol truly stressed speech

0 T 1 I

40 - —
- Baseline \ \
£ %0 / \ y
5 20 [~ ~ A
w

10 |~ / Mormal Traimng
// Multistyle Training
Y S s G s, i’
Normal Fast Loud Lombard Soft
Test Condition

Error Rate (%)
Test Condition

System Normal Average
Baseline 1.90 20.40
Multistyle Training 0.00 0.71

Fig 4—Speaker-dependent Lincoln robust IWH perfor-
mance on the TI-105 simulated-slress database.

dala are difficult to obtain, we used a speaker-
dependent simulated-stress database recorded
al Texas Instruments (T1) [5]. Although the
speakers were asked to speak in a varlety of
slyles, the acoustic changes that occurred are
similar to those thal occur during real siress
[26, 27]. This database uses a 105-word aircraft
vocabulary and is thus frequently called the
TI-105 database. It contains eight speakers
—five male and three female, cach of whom
produced a full set of training and test utter-
ances. The training portion consists of five nor-
mally spoken tokens of each word and the test
portion consists of two tokens of ecach word,
spoken in the following styles: normal, fasl,
loud, Lombard (speakers wearing headphones
with noise in the carpieces), and soft. (There is
also a shout condition that was so extreme that
it was largely ignored.) The database is sampled
al 8 kHz. Tl also used the same database to
work on the stress robustness problem [5)).

4.3 The Robust IWR Algorithins

We started with a baseline system with the

following fcatures:

(1) 10-state linear-topology word HMMs

(2) 1 model per word

(3) trained diagonal-covariance Gaussian
pdfs

(4) 12th-order mel-cepstral observation:
¢,~¢,, (the energy term ¢, is not used)

(5) trained from a flat start by the forward-
backward algorithm

(6) Viterbi decoder in recognizer

(7) single-state beginning and ending back-
ground models

(8) training and recognition open endpoint
(the word endpoints are found by the
decode)

A 10-stale configuration was chosen as a com-

promise between too few states for long words

and too many states for short words. Although

some of the template-matching IWR systems

use multiple templates per word to model vari-

ation, only one model per word was used here

because HMMs are stochaslie models and thus

are inherently capable ol modeling variation.

The Lincoln Labwwatory Journal, Volume 3, Numbers | (1 9000



Diagonal covariance (variance) Gaussians were
used because we did not have enough training
data for full covariance. The energy term was not
used due to normalization difficulties. The flat
start and the Viterbi decoder were chosen be-
cause they were simpler than the alternatives
and the background models allowed us to ex-
plicitly recognize the background in the
decoding process.

The recognition performance of this baseline
system is shown in Fig. 4. The normal speech
ervor rate of 1.9% is fairly good (compared to the
state of the art when the tests were performed),
but the error rates on the styles are quite high
with an average crror rate over all five lest
conditions of 20.5%.

From this baseline system we developed two
robust systems, one using a perceptually moti-
vated distance measure, and a second using a
tied (or grand) variance [30-32]. These systems
feature
(1) tied variance (lrained or fixed)

(2) observations augmented with temporal
difference (delta) mel-cepstra (includes
Ac, term)

(3) automatic number of states

(4) one stage of Vilerbi training for initial-
ization

(5) adaptive background model during
recognition

Five tokens of each word were found to be
insufficient to train a variance vector per state,
and thus the variance was tied. Under condi-
tions of insufficient data, a state variance can
become too small: in fact, we observed cases in
which a component of the variance vector be-
came zero. (The trainer was operating prop-
erly—this increased the likelihood of the train-
ing data.) The perceptuaily motivated distance
measure [31, 32], which is a manually chosen
fixed variance. provides perceptual and prag-
matic speech knowledge while it simultaneously
avoids the variance training problem.

