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Neural Network Classifiers for
Speech Recognition

Neural nets offer an approach to computation thatmimics biological nervous systems.
Algorithms based on neural nets have been proposed to address speech recognition
tasks which humans perlorm with little apparent effort. In this paper, neural net
classifiers are described and compared with conventional classification algorithms.
Perceptron classifiers trained with a new algorithm, called back propagation, were
tested and found to perform roughly as well as conventional classifiers on digit and
vowel classification tasks. A new net architecture, called a Viterbi net, which recog­
nizes time-varying input patterns, provided an accuracy ofbetter than 99% on a large
speech data base. Perceptrons and another neural net, the feature map, were imple­
mented in a very large-scale integration (VLSI) device.

Neural nets are highly interconnected net­
works ofrelativelysimple processingelements,
or nodes, that operate in parallel. They are
designed to mimic the function ofneurobiolog­
ical networks. Recentworkon neural networks
raises the possibility of new approaches to the
speech recognition problem. Neural nets offer
two potential advantages over existing ap­
proaches. First, their use of many processors
operating in parallel may provide the computa­
tional power required for continuous-speech
recognition. Second, new neural net algo­
rithms, which could self-organize and build an
internal speech model that maximizes perfor­
mance, would perform even better than exist­
ing algorithms. These new algorithms could
mimic the type of learning used by a child who
is mastering new words and phrases.

The best existing non-neural speech recog­
nizers perform well only in highly constrained
tasks. For example, to achieve 99% accurate
recognition on 105 words, a typical word rec­
ognizer must restrict the input speech to talk­
er-dependent isolated words. That is. the rec­
ognizer must Qe trained with the speaker's
voice prior to the speech recognition task and
individual words must be spoken with pauses
interjected between words. Accuracy can be as
high as 95% for 20,000 words - when sentence
context can be used as·an aid in word recogni­
tion and when a pause is interjected between
words. Even at 95% accuracy for individual
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words, sentence accuracyonlyamounts to 50%.
Performance for recognizers that don't re­

strictspeech to isolated-word talker-dependent
speech is much worse. The best current algo­
rithms for speech recognition use hidden Mar­
kov models (HMM) and therefore require com­
putation rates of>100 million instructions per
second (MIPS) for large vocabulary tasks. But
computation rates of this magnitude are not
available on conventional single-processor
computers.

Building internal speech models and self­
organization requires the development ofalgo­
rithms that use highly parallel neuron-like
architectures. Our approach to this problem is
to design neural net architectures to imple­
ment existing algorithms and, then, to extend
the algorithms and add advanced learning and
model-building capabilities.

COMPONENTS OF AN ISOLATED·
WORD SPEECH RECOGNIZER

An isolated-word speech recognizer must
perform four major tasks. The structure of the
speechrecognizershown in Fig. 1 reflects these
tasks. The recognizer first includes a prepro­
cessing section that extracts important infor­
mation from the speech waveform. Typically,
the preprocessor breaks the input waveform
into 10-ms frames and outputs spectral pat-
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Fig. 1 - An isolated-word speech recognition system consists of preprocessor, pattern matching section, time
alignment section, and pattern sequence classifier.

terns that represent the input waveform. The
spectral patterns are then compared with
stored reference spectral patterns. This com­
parison yields the local distance between the
static pattern from the preprocessor and the
stored patterns, which is a measure of the
match or similarity between these patterns.

The sequence of spectral patterns from the
preprocessor mustbe time aligned to the nodes
in word models. Time alignment compensates
for variations in talking rate and pronuncia­
tion. Word models contain the sequence of
patterns expected for each word and use inter­
nal nodes to time align input pattern sequen­
ces to expected pattern sequences. Following
the temporal alignment and matching func­
tions, a decision logic section selects the word
model with the best matching score as the rec­
ognizer output.

Neural nets have been applied to the four
tasks required of a speech recognizer. Two of
these applications - pattern matching orclas­
sification, and time alignment - are the focus
of this paper.

NEURAL NETS AS CLASSIFIERS

A taxonomy of eight neural nets that can be
used to classify static patterns is presented in

Fig. 2. These classifiers are grouped on the
basis of whether they accept continuous or
binary inputs, and on the basis ofwhether they
employ supervised or unsupervised training.

Nets trained with supervision, such as per­
ceptrons [1), are used as classifiers (see box,
"Supervised Training"). These nets require la­
beled training data. During training, the num­
ber of classes desired and the class identifica­
tion of each training sample are known. This
information is used to determine the desired
net output and to compute an error signal. The
error signal shows the discrepancy between
the actual and the desired outputs; it is used
to determine how much the weights should
change to improve the performance for subse­
quent inputs.

