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Dynamic Error Compensation of
Analog-to-Digital Converters

Analog-to-digital converters (ADC) produce nonlinear distortion in the digitization of
an applied signal. Spurious signal components produced by ADC distortion mask low-
amplitude applied signal components. As a result, ADC distortion limits the achievable
dynamic range in many high-performance digital communication systems. Limita-
tions imposed by current ADC technology dictate the bandwidth or dynamic range
performance of both new and existing systems. We describe a dynamic error-correction
technique that significantly reduces the level of nonlinear distortion observed in a
digitized signal. The technique, called phase-plane compensation, corrects the ADC
output samples by using a two-dimensional lookup table. The table accounts for both
static and dynamic error sources within the ADC. Several applications of phase-plane
compensation to commercially available ADCs are described. One example yields a
dynamic range improvement of 15 dB {more than 2 bits) over an input frequency range
spanning 4 MHz. The examples highlight the strengths of the technique and topics for

further investigation.

Analog-to-digital converters (ADC]) are an es-
sential weak link in any digital system that
processes analog signals. Receivers often per-

.. formin a signal environment where the interfer-

“ing signals are much stronger than the desired
signal, Spurious signal components produced
by ADC distortion in the conversion mask low-
amplitude applied signal components. The goal
of an ideal ADC is to reproduce faithfully the
desired signal without nonlinear distortion. At
present, ADCs limit dynamic range (which is
directly related to nonlinear distortion) in most
high-performance systems, and much interest
exists in ADCs that provide a large distortion-
free dynamic range. This article focuses specifi-
cally on the use of ADCs in spectral analysis ap-
plications. The term spectral analysis refers to
Fourier analysis of finite-length data records
with a discrete Fourier transform (DFT). Spec-
tral analysis applications include radar, power
spectrum estimation, adaptive array process-
ing, and spread spectrum communications.

A primary goal of spectral analysis is to
identify and separate signals that are simulta-
neously present in a data segment. If the ADC
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distorts the applied signal before or during
conversion, subsequent spectral analysis will
indicate the presence of spurious signals that .
are not actually present in the applied signal.
Spurious signals can mask or degrade the detec-
tion of weak components within an applied
signal. Moreover, any signal processing follow-
ing the spectral decomposition will treat the
spurious products as valid signals. Spurious
signals degrade the performance of spectral
analysis systems because of the additional
computation they require and because of the
false alarms they produce.

To keep system degradation due to spurious
signals at an acceptable level, an ADC must
accurately quantize the applied signal. Because
of nonlinear distortion, the ADC is not com-
pletely effective in performing quantization,
Currently, in any digital communication sys-
tem the ADC is viewed as the dominant limi-
tation in linear performance and system
bandwidth.

To improve performance, an additive correc-
tion applied to the ADC output samples after the

- quantization process attempts to compensate
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for ADC nonlinearities. This article describes a
compensation technique, called phase-plane
compensation, that was developed at Lincoln
Laboratory specifically for spectral analysis
applications. The new technique, which is an
extension of previously developed static correc-
tion techniques, corrects conversion error by
using the instantaneous value and rate of
change of the signal itself.

To provide the groundwork for a description
of compensation techniques, the next section
reviews key quantization principles. The review
includes discussions of quantization principles,
error mechanisms in real ADCs, performance
measures, and test techniques for ADCs.

Quantization Principles

An ADC represents an analog signal as a
sequence of binary words. While several existing
methods represent analog data digitally, the
predominant method employed in high-speed
converters encodes the data as an approxima-
tion to a linear transfer characteristic. The input
voltage range of the converter, V , is subdivided
into uniform intervals, called quantization
intervals, g, where g = V/S/2N. Ideally, an ADC
encodes any input voltage within a given quan-
tization interval with the digital code corre-
sponding to that interval. The number of bits
used to represent the converter output codes
determines the resolution of the ADC. A con-
verter with N-bit resolution produces 2" output
codes. Figure 1(a) illustrates the quantization
process, which can be modeled as a staircase-
like input-output transfer characteristic. Posi-
tive input voltages that exceed VI.S/ 2 are repre-
sented by the most positive code, while negative
voltages less than —V[s /2 are represented by the
most negative code. The limiting behavior that
occurs for large positive and negative input volt-
ages mimics saturation in amplifiers and pro-
duces clipped outputs in an analogous manner.
The voltage Vi is called the full-scale vol-
tage range of the ADC. The power level PfS
associated with a full-scale sinusoidal input
signal is V’.S2 /8R. where Ris the resistance seen
at the ADC input.
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Fig. 1—lllustration of the waveform quantization pro-
cess. (a) Transfer characteristic for an ideal quantizer.
Inputs outside the range [-Vis/2, +Vis/2] are represented
by minimum and maximum output codes. The quantization
interval is denoted by q. (b) Quantization error function cor-
responding to the transfer characteristic given in (a).

Properties of the Quantization Error

The error produced by the quantization pro-
cess is a deterministic function of the input
voltage, as illustrated in Figure 1(b). If the ADC
input is a periodic time function, the resulting
error waveform is also periodic, and it can be
expanded into a Fourier series based on the
period of the input signal. The power present in
the error waveform is concentrated in a line
spectrum harmonically related to the input fre-
quency, so that the quantization appears as
harmonic distortion. Harmonic frequencies
above the Nyquist frequency are aliased back
into the Nyquist band, which causes all of the
error-waveform power to be present in the fre-
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quency interval [-f,/2, +f./2].