Formant moltion as well as position is impor-
tant in speech, and the inclusion of the delta
mel-cepstra made this information more avail-

able to the system [33]. The fixed number of

states In the baseline sysiem gave too many
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slates to shert words and too few (o the long
words. Choosing the number of states per word
to be avg_length_in_frames/3, where the length
is determined by an endpointing algorithm,
provided appropriate model sizes for all words.
Abetter initial set of parameters for training can
be obtained by dividing the observations be-
tween the endpoints of each training token into
number-of-states equal-duration sections, as-
signing each section to its corresponding slate,
and averaging the observations assigned to
cach stale. This Vilerbi start gives each slate a
more equal role in the modeling than does the
flat start and is equivalent to one iteration of
Viterbi training from a forced backtrace. Finally,
an adaptive background model was used during
recognition, since the recegnition background
may differ from the background observed dur-
ing training.

We also improved performance by multi-style
training, which includes samples of stressed
speech in training [34. 30). (No token was used
simultaneously for both training and testing.)
This approach allowed the trainer to focus on
the consistent aspects while avoiding the stress-
variable aspects of the speech.

These robust IWK systems yielded significant
improvements over the baseline system. both
with and without multi-style training. The re-
sults for the perceptually motivated distance
measure system are shown in the second and
third plots in Fig. 4. The average error rate is
reduced from 20.5% to 1.9% for normal training
and 0.7% for multi-style training. The normal
test-style error rates are alsoreduced from 1.9%
10 0.24% and 0%, respectively. Thus the robust -
ness enhancements and the multi-style training
helped both the robustness to speaker stress
and the normal speech performance.

As an independent test of the robust IWR
system, we tested it on the Texas Instruments
20-word (TI-20) database (4], which uses a 20
normally spoken isolated-word voeabulary from
16 speakers. Our first run on this database
produceda 0.06% (3/5120) error rate. The best-
known previous result was 0.2% (10/5120) [4].
After a small amounlt of work on the database,
the error rate was reduced to 0%. These results
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showed that our sysiem performance was also
very good on an independent database.

The standard HMM systems have a dying-
exponential state-duration model due to the
probability on the sell-loop. This model is not
very realistic for speech, so we investigated
some stronger duration models [31]. Two basic
approaches were investigated: subnets |35, 31]
and explicit duration modeling [36, 37].
Subnets. where each state is replaced by a small
network with pdfs tied over all states, were found
somewhat promising but doubled the number of
states in the nelwork. The explicit duration
models did not help due to training and normali-
zation difficulties and significantly greater
computation requirements than the standard
models. Durations are a function of the speak-
ing rate and other factors. The function is seg-
ment dependent, nonlinear, and not well under-
stood Thus a weak model was found preferable
to a poorly trained strong modcl.

We also tested two other approaches (o im-
proving the stress robusiness and/or general
performance: stress compensation and a sec-
ond-pass discriminator. Since we were not able
to quantify the speaker stress from the signal,
the stress compensator used the spectral tilt ¢,
to control a mel-spectral compensator |38, 39).
The second-pass discriminalor, using pairwise
discrimination techniques on information ob-
tamed from the Viterbi backtraces, compared
the top few choices from the 1HMM [40, 4 1]. Both
technigues provided some additional improve-
ment: however, both were tested only in the IWR
environment. The compensator might, but the
discriminator does not appear to extend to the
CSR environment.

We investigated supervised stress and
speaker adaptation of the models during recog-
nition. Two forms of supervision are possible:
correct-incorrect or the identity of the corrcct
word. In the first case, the system can only
adapt on the correctly recognized tokens; in
the sccond case, the system can adapt on all
tokens. We found limited improvement in the
first case. but dramatic improvement in the
second case [42]. Thus, in environments where
the user will correct recognition errors, (he
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system is able to adapt very effectively.

As a prelude to CSR, we converted the IWR
from word models to triphone models. Each
word model was composed of a sequence ol
triphone (context-dependent phone) models
(sce section 6 for details), which caused a slight
increase in the error rate [32). We also clustered
the triphones (using a y%-like criterion) and
found that the number of triphones could be
reduced by one-third before the perfor-
mance began to sulfer [32]. Another study that
clustered states of our word models reached
a similar conclusion [43).