Nets trained without supervision [see box,
"Unsupervised Training (Self-Organization)"),
such as Kohonen's feature map-forming nets
(2), can be used as vector quantizers. No infor­
mation concerning correct classes is given to
these nets. Theyself-organize training samples
into classes or clusters without intervention
from a "teacher." Self-organized, or unsuper­
vised, training offers the advantage of being
able to use any large body of available unla­
beled data for training.

Classical algorithms that most closely resem­
ble equivalent neural net algorithms are listed

108 The Lincoln Laboratory Journal, Volume I, Number 1 (1988)



Lippmann - Neural Network Classifiersfor Speech Recognition

Supervised Training

Decision regions after 50, 100, 150 and 200 trials
generated by a two-layer perceptron classifier trained
with back propagation training algorithm.

Supervised trainingrequires la­
beled training data and a "teach­
er" that presents examples and
provides the desired output. In
typical operation, examples are
presented and classified by the
network; then error information
is fed backandweights are adapt­
ed, until weights converge to fi­
nal values.

Multilayer perceptrons use
supervised training and over­
come many of the limitations of
single-layer perceptrons. But
they were generally not used in
the past because effective train­
ing algorithms were not avail­
able. The development of a new
training algorithm, called back
propagation, has permitted mul­
tilayer perceptrons to come into
increasing use (3). The illustra­
tion shows decision regions
formed, using back propagation,
after 50,100,150 and 200 train­
ingexamples were presented to a
two-layer perceptron with eight
hidden nodes and two outputs
[4J. The shaded areas in the plots
are the actual decision regions
for Class Aand the coloredcircu­
lar regions are the desired min­
imumerrordecision regions. The
circulardecision region for Class
A formed after 200 iterations.
Further iterations form a more
perfect circle.

Back propagation training be­
gins with setting node weights
and offsets to small random val­
ues. Then a trainingexample and
desired outputs are presented to

the net. The actual outputs ofthe
net are calculated, error signals
are formed, and an iterative algo­
rithm is used to adapt the node
weights - starting at the output
nodes and working back to the
first hidden layer. An example
and desired outputs are again
presented to the net and the en­
tire process is repeated until
weights converge.

If the decision regions or de­
sired mappings are complex,

t = 150

back propagation can require
many repeated cyclical presenta­
tions of the entire training data
to converge. This difficulty in­
creases training time, but itdoes
not affect response time of the
network duringuse. Itdoes, how­
ever, set a practical limit to the
size of nets that can be trained.
For single-layernets or for multi­
layer nets with restricted con­
nectivity, this restriction is not a
severe problem.

t = 100

t = 200

at the bottom ofFig. 2. The Hopfield, Hamming,
and adaptive resonance theory classifiers are
binary-input nets: they are most appropriate
when exact binary representations of input
data, such as ASCn text or pixel values, are
available. (These nets can also be used to solve
minimization problems, in data compression
applications, and as associative memories.)
The single and multilayer perceptrons, feature
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map classifiers and reduced Coulomb energy
(RCE) nets are classifiers that can be usedwith
continuous-value inputs. The perceptron and
RCE classifiers require supervised training; the
feature map classifier does not (see box, "Su­
pervised Training").

Blockdiagrams ofconventional and ofneural
net classifiers are presented in Fig. 3. Both
types of classifiers detennine which one of M
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classes best represents an unknown static in­
put pattern containing N input elements.

The conventional classifier contains two
stages. The first stage computes matching
scores, which indicate how closely an input
pattern matches the exemplar pattern of each
class. (The exemplar is the pattern that is most
representative of a class.) The second stage of
the classifier selects the class with the best
matching score and thus finds the class that is
closest to the input pattern.

In contrast with the preceding method of
classification, the neural network classifier
(Fig. 3b) accepts the N input values through N
parallel input connections. The first stage of
the classifier computes matching scores, in
parallel. It then transmits the scores, again in
parallel, to the next stage over M analog lines.
Here the maximum of these values is selected
and enhanced. At the end of the classification
process, only one of the M-class outputs is
high. Information about classification errors
can be fed back to the first stage of the classi­
fier, and connection weights between nodes
adapted, thereby adjusting the algorithm and

making a correct identification in the future
more likely. Adaptation is typically incremen­
tal and requires minimal computation and
storage.

The classifiers displayed in the taxonomy in
Fig. 2 can identify which internal class best
represents an input pattern. This capability
can be used, for instance, to identify speech
sounds that can vary substantially between
utterances Similarly, the classifiers can iden­
tify sounds that have been corrupted by noise
or by interference from other, competing, talk­
ers.

Neural classifiers can also be used as associ­
ative, or content-addressable, memories. An
associative memory is one that, when present­
ed with a fragment ofa desired pattern, returns
the entire pattern. Classifiers can also serve in
speech and image recognition applications to
vector-quantize analog inputs. Vector quanti­
zation compresses data without losing impor­
tant information, and can be used to reduce
storage and computation requirements.

