(e W

F.E. Hall and A.G. Rocco, Jr.

A Compact Programmable
Array Processor

An array processor is a processor optimized to operate on arrays or vectors of data.
Typically, a similar operation is performed repetitively on many inputs. Taking ad-
vantage of the repetitive nature of this processing, array processors can achieve higher
throughput by performing operations simultaneously. This technique is known as
parallel computation. Array processors also frequently use a form of parallel compu-
tation called pipelining, where an operation is divided into smaller steps, and the steps
are performed simultaneously. For example, if we are building a large number of
houses, instead of having one crew we can have three; while the first crew digs the cellar
and pours the foundation, the next puts up the walls and roof, and the last does the
finish work. When one crew finishes, it moves on to the next house site, and the next
crew begins work. We could also increase the parallelism by having another set of three
crews working on another group of houses at the same time.

While parallelism and pipelining increase the performance of array processors, these
techniques also complicate software development. We have developed an array pro-
cessor that simplifies code generation by decoupling the processes of computation and
memory address generation. The processor is completely programmable, as opposed
to processors that implement an algorithm in dedicated hardware. This is a general-
purpose array processor, and can be used for a variety of real-time signal-processing

applications.

We have developed a novel array processor,
the Data-Stream Array Processor {(DSAP), which
provides complete programmability and ease of
code generation, while reaping the benefits of
parallelism and pipelining inherent in array
operations. The DSAP consists of multiple inde-
pendently programmable array processing ele-
ments. Each processing element (PE) divides the
array operation into separate and conceptually
asynchronous processes of computation and
memory addressing, greatly simplifying the
process of code generation.

. The DSAP was developed to satisfy the volume,
weight, and power constraints of radar carried
by an Unmanned Air Vehicle (UAV). In such ar
experimental system, a completely program-
mable processor is required, yet the processor
must have a real-time processing capability of
approximately 100 million operations per sec-
ond (MOPS). Although the DSAP architecture
was developed for radar signal processing, it is
a general-purpose fixed-point array processor

The Lincoln Laboratory Jouwrnal, Volume 2, Number 1 (1989)

that should be applicable to a wide range of real-
time signai-processing tasks where power and
weight are at a premium, yet programmability is
necessary.

Processor System Architecture

The DSAP architecture consists of one or more
array processing element (PE) boards and an
application-specific high-speed data-transfer
interface, all accessible by a general-purpose
host computer residing on a VME bus (Fig. 1).
The VME bus is an industry-standard 32-bit
microprocessor bus that makes up the back-
plane of the so-called host computer that in an
operational system is responsible for signal-
processor program loading and control, as well
as subsequent processing of the results of the
signal processing. The VME-bus backplane and
processor cards are commercially available. The
VME bus is connected to the signal-processor
bus via a Lincoln Laboratory-built VME-bus

41

Hall et al. — A Compact Programmable Array Processor

interface card. In the DSAP developed for the
UAV radar, the high-speed interface consisted
of A/D converters and a radar-timing generator.
The backplane, which contains a clock-genera-
tion circuit, interconnects the PEs with several
data buses. The VME-bus interface provides
signal redriving and address-space mapping
between the VME-bus and the signal-processor
host bus. Through this interface, a VME-bus
master can access the entire DSAP state.

By providing concurrent computation andI/O
operations, the DSAP architecture provides the
efficiency necessary for real-time processing. By
using multiple identical array processors, a
real-time program can be algorithm-parti-
tioned, with each PE performing a particular set
of operations on the data set, or a program can
be data-partitioned, with each PE running the
same algorithm on a part of the input data. The
inter-PE communication paths support either of
these techniques.

Processing-Element Architecture

The computational components of a PE (Fig. 2)
are an arithmetic processor (AP) and two ad-
dress generators (AG) — the input AG and the

output AG. A large two-port data memory stores
input data and results. A third AG, which func-
tions independently of the computational pro-
cessors, transfers data between the data mem-
ory and the world external to the PE. This data
transfer uses the second port of the data mem-
ory and thus may proceed without interfering
with processing.

The AP performs the adds, multiplies, and
other operations for computations. It contains
three arithmetic functional units and a large
multiport register bank, which stores inter-
mediate results. The AP does not, however,
directly access the data memory for either its
inputs or its outputs; rather, it processes
streams (a stream is an ordered series of data
tuples) of operands and emits streams of re-
sults.

Each AG consists of an arithmetic unit, a two-
port register bank, and iteration-control hard-
ware that implements nested program loops
efficiently. The three AGs are identical, but they
perform three distinct functions within the
stream processing. One AG transfers data from
memory to the AP. The second AG stores the AP
output stream in the data memory. The third AG
handles transfers between the data memory and

INTEGERATED SIGNAL/DATA PROCESSOR

Data
Exchange
Radar
Data
and
Control

DSAP/VME
Interface

Fig. 1 — The processor elements of the Data-Stream Array Processor (DSAP) communicate with one another and with
the outside world through the three buses shown in this block diagram: the external bus (XBUS), the data-exchange bus,

and the DSAP host bus.

42

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

DSAP PROCESSING ELEMENT

¢

Hall et al. — A Compact Programmable Array Processor

XBUS ADDRESS
GENERATOR

——— e

Data-Exchange Input

INPUT ADDRESS
GENERATOR

OUTPUT ADDRESS
GENERATOR

Fig. 2 — Data flow within PEs is controlled by the input, output, and XBUS AGs.

abackplane bus called the external bus (XBUS).

The partition of data processing and address
calculation into asynchronous processes is one
of the fundamental innovations of the DSAP
architecture. Address calculation is separated
from data processing; the AP processes data and
the AGs calculate addresses. The interface be-
tween the three processes of input, calculation,
and output are data streams.

