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A Generic Architecture for Wafer-Scale
Neuromorphic Systems

Neural-network architectures emulate the brain by using a parallel, highly intercon-
nected system of simple processing units to solve problems. Systems based on neural
networks offer promising solutions to complex problems in recognition, control, and ro-
botics. However, the massive parallelism and high fan-out of neural networks impose
enormous interconnection requirements on the integrated-circuit designs that imple-
ment them. Wafer-scale integration interconnects many circuits on a single wafer, thus
eliminating wirebonds, package pins, and external printed-circuit wiring. A generic
wafer-scale device for neural networks, which uses multiplying digital-to-analog con-
verters for programmable synapses and operational amplifiers for summing nodes, has
been developed. After each wafer is fabricated, laser cuts and links may be used to define
the network connectivity and provide defect avoidance for yield improvement.

Wafer-scale integration is ideally suited to
handling the interconnection requirements of
neuromorphic architectures. The pin-outs of
conventional integrated-circuit packages do not
provide enough fan-out capability to permit the
implementation of these highly connectionist
architectures. But, since wafer-scale integrated
circuits interconnect several circuits on one
wafer, large numbers of package pins are not
necessary.

Wafer-scale integration solves the pin-out
issue, but it also creates two problems: wafer
defects and fabrication costs. Silicon wafers
cannot be made defect-free across large areas,
so defects must be circumvented. And because
wafer-scale systems are so complex, fabri-
cation of small quantities of custom devices can
be extremely expensive. (For a discussion of
these issues, please see the box, “Wafer-Scale
Integration.”)

The restructurable very large-scale integra-
tion (RVLSI) approach to wafer-scale integration
solves both the defect problem and the fabrica-
tion problem [1]. In the RVLSI approach, one
generic design is used for the fabrication of all
ICs. Then, after the generic ICs have been fabri-
cated and tested, lasers are used to customize
devices — by forming and removing conductors.

RVLSI solves the defect problem because it
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permits designers to place redundant cells on
wafers and then to isolate defective cells. And,
because only one generic set of photolitho-
graphic masks is required, fabrication expenses
are reduced.

A generic wafer-scale architecture, which will
be capable of implementing a wide variety of
neuromorphic designs, such as Hopfield nets
and multilevel perceptrons [2], is being devel-
oped at Lincoln Laboratory. (An introduction to
these systems is included in the box, “Neural
Networks.”)

Restructurable Very Large-Scale
Integration

The critical technological advance that under-
lies the RVLSI approach to building wafer-scale
circuits is the development of a very high-yield
laser-linking technique (Fig. 1). The laser-link-
ing techniques permit both additive and de-
letive modification of interconnect wiring after
wafers have been fabricated and tested. RVLSI
allows the incorporation of redundant devices,
and the removal of defective ones, without the
use of time-consuming and defect-prone cus-
tom masks or extra fabrication steps.

A number of link structures have been devel-
oped; two have been demonstrated in whole-
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Wafer-scale design begins with
the definition of a building block
small enough to provide high
yields, but large enough to keep
the overhead area required for
restructuring at a tolerable level.
Once the building block is de-
fined, it is placed in an array
within a matrix of conductors and
programmable links.

Figure A shows a schematic
representation of an array of such
building blocks. In this array, m
input lines enter each block hori-
zontally and n output lines exit
each block vertically. Unlike a
discrete-package implementa-
tion, the values of mand nare not
limited by the pin-out; they are
determined by the fan-in and
fan-out requirements of the cir-
cuit. To provide complete flexibil-
ity in the configuration of connec-
tions between the outputs of any
block and the inputs of any other
blocks, a matrix of links and con-
ductors of size j x n is located
below each block.

Because signals are not routed
off the wafer (and across a
printed-circuit board), lead in-
ductances, stray capacitances,
and printed-circuit-board noise
are avoided. Therefore, wafer-
scale devices are intrinsically
faster and less sensitive to noise.

The major impediment to wa-
fer-scale integration has been the
lack of a scheme that deals with
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Wafer-Scale Integration

the defects occurring on all inte-
grated-circuit wafers. Restruc-
turable very large-scale integra-
tion (RVLSI) solves this problem
— it uses laser linking and cut-
ting to connect the working seg-
ments of a wafer and to isolate
the defective segments. In the
RVLSI technique, custom devices
are constructed on wafers only af-
ter a generic wafer-scale circuit
has been fabricated and tested.
Therefore, RVLSI maximizes the
usage of each wafer.