Neural nets differ from conventional classifi­
ers in four important ways. The hardware has a

Neural Net Pattern Classifiers
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Fig. 2 - A taxonomy of eight neural net classifiers; the conventional pattern classification algorithms most similar to
corresponding neural net algorithms are listed at the bottom.
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Unsupervised Training (Self-organization)
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more responsive to the current
input. This process is repeat­
ed for further inputs until the
weights converge and are fIXed.

The self-organized training pro­
cess is illustrated in Fig. B. Cross­
points of the lines in Fig. B rep­
resentvalues ofweights between
two inputs andeach of100nodes
in a feature map net. Lines con­
nect points for physically near­
est neighbors in the grid. The
crosspoints grow with time and
cover the rectangular region rep­
resenting the distnbution from
which the input training exam­
ples were drawn. Lines don't
cross, indicating that nearby
nodes are sensitive to similar
inputs and that a topological
mapping between inputs and
nodes has been achieved.

A VLSI chip that implements
the feature map algorithm has
been fabricated (see box, "Im­
plementingNeural Nets inVLSI").

t=1000

Xc

~ II

t - 25

--:--..:--------.-.~~
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Fig.B - The vector weights to 100 output nodes
from two input nodes generated by Kohonen's fea­
ture map algorithm [2]. The horizontal axis repre­
sents the value of the weight from input Xo and the
vertical axis represents the value from input x l' Line
intersections specify two weights for each node.
Lines connect weights for nearest-neighbor nodes.
An orderly grid indicates that topologically close
nodes are responsive to similar inputs. Inputs were
random, independent, and uniformly distributed
over the area shown.

t - 500

•

presented sequentially in time,
without specifying the desired
output. After input vectors have
been presented to the net,
weights will specify cluster or
vector centers that sample the
input space so that the point
density function of the vector
centers tends to approximate the
probability density function of
the inputvectors. This algorithm
requires a neighborhood to be
defined around each node that
decreases in size with time.

Net training begins with set­
ting random values for the
weights from the N inputs to the
M output nodes. Then a new in­
put is presented to the net and
the distance between the input
and all nodes is computed. The
output node with the least dis­
tance is then selected and the
weights to that node and all
nodes in its neighborhoodare up­
dated, which makes these nodes

~-....,.--Output
Nodes

Unsupervised training, some­
times called self-organization,
uses unlabeled training data; it
requires no external teacher to
feed errorsignals backto the net­
workduringtraining. Dataare en­
tered into the network, which
then forms internal categories or
clusters. The clusters compress
the amount of input data that
must be processed without los­
ing important information. Un­
supervised clustering can be
used in such applications as
speech and image recognition to
performdatacompression and to
reduce the amount of computa­
tion required for classification,
as well as the space required for
storage.

Self-organized training is well
represented by self-organizing
feature maps. Kohonen's self-or­
ganizing feature maps [2) use an
algorithm that creates a vector
quantizer by adjusting weights
from common input nodes to M
output nodes, arranged in a two­
dimensional grid (Fig. A). Output
nodes are extensively intercon­
nected with many local connec­
tions. During training, contin­
uous-value input vectors are

Input

Fig.A - Using variable connection weights, this
feature map connects every input node to every
output node.
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Fig. 3 - a) The inputs and outputs of conventional classifiers are passed serially and processing is serial. b) Inputs
and outputs of neural net classifier are in parallel and processing is in parallel.

parallel architecture; inputs and outputs are
analog and in parallel; computations are per­
formed in parallel; and connection weights are
adapted incrementally over time, which im­
proves performance yet uses simple calcula­
tions and limited storage.

CLASSIFICATION WITH MULTILAYER
PERCEPTRONS

A single-layer perceptron (Fig. 4) is the sim­
plest possible feed-forward neural net classi­
fier. It classifies an input pattern applied at the
input into one of two classes, denoted A and B
in Fig. 4. This net forms half-plane decision
regions by dividing the space that the input
spans, using a hyperplane decision boundary.
Decision regions are used to determine which
class label should be attached to an unknown

input pattern. If the values of the analog inputs
for a pattern fall within a certain decision re­
gion, then the input is considered to be a mem­
ber of the class represented by that decision
region.

An example of the evolution of a single-layer
perceptron's decision boundaries during 80
trials of training is shown on the right side of
Fig. 4. This example uses a training algorithm,
called the perceptron convergence procedure,
which modifies weights onlyon trials where an
error occurs.