Many signal processors contain address-cal-
culation hardware, but the process of address
generation, and therefore of data-memory ac-
cess, typically runs in lockstep with the data
processing. Memory addressing, as well as com-
putation, is often coded into a very wide, hori-
zontally microccoded instruction word. Since
addressing and computation must operate in
instruction lockstep, and since the code frag-
ments that perform these different functions are
often of different lengths or shapes (in the sense
of nested loops), hardware resources are fre-
quently left idle— except for the few applications

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

for which the hardware was optimized. To com-
plicate code generation further, there is typically
a pipeline delay between such instructions and
the resultant memory accesses.

In the DSAP architecture, the three processes
of input-stream formation, computation, and
output-stream storage are conceptually asyn-
chronous. In fact, the processes are executed on
three independent processors, each with its own
hardware state and thread of execution. All in-
terprocessor synchronization and the memory-
access pipelining are hidden by the hardware.
To smooth out any relative timing differences
between the three processes, first-in/first-out
(FIFO) buffers store a few stream items, which
improves the overall hardware utilization.

Processing-Element Hardware

The principal hardware components of a PE
are the three identical AGs, the AP, a dual-port
data memory, and two gate arrays that contain

43

Hall et al. — A Compact Programmable Array Processor

Very Large-Scale Integration

The first AG and AP chips (Figs.
A and B, respectively) were de-
signed in an NMOS process using
the MAGIC layout editor, the
MEXTRA circuit extractor, and
the RNL transistor-level simula-
tor. The AG and AP contain ap-
proximately 60,000 and 75,000
transistors, respectively. The
chips were laid out almost en-
tirely by hand, and development
of the two chips required nearly
three person-years of effort. A
major problem in completing the
layout was that the development
continuously pushed the limits of
the design tools. The AG and tae
AP were both fabricated in single-
metal NMOS processes; the AG
had a 3-u geometry and the AP
had a 2.25-u geometry. The exe-
cution speed of the NMOS devices
is approximately 3.5 million in-
structions per second (MIPS).

Device Development

The very large-scale integra-
tion (VLSI) devices have now been
implemented with a commercial
silicon compiler that takes a
schematic input and optimizes a
standard cell layout, with mini-
mal designer interaction. The
design time for the second im-
plementation was reduced to
about nine months for each chip,
and the execution-speed goals
were achieved. In addition to im-
proving the speed, the capabili-
ties of the integrated circuits
were increased. Program-mem-
ory sizes for the AG and AP were
doubled, program memory was
changed from dynamic to static,
and the multiplier, which had
been external to the AP, was
brought on-chip. Moreover, the
greatest advantage of the silicon-
compiler approach is that the
design is in a technology-inde-

pendent form, so future imple-
mentation in faster integrated-
circuit processes should be fairly
straightforward.

The new version of the AG is
implemented in a 1.5-u double-
metal CMOS process. It contains
approximately 238,000 transis-
tors, of which about 200,000 are
used for static RAMs.

As of January 1989 we do not
yet have the CMOS versions of
the AG and AP. The CMOS AG
has been simulated at the 10-
MIPS rate, is in fabrication, and
is expected in April. The AP is in
the final stages of design and is
expected sometime in the sum-
mer. With the current NMOS AGs
and APs we are able to run at
between 3 and 3.75 MIPS (we
have speed-sorted the integrated
circuits).

Fig. A — The address generator is a 60,000-transistor,

3-u-NMOS integrated circuit.

The die measures

7 mm x 9 mm and is packed in a 68-lead package.

44

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

——

LIy

o
— e ——

1000000 LEG 000 L O

VU UUO OO0 U0 e OO aaaor

YA

plenplmiyiadiy =ity

fLs

Fig. B — The arithmetic processor is a 2.25-u-NMOS device that has
75,000 transistors packed on an 11-mm? die. The integrated circuit is
mounted in a 120-lead pin-grid-array package.

the logic necessary to synchronize the proces-
sors and their accesses to the data memory. The
AGs that generate the AP input and output
streams are designated “AGI” and “AGO,” re-
spectively. The AG designated “AGX” moderates
transfers between the data memory and the
external world via the 32-bit-wide data-only
XBUS. Both the AGs and the AP are imple-
mented on custom VLSI devices, described in
detail in the box, “Very Large-Scale Integration
Device Development.” All processors on the PE
board operate at 10 million instructions per
second (MIPS). The processors are asynchro-
nous in the sense that each has its own thread
of program execution, but in the hardware
domain they are driven by a common clock

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

and interconnected by completely synchro-
nous interfaces.

Each PE is connected to the external world by
three data paths: the XBUS, the data-exchange"
network, and the host bus.

The XBUS is a 32-bit bus that interconnects
all PEs on the backplane and effects transfers at
arate of 10 million words per second. The XBUS
can be used to get data in and out of the pro-
cessor, as well as between PEs. Transfers on the
XBUS are accomplished by the execution of a
send operation by the AGX on the sending PE,
while the receiving PE or PEs are waiting for data
via receive instructions. No address travels with
the data; the AGXs on both ends of the transfer
produce the local data-memory address. For

45

Hall et al. — A Compact Programmable Array Processor

fixed-length XBUS transfers, the AGXs can
maintain synchronicity by all counting XBUS
transfers and receiving the ones they need. For
variable-length transfers the length can be sent
as part of the data or the AGXs can be synchro-
nized after each transfer. Synchronization is
accomplished by using one technique or a com-
bination of several techniques. There are four
event lines on the backplane, which may be set,
cleared, and monitored to mark various time ep-
ochs in a program’s execution. For data streams
coming in from outside the processor, the inter-
face can send an end-of-stream (EOS), which
will force all the AGXs on the PEs to vector to a
predetermined location. AGXs can also be syn-
chronized with a stop (rendezvous) request,
which causes them to wait until the stop request
is granted. Once all the AGXs have requested a
stop and an enable bit has been set, all the AGXs
simultaneously receive a grant allowing them to
continue at the same time. Under software con-
trol, the event lines, the EOS signal, and/or a
stop request can be used to synchronize all the
AGXs to a particular starting point.