While the ADC quantization error is a deter-
ministic function of the input signal, it is con-
venient to describe the error statistically. The
input signal is viewed as a random process with
specific statistical properties, which allows a
statistical determination of the quantization
error. For a wide class of inputs the error wave-
form is assumed to be uniformly distributed on
the interval [-q/2, +q/2]. With uniform distribu-
tion, the root-mean-squared (rms) quantization
noise power, P, is given by

9

Py = lg—R , (1)
where R is the input resistance of the ADC.
Equation 1 is derived from random input sig-
nals, but it accurately describes many deter-
ministic waveforms as well, including sinusoids.
Equation 1 depends strongly on the condition
that clipping effects are negligible. For random
input signals, this condition on input signal
power level is equivalent to requiring that the
probability of clipping be small enough to be
neglected. Equation 1 leads to the well-known
expression for output signal-to-noise ratio
(SNR) produced by an ideal N-bit converter with
a full-scale sinusoidal input

SNR = 6.02N + 1.76 dB. (2)

While the assumption of random signal be-
havior allows the derivation of Eq. 2 as an
accurate expression for SNR, the ADC output
error for a sinusoidal excitation is still composed
of harmonics of the input frequency. If the power
of all these harmonics is summed, the result-
ing quantity will then be the rms quantization
power given by Eq. 1.

Effects of Additive Input Noise

Figure 1(b) shows that the error waveform
produced by the quantization of a periodic
waveform is itself periodic. The error waveform,
which appears as harmonic distortion at the
ADC output, is undesirable in spectral analysis
applications. For high dynamic-range systems,
the quantization noise power should be spread
uniformly over the Nyquist band rather than
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concentrated in a discrete set of spectral lines.
The harmonics present in the error waveform
are coherently related to the ADC input signal;
this presence complicates the task of process-
ing the signal spectrum to differentiate be-
tween actual input signals and system-induced
spurious components.

Torandomize the quantization error, the ADC
input signal must contain a random noise
component with rms power 2P and an essen-
tially flat power spectrum over the Nyquist
bandwidth [1]. While setting the additive noise
power equal to Pq degrades the SNR by 3 dB, it
also virtually destroys any statistical correlation
between sample errors. The composite noise
spectrum at the ADC output is thus flat over the
Nyquist bandwidth with spectral density
(P,1 + Pq) / fS , where P is the power of the additive
noise and f is the sampling frequency.

In receiver applications, the randomization
discussed above can be accomplished by adjust-
ing the receiver front-end gain, so that the noise
present at the ADC input is at the correct level
torandomize the quantization error. This design
procedure, given the individual performance
limitations of the receiver front end and the
ADC, results in a configuration that optimizes
system dynamic range. The actual noise level
that provides the best performance will vary,
depending on the particular choice of ADC and
the specifics of the intended application.
Typically, P _is chosen to be several dB above P

Non-Ideal ADC Behavior

The above description of quantization effects
is based on an ideal ADC. Real-world devices,
however, deviate significantly from ideal behav-
ior. Errors in ADC performance can be divided
into two categories—static and dynamic. Static
errors affect the ADC performance for DC and
low-frequency inputs, while dynamic errors af-
fect performance at higher input frequencies.
While dynamic errors can theoretically cancel
static errors at a given input frequency, dynamic
errors almost always further degrade perform-
ance from the level imposed by the static errors.
For any performance measure chosen, ADC
performance is best at low input frequencies,
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but it degrades as the input frequency ap-
proaches the Nyquist frequency.

Static errors significantly affect the spectral
purity of the ADC output, particularly those
that result in nonuniform spacing of the quan-
tization thresholds. Dynamic error sources in-
clude harmonic distortion in the sample/hold
buffer amplifier, signal-dependent sample jitter,
dynamic settling of internal amplifier stages,
and frequency-dependent variations in quanti-
zation thresholds.

Given the sources of both static and dynamic
errors in an ADC, optimum dynamic range in the
frequency domain is usually obtained at oper-
ating power levels below P,. An ideal ADC yields
the highest dynamic range when operated at full
scale. Real ADC performance usually dimin-
ishes rapidly as the input power approaches full
scale. As a result, the optimum dynamic range
is found at an empirically determined input
power level below full scale. The tests described
in the next section quantify the dynamic range
performance for the ADC under test, and deter-
mine the optimum operating power level.

ADC Performance Tests

Because of the wide range of static and dy-
namic error sources for ADCs, performance
testing on a given converter should mimic the
intended application as closely as possible [2-5].
Unfortunately, no direct quantitative method
exists for translating performance measured by
one test into performance measured by another.
The following section describes tests particu-
larly suited to evaluation of ADC performance in
spectral analysis applications requiring maxi-
mum instantaneous dynamic range. Examples
of such applications are communication receiv-
ers, adaptive array processors, radars, and digi-
tal spectrum analyzers.

Histogram Tests

The histogram is a graphical representation
of the measured likelihood of occurrence of each
ADC state (or code). The x-axis represents the
code values, while the y-axis represents the
probability of occurrence of the given code,
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based on the measured data. The histogram of
an ideal ADC coincides exactly with the proba-
bility density function of the input waveform
after appropriate scaling. Differences between
measured and ideal histograms provide an indi-
cation of the actual device linearity. Nonlinearity
in an ADC transfer characteristic manifests
itself as nonuniform threshold spacing. A quan-
tization interval that is larger than the ideal
value exhibits a higher than theoretical proba-
bility of occurrence, and is often referred to as a
long code. Similarly, a quantization interval that
is less than the ideal value and exhibits a lower
than theoretical probability of occurrence is an
example of a short code. A quantization interval
of zero is called a missing code.

Frequency Domain Testing

Frequency domain tests characterize the
spectral purity of an ADC output. All frequency
domain testing performed by Lincoln Laboratory
is based on computation of the DFT, which is
implemented by an FFT algorithm. For narrow-
band tests, the input signal is a single tone or
pair of tones. For the test to be valid, the tones
must have spectral purity that exceeds the level
to be measured by approximately 10 dB. When
this condition is met, spurious signals identified
in the DFT plot can be assumed to be due
entirely to ADC nonlinearities.

In applying the DFT to processing signals of
finite time duration, a window function must be
applied to the collected data. This procedure
minimizes the effects of spectral leakage that
otherwise invalidates spectral measurements.
Detailed treatments of window functions and
their properties are found in Refs. 6 and 7.

