
IRA H. GILBERT

The Synchronous Processor

The Synchronous Processor is a single-instruction, mUltiple-data-stream, special
purpose computer, which can perform calculations at a rate of almost 400 million
ipstructions per second (MIPS). To develop this computer, a new hardware design was
implemented and a special programming language was constructed.

Built entirely of readily available, off-the
shelf components, the Synchronous Proces
sor (SP) computer achieves a throughput of
nearly 400 million instructions per second
[MIPS). The SP is a parallel-architecture com
puter - its design makes extensive use of con
currency in control, computation, internal
communication, and input/output. The through
put of the SP is almost an order of magnitude
greater than that of a Cray 1 (the first conven
tional supercomputer), yet the electrical power
requirement for the SP is approximately two
orders of magnitude smaller than that of the
Cray 1. The two machines are not directly
comparable: the Cray is a general purpose,
54-bit floating point machine; the SP is a spe
cial-purpose, fixed-point I6/32-bit machine.
But for the applications that it addresses, the
SP is much more economical and powerful
than its more conventional cousin.

SPL, the programming language developed
for the SP, supports the concurrent operation
of the processor. The language also enhances
processing efficiency by giving the program
mer control of individual hwdware registers.
Yet. although the intimate register control is
similarto the level ofcontrolprovidedbyassem
bler languages theSPLoffers manyofthe capa
bilities of a high-level language. The FORTRAN
language is available to the programmer at
translate time, and supplementary machine
addressing modes are immediately available to
the programmer. A feature that is particularly
important for signal-processingapplications is

, the language's capabilityoftreating dataarrays
as objects, which eliminates the need to keep
track of the physical addresses of the data in
the arrays.

The Lincoln Laboratory Journal. Volume I, Number 1 (1988)

MULTIPROCESSOR COMPurERS

Manycomputer applications require far great
er throughput than a single processor can pro
vide. This computational inadequacyhas led to
the development of mUltiprocessor computer
architectures [1].

One type of multiprocessor computer, the
single-instruction, multiple-datastream (SIMD)
processor, is especially well suited for regular
and predictablecomputations that require only
loose couplingbetweendataand control. (Loose
coupling means that the flow of operations to
be performed is relatively independent of the
results of intermediate computations). Many
computation-intense applications are of this
nature. For example, the solution ofsystems of
partial differential equations arising in fluid
dynamic simulations and those used in seis
mic analysis for geophysical exploration are
applications that exhibit loose coupling.

The SIMD computer is also suitable for solv
ing the large systems of linear equations that
can arise in optimization problems. Modern
sUIVeillance techniques often require complex,
multidimensional image enhancement and sig
nal-processing operations, which are also suit
able for SIMD computers. Additionally, SIMD
machines can simulate most neural network
models. Large neural-network simulations
(thousands or millions of synapses) require
the sortofprocessor power only available from
multiprocessor computers.

A SIMD computer consists of an array of
identical processing elements that operate in
lockstep under the control of one master pro
cessor. Only the master processor has access

19

Gilbert - The Synchronous Processor

Display

Communication
Master

Data Memory
Controller

Z r----D~t,-----rives----.?
/ Host

,/ (INTEL 80286 Based)

Array
Master

Terminal

Data Memory
Addresses

DDDDDDDD
DDDDDDDD

6~rr~raV~s DDDDDDDD In~ut7~~~~utDDDDDDDD ...-_C_han_nels_---I

DDD DDDD
DD

DDD DDDD
DDDDDDDD

Control,
Instructions

Nearest
Neighbor - - -

Communication

Fig. 1 - Organization of the SP.

to the single copy of the application program.
The slave processing elements synchronously
execute the instruction stream broadcast to
them by the master. Thus, for only the incre
mental costofadditional processingelements,
the computer's throughput can be arbitrarily
increased. No additional master processors are
required. Anotherbenefit ofthe SIMO architec
ture is the decoupling of application software
and processor size. That is, code maybe initial
ly developed on a scaled-down version of a pro
cessor but run, without alteration, on a much
larger array.

Because the SIMO architecture requires only
one copyofan application program, a program
mer caneasilyoptimize the speedofa program.
Optimizing a program for speed may increase
memory requirements, but, since a SIMO com
puter holds onlyone copyofa program (not one
copy per processor), the increase in memory
requirement is insignificant.