The second data path interconnecting PEs is

the data-exchange network, a unidirectional
link from one PE to another. Although the pres-
ent DSAP implementation connects the PEsin a
circular array that has no latency, the electrical
protocol is compatible with more complex inter-
connection schemes — such as a butterfly net-
work that might have one or more processor
cycles of pipelining for the data transfers. The
data-exchange path operates at a 5-million-
words-per-second transfer rate; the address
within the destination PE’s memory location
where the datum is to be stored accompanies
each transferred datum. Data-exchange trans-
fers are initiated by the AGO on the sending PE.
The operation can be thought of as a diversion of
the AP's output stream (or selected items
thereof) into the data memory of another PE.
The third data path is the host bus, which is a
logical extension of the VME bus. Through the
host bus, a VME-bus master can directly access
the data memory or the program memory of any
processor (AGX, AGI, AGO, or AP) on any PE
board. In addition to memory accesses for pro-
gram loading and data transfer, several host-
bus signals control DSAP execution. These sig-

Backplane and VME-Bus Interface

The DSAP PE boards are
mounted on a custom backplane
that provides the clock signals
and the inter-PE buses: XBUS,
host bus, event lines, and data-
exchange network. Since the
clock signals contain fundamen-
tal frequency components at 80
MHz, special care was taken to
provide impedance matching to
minimize ringing.

Each dual-PE board occupies 1
MB of host-bus address space.
The address space consists of 512
kB for each PE, one half for the
data memory, and the other half
for the program memories of the

46

AGs and AP (not exhaustively
decoded).

The VME-interface card plugs
into a VME-bus socket and con-
nects to the DSAP backplane
through flat cables. The VME in-
terface maps the host-bus ad-
dress space into VME address
space. Not all VME systems offer
the luxury of devoting many
megabytes toa DSAP; PE pointers
and mapping registers can op-
tionally reduce the address space
to the size of one PE, or any power
of two PEs. The DSAP base ad-
dress in VME space is jumper-
selectable.

The VME interface has VME-bus—
accessible circuits that reset and
control the overall DSAP opera-
tion, including a single stepping
capability for software testing.

VME-bus interrupts can be
generated by transitions of the
DSAP event lines. An interrupt
can also be generated when all
PEs conclude their processing
and indicate the end of process-
ing by executing a stop instruc-
tion. The interrupt level is
jumper-selectable and the inter-
rupt-vector location is software-
selectable.

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

nals are discussed in more detail in the box,
“Backplane and VME-Bus Interface.”

Each PE’s data memory is organized as 64k
32-bit words. A data-memory word can be con-
sidered as two 16-bit words that represent a
complex fixed-point number. All data-stream
transfers between the AP and the data memory
are 32-bit values, regardless of their represen-
tation. The data memory is dual-ported by time
multiplexing; that is, the memory operates at 20
MHz, twice the instruction rate of the computa-
tional units.

A pair of Lincoln Laboratory-developed gate
arrays, which provide a 32-bit crossbar switch
and a finite-state machine (FSM) to generate the
timing signals, moderate the contenders for the
data memory. The contenders are divided into
two groups: one for each half-cycle, or logical-
memory port. One half-cycle is dedicated to
processing. Highest priority is given to direct
accesses from the AP; next-highest priority goes
to data-exchange write operations from another
PE. A lower priority is assigned to AP stream
output and AGO accesses. Finally, AP stream
inputs and AGI accesses receive the lowest
priority. The other half-cycle is dedicated toI/0O,
during which AGX accesses are given priority
over host-bus accesses.

Data-memory scheduling is effected through a
protocol of requests and grants. During each
machine cycle, each processor (AG or AP) en-
codes the memory accesses for which it will be
ready at the conclusion of the cycle. The gate
array’s FSM examines all the memory-access re-
quests and grants those of highest priority. Note
that some requests require the concurrent
availability of more than one processor for exe-
cution. An AP input-stream read cycle, for in-
stance, requires that there be space in the AP
input-stream buffer and that the AGI generate
the memory address. When both of these condi-
tions are satisfied, the FSM grants both proces-
sors (the AP and the AGI) an access and sched-
ules the memory cycle.

If the AP input FIFO is full but the AGI is ready,
the AGI will not be granted an access, so its
program execution will pause until the grant is
received. The AP can simultaneously request

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

input- and output-stream transfers; the FSM
determines which transfer to schedule based on
the AG requests and on priority. Memory ac-
cesses are pipelined over two machine cycles;
the order of events is completely deterministic
and synchronous once a transaction is granted.
If a request is denied, the processor may pause,
depending on what the pending request and the
next instruction are. For example, if an AGI
generates an address for AP input, it won't
actually pause until the program comes to
another instruction that will generate a request.
The mechanism of requests and grants hides the
details of interprocessor synchronization and
the logistics of data-memory accesses from the
programmer.

Address Generator

The purpose of each of the three identical AGs
is to produce the 16-bit values used as PE data-
memory addresses. The AG is a self-contained
three-address processor with on-chip program
memory; its architecture is straightforward (Fig.
3). The AG’s sixteen 16-bit data registers can be
read simultaneously from two ports. One of
these ports can be replaced by an immediate
constant from the instruction word. The other
port can read various special registers such as
the program counter. The two operands feed an
eight-function ALU, which writes its results
back into the data registers at a third address.
The ALU result can also be used by the AG as an
address for the PE board.

Because the AGs don't include hardware
for implementing special array-addressing
schemes (e.g., bit-reversing hardware for FFTs),
the general-purpose nature and broad applica-
bility of the AGs is maintained.