The specific choice of input frequency (rela-
tive to the sampling rate of the ADC) is an
important consideration for dynamic testing.
A particular test is representative of the ADC
performance only if all of the ADC codes between
the maximum and minimum signal values are
exercised during the course of a test. An example
of a bad input frequency would be f_/8, where f_
is the sample frequency. In this case, assuming
that the input and ADC clock signals are phase
coherent (this is always the case for testing
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performed on the ADC test bed), the user ob-
serves only eight distinct samples. Thus, at most
eight ADC codes are exercised. To exercise all
codes, the user chooses the frequencies of all
single-tone inputs to coincide exactly with DFT
cells corresponding to an odd number. This
procedure guarantees that the DFT length
(which is a power of two) and the input signal cell
number are mutually prime, which avoids de-
generate cases such as that described above.

Single-Tone Spurious-Free Dynamic
Range Tests

Spurious-free dynamic range (SFDR) is a
parameter that characterizes the dynamic per-
formance of an ADC in the frequency domain. It
measures how well an ADC allows simultaneous
detection of small amplitude signals in the pres-
ence of large amplitude signals. While many
possible methods exist to quantify the SFDR
parameter, the method described here evaluates
the output power spectrum of the ADC with a
single tone as the signal input. The SFDRis then
defined as the difference in dB between the
fundamental power level and the power level of
the highest amplitude spur as seen at the output
of the ADC. Figure 2 illustrates the determina-
tion of SFDR in a DFT plot obtained from mea-
sured ADC output data. The quantity qu de-
notes the average quantization noise power
present in each DFT frequency cell. The behav-
ior of the SFDR as a function of input power level
is important. The user can set the signal level at
the ADC input and predict the maximum ex-
pected spur level. Figure 3 illustrates a typical
plot of SFDR. In Fig. 3(a), the smooth sloping
curve, labeled P, denotes the power of the fun-
damental as a functlon of input power. As ex-
pected, this curve exhibits a slope of 1 dB per 1
dB over a wide range of input power levels. The
jagged curve, labeled P_, denotes the maximum
spurious power as a function of input power.
The difference between these two curves is the
SFDR as a function of input power.

The SFDR curve shown in Fig. 3(b) illustrates
an important difference between real and ideal
ADCs. An ideal ADC always yields maximum
SFDR when operated at full scale. In contrast,
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Fig. 2—Determination of spurious-free dynamic range
(SFDR) from a discrete Fourier transform (DFT) magnitude
plot. The SFDR is the difference in dB between the power
of the fundamental signal and the largest spurious sig-
nal component. The quantity P__ (blue line) is the expected
quantization noise power pres%nt in each DFT frequency
cell.

real ADCs yield maximum SFDR at an input
power at least several dB below full scale. This
discrepancy is caused by distortion mecha-
nisms that become increasingly significant as
the signal level approaches full scale.

It is tempting to conclude that the ADC can be
operated at an input power level corresponding
to the peak of the SFDR curve, and that the
operating SFDR will then equal the peak value.
In practice, however, this assumption is invalid.
An operating point for an ADC is desired such
that all spurs will always be less than a known
threshold level. Since an actual signal environ-
ment will contain a superposition of signals of
various power levels, an operating point should
be selected so that spurs resulting from all
signals present will be below the chosen
threshold.

An operating point based on the considera-
tions given above can be found in the plot of
maximum spur power. Figure 3(a) illustrates an
example for the following discussion. Begin by
drawing a horizontal line that coincides with the
highest spur level, P_ ., occurring in the linear
operating range of the ADC (point A in the
figure). The term linear denotes the ADC power
input range for which a 1-dB change at the input
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Fig. 3—Sample plots of SFDR data. (a) A plot of fundamen-
tal power P and maximum spurious power P_. The operat-
ing SFDR (red line) is the difference between the P, and P2e
curves atthe input power valueP _ . The quanlltylé’ is thé
root-mean-squared (rms) quant/zat/on noise power (b) A
plotof SFDR, or the difference in dB between the P and P
curvesin (a). Note that the operating SFDR (pothS is less
than the maximum value of the SFDR.

produces a 1-dB change in fundamental power
at the output. The point where the horizontal
line touches the maximum spurious-power
curve P_identifies the input power that pro-
duces the maximum spur level, p_ .. Next,
follow the horizontal line to the right to the point
where the spurious-power curve P_crosses the
horizontal line (point B in the figure). The input
power corresponding to this crossover point,
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P . is the maximum operating power for the
ADC. By obtaining P___, the value of the operat-
ing SFDR can be obtamed from either the maxi-
mum spurious-power plot (the difference
between P .and P_at P__ ) or the SFDR plot (point
C in Fig. é[b])

Occasionally the above method fails to yield
the maximum operating SFDR. This case oc-
curs when the crossover point B is in a region
where the maximum spurious power is increas-
ingataratelessthan 1 dB perdB ofinput power.
Since the power of the fundamental in this
region increases at the 1-dB-per-dB rate, better
performance is obtained for an input pow-
er level higher than indicated by the crossover
point. For this case the peak of the curve de-
scribing SFDR versus power determines the
maximum operating SFDR.

Residual Error Tests

Residual error is the aggregate of all quanti-
zation products, such as nonlinear distortion,
quantization error, and random noise, that are
not part of the desired signal. Bits lost is the
parameter used to quantify residual error. To
motivate the definition of the bits-lost parame-
ter, recall that the mean-squared quantization
error, for an ideal N-bit ADC, is given by

2_ 9%

o 12 °

(3)
where g is the quantization interval of the ADC.
For a real ADC, the mean-squared residual
noise can be related to an effective quantization
interval, q ., of an ideal ADC; this interval would
yield the same error variance. The difference
between the bit resolution of this fictitious ADC
and the stated resolution of the unit under test
is the bits lost, b, The value of b, is computed
from the relation

b; = logo <q(;ﬂ>. (4)

Note that one bit of resolution is lost for each
doubling of Qo

To compute b, the actual signal must be
estimated and removed from the data samples.
The estimation is done by performing a least-
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squares fit of a sine wave to the data. The
estimate is then removed from the data to obtain
the residual error waveform. The mean-squared
value of the residual error is then computed,
which in turn allows b, to be calculated with
Eq. 4.