Multilayer perceptrons (3) are nets that in­
clude layers of hidden nodes not directly con­
nected to both inputs and outputs. The capabil­
ities of perceptrons with one, two and three
layers and step nonlinearities are summarized
in Fig. 5. Single-layer perceptrons cannot sepa-
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rate inputs from classes A and B in the exclu­
sive-or problem shown in the third column of
Fig. 5. This problem includes two classes with
disjoint decision regions that cannot be sepa­
rated by a single straight line. Two-layer per­
ceptrons typically form open- or closed-convex
decision regions and thus can separate inputs
for the exclusive-or problem, but they typically
cannot separate inputs when classes are
meshed.

Three-layer perceptrons with enough nodes
in the first layer of hidden nodes can not only
separate inputs when classes are meshed, they
can form decision regions as complex as re­
quired by any classification algorithm [4].
Three-layer perceptrons with sigmoidal nonlin­
earities can also form arbitrary continuous
nonlinear mappings between continuous-val­
ued analog inputs and outputs [4].

SPOKEN DIGIT CLASSIFICATION

A new training algorithm, called back
propagation, was recently developed for multi­
layer perceptrons [3]. Multilayer perceptron
classifiers trained with back propagation were

comparedwith conventional classifiers using a
digit-classification task involving speech from
a variety of speakers. This comparison was de­
signed to gain experience with the performance
of multilayer perceptrons trained with back
propagation on a difficult classification prob­
lem - not to develop a digit recognizer.

Classifiers were evaluated using the first sev­
en single-syllable digits ("one," "two," "three,"
"four," "five," "six" and "eight") of the Texas
Instruments (TI) Isolated Word DataBase [5].A
version ofthis database that had been sampled
at 12 kHz was processed to extract 11 mel cep­
stra from every 10-ms frame. Mel cepstral pa­
rameters are derived from a spectral analysis of
a short segment of the input speech waveform;
they have been found to be useful for speech
recognition [6]. Each classifier was presented
with 22 input coefficients for everytest or train­
ing utterance word token. Eleven of these coef­
ficients were obtained from the highest-energy
frame for the word and 11 from the frame that
preceded the highest-energy frame by 30 ms
(Fig. 6). The additional coefficients from the
earlier frame provided information about spec-
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Fig. 4 - A single-layerperceptron and the decision regions it forms for two classes, A and B, using as many as 80 trials.
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Implementing Neural Nets in VLSI

One of the most important ap­
plications of new-al network ar­
chitectures is in the realization
of compact real-time hardware
for speech, vision, and robotics
applications. The chips shown
here are initial implementations
of two new-al network architec­
tures in VLSI. Both chips used a
standard MOSIS (MOS implemen­
tation system) process that com­
bines digital and analog circuitry
on one chip. Both the perceptron
chip, shown on the left [8J, and

the feature map chip, shown on
the right (18), storeweights (con­
nection coefficients), in digital
form. The feature map chip
adapts the weights internally; in
contrast, the weights are adapted
externallyand downloadedto the
perceptron chip. Analog circuits
on each chip perform the multi­
plications and additions re­
quired by the respective algo­
rithms.

The perceptron chipwastested
in a speech recognition applica-

tion and achieved a level of per­
formance comparable to the per­
formance of a digital computer
simulation [8J. The multilayer
perceptron has 32 inputs, 16
nodes, and 512 weights. The fea­
ture map chip has 7 inputs, 16
nodes, and 112 weights. As indi­
cated bythe relative simplicityof
the designs, these are first-gen­
eration chips; VLSI implementa­
tions of much greater density,
with corresponding increases in
capability, are being explored.

Perceptron
Classifier

tral changes overtime and improved the classi­
fiers' performance.

Gaussian and k-nearest neighbor classifiers
[7], which are often used for speech recogni­
tion, were compared with multilayer percep­
tron classifierswith different numbers ofnodes
and layers. All classifiers were trained and
tested separately for each of the 16 talkers in
the TI data base. Classifiers were trained using
10 training examples per digit (70 total) and
then tested on a separate 16 tokens per digit
(112 total). The Gaussian classifier used a di­
agonal covariance matrix with pooled variance
estimates. This technique producedbetter per­
formance than a similar classifier with varian­
ces estimated separately for each digit.

The Gaussian classifier can be implemented
with a single-layer perceptron [4). In fact, when

114

Feature Map
Vector Quantizer

it was implemented in VLSI hardware and test­
ed, it was found to provide the same perfor­
mance on this digit classification problem as a
digital computer-based Gaussian classifier [8)
(see box, "Implementing Neural Nets in VLSI").
A k-nearest neighbor classifier was also used
in this comparison because it performs well
with non-unimodal distributions and becomes
optimal as training data are increased [7). The
number of nearest neighbors (k) for the classi­
fier was set to "one" because it provided the
best performance.