5. Basic HMM Continuous-Speech
Recognition

IIMM CSR is performed by using three hier-
archical modeling layers: a language-model
layer, a word-model layer, and a phone-modecl
layer. The language model contains all of the
constraints on the word sequences that the
speaker might utter. This language model con-
tains the syntax (strueture) and the semanties
(meaning) of the language, including all context
factors (e.g., who the participants are, what has
just happened). This stochastic language model

_is expressed as

P(W)= Prag(Wicrs - - - cwy|wy). (14)

The probabilitics express the likelihood of cach
possible utterance. For example, the finite-stale
grammar (FSG) is a simple language model that
can be expressed as a finite-state network with
words on each arc. (An FFSG is simple to use and
may be adequale for limited domains, but it is
not a good model of general human language.)
There are many other classes of langnage mod-
els, and language modeling is a field of research
in its own right.

The recognition difficulty of a language is
measured by its perplexily [24):

entropy = El - z pluuy(u’l )IOQZ(phum(u’l )) (15)
{

perplexity = 2P (16)
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which can be interpreted as the weighted geo-
meiric-mean branching factor. While this num-
ber does not reflect the acoustic confusability of
the vocabulary, it is the best single number in
common usage for indicating the difficulty of the
recognition task. Fluent English has a vocabu-
lary of over 80,000 words [44] and one assump-
tion-laden estimalte ol the word perplexity ol
general English is 112 [45].

Eacharc in the language model is a word. The
word-modeling layer replaces cach word arc
with a network of phones deseribing the ways in
which a word may be pronounced. The phone
network is ereated by looking up the phoneme
pronunciation in a dictionary and using pho
nelic rules to convert the phoneme sequence
into a phone network. The system now becomes
a network of phones. Each phone is modeled by
a small HMM network in which each are models
the acoustic evenls. These HMM networks re-
place the phone arcs in the word models Lo
create our final recognition network. The com-
bined network is extremely sparse with braided
paths

All probabilities of the combined network are
trained from data by algorithms appropriate to
the type of model used at each level. In practice,
a Jarge amount of tying reduces the parameters
to a manageable number. Recognition is per-
formed by finding the best word path throngh
this network. The nelwork can be very large or
infinite—thus it may be necessary 1o interpret
the network during the recognition operation,
The size of the nelwork also requires pruned-
search strategies (o reduce the computation to
practical levels.

6. The Lincoln Robust CSR

Our initial goal had been robust CSR for the
aireraft environment and the robust IWRwas an
intermediate goal. The initial development of
our CSR system was performed in the context of
a robust CSR task [32]. but alter a short period,
our task changed (o large-vocabulary normally
spoken CSR using the DARPA Resource Man-
agement database. Our current CSR system
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retains many of the robustness features from
our carlier work and probably also retains the
robust performance of our earlier systems.

6.1 The DARPA Resource
Management Database

The DARPA-supported CSR development
sites—Dolt Baranck & Newman (3IBN) [46], Car-
negie-Mellon University [47, 48), Lincoln Labo-
ratory, MIT [49, 50), and SRI [5]1]—have been
using the DARPA Resource Management (RM)
database (AT&T is a guest site also nsing the da-
tabase [52]). As a result of this shared database
and the sharing of our resulls, our syslems
incorporate a combination of techniques devel-
oped at our own as well as the other siles.

The RM database [3] was designed to modcl
commands to a computerized naval resource
(such as ships) database and display system.
Operational personnel provided sample sen-
tences thal were used to generate a set of
patterns. Sentence lists gencrated from these
patterns were filtered by humans to eliminate
any unreasonable sentences. The sentences
were read ina sound booth, direct digitized at 20
kHz. and downsampled to 16 kHz.