Noise Power Ratio Test

The dynamic performance of an ADC with
broadband inputs is characterized by a quantity
known as noise power ratio (NPR). In ADC
applications in which the input signal contains
a large number of noncoherent tones or narrow-
band signals, spurs resulting from combina-
tions of strong signal components should not
interfere with detection of weaker signal compo-
nents. A signal that contains a large number of
frequency-multiplexed voice channels is an ex-
ample. In this case, spurs resulting from strong
voice signals must not excessively spill over in-
to frequency bands occupied by other signals;
this spillover limits achievable dynamic range.
Since it is impossible to design a test that
embodies the specific features of all possible
applications, the NPR serves as a measure that
characterizes ADC performance under the
above operating conditions.

The measurement of NPR proceeds as fol-
lows. A random noise process is generated with
an essentially flat spectrum up to a cutoff
frequency, f, of less than half the sampling
frequency. A notch filter then removes a narrow
band of frequencies from the noise. To obtain a
meaningful measurement, the depth of the
notch in dB must be significantly greater than
the maximum NPR value being measured. Also,
the width of the notch should be small compared
to the overall noise bandwidth. When the
notched noise is applied to the ADC input, the
frequency spectrum of the resulting code se-
quence is computed. The NPR, usually ex-
pressed in dB, is then calculated as the ratio of
the power spectral density inside the notched
frequency band to that outside the notch. Figure
4 shows a reconstructed sample power spec-
trum obtained for an 8-bit ADC. For this spec-
trum, the cutoff frequency is approximately 20
MHz, and the notch is centered at 2 MHz. An
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ideal ADC with infinite resolution would yield an
output power spectrum with an infinitely deep
notch at the output, resulting in an infinite NPR.
For a real ADC, the notch depth is bounded by
the resolution of the ADC and the input power
level relative to full scale. Further degradations
in NPR arise from the non-ideal behavior of the
ADC.

Typically, NPR is measured as a function of
the total rms input noise power. Consideration
of an ideal N-bit ADC reveals insight into ideal
NPR behavior. Equation 3 gives an expression
for the mean-squared quantization error in
terms of the quantization interval, g, where it is
assumed that the effects of clipping are negli-
gible. If st is the full-scale peak-to-peak voltage
input range of the ADC, then g = st /(2Y), where
N is the ADC resolution in bits. As long as
clipping effects are negligible, Eq. 3 is valid, and
the quantization noise power is independent of
input power level. The quantization noise has a
flat power spectrum, with the noise power dis-
tributed evenly in the interval between DC and
half the sampling frequency. Thus, the noise-
power spectral density in the notch is specified.
As the input noise power is increased, each 1-dB
increase in input power yields a 1-dB increase in
NPR (since the quantization-power spectral
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Fig. 4—Reconstructed power spectrum from an NPR test
on an 8-bit ADC. The NPR is the depth in dB of the spectral
notch. An ideal system with infinite resolution would pro-
duce a notch of infinite depth.
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density in the notch remains constant). The NPR
increases 1 dB per 1 dB until ADC clipping
becomes significant, usually at an input level
several dB below full scale. Once clipping oc-
curs, the noise power in the notch is no longer
constant, and it increases more rapidly than the
input power level. Thus, the NPR curve rapidly
approaches 0 dB for large input power levels.

The ADC Test Bed

The following section describes the test bed
that was assembled for this program. It is a
unique instrument not currently matched in
performance by commercial instruments. The
primary feature of the test bed is the ability to
store 128K contiguous 16-bit samples (the cur-
rent commercial maximum is 4K 16-bit words)
at clock rates up to 250 MHz. Alternately, 256K
contiguous 8-bit samples can be stored at clock
rates up to 500 MHz. The long contiguous
sample acquisition makes the test-bed instru-
ment particularly useful in determining valid
histograms and statistical parameters for ADCs
of 12 or more bits.

The test-bed designers made the decision to
perform only dynamic tests, thus omitting or
skipping the many static tests that manufactur-
ers use to specify resolution, linearity, and other
parameters [8]. W.A. Kester and others [2-4] re-
ported the importance of dynamic testing for
video ADCs, while J.R. Naylor [5] concluded that
ADCs should be tested extensively for each
intended application. Our decision was to test
all ADCs in an environment that emulated the
intended application of acquiring digitized
data for signal processing. To obtain wide dy-
namic signal range, all static properties must be
valid, but the converse is not necessarily true.
Thus, proper static performance is necessary
but not sufficient to obtain proper dynamic
performance.

Overall, the test system represents a sub-
stantial commitment in cost to device testing,
especially when combined with the cost of soft-
ware development. Currently the test system is
run by menu-driven programs that allow ADC
testing to be performed by any operator with
minimum training and supervision.
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Test-Equipment Configuration

Figure 5 shows a photograph of the ADC test
bed. The test equipment is mounted in a double
equipment rack with a tape recorder and com-
puter positioned to the left of the rack. The tape
recorder system has a separate general-purpose
interface bus to access and store data during a
test. The device under test is placed on the shelf
in front of the equipment rack, along with a
universal interface board customized for each
unit. The left half of the equipment rack contains
analog signal sources along with a dual-channel
signal conditioner (filter bank) for providing
inputs to the device under test. The right half of
the equipment rack contains power supplies,
the data-acquisition unit, and a spectrum
analyzer.

A diagram of the test-equipment setup ap-
pears in Fig. 6. The figure shows that, while the
computer controls the test-equipment setup, it
does not control switches to route or combine
signals in the system. The computer also con-
trols the buffer or data-acquisition unit over a
dedicated input-output path, which gives it
direct access to the buffer memory as an exten-
sion of its own dynamic memory. The custom-
designed buffer was fabricated at Lincoln Labo-
ratory specifically for this project. It collects and
stores 128K contiguous 16-bit words at clock
rates up to 250 MHz. It can also collect 256K of
8-bit bytes at a clock rate up to 500 MHz. As a
result, the buffer will allow testing of state-of-
the-art ADCs for several years to come. If de-
vices in excess of 500 MHz need testing, repro-
ductions of these memory units could be multi-
plexed, with the additional development of a
suitable high-speed controller.