All multilayer perceptron classifiers had 22
inputs, seven outputs, and used logistic sig­
moidal nonlinearities along with the back
propagation training algorithm (see box, "Su­
pervised Training"). The class selected during
testing was the one corresponding to the out-
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put node with the largest output value. During
training, the desired output was greater than
0.9 for the output node corresponding to the
correct class and less than 0.1 for the other
output nodes. A single-layer perceptron was
compared with five two-layer perceptrons that
possessed 16 to 256 hidden nodes, and to four
three-layer perceptrons that possessed 32 to
256 nodes in the first hidden layer and 16 in the
second hidden layer.

Results averaged over all talkers are shown
in Figs. 7 and 8. Figure 7 shows the percentage
error for all classifiers. The k-nearest neighbor
classifier provided the lowest error rate (6.0%)
and the single-layer perceptron the highest
(14.4%). The Gaussian classifier was interme­
diate (8.7%) and slightly worse than the best
two-layer (7.6%) and three-layer (7.7%) per­
ceptrons.

The number of training examples that the
perceptrons required for convergence is of
special significance. These results are illus­
trated in Fig. 8. Perceptron networks were
trained by repeatedly presenting them with the
70 training examples from each talker. The
convergence time for the multilayer percep­
trons was defined as the time required for the
error rate to reach zero on the training data. For
the single-layer perceptrons, this occurred in­
frequently, so the convergence time was de­
fined as the time required for the error rate to
fall and remain below 5%. The average number
of examples presented for the single-layer per­
ceptron (29,000) excludes data from two talkers
when this criterion wasn't met even after
100,000 presentations.

There is a marked difference in convergence
time during training between the single-layer
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Fig. 5 - Decision regions can be formed by single-layer and multilayer perceptrons with one and two layers of hidden
nodes and two inputs. Shading denotes decision regions for Class A. Smooth closed contours bound input distributions
for Classes A and B. Nodes in all nets use hard limiting step nonlinearities.
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Fig. 6 - Cepstral data from the maximal-energy frame, and from the frame that was three frames before the
maximal-energy frame in each word, were presented to multilayer perceptrons. Their recognition performance was
compared with the performance of conventional classifiers for spoken digits.

and multilayer perceptrons. The two largest
three-layer perceptrons (128 and 256 nodes in
the first hidden layer) converge in the shortest
time (557 and 722 examples, respectively), and
the single-layer perceptron takes the longest
time (> 29,000 examples).

These results demonstrate the potential of
multilayerperceptron classifiers. Thebest mul­
tilayer perceptron classifiers performed better
than a reference Gaussian classifier and nearly
as well as a k-nearest neighbor classifier, yet
they converged during trainingwith fewer than
1,000 training examples. These results also
demonstrate the necessity of matching the
structure of a multilayer perceptron classifier
to the problem. For example, the two-layer per­
ceptron with the most hidden nodes took much
longer to train than other two- and three-layer
perceptron classifiers but the performance was
no better. The poor performance of the Gauss­
ian classifier (8.7%) relative to the k-nearest

neighbor classifier (6.0%) suggests that com­
plex decision regions are required for this
problem. These complex decision regions
couldn'tbe provided bythe single-layer percep­
tron. As a result, the single-layer perceptron
classifier provided the worst error rate (14.4%),
required thousands of presentations for con­
vergence, and never converged for two of the
talkers.

Multilayer perceptrons produce complex de­
cision regions via intersections of half-plane
regions formed in each layer (Fig. 5). The three­
layer perceptrons converged fastest in the dig­
it-classification experiment, presumably be­
cause there were more half-plane decision
boundaries close to required decision region
boundaries when training began. Since these
boundaries were closer to the desired decision
regions, they only had to be shifted slightly to
produce the required regions. Other bound­
aries, more distant from required decision re-
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gions, moved only slightly because of a deriva­
tive term in the back propagation training al­
gorithm. These results suggest that three-layer
perceptrons produce thebestperformance even
when only simple convex decision regions are
required. Although two-layer perceptrons can
form such regions, convergence times with
these nets may increase greatly if too many
hidden nodes are provided.

the perceptron trained with back propagation
required more than 50,000 labeled examples.
The first stage ofthe feature map classifier and
the multilayer perceptron were trained by pre­
senting them repeatedly with randomly select­
ed examples from the available 338 training
examples. Although this set of 338 examples
provided labels for training, the labels were
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Fig. 7 - Percentage error in the spoken digit classifica­
tion experiment for a Gaussian classifier, a k-nearest
neighbor classifier, a single-layer perceptron, a two­
layer perceptron with 16 to 256 hidden nodes, and a
three-layer perceptron with 32 to 256 nodes in the first
hidden layer and 16 nodes in the second hidden layer.
KNN =k-nearest neighbor.