There is special hardware in the AGs that
facilitates program loops. A dedicated branch
counter can be loaded with a value indicating
the number of iterations in a loop. A begin-loop
instruction loads the branch counter and copies
the program address of the first instruction of
the loop into a branch-address (BA) register
(actually the top of the BA stack). A bit in the
instruction word is assigned to indicate the final

47

Hall et al. — A Compact Programmable Array Processor

DSAP ADDRESS GENERATOR

lole| GEN | DEST ADDR | S2 ADDR | I | ALUOP | S1 ADDRESS/IMMEDIATE CONSTANT | FORM 0

|1]E|xD|xS| DEST ADDR | S2 ADDR | 1 | ALUOP | S1 ADDRESS/IMMEDIATE CONSTANT | FORM 1
313029 28 27 26 25 24 2322212019 18 171615 14 13 12 1110987654321 0

2
\3 PROGRAM 9

MEMORY (& @
< —<»— 512x32BIT

PROGRAM MEMORY

HOST-BUS ACCESS T
+1 :
BA STACK
o *— PROGRAM COUNTER
VECTOR
BC STACK O
16 x 16 T P BRANCH COUNTER
16 GENERAL-PURPOSE
REGISTERS
& DIRECT R/W DATA
ALU OPERATIONS
0 | S2I0R S1
1 | S2 AND S1
2 32 XOR S'l //1 6
3| st
4| S2-51
5 1 S2.+£Si
6 | (S2+S1)<<
7 | (S2+8S1)>>

I/O PINS

48 The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

DSAP ADDRESS GENERATOR

Fig. 3 — Block diagram and instruction summary of the address generator.

instruction in the loop. When an instruction
with this bit set is executed, the branch counter
is automatically tested for zero in parallel with
all other instruction operations. If it is zero, exe-
cution continues past the end of the loop; if it is
nonzero, the branch counter is decremented
and execution branches back to the top of the
loop. Once a loop is initiated, iteration proceeds
with no overhead associated with the loop, al-
lowing the AG to generate an address every
machine cycle. Last-in/first-out stacks associ-
ated with both the branch counter and the
branch-address register handle nested loops.

Along with each address generated, there is a
2-bit tag. The tag tells the PE board what to do
with the address. As shown in Table 1, the dis-
position of the different types of addresses de-
pends on which AG is producing it.

In addition to performing data-stream opera-
tions, any AG can directly access a 16-bit word

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

in data memory. The current ALU result can be
used as a memory address, and the data can be
transferred to or from the I/O data register.
Direct accesses are typically used to load point-
ers or parameters from data memory, or for
diagnostic purposes.

The AG was developed for the PE board, but
it is a general-purpose microcoded sequencer
that is suitable for other possible applica-
tions. In the prototype DSAP constructed for the
UAV radar application, for example, two AG
chips were used as a programmable radar-
timing generator.

Arithmetic Processor

The arithmetic processor is a special-purpose
VLSI device that performs array operations on
streams of data. It efficiently supports complex
arithmetic on 16-bit integers or fractions. Sup-

49

Hall et al. — A Compact Programmable Array Processor

Table 1. Disposition of Address Tags

ADDRESS SOURCE
Tag Input AG Output AG XBUS AG
Type
Type 1 Read a Value for Write an Output-AP Read a Value
the AP Input Stream Stream Item to Data from the XBUS
Memory

Tag This AP Input
Datum as End-of-Stream

Type 2

Type 3

port for multiple-precision operations is avail-
able. In each instruction cycle, the AP can use
two identical ALUs and a parallel multiplier to
perform as many as three arithmetic functions.
Analysis of several common signal-processing
tasks indicates that this combination of func-
tional units provides a well-balanced processing
environment and that neither computation nor
data accesses present a bottleneck to system
throughput.

A typical stream-processing module on the AP
is implemented as a program loop (see “Appen-
dix: Programming Example”). In a typical pro-
gram loop, a set of input-stream values are read,
arithmetic operations are performed, and finally
either output-stream values are produced or
values are accumulated. The loop is repeated
until it is interrupted by an input datum tagged
by the AGI program as the EOS.

Efficient AP code often involves pipelining a
computation on one set of inputs through more
than one loop iteration. For instance, a com-
plex multiplication operation that involves four
multiplications and two additions can be imple-
mented in a four-instruction loop, by deferring
the additions and the outputs until the next time

50

Send the Stream ltem Wait for an XBUS

to Another PE over the Transfer to Occur
Data-Exchange Network

Write the Item into Send a Value
Local Data Memory to the XBUS

and Retain It for a
Subsequent Transfer
to Another PE

around the loop. At that time, the multiplier can
be concurrently working on the next input-
stream values.

A unique design innovation of the AP architec-
ture is a shifting-register bank that stores inter-
mediate results. This design greatly simplifies
code generation for pipelined operations. The
registers can be thought of as a FIFO, in which
new values (from the ALUs, multiplier, input
stream, or any combination) are written into the
top (i.e., lowest-order register) and push existing
data down (to higher-register addresses). The
oldest values disappear off the bottom of the
register bank. Writing is always sequential.
Nonetheless, by specifying register addresses in
an instruction word, the 16 registers can be read
randomly.

The AP architecture (Fig. 4) is built around the
register banks. Each register is 32 bits wide,
but, for most purposes, the two 16-bit halves
(called the X and Y sides) can be accessed
independently. In every instruction cycle, the
64-bit instruction word specifies six independ-
ent register-read addresses, three from the X
side and three from the Y side. The register
address space is described by five bits for each

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

read port, which is selected from the 16 shifting
registers, eight general registers, and special
registers that are used for program flow control
and direct data-memory accesses. The three
operands from each side pass through swapping
multiplexers; in these multiplexers, the X and Y
parts of the corresponding words can be ex-
changed. Two X ports feed the X ALU and two Y
ports feed the Y ALU. One port from each side is
directed to the multiplier.

ALU operations are independently selectable
for the two sides and include, in addition to the
usual suite of operations, such selection func-
tions as maximum, minimum, and absolute
value. The ALU results pass through a 1-bit
left- or right-shifter; all results are available for
storage in the register bank within a single in-
struction cycle. As a result of the arithmetic
functions, four 16-bit values are available for
storage, two from the ALUs and a 32-bit product.
As discussed above, up to three items can be
written into the shifting-register bank on each
instruction cycle, and the two sides can be inde-
pendently written. For instance, the least sig-
nificant part of a product can be ignored and the
most significant part written into one of the sides
of the shifting registers. The data in the shifting-
register bank move down corresponding to the
number of items stored, and the items are
always written in reverse alphabetical order:
product, input stream, and ALU result; or P, I, A.