Proper testing of ADCs requires precautions
that should be noted. First, the ADCs are sensi-
tive to ground loops and power-supply noise.
Grounding must be handled in a consistent and
careful fashion. All power-supply leads con-
nected to the device under test are shielded
twisted pairs and are cabled inside a shielded
jacket. Second, test signals must be properly
filtered and isolated, so that the input to the ADC
is well defined and free from distortion. Figure 6
shows that the filters in the signal conditioner
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Fig. 5—Photograph of the ADC test-equipment configuration.

have cutoffs at octave values with 90-dB
stopbands. In addition, the test-signal noise
floor should not be allowed to dominate the
noise of the ADC under test. Third, test frequen-
cies and sample clock rates must be stable,
accurately defined, and free of phase noise.
To achieve this result, all synthesizers and
clock sources use an oven-stabilized, filtered,
10-MHz reference. The reference has a stability
of 3 x 107'° parts per day, which yields excel-
lent stability for the collection of each buffer of
data. Finally, since the FFT is used extensively
to view ADC performance in the frequency do-
main, the data must be properly windowed. To
acquire an understanding of the windowing
requirements for wide dynamic range re-
sponses, see Refs. 6 and 7.

Available Tests and Procedures

The ADC test-bed structure shown in Fig. 6
determines the various tests that can be per-
formed. By setting the signal conditioner and
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configuration switches, the device under test
can have as input a single sinusoid, two sinu-
soids, a sinusoid plus noise, or noise alone. The
noise source, a Marconi 2090C automated noise
test set that tests telephone carrier channels, is
used either for the standard noise power ratio
(NPR) test [3] or for dithering the ADC input [1].

The computer is a 32-bit machine with a
12.8-MHz floating-point CPU and 10 MB of
dynamic RAM. Thus a weighted 4,096-point FFT
is computed in approximately 14 seconds. The
menu-selected tests listed in Table 1 are avail-
able in a single program.

ADC Compensation: Previous Work

A significant difference exists between ideal
and real ADC performance. To minimize this
difference, error correction or compensation of
the ADC output samples can yield improved
performance. Compensating the ADC errors is
equivalent to linearizing the transfer character-
istic illustrated in Fig. 7. This model treats the
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ADC as a cascade of two systems—a nonlinear

system followed by an ideal quantizer. For the Table 1. Menu-Selectable ADC Tests
purpose of the present discussion, the nonlinear

system is memoryless, so that the system out- Waveform plotting

put depends only on the current input value. FFT power spectra

The simplest improvement is to determine the Probability density estimates

actual operating characteristic of the ADC and Sinewaye

use this knowledge to add a correction term to g?pi?

each ADC output sample. Several authors have

) . Dynamic range responses
implemented such a correction based on the

Residual error

static and memoryless operating characteristic Noise power ratio

of the ADC [9-11]. Their goal was to derive an Distortion analysis

efficient way to represent the nonlinear error of Fundamental

the ADC as a function of the input voltage. Harmonic power levels (first 99)
Once the nonlinear transfer characteristic of Maximum spur

the ADC is established, compensation to correct Power calibration

the nonlinearity can be derived. Several ADC SFDR

manufacturers attempt compensation by pro-
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Fig. 6—ADC test-bed block diagram. Cutoff frequencies in the signal conditioner are at octave values with 90-dB stopbands.
The symbol Vrefers to a 10-MHz reference signal common to the synthesizers and the spectrum analyzer.
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Nonlinear System
(Memoryless)

Ideal Quantizer

Fig. 7—Static nonlinear model for a real ADC. The model is a cascade of a memoryless nonlinear transfer function and an

ideal quantizer.

gramming a ROM lookup table with values of the
ADC error that correspond to each of the ADC
states. The output samples of the converter
point to locations in the lookup table. The error
value is then added to the ADC output code to
obtain the corrected sample.

Unfortunately, the technique described
above is limited. The static error-modeling ap-
proach is effective only for input signal frequen-
cies that are very low relative to the ADC input
signal bandwidth. The limitation is linked to the
assumption that the nonlinearity can be mod-
eled by a static nonlinear transfer characteris-
tic. In actual converters, the nonlinear error
corresponding to a given output state depends
not only on the current instantaneous input
voltage but on the past history of the applied
signal as well. In other words, the nonlinear
system preceding the ideal quantizer is dynamic
rather than static and memoryless. To obtain
effective error compensation over a broad range
of input frequencies, the error model must be
generalized to account for dynamic effects.

Dynamic ADC Compensation

Efforts in ADC compensation at Lincoln
Laboratory have focused on generalizing the
ADC nonlinear error model to include dynamic
effects. The work was begun by the authors [8]
and developed by T.A. Rebold [12]. A further
refinement, which provides a different perspec-
tive on ADC error modeling, was suggested

The Lincoln Laboratory Journal. Volume 2, Number 2 (1989)

by N.W. Spencer [13].

Figure 8 shows an extension of the ADC
model described in Fig. 7. The output of the
nonlinear system preceding the quantizer is a
function not only of the present input, but also
of the first derivative of the input signal. This
model, while not a completely general nonlinear
dynamic model, is more general than the static
model.

A causal nonlinear dynamic system produces
an output that is a function of all past input. In
practical systems (ADCs included), however, the
output is strongly dependent on the history of
the signal for a relatively brief time just prior to
and including the present instant. Thus, if a
description of the input signal during this brief
interval is available, the nonlinear system out-
put can be determined to arbitrary accuracy. By
considering only input signals that are well
behaved (continuous and differentiable), the
input signal, v(f), can be accurately approxi-
mated by a Taylor series expansion in the vicin-
ity of time ¢:

— k

e Ay
Ui(t) = Ui[to) + ay. (t = to) dtk [

k=1

=t

By further restricting attention to bandlim-
ited signals (such as the input to an ADC), the
Taylor series can be truncated to a finite num-
ber of terms and still retain high accuracy.
The signal value and some finite number of
signal derivatives therefore characterize the
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ADC input signal.