RVLSI technology has been
successfully used at Lincoln
Laboratory. Devices fabricated
with the RVLSI method include a
16-point FFT processor [4], a
Hough Transform Processor, and
a device that implements the Dy-
namic Time Warping [5] algo-
rithm for a speech recognizer. The
repetitive nature of signal-pro-
cessing applications translates
into a regular, repetitive archi-
tecture for the signal-processing
device, and is thus ideal for wafer-
scale implementation.

Like signal-processing archi-
tectures, neural-network (or con-
nectionist) architectures feature
regular, repetitive operators ar-
ranged in arrays that require a
high degree of connectivity. Cur-
rent connectionist architectures
are usually considered highly re-
dundant, and therefore resistant
to individual component failures.

But the systems that are likely to
be built in the near future will
have far less redundancy than
their neurological counterparts
and will thus require the capabil-
ity of testing interconnections
and active devices completely.

In the wafer-scale neural-net-
work devices developed at Lincoln
Laboratory, each weighted inter-
node connections is a multiplying
digital-to-analog converter and
each node is a summing ampli-
fier. To provide good testability,
each MDAC is accessible from the
wafer periphery (Fig. A). Further-
more, blocks are extendable, so
fan-in and fan-out can be in-
creased in increments of the
block width and length.

Horizontal input lines and ver-
tical output lines are continuous
across block boundaries, and ex-
tend completely across each wa-
fer. The input and output lines
therefore give access to the blocks
and allow complete testing of
interconnections.

Above each j x n link matrix is
arow of amplifiers. The outputs of
the amplifiers are connected to
the common horizontal line,
“Amplifier Test Out.” The inputs
of the amplifiers are connected to
the vertical line, “Amplifier Test
In,” which is shared by all ampli-
fiers in a column. After testing,
the common connections be-
tween amplifiers can be cut away.

wafer systems. The first structure, a vertical
device (Fig. 2), comprises two levels of metal
separated by a dielectric sandwich of amor-
phous silicon covered on top and bottom by ox-
ide barriers. The oxides prevent interdiffusion of
metal and silicon during high-temperature
annealing steps. The resistance of the device in
Fig. 2 is under 1 Q after programming. Device
yields are extremely high over a wide range of
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laser power. Whole-wafer systems developed at
Lincoln Laboratory with the use of the vertical-
link technology include a 16-point FFT [2], a
Hough Transform Processor, and a two-dimen-
sional convolver. The drawback of the vertical
device is that it requires unconventional pro-
cessing steps, and thus is not easily processed
in standard industrial lines.

A second link structure has been developed,

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)



Raffel et al. — A Generic Architecture for Wafer-Scale Neuromorphic Systems

Out

n
/ Outputs
MRS ? 9 9 o«— Amplifier Test
Test In n
m B
IR Multiplyi
plying
s " DAC
Laser Q %
Links { Amplifier Test
X

MDAC Test Out

Fig. A — A flexible neural-network application can be implemented with this
restructurable VLSI array of mutiplying digital-to-analog converters (MDAC),

summing amplifiers, and laser links.

and this structure is suitable for standard semi-
conductor processing lines. The new link re-
quires no additional processing steps and can be
fabricated in a conventional CMOS process se-
quence. This device, shown in Fig. 3, is a lateral
structure. It is formed by two substrate diodes
separated by a gap approximately the size of the
laser beam (typically 2 to 4 um). Exposure at
power levels and pulse widths comparable to
those used for the vertical link (Fig. 2) causes the
silicon in the gap to melt and the dopant to
diffuse across the gap, resulting in links in the
100-Q range. The laser system can also be used
to segment wires on both first- and second-level
metal.

Recently, the lateral link was demonstrated in
a Dynamic Time Warping wafer for speech rec-
ognition. This device was fabricated entirely
in the MOS Implementation System (MOSIS)
foundry, a dramatic demonstration of the ease
with which this technology may be transferred
to a standard semiconductor processing line.
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Depending on the details of a neural-net appli-
cation, either the vertical or the lateral links
could be used to design a wafer-scale circuit.
Since neural-network systems typically operate
at high impedance levels and at low currents,
the higher resistance of the lateral links will not
pose a significant drawback.