T'he databasce consists of two parts, cach with
u_lr'cc sections. The two parls are speaker de-
pendent (same speakers for training and test-
ing) (SD) and speaker independent (different
speakers for training and testing) (S1). Each part
contains three secltions: training, development
test, and evaluation test. Since repeated tests on
the same dala, in eflect, train the system to the
test data, the development test data was desig-
nated for algorithm development, and the evalu-
ation test data was designated as an independ-
ent test set for formal evaluations. (In fact, the
evaluation test data is not distributed to the
sites until itis time to perform the evaluations.)
Only development test results are given here,
because all systems were tested on the same
data, which gives more accenrale system com
parisons than comparisons that use diflerent
test data. The amounts of data used in these
tests are shown in Table 1.
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Table 1.
o Number of Number of Approximate
Cowicition Speakers Sentences Time
SD Train 12 600 per speaker 12h
SI-72 Train 72 2880 total 3h
SI-109 Train 109 3990 total 4h
Test 12 (SD) 100 per speaker —

(These amounts of data differ from the amounts
shown in Rel. 3. Since the SD (est set is used for
Sl testing, and most of the SD speakers were also
used in the SI portion of the database, eight
speakers had to be removed from the designated
S] training set to create the SI-72 training set
and 11 speakers had to be removed from the
combined designated S! training and designated
SI development test sels 1o create the SI1-109
training set.) These amounts of training data
may seem large, bul they are minuscule com-
pared to the amount available to humans. By the
age of five, a typical child has heard thousands
of hours ol speech.

There are 991 words in the vocabulary. A
perplexity-60 standard word-pair grammar—a
list of allowable word pairs without probabili-

tics—has been developed for recognition. The .

sentence patterns or a bigram (word pair with
probabilities) grammar would have lower
perplexities, but would have reduced the chal-
lenge to the CSR system developers,

6.2 The Lincoln Robust
CSR Algorithms

The Lincoln Laboratory CSR system has
progressed through a range of pdfs starting with
single-Gaussian-per-slale systems, Gaussian-
mixture systems, and, finally, tied-mixture
systems. [For clarity, the intermediate systems
[32] will not be deseribed here, and the current
system will be deseribed as il it were descended
directly from the whole-word IWR system.
However, comparisons will be made to the inter-
mediate systems whenever appropriate.

The system was extended to the CSR task by
adding the following training [eatures:
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(1) separate mel-cepstral and delta mel-cep-
stral observation streams

(2) Gaussian tied mixtures (257 Gaussians/
slream)

(3) tied variance per siream

(4) three-state lincar triphone models

(5) function-word-dependent triphone die-
lionary

(6) triphones smoothed by diphones and
monophones

(7) word-boundary context-dependent
(WBCD) triphones

(8) unsupervised monophone bootstrapped
training from a flat start

and the following recognition features:

(1) FSG language model

(2) missing triphone extrapolation
(3) Viterbi beam search

(4) word insertion penalty

In the IWR, the delta parameters were simply
appended Lo the observation vector to make a
higher-order observation vector. Duc to the
diagonal covariance matrix, the two parameter
sets (mel-cepstrum and delta mel-cepstrum)
were treated as il they were stalistically inde-
pendent in the nonmixture systems. However,
when mixtures are used, the two sets are no
longer independent because the mean veetors
for each stream are paired in each mixture
component. Thus (he mel-cepstrum and the
delta mel-cepstrum were separated into two
separate observation streams feeding separate
mixture pdfs [22, 53]. The mixture probabilities
for the lwo streams are then multiplied to give
the full pdf. We tried both combined and sepa-
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rate observalion streams in our TM system and
obtained better recognition results with the
separate streams because there were insulfli-
cient training data to train the corrclations
hetween the streams.

The 257 Gaussians per stream consist of one
adaptive background Gaussian for the back-
ground model and 256 specch Gaussians. The
tied variance is retained from the IWR system—
any corrclations between the parameters are
modeled by the mixtures. The trained tied vari-
ance is used rather than the perceptually moti-
vated fixed tied variance because it is more ap-
propriate in the context of mixtures.