Fig. 8 - Number of iterations before convergence in the
spoken digit classification experiment, for a single-layer
perceptron and for multilayer perceptrons as a function
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Unsupervised training with unlabeled train­
ing data can often substantially reduce the
amountofsupervisedtrainingrequired (9). Abun­
dant unlabeled training data are frequently
available for many speech and image classifica­
tion problems, but little labeled data are avail­
able. The feature map classifier in Fig. 9 uses
combined supervised/unsupervised training to
circumvent this dearth of labeled training data
(10). This feature map classifier is similar to
histogram classifiers used in discrete observa­
tion HMM speech recognizers (11). The first
layer of the classifier forms a feature map by
using a self-organizing clusteringalgorithm (2).
The second layer is trained using back propa­
gation or maximum likelihood training (10).

Figure 10 compares two conventional (k-near­
est neighbor and Gaussian) and two neural net
(two-layer perceptron and feature map) classi­
fiers on vowel formant data (12). These data
were obtained by spectrographic analysis of
vowels in words formed by "h," followed by a
vowel, followed bya "d." The words were spoken
by67 persons, including men, women, and chil­
dren. First and second formant data of 10 vow­
els were split into two sets, resulting in 338
training examples and 333 testing examples.
These formants are the two lowest resonant
frequencies of a talker's vocal tract.

Lines in Fig. 10 represent decision region
boundaries formed bythe two-layer perceptron.
These boundaries are very near those typically
drawn by trained phonologists. All classifiers
had similar error rates, but there were dramatic
differences in the number of supervised train­
ing examples required. The feature map clas­
sifier with only 100 nodes required less than
50 labeled examples for convergence, while

VOWEL CLASSIFICATION
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Fig. 9 - This feature map classifier combines supervised and unsupervised training, which reduces the required
amount of supervised training.

stripped before training, to test the perfor­
mance of the feature map classifier trained
without supervision. These results demon­
strate how a neural net can provide the rapid,
singIe-triallearning characteristic of children
who are learning new words. The RCE classifier
(13) listed in Fig. 2 also can, with supervised
training data, provide this type of rapid learn­
ing.

TEMPORAL ALIGNMENT

The digit and vowel classification tasks con­
sidered above used static input patterns.
Speech, however, consists oftemporal pattern
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sequences that vary across utterances, even
for the same talker, because of variations in
talking rate and pronunciation. A temporal
alignment algorithm is required to cope with
this variability. Such an algorithm requires a
stored word model for each vocabulary word.
Nodes in a word model represent expected
sequences ofinputpatterns for thatword. Time
alignment typically associates each input pat­
tern at a given time with one node in each word
model. Nodes in a word model compute the
distance between the unknown input pattern
sequence and the expected pattern sequence
for a word.

Figure 11 shows an example of the time
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Fig. 10- The four classifiers had similar error rates for the vowel classification task, but the required training varied
dramatically. The feature map classifier needed less than 50 training examples; the two-layer perceptron required
50,000.
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Viterbi Nets

Fig.A - One Viterbi net is required for each word. The net's accuracy is
greater than 99%, equivalent to the most robust HMM system.

A Viterbi net is a neural net­
work architecture that uses ana­
log parallel processing to im­
plement the temporal alignment
and matching score computation
performed in conventional HMM
recognizers. Ablockdiagram ofa
simple Viterbi net for one word is
shown in Fig. A. Nodes repre­
sented by large open triangles
correspond to nodes in a left-to­
right HMM word model. Connec­
tions to these nodes are adjusted
to provide maximal output when
there is a match between the in­
put spectral pattern sequence
and the sequence expected for
the word that the net is designed
to recognize. A new input pat­
tern is applied at the bottom of
the net every 10 ms; the output
represents the matching score
between the input sequence and
the sequence expected for the
word used to adjust connection
weights. The output is greatest
when the input sequence match­
es the expected sequence.

An example of the outputs of
four Viterbi nets - designed to
match the words "go," "no," "hel­
lo," and "thirty" for one talker in
the Lincoln Stress-Speech Data
Base - is presented in Fig. B. A
test token for" go" was input to
each of these nets. The curves
plottedare theoutputofthe next­
to-last classifier node of each of

the nets, not the last node. The
last node, oranchor node, match­
es background noise.

Time in the plot is relative to
the beginning of the fIle contain­
ing the word "go." The fIle con­
tains a background noise inter­
val, followed by "go," followed by
an additional background noise
interval. The word "go" begins at
roughly 160 ms and ends at ap­
proximately 580 ms.

Input

The output from theViterbi net
designed to recognize the word
"go" is, as expected, the highest.
The "no" and "hello" nets provide
the next highest outputs, be­
cause "hello" and "no" are acous­
ticallysimilarto"go."Theoutput
oftheViterbi net designed for the
word "thirty" is much lower than
that ofany of the others, demon­
strating the effectiveness of the
nets' discrimination capability.