To automate the linking procedure, a set of
special-purpose CAD tools has been developed.
By using the tools illustrated in Fig. 1 and the
software that we have developed, most neural-
net architectures can be implemented with only
a minimal amount of additional software.

Chip-Level Design

As afirst step in evaluating a wafer-scale neu-
ral-network design, a discrete integrated circuit,
which consisted of 32 analog input lines con-
nected through an array of 4-bit multiplying
digital-to-analog converters (MDACS) to 16 pairs
of output lines, was designed, fabricated, and
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Neural networks are computing
elements that take a cue from bio-
logical neural systems and use
massively interconnected arrays
of relatively simple processors.
Typical applications for neural
networks include correlation,
pattern recognition, and control.
Most current work on neural net-
works is performed by using com-
puter simulations of systems, but
the confluence of revolutionary
advances in integrated-circuit
technology and growing interest
in neuromorphic systems is now
leading to electronic circuits that
implement these systems.

The most commonly modeled

Neural Networks

neural nets are based on a model
of a neuron, as shown in Fig. A,
that produces an output depen-
dent on the weighted sum of in-
puts from its peers. Awide variety
of architectures, for such applica-
tions as character and speech
recognition, have been built
around this basic building block.
The Gaussian classifier of Fig. 8 is
one example of these architec-
tures. An excellent summary of
these architectures is given by
Lippmann [2], and a textbook by
Rumelhart and McClelland [6] is
devoted to the subject.

Virtually all neural-network
models include weighted connec-

tions; the building blocks that
we've chosen use multiplying dig-
ital-to-analog converters (MDAC)
to provide the weighting. The out-
put current of each MDAC is the
product of the input voltage and
the total conductance of the con-
verting transistors that are on.
The number of transistors turned
on is controlled by the stored bits,
which represent the weight or
strength assigned to a particular
connection [7]. The output cur-
rent of each of the MDACs is
routed to a transconductance am-
plifier, which serves as the sum-
ming node found in neural-net-
work models.

XWX

Fig. A — This basic model of a neural network has been used to simulate or
develop nearly all the current neural-network models. The neuron model is
shown here with a sigmoidal output, but a variety of outputs are possible. The
input values are labeled X through X ., the connection weights are w,

through W, _,,

and the output of the network is Y.

tested (Fig. 4). The MDACs provide the weight-
ing; off-chip transimpedance amplifiers convert
the summed current to a voltage that neural
network inputs require. Since the laser links
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had already been well characterized, the objec-
tive of this design was to test the active circuits
— the MDACs — not the laser links that would
be used in the wafer-scale design.
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Figure 5 is a circuit diagram of an MDAC pair.
One MDAC contributes current to an excitation
output, I;; the other contributes to an inhibition
output, I. The E/I control bit determines which
of these is active. The weight transistors that
perform the digital-to-analog conversion pro-
vide conductances that vary by factors of two
(1/2¢g,, 19,29, 49,J The configuration of
the transistors determines the conductances,
with two transistors in series for the least sig-
nificant bit and up to four in parallel for the
most significant bit.

Figure 6 shows a plot of output current vs.
input voltage for a single MDAC. Each of the 15
traces gives the increase in current output asso-
ciated with a stored digital value as the input vol-
tage increases from O to 1 V. Measurements
show that the output-current increments for all

values of V, and all 16 values of the stored
digital word are uniform to within 5%.