The general and special registers are written
as a single 32-bit entity from both ALU results.
The write address is specified by a 4-bit address
field in the instruction.

Two of the special-register addresses corre-
spond to the output stream. One address is for
ordinary stream items and one tags the item
written as the EOS. When the EOS is stored in
data memory with the assistance of the output
AG, the AG’s program flow is interrupted and
forced to branch to a pre-specified location. The
input and output streams pass through FIFO
memories in the AP, effectively decoupling the
AP and AGs. The AP program can both read an
input and write an output item in the same
instruction, although there is actually only one
port to the data memory.

Two of the 32-bit special registers, which are

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

actually made up of four 16-bit registers, are
used for flow control. Two of the 16-bit registers
are branch-address registers, and, by setting
the appropriate value in the 2-bit flow-control
instruction field program, flow can be directed to
branch with no overhead. The third register is
the program counter; a read returns the current
program-memory address plus one, and a write
causes a branch. The fourth register is the EOS
vector register. Program execution branches to
the address contained in this register when an
input-stream item is read that the AGI has
tagged as the EOS.

The data register is a special register that is
used in direct data-memory accesses. These
accesses circumvent the stream FIFOs and let
the AP program access any data-memory loca-
tion. This facility is useful for parameter loading,
table-lookup operations, and diagnostics. The Y
ALU result is used as the data-memory address,
and data are transferred to or from the 32-bit
data register. Two write-only special-register
addresses initiate the direct accesses. One
address initiates a read, and the other initiates
a write.

The write operations of the ALU data to the
general or special registers may be made condi-
tional upon the arithmetic result of the X ALU on
the previous cycle. The 3-bit condition field of
the AP instruction can test the previous result
for zero, negative, or various combinations, and
if a condition is met, a write operation can be
specified. This capability is useful for condi-
tional branches, although conditional branches
are in fact quite rare in application code, or for
conditional writes to the output stream to out-
put-only selected items.

Unmanned-Air-Vehicle
Radar Application

A DSAP has been built for a prototype moving-
target-detection radar carried by a UAV. Figure
5 shows the DSAP chassis, which includes a
custom radar interface and six dual-PE boards.
The radar interface generates radar-timing sig-
nals and sends digitized radar data on the XBUS
in real time.

The dual-PE printed-circuit board, shown in

51

Hall et al. — A Compact Programmable Array Processor

PROGRAM MEMORY
HOST-BUS ACCESS

FETCH ADDRESS

SELECTOR 8 REQUEST/GRANT

LAST FETCH

LAST FETCH + 1
VECTOR

J1

J2

LAST ALU RESULT

52 The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

DSAP ARITHMETIC PROCESSOR

® ALU %INPUT lPROD ALU |INPUT lPROD
32 ‘ \

X Y.
16 SHIFTING REGISTERS 16 SHIFTING REGISTERS

" FIFO

X Y
8 GENERAL REGISTERS 8 GENERAL REGISTERS

A 32 BITS A

J1 ADDRESS FETCH ADDRESS

< _Fo—oa—> J2 ADDRESS EOS VECTOR

IO PINS DATA REG N DIRECT R/W DATA DIRECT R/W DATA)

A B C A B C
A SWAP
E—

P—]
|

B SWAP

\>_</
| ——] —

C SWAP

U \' U Vi
Y A\ Y Y
X : Y
ALU/SHIFTER ALU/SHIFTER

16x 16
SIGNED
MULTIPLIER

>< pSWAP

Fig. 4 — Block diagram and instruction summary of the Arithmetic Processor.

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989) 53

Hall et al. — A Compact Programmable Array Processor

Fig. 6, measures 6.5 x 12 in?. In addition to data
memory, the AGs, and the AP, the board con-
tains several discrete integrated circuits. The
integrated circuits redrive clock lines and other
backplane signals. Most integrated circuits are
mounted in small-outline packages, which re-
duce the board size, yet are easier to handle
than leadless chip carriers (LCC). The data
memory, however, is assembled with LCC
16k x 4-bit static RAMs. The RAMs are mount-
ed on two sides of a ceramic board and inserted
into pin sockets on the PE board. The dual-PE
board consumes 17 W of 5-V power and weighs
29 oz.

The DSAP shares the chassis with a 10-slot
VME backplane (Fig. 5). The backplane contains
commercial 68020-based processors and inter-
face boards, which provide interfaces to plat-
form location and communication equipment,
as well as post-detection processing of radar
data.

The DSAP package is a complete radar-pro-
cessing system. It provides clean moving-target
location reports, which can be transmitted over
a low-bandwidth data link to a ground-based
display.

Radar signal processing begins when the
radar-interface card sends 32-bit complex num-
bers, which represent digitized radar-video
data, down the XBUS. An EOS from the radar-
interface card signals the boundary between
radar pulses, and the AGXs on all PE boards
count XBUS transfers from the EOS. The PEs
are individually programmed to store a group of
samples from each radar pulse. The processing
isrange-partitioned; each PE processes a subset
of the total range swath of the radar.

When the data from 64 radar pulses have been
collected, the AP, AGI, and AGO commence the
moving-target-detection processing on that
batch of data. At the same time, the AGXs on
all boards switch to a second block of memory

UAV PROCESSOR

e Integrated Signal and Data Processor

e Programmable

e 360 Million Operations per Second
— 6 Dual-Processing-Element Boards
— 3 VME 68020 Single-Board Computers
— Integral Radar Timing and Control Unit
— Integral Radar A/D Converters

® Power—400 W

e Weight — 55 Ib (25 kg)

e Volume —1.6 ft3 (.05 m3)
(13-1/2" x 10-1/4" x 20")

Fig. 5 — This Data-Stream Array Processor operates at 360 MOPS and includes six dual-processor-element boards,
three 68020-based single-board computers, integral radar timing and control unit, and integral radar A/D converters.