To assess the validity of the model shown in
Fig. 8, the user must determine when the first
derivative of the input signal is sufficient to
characterize the nonlinear system behavior. In
ADC applications, the input signal bandwidth
must be limited to less than half the sampling
frequency. The input signal can be accurately
modeled near the kth sampling instant, kT, as a
linear ramp as long as

|t—kTs| << Tg,

where T is the sampling interval. If the dynamic
behavior of the nonlinear system depends pri-
marily on the signal for a period that is also
much less than the sample interval, then the
instantaneous signal value and the first deriva-
tive determine the nonlinear system output.

Given the above restrictions on sampling
interval, the ADC output state and the first
derivative of the input signal at the time the
sample was taken describe the ADC nonlinear
dynamic system. This model leads naturally to
the concept of a two-dimensional correction
table, in contrast to the one-dimensional table
used in previous work. The correction table
represents the ADC error as a function of the
converter output state and the slope of the
analog input signal at the time the sample
was taken. The two-dimensional plane on which
the error surface is defined is referred to as a
phase plane.

X
_>. f(X1,X2)
s |
dt X5

Nonlinear System
(First-Order Memory)

Phase-plane error modeling is central to the
dynamic error-compensation technique de-
scribed in this article. Some difficulties arise,
however, in implementation of the compensa-
tion model. The first difficulty is in evaluating
and representing the derivative of the ADC input
signal. Different methods of estimating the slope
give rise to different hardware implementations
of the compensation algorithm. The second dif-
ficulty is the accuracy with which the error
surface is represented. Since the surface is
represented as digital data, it is by necessity
stored as a finite number of discrete samples.
Each sample represents the value of the error
surface in a small rectangular region or cell of
the phase plane. To be an accurate representa-
tion, the error surface must be essentially con-
stant everywhere within each cell.

Compensated ADC Architectures

Estimating the slope of the ADC input signal
is a significant step in representing the error
surface. Several implementations are available
to perform the estimation.

Figure 9 shows a straightforward implemen-
tation of the error correction scheme, which we
call compensation structure 1. The output
samples of the ADC are used to estimate the
analog slope of the input signal by using the
central difference estimator (CDE):

§k= X1 = X1
2T;

Ideal Quantizer

Fig. 8—Dynamic nonlinear model for a real ADC. The model is again a cascade of a nonlinear transfer function and an ideal
quantizer, but the model now includes a first-order memory characteristic.
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Fig. 9—Compensation structure 1 employs a single ADC and the central difference estimator (CDE). The ADC output code
and slope estimate are used to address memory containing an error-correction lookup table.

The circumflex indicates that the quantity in
question is an estimate of the derivative (as
opposed to the true value), while T_is the sample
period. In general, the slope axis can be quan-
tized to a different resolution than that of the
ADC samples themselves. In Fig. 9, m bits
represent the slope estimate while n bits repre-
sent the code value. The error table is stored in
memory, and the code and slope values address
the relevant memory location containing the
error correction value. The correction value is
then summed with the ADC code output to
produce a corrected sample. In general, the
corrected value will have a larger word length
than the raw samples. Hence, in the figure the
final output has a word length of n + ¢ bits.
Figure 9 also shows that the output data
rate, f_ /K, from the converter is a submultiple of
the true ADC sample rate. The reduction in
output sample rate accounts for the limitations
of the CDE in estimating the signal derivative.

The major limitation in compensation struc-
ture 1 is in the use of the CDE to estimate the
analog slope. The CDE can accurately represent
only the slope of signals that are at frequencies
less than one-fourth the sample rate. Usually
signals are quantized with frequencies ap-
proaching the Nyquist limit of half the sample
rate.

Another candidate for estimation of the time
derivative of the converter input signal is the
backward difference estimator (BDE). which
estimates the slope according to the expression

The Lincoln Laboratory Journal, Volume 2, Number 2 (1989)

A Xipn— X
% Xic TS\’\ -1
The BDE estimates the signal slope more accu-
rately at frequencies above one-fourth the
sample rate. In actual experiment the BDE does
in fact outperform the CDE in compensating for
ADC errors over a broader range of input fre-
quencies.

Figure 10 shows a proposed ADC compensa-
tion structure 2. Two ADCs are used—ADC 1 is
the primary converter (which is compensated)
while ADC 2 operates at a much higher sample
rate. In the figure, the ratio of the two sample
rates is 10. By using a number of samples from
ADC 2, a digital filter provides an estimate of the
slope. The filter scheme illustrated in Fig. 10 is
a finite impulse response (FIR) digital filter that
uses samples located symmetrically in time
relative to the sample to be compensated. The
fact that the samples from ADC 2 occur at a
much faster sample rate allows a more accurate
slope estimate to be obtained for input frequen-
cies approaching the Nyquist limit of ADC 1. If a
causal estimate of the slope is desired, the FIR
filter can be designed to employ only samples
that occur simultaneous to or prior to the
sample under compensation.

The primary limitation of compensation
structure 2 is the requirement of the high-speed
auxiliary ADC. For example, if ADC 1 operates at
25 Msps, then ADC 2 would operate at 250 Msps
to maintain the 10:1 ratio of sample rates. While
the ratio can be reduced, the high sample-rate
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requirement for ADC 2 could limit the utility of
structure 2. Since ADC 2 only estimates slope,
it does not need to be as accurate as ADC 1.
An inexpensive high-speed flash converter
with less resolution than ADC 1 should per-
form adequately.

Figure 11 shows a proposed compensation
structure 3. A continuous-time linear network
generates the time derivative of the input signal.
ADC 2 then samples the derivative signal. In
structure 3 the auxiliary ADC does not need to
operate at a higher sample rate than the primary
ADC. Hence, ADC 2 does not have stringent
speed or resolution requirements, and an inex-
pensive converter should suffice.