Triphones were chosen as the phonetic
models. The acoustic realizalion of a phone
depends upon many contextual factors, the
strongest ol which is the adjacent phones (co-
articulation). Thus BBN proposed the iriphone,
or left- and right-phone context-sensitive
phone model [54]:

monophone dictionary

six: slks
triphone dictionary
six: f#-s-1s-1-k I-k-s k-s-#f

where "#" represents a word-boundary context,
BBN also showed that the triphone-model
parameler eslimates could be improved
by smoothing with left-diphone (left-phone
context-sensilive) models, right-diphone
models, and monophone (context-insensitive)

modcls [54]:
M= Y AM,

- conlexts
Z).,=l. 420, (17)
i

The smoothing weights control the trade-oll of
highly specific models trained from a small
amount ol data and more general models trained
from larger amonnts of data. BBN chose flixed
welghts as a manually derived lunction of the
number of training tokens lor cach model, but
deleted interpolation restructures the weight
estimation as an HMM problem and estimaltes
the weights [rom the data by using the forward-
backward algorithim [24]. We currently use a
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scheme similar to the BBN scheme, bul are
exploring deleted interpolation.

Beeause lunction words (such as articles and
prepositions) are so frequent and generally
unsiressed, they are pronounced differently
from other words. However, since so many lo-
kens are available, specific models can be
trained for them. Thus we also make the
triphones word dependent for the function
words [48].

The initial systems used word-boundary
context-free (WBCF) triphones at the word
boundaries—i.e., the word-boundary conlexts
were independent ol anything on the other side
of the boundary. Bul sinee phone coarticulation
also extends across word boundaries, we imple-
mented word-boundary context-dependent
(WBCD) triphones [565]. (Two other DARPA-
supported sites simultancously and independ-
ently developed WBCD phone modeling [47,
51].) WBCD triphones simply include the word
boundary and the phone on the other side of the
word boundary in the conlexts used Lo generate
the triphones:

word 1 i
word 2 cd...

dictionary:

coeab-# H-e-d, ..

word 1-word 2: WBCF;
' ca=b-fie bit-c-d...

wBCD:

(The word-boundary triphones are distinet from
the corresponding word-internal triphones.)
Training is casy—just train the observed word-
internal and word-boundary triphones. Gener-
ating the recognition network is difficult be

cause there will be many unobserved WEBCD
triphones required to generate the full network.
We use a backoll scheme for the word-boundary
triphones: if a desired boundary triphone has
nol been trained, substitute the corresponding
WBCF triphone. (Extrapolation—to be dis

cussed shortly—is used to estimate unobserved
WBCIE or word-internal triphones.) The simpler
WBCI systems model each word as a lincar
sequence of triphones. The WBCD systems
model cach three-phone or longer word as an
entry fan, alinear midsection, and an exit fan, as
shown in IFig. 5. (T'wo-phone words connect the
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fans and one-phone words require a full cross-

bar, also shown in Fig. 5.)

The T™M syslems are trained by the following
unsupervised bootstrapping procedure:

(1) Initialize the Gaussians by using an M
algorithm (equivalent to forward-back-
ward training ol a one-state Gaussian-
mixture HMM).

(2) Set all mixture weights equal (Mat start).

(3) Train monophones with forward-back-
ward algorithm,

(4) Initialize the triphone models with para-
melers [rom the corresponding mono-
phone.

(5) Train the triphones by using the forward-
backward algorithm with smoothing.

This procedure requires only orthographically

(i.e.. only the text) transeribed data—no time

registration is required. The monophone train-

ing stage has so many copies of each mono-
phoneinsomany contexis that it isable to*find”

o7 cx?_ o
-l’a.b o()'
' abc
20
Pya 3 bc)' cy?
P wennunel

Case 1: Word has 2 3 phenes: abe

Case 3: Word has 1 phone: a

Fig. 5 Recognition nelwork lopologies for word-boundary
conlexi-dependent (WBCD) word models
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the phones in the training text and train good
monophone models. By initializing the triphone
models with these monophone models, the
monophone bootstrap guarantees that the de-
tailed triphone models are trained on the proper
data (i.e., the model converges (o a good local
maximum). In one test, the error rate doubled
when we omitted the monophone booltstrap
phase of training [32]. The fat start was also
found to be superior to the Viterbi start because
the linear alignment assumed by the Viterbi
starl is not accurate for continuous speech.