By tying input lines in parallel, the precision of
the MDACs can be extended beyond four bits.
For example, when two input lines are tied to-
gether, and all four bits in one of the MDACs are
held at zero while the other MDAC's four bits are
increased from zero to 15, the output current is
increased from I, to 15 I. Once the output
current has reached 15 [, the other MDAC can
be incremented to provide an additional 15 I,
doubling the output current in 1-bit steps and,
therefore, providing an extra bit of precision.
And the same principle can be used to increase
the precision of the MDACs further — by dou-
bling the number of parallel inputs for each
additional bit of precision desired. One of the
analog inputs can be connected to a fixed volt-
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Fig. 1 — Laser facility used in the production of RVLSI circuits. The 2-W beam from the CW argon
laser is focused on a silicon substrate through a rotating shutter that produces 1-ms pulses. The tested
wafer is moved into position under the laser and circuit modifications are made at a rate of 6 additions/

deletions per second.
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Fig. 2 — The vertical link provides a low-resistance (<1 £2)
connection for laser-programmed circuitry.

age, thereby providing threshold offset control
for the off-chip amplifier that connects to the
synapse outputs.

Experimental Results

The weighted-summing circuits were charac-
terized by building a Hamming net, which used
two of the MDAC chips. The Hamming net, an
optimum classifier for binary patterns cor-
rupted by noise, enabled us to measure the
uniformity of the weights and to verify the op-
eration of a winner-take-all, or max-picker, cir-
cuit (i.e., a circuit that chooses the output with
the highest value). The net was broken into
two stages, a linear correlator and a max-picker
circuit.

/ n* Diffusion

[ - / |
Metal E\ Gap E Metal

1 i I

Contact

p TUB OR WAFER

Fig. 3 — Although the lateral interconnection circuit has a
relatively high resistance associated with it (=100 2), it re-
quires no nonstandard fabrication steps and can be pro-
duced with conventional CMOS technology.
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The linear correlator acts much like an asso-
ciative memory; when a vector is presented to its
inputs, the correlator determines how well the
input vector matches vectors stored within the
synapse weights. The circuit has 16 input
nodes, each of which receives a single bit of
the input vector, and six output nodes, each
with weighted connections to all input nodes.
Weights are coded as +1 (excitatory) for a'stored
One and -1 (inhibitory) for a stored Zero. By ap-
plying a bias of -1 for each stored Zero at each
node, the output can be made to produce a
voltage that decreases from its maximum by an
amount proportional to the Hamming distance.
The maximum output, which is produced by the
best match, therefore obeys the equation

nth output = k (16 - Hamming distance to nth
stored vector).

The four-input two-output array shown in
Fig. 7 illustrates the coding scheme. Two stored
values, 1010 and 1110, are shown for the two
output nodes. Their corresponding weight rep-
resentations and the sum of products are gener-
ated by a perfect match with the input vectors.
For the experimental system with 16 inputs and
six outputs that is a direct extension of the
4 x 2 array, nine vectors were presented, of
which six 16-bit vectors were identical to the six
stored values. Three others had various degrees
of mismatch.

The results of the experiment are shown in
Table 1. The resulting outputs follow the equa-
tion above, with a variation of less than 5% for a
value of k equal to approximately 70 mV. Each
of the six output nodes (labeled A through Fin
Table 1) was associated with a stored vector of
the same label. When a vector similar to the
stored vector was presented to the correlator,
the corresponding output neuron (transimped-
ance amplifier) had, as planned, the highest
output voltage. For example, when input vector
1, which was most similar to the A stored vector,
was presented to the network, the output volt-
age at node A was 1,130 mV; the other nodes
had significantly lower outputs.

The circled numbers along the matrix’s diago-
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Fig. 4 — This chip was used to test the MDAC-based
neural-network concept. The chip is packaged in an 84-pin
package and uses 64 pins (32 plus 2 x 16) for analog in-
puts and outputs, five pins for digital data in, and 10 bits
for MDAC address. The device was built with 3-um design
rules and occupies an active area of 28 mm 2 At present,
28,500 transistors are required to implement 1,024 4-bit
MDACs. The off-chip amplifiers for this preliminary sys-
tem are provided by a pair of op amps run in the trans-
impedance mode, one each attached to the exciting and
inhibiting lines. The outputs of the two amplifiers are then
fed into a differential amplifier, which provides the output
drive to other analog inputs.

nal, starting at the upper left-hand corner, cor-
respond to a match in all 16 bits. The variation
in this maximum output is approximately five
parts in 1,100 (decimal), or less than 0.5%. The
boxed numbers correspond to a distance or
mismatch of eight bits. Ideally, these values
should all be the same; experimentally, they
vary by less than 2%. When this experiment was
originally performed, differences between nomi-
nally equivalent outputs showed much larger
column-to-column variations than differences
within a single column serviced by a single set of
amplifiers. This effect was largely due to offset
variations between amplifiers. The problem was
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minimized by using low-offset amplifiers and by
raising the input-voltage operating range to
increase the signal-to-offset voltage ratio.