State Space Compensation

In the discussion above, causal (BDE) and
noncausal (CDE) estimators of the slope of the
ADC input signal are compared. The results
imply that causal estimators are superior in the
sense that the ADC being compensated is a
causal system, and hence is more accurate-
ly modeled with causal estimators. The BDE
was proposed as one such causal estimator.
However, the BDE is a function of x,_and x, |,
and (x, )'c)k and X, are related to x, and x, : by

I ke
a linear transformation. An error surface con-

structed with the independent variables x, and
X, _, contains the same information as an error
surface constructed with the BDE. The error
surface with x, and x, |, as independent vari-
ables is called a state space representation
(SSR). Because of identical error surfaces, the
performance obtained with the SSR is identical
to that obtained with the BDE. The advantage of
the SSR is that no arithmetic computation of
slope is necessary, since the independent vari-
ables are merely the present and most recent
past ADC samples. Because of speed considera-
tions, this advantage is important in applica-
tions in which real-time ADC compensation is
performed. A disadvantage is that this estimator
is also limited to calibration frequencies near
one-fourth the sample frequency.

Error-Surface Construction

The ADC compensation described in this
article relies on a valid error surface to perform
the correction of the ADC output samples. To
implement any of the ADC compensation
schemes, the error surface must first be con-
structed. Efforts to date have not been directed
at constructing the error surface at low cost or
in a minimal amount of time; rather, emphasis
has been placed on high integrity in the mea-

I n
; ADC-1 |y
Slow Vi *
I
| < Error n+q -~
o Vi Correction —F—=1
ADC-2 Digital | "7 Table
Fast Filter
6-8
o Data Ready
Clock -10 fg i fs
Ve X pVi-p
p=-L

Fig. 10—Compensation structure 2 employs two ADCs and a symmetrical finite impulse response (FIR) derivative estimator.
The second high-speed ADC yields an improved slope estimate over compensation structure 1.
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Fig. 11—Compensation structure 3 employs two ADCs and a sampled analog derivative estimator. This structure offers the

potential for highest sampling rates.

surements and repeatability of the results. A
brief description of the construction procedure
follows.

The error surface is implemented by a lookup
table in digital memory, and is defined on a rec-
tangular region of the two-dimensional real
plane (x, x). The region is divided into a uniform
grid of rectangular subregions called cells. The
value of the error surface, determined by statis-
tically averaging the error values obtained for
each cell over a period of time, is assumed to be
constant in each cell.

To obtain the error value in each cell, a known
ADC input signal is necessary. If the signal is
well defined, it can be separated from the error
in the resulting ADC output data stream. Sinu-
soids were selected as the calibration wave-
forms, due to the relative ease of generating
high-purity tones of variable amplitude. A sinu-
soidal waveform with a fixed frequency and
amplitude sweeps out an elliptical path in the
phase plane. In order to fill all the cells, a
number of test tones are applied at varying
amplitudes. The test-tone frequency corre-
sponds to the desired maximum signal fre-
quency, while the number of applied tones re-
quired is tied to the cell resolution selected for
the table construction.

As each test tone is applied to the ADC, a
record of data is stored in memory. The DFT
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estimates the signal component present in the
stored data, then the estimated signal compo-
nent is subtracted from the data to yield the
error values. Next, the error values are assigned
to cells addressed by the current and previous
sample values for which the error value was
obtained (in the case of BDE or SSR). Finally,
error values accumulate in cells until the test is
complete, at which time the accumulated values
in each cell are averaged to derive a statistical
estimate of the error value for each cell.

Compensation Examples

Three ADCs were selected to illustrate com-
pensation results. These are the Analog Devices
MOD-1205, the Burr-Brown ADC600, and the
TRW TDC1025. The MOD-1205 lends itself well
to compensation because it is stable over long
periods of time. Error tables several weeks old
consistently provide improved performance for
the device. The ADC600 does not compensate
effectively because the error tables appear ran-
dom, and because high resolution and extensive
averaging are required to obtain consistently
valid corrections. The TDC1025 is a flash con-
verter without a front-end sample-hold circuit.
Near 11-bit performance is obtained for a signal
bandwidth of approximately 4 MHz. This per-
formance result dramatically illustrates the
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Vi1

Error V,

[1LsB

Fig. 12—Compensation table for Analog Devices Mod-
1205 converter (SSR). The table is plotted as a function of
the current ADC output state, V,, and the previous output
state, V, ,. The cliff in the rear portion of the table is a
prominent feature.

potential of the proposed compensation pro-
cess. The following paragraphs summarize ad-
ditional details for all three converters.

Analog Devices MOD-1205

The MOD-1205is a 12-bit, 5-Msps converter.
The SFDR achieved without compensation is
approximately 65 dB. Figure 12 shows a repre-

100 & I T T 1 I 1 13
; _ 5=t
80 [~ o CDE:
s B — ~/: 1l
0 60 Uncompensated ;
 F -
m ;
& 40 b=
o0 - SSR State Space Representation | -
CDE Central Difference Estimator | _|
ol 1 v o001y

0.05 0.15 025 035 045 0.55
Input Frequency (MHz)

Fig. 13—Comparison of compensation techniques applied
to the Analog Devices MOD-1205 converter. The CDE
performs well only near the calibration frequency (blue
dashed line), while the SSR performs well over a wide range
of frequencies.
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sentative compensation table generated with
the SSR. The cliff in the rear portion is a promi-
nent feature of the surface; this local functional
dependence means that the error depends on
the previous state as well as the current state.

Figure 13 shows a plot of SFDR versus input
frequency for the uncompensated ADC, for the
ADC compensated with the CDE, and for the
ADC compensated with the SSR. The plot indi-
cates that both the SSR and CDE yield dramatic
improvement near the calibration frequency
(approximately 0.5 MHz). The performance
enhancement with the CDE nearly vanishes at
0.25 MHz; in contrast, the performance en-
hancement with the SSR is more broadband in
nature. The gaps in the curves in Fig. 13 repre-
sent frequencies that could not be tested be-
cause the proper filters needed to purify the tone
were unavailable.

Figure 14 shows plots of fundamental and
highest spur level as functions of input power
and frequency as described earlier with respect
to Figs. 2 and 3. On the basis of these figures, an
overall SFDR enhancement of 8 dB is obtained
in the MOD-1205 over a wide range of operating
frequencies.