54

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

ADDRESS GENERATIONS

iot 2
12575 0e R EXNTTHEGES.

GATE
ARRAYS

DATA
MEMORY

~
PE #1

Hall et al. — A Compact Programmable Array Processor

ARITHMETIC PROCESSOR

-~
PE #2

Fig. 6 — Each dual-processing-element board is a 12-layer printed-circuit board. The dual-PE boards include six address
generators, two arithmetic processors, four custom gate arrays, and two data-memory modules.

and concurrently collect data from the next 64
pulses.

The moving-target-detection processing con-
sists of a series of array-processing steps. First,
an FFT is performed on the 64 values in each
range cell. A radix-4 FFT kernel is used to
maximize efficiency and the computation is
permuted to use a non-bit-reversing addressing
method. The complex FFT results are then
passed through a magnitude approximation,
resulting in a range-Doppler matrix; the Doppler
values indicate radial velocity relative to the
radar. Following this, the data are accessed
along the range dimension of the matrix for each
Doppler cell and an average signal strength is

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

computed. A second pass through these data
detects cells whose signal strength is signifi-
cantly higher than average. The AP program
uses the conditional-store feature to send only
those range-Doppler cells which cross the
threshold to its output stream. By selecting only
the above-threshold cells, the volume of data is
limited only to those cells which contain pos-
sible targets of interest.

When the processing is concluded, the DSAP
generates a VME-bus interrupt. The interrupt
indicates that the target data can be picked up
for subsequent stages of processing performed
in the general-purpose VME-based processors.

One figure of merit for analyzing processors

55

Hall et al. — A Compact Programmable Array Processor

such as the DSAP is the amount of its peak
capability that is used in real applications. The
AP on each PE can perform three operations per
instruction, indicating a peak capability of 30
MOPS. An examination of the radar signal-
processing application gives a utilization that is
better than 75%, or a true processing power of
over 22 MOPS. Note that the 22 MOPS given here
do not include the processing done by the AGs in
generating addresses (3 x 10 MOPS peak).

Another application-specific measure of per-
formance is the number of radar range samples
per second that can be processed by moving-
target detection. The complete processing algo-
rithm, including the steps — input validity
checking, weighted 64-point FFT, magnitude
approximation, threshold calculation, and
primitive target report generation — requires
17.5 processor cycles per input sample. This
translates to 1.75 usec per sample, at a 10-MIPS
execution rate, or 570,000 input samples per
second per PE.

Conclusions

The DSAP architecture provides a completely
programmable array processor. Each PE in the

56

DSAP is capable of over 20 MOPS in actual
operation, yet requires less than 10 W and 24
in3. The performance capability of the DSAP was
achieved by using commercial VLSI and gate-
array processes and standard printed-circuit
boards, thus minimizing both development
and production costs. The data-stream archi-
tecture of the PE board offers complete flexibil-
ity in programming and greatly simplifies code
generation.

Future development efforts will focus on ex-
panding the existing AP architecture to a 32-bit
floating-point processor. Reductions in VLSI
geometry sizes should permit this doubling of
the data-path size.

Acknowledgments

The authors would like to thank Quentin Klein
for his contributions to this architecture. We
would like to thank Dave Craska, John Duncan,
Don Malpass, Tony Marsala, Jim Noonan, John
Reilly, and Paula Rygiel for their aid in writing
support/diagnostic software and debugging the
hardware. We would also like to thank Gerald
Morse and Ed Schwartz for their continued sup-
port and guidance.

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

Appendix: Programming Example

This section describes the process of implementing
a signal-processing computation on a DSAP. To limit
the length of the example, we will assume that the
data are already in the data memory of a PE, and will
concentrate on the programming of the AP, AGI,
and AGO. We will use this example to illustrate the
philosophy and the use of the DSAP's stream
architecture.

Generally, programming of the processors on the
PE board is done in a macroassembly language,
which hides some of the details of the AP, including
shifting-register allocation and use of swaps. For this
example, a pseudo-English tabular form will relate
the instruction fields of the AG and AP (shown in Figs.
3 and 4).

The first stage of software implementation for a
DSAP is to consider the signal-processing problem as
a series of array-processing steps. An array-process-
ing step can be loosely defined as one or more array
operations that can be performed within an AP pro-
gram loop; a step therefore defines the semantics of
the input and output streams. Once the stream
ordering has been dictated and the organization of
structures in the data memory is known, the input
and output AG programs can be written.

The programming example describes a complex
convolution of two equal-length vectors

(P*Q)i=z B Qi

J=0

where P and Q are the arrays to be convolved, i and j
are the indices, running from O to N-1, and N is the
array length.

A repeatedly invoked complex-inner-product ker-
nelis at the core of the convolution operation. For this
kernel, the AP is programmed to accept pairs of
complex values, multiply them, and add them to a
running sum until the AP encounters an EOS flag. At
that point, the AP emits the single complex result.

The stream architecture’s separation of computa-
tion and data-memory addressing enables a
programmer to compose, without concern about
data-memory addressing, the AP program as an inde-
pendent module that forms the inner product. This
separation simplifies programming. Furthermore,
once the APinner-product module is created, it can be
used for subsequent applications such as matrix
multiplication and discrete Fourier transforms (DFT)
by simply changing the AG code. The internal details
of an AP module need not be considered in order to use
it; the stream protocol (ordering of operands), EOS se-
mantics, and pipeline delay through the AP computa-
tion are the only necessary interface specifications.

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

The complex inner product requires four multipli-
cations and two additions for the complex multiplica-
tion, followed by two additions for accumulation.
Eachiteration of the kernel requires two inputs. Since
we have two ALUs and a multiplier at our disposal and
since the additions and I/O can be performed in the
background while the multiplications are taking
place, the AP program loop will be four instructions
long, limited by the multiplier. Fractional data are
assumed. Therefore, only the 16 most significant bits
of the product will be preserved.