Input Word = Go

0.8

0.6

Fig. B - Four Viterbi nets, each designed for the
word labeled on the output chart, were presented
with the input word "go. "Those designed for words
similar to "go" responded with strongly positive
outputs; the net designed for the word "thirty"
responded with a weak output.
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Fig. 11 - Time alignment is the process of matching an input pattern sequence to the stored expected pattern
sequence ofa vocabulary word. A word model is used to time-align patterns derived from frames in an unknown input
with stored expected patterns.

alignment process for the word "histogram."
The upper part of this figure shows a speech
pressure waveform and a speech spectrogram.
The spectrogram demonstrates the amount of
spectral energy at different frequency regions
plotted over time. Each region in the speech
waveform has been associated or aligned with
one node in the stored word model of the word
"histogram," shown at the bottom of Fig. ll.
Temporal alignment algorithms perform the
alignment and compute an overall word-match­
ing score for each word contained in the vocab­
ulary. The overall score is computed by sum­
ming the local matching scores computed by
individual nodes in stored word models. This
score, in tum, determines the word that the
recognizer identifies.

Classical approaches to time alignment in­
clude the use of a Viterbi decoder in conjunc­
tion with HMM recognizers, dynamic program­
ming for time warping recognizers, and the
matched or chirp mters that are used in radar
applications. Anumber ofneural net approach­
es have been suggested for use in time align­
ment, but few have been tested with large

The Lincoln Laboratory Journal, Volume I, Number 1 (1988)

speech data bases.
A new net that has been tested on such a data

base is described in the box, ''viterbi Nets." A
Viterbi net uses the Viterbi algorithm to time
align input patterns and stored-word patterns
for recognizers with continuous-value input
parameters [11). The process oftime alignment
is illustrated in Fig. 12. The solid line in this
figure indicates how input patterns are aligned
to stored reference patterns; the large dots rep­
resent the possible points of alignment. The
Viterbi net differs from other neural net ap­
proaches because it implements a slightly mod­
ified version of a proven algorithm that pro­
vides good recognition performance. In addi­
tion, the Viterbi net's weights can be computed
by using the forward-backward training algo­
rithm [11]. It has a massively parallel architec­
ture that could be used to implement many
current HMM word recognizers in hardware.

The recursion performed in the Viterbi net is
similar to the recursion required by the Viterbi
algorithm when the node outputs before the
first input [Yi (Ol, 0 ~ i ~ M - 1) are allowed to
decayto zero. The recursion is different though,
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because node outputs can never become nega­
tive and because initial conditions do not force
the first input frame to be aligned with the first
classifier node. But a study performed with the
Lincoln Stress-Speech Data Base of 35 words
with difficult, acoustically similar, subsets
showed that these differences caused no deg­
radation in performance [14,15]. Weights in
Viterbi nets with 15 classifier nodes were ad­
justed according to means, variances and tran­
sition probabilities obtained from the forward­
backward algorithm with five training exam­
ples per word for each of the 35 words in the
database. The first and last nodes in these nets
served as anchors and were designed to match
background noise input. Talker-dependent ex­
periments were performed for each of the nine
talkers in the data base, using 13 normally
spoken tokens per word for a total of4,095 test
tokens over all talkers.

An HMM recognizer [15] was comparedwith a
modified recognizer that implemented the
above recursion. Inputs to both recognizers
consisted of 12 mel cepstra and 13 differential

mel cepstra thatwere updated every 10 ms. The
HMM word models were trained using multi­
style training and grand variance estimates
[15]. Performance was almost identical with
both algorithms. The error rate with a normal
Viterbi decoder was 0.54% (22 per 4,095 to­
kens) and the error rate with the Viterbi net
algorithm was 0.56% (23 per 4,095 tokens).

Ablock diagram ofthe Viterbi net is shown in
the box, ''viterbi Nets," Fig. A Classifier nodes
in this net, represented bylarge open triangles,
correspondto nodes in aleft-to-right HMM word
model. Each classifier node contains a thresh­
old logic node followed bya fixed delay. Thresh­
old logic nodes set the output to zero ifthe sum
of the inputs is less than zero. Otherwise, they
output the positive sum. Nodes positioned
above classifier nodes are threshold logic
nodes, and nodes below the classifier nodes
simplyoutput the sum ofall inputs. A temporal
sequence ofT input vectors is presented at the
bottom ofthe net and the desired output is YM-l

(T), which is the output of the last classifier
node sampled at the last time step T. Here M is

7r-------------------------~

Fig. 12 - Viterbi alignment between the reference pattern sequence for a word model and the unknown input pattern
sequence. Frames from the input pattern sequence are time aligned to a storedpattern sequence for a word model and,
in the process, the distance from the input sequence to the word model is computed.
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the number of classifier nodes in the Viterbi
net. The output is monotonically related to the
probabilityP, which is normallycalculated with
a Viterbi decoder. P is the probabilityofproduc­
ing the applied sequence by traversingthe HMM
word model corresponding to the net over the
best path that maximizes this probability. Al­
though the Viterbi net produces a score that is
related to this probability, it does not store the
best path.