HISTORY

The concept of SIMO processing dates from
1962, when Slotnick et al [2] proposed the
SOLOMON (Simultaneous Operation Linked
Ordinal Modular Network) computer. This sys
tem comprised a 32 X 32 array of processing
elements, with nearest-neighbor communica
tion, under the control of a single master.
Computation and communication were both
bit-serial. Each processing element contained
4,096 bits of data storage. The first important
SIMO processor, the ILLIAC IV, was designed
and built at the University of lllinois by a team
under the direction ofSlotnick [3]. Built in the
late 1960s and early 1970s, the computer was
decommissioned in 1981. It consisted of 64
64-bit floating-point processors. In the 32-bit
mode, ILLIAC IV also functioned as a 128-node
array. Each of the processing elements had
2,048 64-bit words of memory.

20 The Lincoln Laboratory Journal, Volume I, Number 1 (1988)

Most subsequent SIMO processors returned
to the original concept ofa large number ofvery
primitive bit-serial processing elements. Ex
amples include the OAP (ICL), the Massively
Parallel Processor (Goodyear Aerospace), and
most recently, the Connection Machine of Hil
lis [4]. The Connection Machine is SIMO only in
so far as computation is concerned. Communi
cation within the Connection Machine is car
ried out asynchronously; messages are routed
through a network of 4,096 nodes that are or
ganized as the comers of a 12-dimensional
hypercube.

THESP

The SP is a SIMO machine that was designed
primarily for signal-processing applications.
The system comprises a host, two master con
trollers, and a processor array. The SP is organ
ized hierarchically, as shown in Fig. 1. The host
is responsible for interfacing the SP to the
external world, for exercising overall control
over the other masters, and for managing input
to and output from the processor array.

Immediately beneath the host in the hier
archyare the two master controllers, the array
master (AM) and the communication master
(CM). TheAM is responsible for routing instruc
tions to the computational elements (CEs). The
CM controls communication among the slave
CEs.

At the bottom of the hierarchy is an array of
64 CEs arranged on an 8 X 8 grid. Each CE is
built around a Texas Instruments TMS 320-20
digital signal processing (OSP) chip. The CEs
contain 64K 16-bit words of data storage (Fig.
2). The OSP chips run at 6 MHz, can multiply
two 16-bit numbers to a 32-bit result in one
167-ns cycle, and deliver a performance of
6 MIPS. The aggregate throughput of the array
is, therefore, 380 MIPS. Some applications can
even take advantage ofthe TMS 320-20's ability
to multiply and accumulate simultaneously,
yielding a peak performance of 760 MIPS.

The TMS 320-20 also provides 544 words of
on-chip memory. Since the access time for the
on-chip memory is one half to one third of the
access time associatedwith the fastest off-chip
memory, the arguments of arithmetic opera-

The Lincoln Laboratory Journal, Volume I, Number 1 (1988)

Gilbert - The Synchronous Processor

tions must be stored on chip - to achieve the
peak throughput of these devices.

Although the TMS 320-20's data word width
is 16 bits, its accumulator and product regis
ters are 32 bits wide. The wider accumulator
and product register enable the processor to
accumulate sums of products with greater ac
curacy than a IlXed-Iength 16-bit processor.

A serial 12-MHz data link connects each CE
in the array to its four nearest neighbors. Inter
CE communication is purely lockstep. For ex
ample, when one CE passes datato its neighbor
on the right, all CEs do so. The overall array
topology is toroidal - the top andbottomedges
are connected, as are the right and left edges.
This topology is especially suited to such ap
plications as performing two-dimensional fast
Fourier transforms (FITs). (For a detailed de
scription of this application, see the Appendix
"FIT Application.")

The toroidal connectivity may be reconfig
ured, under software control, to produce a fi
nite, open topology. This reconfiguration al
lows the SP to filter four separate arrays simul
taneously, for example, with no "spillover" or
"wraparound" from one array to another. In
addition, failed columns of CEs can be by
passed in software via the reconfigurable con
nectivity, thus providing a measure of fault
tolerance.

As in all SIMO computers, the computational
elements of the SP do not act as independent
computers, but rather as slave processors that
are executing a stream of instructions. The
instructions are common to all slaves. As a
result, only data-specific instructions (multi
ply, add, store, load) are executed by the CEs.
Only the AM uses the remaining control in
structions - to access the single copy of the
program. In the interest of processing efficien
cy, the two types of instructions must be sepa
rated. This separation lets the SP execute the
instructions in parallel. This separation can
be achieved by building high-speed hardware
that scans the composite instruction stream
and separates the control instructions from
the arithmetic instructions. However, this ap
proach complicates the hardware and compro
mises its reliability.