We first write the procedure as a series of assign-
ments that use minimal parallelism and assign
names to the values involved in the computation. All
intermediate results except the sum are assigned to
the shifting registers; the sum will be accumulated in
general register 8. The 32-bit values stored in either
the shifting registers or the general registers are
referred to by name, and the individual 16-bit parts of
them can be referred to with the x or y subscripts.

Variables:

P, Q : shifting
JK LM : shifting
C : shifting
S :genreg 8

... complex inputs
... partial products
... complex product
.. accumulator

Code:

The complex-multiply sequentially produces four
16-bit partial products that are pushed onto one side
or the other of the shifting registers during each
instruction. This piecemeal shifting will misalign the
X and Y sides of the shifting registers by one location.
For an automatic code generator, this misalignment
is no problem, but, for illustration, we will keep the
two halves of values together by always pushing a 32-

57

Hall et al. — A Compact Programmable Array Processor

bit product and by ignoring the least significant part
of the product. We then use a product swap to store
the significant part on the conceptually correct side.
Although this method squanders registers, the pro-
gram is not register-limited.

The code may be condensed into a four-instruc-
tion loop by concurrent use of the arithmetic units.

In general, it may be useful to try various combina-
tions of parallel operations to obtain maximal AP
utilization. We write the program listed in Table 2 in
tabular form to keep track of the parallel operations.
Note that the named values do not correspond to the
same register location at each instruction; rather, the
values are pushed down the register bank as new
values are written.

Processing of a set of input-stream values is pipe-
lined over three iterations of the loop. During any
individual iteration, the ith values are being input
while the (i —1)st values are being multiplied and the
(i — 2)nd values are being added and accumulated.
Any values older than (i — 2) are of no interest and
eventually disappear off the bottom of the shifting-
register bank. Because of the pipelining, the complete
AP program must be longer than four instructions.
The first two iterations must be coded inline, rather
than looped, essentially to prime the data pipeline.

The EOS protocol must also be defined. We shall
dictate that EOS will be sent with a dummy value after
Qy.,-The instruction during which the EOS is
received will execute, but the following instruction
will be executed at the address contained in the vector
register. Following the EOS, the AP must finish the
back end of the loop kernel inline, to empty the data
pipeline and emit the result value. An EOS indicates
that one inner product is done and the result emitted,
and the AP can then begin another inner product
(since it will be invoked repeatedly) until some signal
indicates that the entire step is done. We can de-
fine a protocol that specifies that if two EOSs are
received in a row, then the entire step (one com-
plex convolution) is complete and an EOS signal is

Table 2

passed to the output AG.

With these details in mind, the complete AP pro-
gram for the complex inner product can be coded. The
program will have two loops, the inner of which is the
four-instruction kernel described in Table 2 , and the
outer of which encompasses the entire processing of
one inner product. The J1 and J2 registers will be
used to loop back to the tops of the two respective
loops. The J2 and vector register are simultaneously
written, and the J1 and branch register are simulta-
neously written. Immediate-constant data are used to
load the flow-control registers and to clear the sum
register. The complete programislisted in Table 3 and
starts at program-memory location zero. Program
origin affects the values assigned to the flow-control
registers. All numeric values are hexadecimal.

Register assignments can now be performed. Shift-
ing-register assignment is rather tedious and is easily
performed with software tools, but we walk through it
here to illustrate the process. Table 4 describes the
contents of the shifting registers at the conclusion of
each instruction that writes them. At the far left is the
register address (hexadecimal — shifting-register ad-
dresses are 10-1F), followed by the symbolic values
contained in the X and Y sides of the register. The
column at the far right describes the values written
during that instruction. Subscripts indicate to which
input-stream values the intermediate results corre-
spond. The values labeled “junk” are the insignificant
part of products.

The assignments of the shifting registers can be
determined from Table 4. Fields left blank in Table 5
are unused and may be set to zero in the AP instruc-
tions. The conditional and multiply control fields are
set to ones in all instructions. When an instruction’s
flow-control field calls for immediate data, the ALU
operation field and the register addresses are re-
placed by a 16-bit immediate constant, denoted IC, on
both the X and Y sides. IC appears as the ALU result,
and may be stored through the ALU destination into
any of the general or special registers, and/or pushed

ALU Push Input

Prod Push

General-Register Assign ~ Flow

C=J-L,K+M, P

Q S=S+C End loop

58 The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

Table 3. Symbolic Representation of the Complex—Inner-Product Program

SHIFTING-REGISTER WRITES
Loc ALU Input Prod General-Register Write Flow
Loop back to here to start a new vector; clear the sum.
0: J2/V =0, 18] immed
1z S=[0,0] immed
Input the first stream pair.
2= (=
3: Q
4: J2/V =0, 14] immed
55 J1/PC =[10, 7] immed
Begin first complex-multiply.
Push of [0, 0] from the ALU maintains shifting-register assignment.
6: J=P *Q,
7 Cc=[0, 0] P K=P, *Q,
8: L=P *Q
9: Q M=P -Q,
Four-instruction kernel:
10: J=P Q.
Al C=J-LK+MP K=P, +Q,
12: == Py * Qy
13- Q M=P, +Q S=S5+C S
End of kernel; get here when EOS interrupts kernel.
Perform last two actions of kernel.
14: L=P,~ Oy
15: M=P -Q, S=S5+C
Perform addition from last complex-multiply.
16: C=J-LK+M
Perform final accumulation and write directly to output stream.
Loop back to start a new vector.
17: OouT=S+C J2
18: OUTEOS =0, 0] immed

into the shifting registers. Refer to Fig. 4.

Once the AP module is written, only its stream
protocol must be considered in order to invoke it in a
particular application. We have written an inner-
product module that is the core of the convolution
example but may also be used for matrix multiplies,
DFTs, and other applications, simply by changing the
AG code.