The current recognition system generates a
recognition network from the triphone models,
the dictionary, and an FSG or a null grammar
(any word can lollow any other word), When a
word-internal or WBCF triphone is required,
but not found in the trained phone models, a
model is eatrapolated, Extrapolation uses a
weighted average of (rained triphones of the
same monophone class to estimate the parame-
ters of an unobserved (riphone. The network
is searched by a time-synchronous Vilterbi
beam search. The beam search [56) is a
pruned-scarch algorithm that compules a
threshold as some constant (<1) times the
probability of the highesl-probabilily state.
Any slates with probabilitics below the thresh-
old are pruned. Since several small words can
sometimes match a large word, we added a word
insertion penally that controls the trade-off
between word insertion errors and word deletion
errors. The word sequence of best path from the
slarting state of the network to exiting state is
the recognized output.

6.3  Performance of the
Lincoln CSR Systems

The Lincoln CSR systems have progressed
through many different versions in their devel-
opment. The following (able shows a lew key
results of systems tested on the RM database.
The systems are (rained in three ways: SD (600
sentences per speaker), S1-72 (72 speakers,
2880 total sentences), and SI-109 (109 speak-
ors, 3990 total sentences). The test resulls are
obtained on the entire SD development test
section: 12 speakers, 1200 total sentences,
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10,242 total words. The official word-pair gram-
mar is used in all tests. The word error rate is
defined as follows:

word_error_rate =

substitutions + insertions + deletions  (17)
correct_number_of _words

The word ervor rates lor the systems are shown
in Table 2.

Table 2. Training Conditions

System SD SI-72 SI-109
Non-TM WBCF - 12.9% 10.1%
Non-TM WBCD 3.0% — -
TM WBCD 1.7% 7.2%" 58%"

* includes a second differential observation stream

The non-TM SD systems use one Gaussian per
state and the non-TM Sl systems use variable-
order Gaussian-mixture pdfs. The SD systems
provide a [actor of two or three better perform-
ance than do the SI systems. This ratio is
reasonable since the SD systems need only
model one speaker while the SI systems must
model many speakers. The SI-109 systems
perform better than the corresponding SI1-72
systems, which indicates that we can probably
do better il we have still more training dala.
(More data would probably also improve our
SD system perlormance.) The T™M perfor-
mance numbers are commensurale with the
best of the DARPA systems. However, the best
of these systems has a 12% sentence error
rate, which is clearly unaceeptable in many
environments.,

Conclusions

Greal strides in speech recognition have been
made by using hidden Markov models. These
models provide a Hlexible but rigorons stochastic
framework in which o build our systems. In
addition. the framework provides a computa-
tionally efficient training algorithm for estimat-
Ing the parameters ol our models. We were able

e Lincoln Laborenony Jotenal, Valinne 3. Neber 1 (15800
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Lo exploit this framework to obtain more thanan
order-of-magnitude improvement over our
baseline system in robust isolated-word recog-
nition, and similarimprovements werc obtained
in speaker-dependent and speaker-independ-
ent continuous-specch recognition. However,
1IMMs do not model certain aspects of speech—
such as suprasegmental (long span) phenom-
cna—well. Part of the continuing challenge of
this rescarch is to adapt [IMMs or find new
[rameworks that improve our ability to model
and recognize human speech,

Our performance is still inadequate on our
current 1000-word vocabulary task. However,
one can trade off recognilion difficulty for perfor-
mance and perform tasks successfully with the
currently available technology. For instance, we
have a task-stressed SD CSR demonstration
with a perplexily 7, 28-word language that has
a scentence error rate below 0. 1%, and commer-
cial 1IMM IWRs have been viable for several
years, We and other researchers are continuing
to work on the large-vocabulary automatic
speech recognition problem.

For Further Reading

Several noteworthy tutorials on the use of
HMMs in speech recognition are available:
Rabiner and Juang [57], Poritz [15], and the
tutorial on the forward-backward algorithm by
Levinson [14]. Much ol the early HMM CSR
development took place at IBM, which is de-
seribed in Rell 24, Most of the sites working in
the field (including us) publish results in the
ICASSP proceedings. In addition, the DARPA
recognition program publishes a proceedings
158-61). O'Shaughnessy's book [29] is a modern
reference for speech production, speech percep:
tion, and basic speech processing.
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