Burr-Brown ADC600

The Burr-Brown ADC600 is a 12-bit,
10-Msps converter. Without compensation, it
exhibits SFDR that rivals results obtained from
internally compensated 14-bit converters.
Figure 15 shows the error surface obtained for
the ADC600 with the SSR. Also shown is a plot
of fundamental and maximum spurious power
as a function of input power. The error compen-
sation improves slightly at higher input power
levels and not at all at low input power levels.
Inspection of the error surface indicates that
much of the ADC error is concentrated along a
ridge near the origin of the current state axis.
The shape of the ridge depends somewhat on the
previous state. The table in this figure was
constructed with 256 cells along the current
state axis; additional resolution could model the
behavior of the ridge more accurately. Since the
converter can produce 4,096 distinct output
states, 256 resolution cells in the current state
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Fig. 14—Compensated SFDR performance of the Analog Devices MOD1205 converter. The quantityP  (blue dashed line)
is the expected quantization noise power present in each DFT frequency cell. (a) The plot of fundamental power P, and
maximum spurious power P_ versus input power shows increasing SFDR enhancement with increasing input power. (b) The
plot of fundamental power and maximum spurious power versus frequency shows at least 8-dB improvement over a wide

frequency range.

axis is insufficient. At present, additional tests
with improved table resolution have not been
performed. This is seen as an area for future
work.

TRW TDC1025

The TRW TDC1025 is an 8-bit, 50-Msps
flash converter without a sample/hold circuit.
Figure 16 shows the error table obtained with
CDE compensation. The table size is 64 x 32 on
the code and slope axes, respectively. The
sample frequency is 25.6 MHz, while the tone
frequency used to construct the table is 3.9875
MHz. The high degree of structure in the table (in
contrast to that shown in Fig. 15 for the Burr-
Brown ADC600) indicates that compensation
will provide significant performance improve-
ment. Figure 17 shows plots of the SFDR ob-
tained at two widely different signal frequen-
cies—3.5 MHz and 0.95 MHz, respectively. At
both frequencies the usable SFDR is in excess
of 60 dB, an astonishing result for an 8-bit
converter, which represents an improvement
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over the uncompensated converter of more than
12 dB.

The promising results shown for the
TDC1025 flash converter indicate that the use of
flash converters in combination with dynamic
error-compensation techniques can achieve
high SFDR at high sample rates. Figure 18
shows an illustration of this fact from the work
of Rebold [14]. The ADC input consists of a low-
level FM signal near 8 MHz in the presence of a
large narrowband interferer near 4 MHz. Figure
18(a) shows the uncompensated response. The
desired signal is approximately 15 dB below the
ADC quantizing power level Pq. and approxi-
mately 3 dB below the maximum spur P_. Figure
18(b) shows the compensated response. All
harmonic distortion is removed and the desired
signal is clearly detectable above the filtered
quantizing level P i In addition, high SFDR does
not fundamentally require high bit resolution
in the ADC. Typically, however, ADC sys-
tem designers specify resolution that is higher
than necessary. The extra resolution is neces-
sary to overcome the differences in real-
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Fig. 15—SSR compensation applied to the Burr-Brown
ADCB600 converter. (a) The improvement due to compen-
sation is modest, and occurs only over a limited input power
range. (b). The compensation table has little structure ex-
cept for a small ridge along the V, = 0 line.

versus-ideal ADC performance.

Areas for Future Work

Dynamic error compensation is a promising
technique that enhances the dynamic range
performance of ADCs in spectral analysis appli-
cations. While preliminary results are promis-
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ing, many topics remain to be investigated, such
as the following:

(@) phase-plane validity for all ADCs,

(b) determination of cell size versus con-
verter resolution,

(c) optimum derivative estimator, and

(d) performance limitations of structures
2 and 3.

This article proposes three compensation
structures. Present work at Lincoln Laboratory
employs compensation structure 1, while the
effectiveness of the other structures requires
further examination. For at least one converter,
avery high-resolution table is required to obtain
a worthwhile performance improvement.
Higher-resolution tables and nonuniform cell
sizes should be explored.

Another unexplored topic is the sensitivity of
ADC nonlinearity to time and temperature
changes. The dynamic correction techniques in
this article are only practical if the ADC charac-
teristics are stable and repeatable. ADC behav-
ior will ultimately relate directly to the precise
and stable representation of the error surface.

Summary

Dynamic error-compensation techniques

Sample Frequency: 25.6 MHz

Signal Frequency:  3.9875 MHz 1 LSB

X

Fig. 16—CDE compensation table for the TRW TDC1025
converter. The table shows a high degree of structure,
which indicates that compensation will be effective.
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Fig. 17—Compensated SFDR for TRW TDC1025 con-
verter using the compensation table in Figure 16. The two
plots demonstrate that a 65-dB compensated SFDR can be
obtained over a wide bandwidth. (a) Compensated SFDR
at a test frequency of 3.5 MHz, near the calibration fre-
quency of 3.9875 MHz. (b) Compensated SFDR at a test
frequency of 0.95 MHz, much lower than the calibration
frequency.

enhance the linear range performance of ADCs
in spectral analysis applications. The impor-
tant feature distinguishing these techniques
from previous attempts at compensation is the
use of an error surface defined on a two-dimen-
sional real plane. The multidimensional error
description allows dynamic error effects to be
modeled subject to certain restrictions on

The Lincoln Laboratory Journal, Volume 2, Number 2 (1989)

ADC nonlinearity.

Three examples of error compensation were
described. In two of the three examples, signifi-
cant dynamic range enhancement was obtained
over a wide range of operating frequencies, while
in the third example only modest improvement
was obtained. Inspection of the error surface
indicates that increased table resolution may be
required to obtain significant performance
improvement.
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Fig. 18—Compensation example for the TRW TDC1025
converter, illustrating elimination of spurious components
that mask a small signal. (a) The uncompensated response
shows a near full-scale sinewave at 4 MHz that masks a
low-level FM signal near 8 MHz. (b) The compensated
response, which uses the correction table shown in Fig. 16,
eliminates the spurious components and reveals the de-
sired signal.
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