Delays used in the classifier nodes must
equal the time interval between changes in the
input vectors. Inputs at time step t, denoted
":i (t) (0::::;; j ::::;; N-l, 1 ::::;; t::::;; T), are supplemented
byafixedinputxN(t) equal to I, which provides
offsets to the summing nodes. The values de­
noted si (t) (0::::;; i ::::;; M-l) represent a matching
score between the current inputvector and the
exemplar input expected in classifier node i.
When inputs are assumed to be jointly Gauss­
ian and independent, the exemplar classifier
node i is defined by mean values ~jandvarian­
ces 07. Weights Wij can then be assigned to
form Ja Gaussian classifier and compute the
matching score required by the Viterbi algo­
rithm:

performed by the five-node subnets above the
two right classifier nodes (see box, ''viterbi
Nets"; Fig. A). These nets output the maximum
oftwo inputs [4). To improve clarity, the addi­
tion of the In (~j) terms to the classifier node
outputs is not shown in the Fig. This extra term
requires adding fixed inputs to all fed-back
classifier node outputs.

The recursion increases classifier node out­
puts successivelyfrom left to right. Itbuilds up
node outputs when the correct word is pre­
sented and the input patterns match exemplar
patterns stored in successive classifier nodes.
Outputs build up only slightly or remain near
zero for acoustically dissimilar words.

The above description models only a simple
Viterbi net and the simplest recursion. The
recursion and the Viterbi net can be general­
ized to allow more arbitrary transition matrices
than those used by the left-to-right model. In
addition, the input data rate to the Viterbi net
can be increased, which provides fine temporal
resolution but no change in net structure. This
feature is a potential advantage of the Viterbi
architecture over other approaches.

SUMMARY

Yilt + 1) = f 1silt + 1) + max [Yk(t) + In(aki)] ~
i-I';;; k';;; i

where 0::::;; t::::;; T -1,1::::;; i::::;; M -1. In these equa­
tions, the ~j terms represent transition proba­
bilities from node i to node j in the HMM word
model corresponding to the Viterbi net. The
expression f (a) is a threshold logic function
[f (a) =0, a::::;; 0; f (a) =a, a> 0). The maximum
picking operation required in this recursion is

where 0 ::::;; i ::::;; M - 1. The score is strongly posi­
tive if the current input matches the exemplar
that is specified by weights on links to classi­
fier node i; the score is slightlypositive or nega­
tive otherwise.

The Viterbi net uses the following recursion
to update node outputs:

Yo(t + 1) = f Iso(t + 1) + Yo(t) + In(aooll

where O::::;;t::::;;T-l, and

a?­
J

Neural nets offer massive parallelism for
real-time operation and adaptation, which has
the potential ofhelping to solve difficult speech
recognition tasks. Speech recognition, how­
ever, will require different nets for different
tasks. Different neural net classifiers were re­
viewed and it was shown that the three-layer
perceptrons can form arbitrarily shaped deci­
sion regions. These neural net classifiers per­
formed better than Gaussian classifiers for a
digit classification problem. Three-layer per­
ceptrons also performed well for a vowel classi­
fication task. A new net, called a feature map
classifier, provided rapid single-trialleaming
in the course of completing this task.

Another new net, the Viterbi net, implement­
ed a temporal decoding algorithm found in cur­
rent word recognizers by using a parallel neu­
ral net architecture and analog processing.
This net uses threshold logic nodes and fixed
delays. Talker-dependent isolated-word tests
using a difficult 35-word vocabulary demon-

2mij Xj(t) N - 1
-----'----'- - ~

j = 0

N-1

silt) = ~
j=O
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strated good perlonnance (greater than 99%
correct) with this net, similar to that of current
HMM word recognizers. Current research ef­
forts are focusing on developing sequential
adaptive training algorithms that do not rely on
the forward-backward training algorithm, and
on exploring new neural net temporal decoding
algorithms.

For Further Information
A more extensive introduction to neural net

classifiers and a more complete set of refer­
ences is contained in "An Introduction to Com­
puting with Neural Nets [4]." Various confer­
ence papers [10,14,16] describe the experi­
ments reviewed in this paper in greater detail.
Papers describing recent work in the field of
neural nets are available in the IEEE First In­
ternational Conference on Neural Networks
(San Diego, June 1987), in the proceedings of
the IEEE Conference on Neural Information
Processing Systems - Natural and Synthetic
(Denver, November 1987), and in the journal,
Neural Networks, which is published by the
newly formed International Neural Network
Society. The Winter 1988 issue of Daedalus
contains many articles that discuss the rela­
tionships between neural networks and artifi­
cial intelligence and another recent article pro­
vides a survey of neural net models [17].
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