The Hamming net used single-bit weights. To
demonstrate the 4-bit weight capability, a sys-
tem was configured to act as a Gaussian classi-
fier for a speech-recognition application. This
network implements, in hardware, speech-rec-
ognition simulations that have been discussed
in detail [3]. In this experiment an input vector
that consisted of 22 continuous analog vari-
ables was fed through programmed weights
(4-bit values stored in the MDACS) into each of
seven summing nodes (the summing amplifi-
ers). The design configuration is shown in Fig. 8.
The inputs represent 11 cepstral components
derived from two 10-m/s frames of speech
samples. The speech samples were the seven
numbers “one” to “seven.” Reference 6 describes
how the first stage, acting as a biased linear
correlator, can effectively calculate the square of
the Euclidean distance between the applied
vector and each of the seven stored vectors.

The outputs from the first stage were each fed
into one of seven nodes (differential amplifiers),
which were configured to perform the winner-
take-all function. All seven differential-ampli-
fier outputs were fed to a single summing node,
the output of which fed back to the differential
amplifiers’ inhibitory inputs. The negative ex-
cursions of the seven outputs were clamped
nearly to ground by diodes. The clamping, along
with the high gain used in the seven output
nodes, caused the feedback voltage to track the
largest output. Consequently, the other differ-
ential amplifiers’ inputs were presented with an
inhibiting voltage that clamped their output
nodes to ground. The result was a circuit in
which the output node with the greatest output
(the winner) reproduced its positive input value
and all other nodes produced very small volt-
ages. To present a graphic demonstration of net
operation, the clamp diodes on the winner-take-
all, or max-picker, circuit were replaced with
LEDs. The LEDs performed the clamping func-
tion, but also lit up on all losing nodes and
remained unlit on the winning node.

The results of the experiment are shown in
Table 2. Here 182 vectors were applied to the
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Fig. 5 — This MDAC circuit provides the weighted connections essential to neural-network
operation. The weights are stored as digital values in bits 1 through 4; the E/ | input is used to
determine whether the output current is excitatory or inhibitory.

circuit and the outputs were compared with the
results of a computer simulation that deter-
mined discrepancies between the hardware im-
plementation and a mathematical simulation.
Simulated and experimental winners are tabu-
lated for each of the seven output nodes.

The numbers along the diagonals indicate the
number of matches between the two categories.
Off-diagonal components indicate misclassifi-
cations, of which there were seven out of the 182
trials. Five of these resulted from misidentifying
type 1 vectors as belonging to type 5. This con-
fusion is not too surprising, because vectors 1
and 5 are far closer than any other pair, al-
though not so close that they should not have
been distinguished by the circuit. This error is
currently under investigation.

Alternative-Circuit Realization

The MDAC circuit fabricated and used to
implement the networks described above oper-
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Fig. 6 — Output current of one of the MDACs used for
weighted connections. The current steps along the vertical
axis represent increments in the digital weight stored with-
in the MDACS; the overall increase in output current exhib-
ited along the horizontal axis is due to an increase in the
voltage input to the MDAC. The current increments are
uniform to within 5%.
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Fig. 7 — This simple four-input two-output neural network illustrates the implementation of a neural-network model. The
weights given as either +1 or —1 alongside the connections are effected by MDACs.

atesin the linear region of the transistor conduc-
tance curve for source-drain voltages up to 1 V.
The percentage deviation from linearity varies
directly with signal voltage in this range.

The MDAC'’s transistors can also be operated
in saturation; then they perform the multiplica-
tion operation by driving the gate, rather than
the drain. Using this saturation approach, we
designed and fabricated a second version of the
MDAC chip. In this chip, the subtraction of in-
hibiting current from exciting current uses
current mirrors.