To summarize the protocol: AGI sends a stream of
pairs of values, P, and Q, to be processed; following
the final valid data, AGI sends a dummy value tagged
as EOS. At this point, it can commence sending the
next stream of pairs. When the entire processing is
complete, AGI sends another EOS-tagged dummy
value. Meanwhile, AGO receives a stream of valid
outputs followed by an EOS. On receiving two EOSs
in a row the AP sends an EOS to the AGO.

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

To perform the discrete convolution of two vectors
of length N, the AGI must send to the inner-product
engine N streams of successively increasing length

[Py Q)

[P, Q1 [P, Q)

[Py Q). [P, QI [P, Q)]

[Por Q1. [P, QL [Py, Q). [Py, Q]

t":o" ON-1]' [Pv ON-Z]’ &35 [PN-Z’ 01]' [PN-1’ Oo]‘

The AGI program can be written rather simply as
two nested loops, which we will describe first symboli-
cally, using variables that will be assigned to general
registers. All looping will use the dedicated iteration
hardware in which the branch counter is loaded with

59

Hall et al. — A Compact Programmable Array Processor

Table 4. Contents of Shifting Registers after Each Instruction

J O O+

JO O D W

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

Hall et al. — A Compact Programmable Array Processor

Table 5. Tabular Representation of the Complex—Inner-Product Program
with Register Assignments (register addresses in hexadecimal)

= X > < 4 >~
Loc Flow Shift ALU A B (&5 Dest Swap Shift ALU A B C
0: immed IC=0 J2/V IC=18
1: immed IC=0 8 IC=0
2: / /

3 / /

4: immed IC=0 J2/V IC=14
5: immed IC=10 JH/PC IC=7
6: P 10 0 11 A P 0 0 0
7 AlLP XOR 0 0 14 P A lLP XOR 12 0 0
8: P 0 0 0 (& P 15 0 14
9: =P 0 0 16 P P 15 0 0
10: P 14 0 10 A P 0 0 0
1§ AlLP u-v 17 13 15 P ALP U+V 11 14 12
12: P 0 0 0 C 2 15 0 19
135 I P U+Vv 8 11 19 8 = L.P U+V 15 8 11
14: = 0 0 0 C P 14 0 18
15z P U+V 8 11 19 8 P P U+ V- 15 8 11
16: A u-v 15 11 0 A UsVv 0 14 10
7 2 Uu+Vv 8 10 0 6 u+v 0 8 10
18: immed IC=0 7 IC=0

the number of branches back to the top of the loop. A
number of parameters are defined that are most
conveniently coded as ICs in the AG instructions. As
in the AP, each line of code below corresponds to one
instruction.

PARAMETERS:

LENGTH The length of the vectors
P_START Start address of P vector minus one
Q START Start address of Q vector
VARIABLES:

STREAM_LENGTH Register 0

P_POINTER Register 1

Q POINTER Register 2

CODE:

STREAM_LENGTH = 1;
Loop = LENGTH;
P_POINTER = P_START;
Q POINTER = Q START + STREAM_LENGTH;
Loop = STREAM_LENGTH - 1;
Generate_address = P_POINTER = P_POINTER + 1;
Generate_address = Q POINTER = Q POINTER-1;
End_loop;
Generate_EOS = STREAM_LENGTH
= STREAM_LENGTH + 1;
End_loop;
Generate_EOS = 0;

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

This code can be transformed into AG instructions,
shown in Table 6. When Source 1 is of the form
“IC =...” a 16-bit immediate constant is used; other-
wise, a register address is given. Refer to Fig. 3.

The AGO program is even easier; it loads a pointer
to the beginning of the result vector and loop-gener-
ates an incrementing address until either the loop
counter is exhausted or an EOS is encountered. The
EOS causes an interrupt that transfers program flow
to the address contained in the vector register when
the AGO generates an address that stores the EOS-
tagged value. The write-to-data-memory will occur, as
will any other effects of the AGO instruction, includ-
ing internal register writes.

Note that if any or all of the vectors occur noncon-
tiguously in data memory, the AG programs can per-
form the addressing by incrementing or decrementing
the pointers by a value other than one.

One final comment: this example describes only
one of many programming methods; another example
deserves brief discussion. The AP program was writ-
ten as a prologue of inline code, followed by a loop of
high-density pipelined code, followed by an epilogue
of inline code. Another method, which saves AP
instructions but costs more execution time, is simply
to write the pipelined kernel loop, along with the
necessary prologue to set up the J and vector regis-
ters. In general, this method is useful for AP functions
that do not have internal storage between one input-
stream item and another, such as a complex-multiply

61

Hall et al. — A Compact Programmable Array Processor

or FFT kernel. The inner product does not fall into this
category. Because of the pipelining, an AP program
thus coded will emit one or more “garbage” values that
must be discarded by the AGO in advance of the
legitimate-result stream. Similarly, the AGI must

generate additional stream values at the end to expel
the last of the useful results. This method, used ex-
tensively in the UAV radar application software, is en-
tirely a matter of programmer preference.

Table 6
Loc End Gen Dest Source 2 ALUOP Source 1
0: 0 0 0 0 3 IC=1
1z 0 0 10 0 3 IC = LENGTH
2: 0 0 1 0 3 IC = P_START
3 0 0 2 0 5 IC = Q_ START
4: 0 0 10 0 4 IC=1
5 0 1 1 1 5 IC =1
6: 1 1 2 2 5 IC=-1
T 1 2 0 0 5 IC=1
8: 0 2 0 0 0 0

F. EDWARD HALL is cur-
rently developing new archi-
tectures and software for
signal processors. Ed re-
ceived a B.S. in physics from Bucknell University. He has
worked at Lincoln Laboratory for 11 years.

62

A. GREGORY ROCCO, Jr.
works in the areas of com-
puter architectures, digital
signal processing, and com-
puter-aided engineering. Greg received a B.S. in electrical
engineering from the University of New Hampshire in 1977
and an M.S. in electrical engineering from Purdue Univer-
sity in 1982. He has been a Lincoln Laboratory staff member
for 11 years.

The Lincoln Laboratory Journal, Volume 2, Number 1 (1989)