The MDAC shown at the top of Fig. 9 uses a
Ones-complement representation to realize the
weight strength and the connection polarity.
Like the previous design, the storage bits BO
through B3 turn on transistors that correspond
to the desired weight. For negative weights, B4
gates the lower row of transistors as well, form-
ing the Ones-complement by exciting both in-
hibitory and excitatory lines. The analog input
Vv, is applied to the second and third rows of
transistors and generates, in each On transistor
path, a current proportional to the output gen-

Table 1. Results from the Hamming-Net Experiment

Nearest

Applied Stored Outputs in Millivolts

Vector Vector A B (o] D = i
1 A 695 775 300
g B 710 700 636 559
3 c [556] [560] (1.125) [555] 637 560
4 D 695 493 845
5 E 780 631 629 485 353
6 F 303 840 358
7 A 1,065 628 480 627 705 352
8 & 428 556 705 557 640 560
9 A&B 705 695 557 415 493 300
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Fig. 8— This neural net consists of 154 MDACs connected to seven summing amplifiers. The outputs
of the summing amplifiers are connected to seven differential amplifiers. The differential amplifiers
and the feedback node comprise a max-picker circuit that finds the vector registering the strongest

correlation with the input vector.

erated at another neural node.

One of the principal motivations for using
current mirrors is to allow the direct connection
of neuron outputs to inputs. Also, the high-
impedance gate input is desirable for distribut-
ing signals in a wafer-scale device, because in-
terconnection impedances are not negligible.

The cascode-mirror circuit shown at the bot-
tom right of Fig. 9 subtracts the inhibition
current from the excitation current. The current
set up in the excitation branch is reflected in the
other leg of the mirror. Any current in excess of
the inhibition current is passed to ground
through the lower transistor, which has a con-
ductance that corresponds to the maximum
MDAC weight. (The arrow indicates that the
conductance of this transistor can be varied by
programming a storage register, which controls
abank of variable-width transistors.) The gate of
the lower transistor is maintained at the voltage
necessary to cause the transistor to sink the
required signal current, I, - I, through the
action of the differential amplifier whose output,
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V. is the neural-node output voltage. If inhibi-
tion exceeds excitation, the diode connected to
the inhibition leg prevents the internal node (II)
from being pulled to ground.

The cascode-mirror arrangement was selected

Table 2. Results of Gaussian-
Classifier Experiment

Winners by Network
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Fig. 9— The current-mirror MDAC provides the high input imped-
ance required by a highly interconnected circuit.

for its insensitivity to voltage variations at the
input and for its ability to hold all input ports
at the same potential. The equipotential input
ports guarantee that all the MDACs operate at
the same V, which eliminates any effects due
to Early voltage. Because of the high imped-
ances in the circuit, however, the transistor
sizes necessary to handle any appreciable cur-
rents prohibit both a homogeneous distribution
of mirrors throughout the connection matrix
and the ability to accommodate the entire oper-
ating range of MDAC currents.

In this implementation, a single mirror at the
output of each neuron was used. The mirror was
designed to operate linearly over the range of
0 to 2 mA, which is nearly the output range of a
single MDAC. (The range of an MDAC is con-
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strained by process geometry.) Operation of
the MDACs over a reduced range is accom-
plished by scaling the input/output mirrors
that set up the gate voltages distributed across
the chip. Through a 4-bit coefficient stored in
RAM, the conductances are variable with re-
spect to the full conductance of an MDAC in
ratios from 1:1 to 15:1.

Conclusions

Results of experiments performed on small
networks built from integrated arrays of multi-
plying analog-to-digital converters controlled by
writable storage registers are encouraging.
These arrays implement the programmable
weights that are common to virtually all neuro-
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morphic systems. The laser-linking technology
and the design techniques that were used to
build wafer-scale signal-processing systems are
applicable to the design of very large monolithic
neural networks. We estimate that a 4-in wafer,
employing 2-um design rules, will support a net-
work consisting of about 10,000 summing
nodes, with an average fan-in of 16. A network
of this size will be able to implement hardware
networks as large as the largest networks that
have been simulated on general-purpose com-
puters. Moreover, the wafer-scale circuit will
improve computation rates by many orders of
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magnitude, and operate in microseconds, rather
than seconds or minutes.

We have not yet addressed the development of
on-wafer circuitry for adaptive weight modifi-
cation or learning. This issue is now a major
objective of our design efforts.
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