21

Gilbert - The Synchronous Processor

In the SP, the control and arithmetic instruc
tions are separated at translate time (Fig. 3).
This separation method pennits the use ofhigh
speed computation elements without the need
for even higher-speed instruction separator
hardware.

SP ORGANIZATION

The host, the AM, and the CM are three loose
ly coupled processors, each with its own pro
gram. The host directly controls inputand out
put between the array and the mass-storage
devices. The host is also responsible for down
loading the programs of the AM, the CM, and
the CEs to their respective memories. Once
these programs are downloaded, the host initi
ates execution by vectoring the AM and CM to
starting addresses in their respective code
spaces. These two masters then run independ
ently of the host until they reach programmed
HALTs. At this point, their execution is tenni
nated and the host is notified. If the host has
already queued up a successorvector and ifthe

TMS32020

544 Words
Storage

auto-execution mode is enabled, the HALT in
struction then triggers execution of the next
vectorwithout further interventionbythe host.
This auto-execution operation eliminates the
host's interrupt-response time penalty.

Communication between the host and mass
storage is carried out by means of serial-com
munication links, with one linkfor each column
of the array. Each link operates at 12 MHz,
which yields a total data rate of 96 X 106 bps.
Each link consists ofnine 16-bit registers: one
register for each ofthe eight CE processors in a
column plus a ninth register located on a cus
tom board in the host. To inputdatato the array
the host loads eachofthe eight registers on the
custom board, then shifts one bit at a time (all
eight columns simultaneously) until the data
are transferred from the host to the top CE in
each column. The host loads and shifts the
registers seven more times, until all eight CEs
in each column have received their data. Then,
in a single step, the data are transferred to the
CEs' local memories. The output of data from
array to host is the reverse of this process.

Off-Chip
Memory

64K Words

Instruction Data
Bus Bus-------..... ..-----------..

Left Neighbor
Right Neighbor

Top Neighbor
Bottom Neighbor

Next Left Neighbor
Next Right Neighbor

Communication
Register

Input!
Output

Register

To
Host

Fig. 2 - Each computation element in the SP includes a TMS 320-20, 64K of data memory, an input/output register,
and a communication register. The communication register's multiplexed input accepts data from any of six sources,
providing nearest-neighbor communication as well as a measure of fault tolerance. Requests for access to the off-chip
memory can be made at any time by the AM, the CM, or the input/output system. These requests are arbitrated by the
data-memory controller. The AM receives highest priority, the CM second priority, and input/output lowest priority.

22 The Lincoln Laboratory Journal, Volume I, Number 1 (l988)

Gilbert - The Synchronous Processor

LOOP NY
CALL ADDRIADDA _

MPYB----------t
t----REPL

LOOP NY
CALL ADDRIXEQ ADD A

REPL MPY B

Array Master
(Control)

Computational
Elements

(Computation)

Fig. 3 - The SPL separates code into control and computation blocks. The control blocks are executed by the AM in
parallel with the slave processor's execution of the computation instructions.

TheAM is a simple programmable controller;
it accesses the program memoryofthe CEs and
broadcasts instructions to all the CEs in the ar
ray, so the CEs can execute the instructions in
parallel. TheAM contains two separate program
memories. One contains the AM-sequencer
control instructions, the other the data-related
CE instructions. This division is transparent to
the programmer. The CE and AM instructions
are actually executed concurrently.

The CM controls all aspects of communica
tion among the CEs. The communication is bit
serial and strictly lockstep. Each CE contains a
I6-bit shift register, which is used for interpro
cessorcommunication (Fig. 2). A six-input mul
tiplexer feeds data to the shift register. Four of
the inputs to the multiplexer are the shift-regis
ter outputs of the four nearest-neighbor CEs.
Two inputs to the multiplexer are from CEs that
are two columns away. (This configuration lets
the CM bypass failed columns.) The CM loads
and unloads the CEs' shift registers, selects
the data source, and performs the necessary
data shifts.

Suppose, for example, that a CE is instructed
to pass data that is located in its memory at
address Al to another CE's memory at address

The Lincoln Laboratory Journal, Volume I, Number 1 (l988)

A2. The CM loads the communication register
of every CE from each CE's memory location
AI. The CM then sets every CE's multiplexer so
thatdataare receivedfromthe appropriate neigh
boring processor and then the CM shifts the
data. This process ofmultiplexer selection and
shifting is repeated until the data arrive at the
intended destination, at which point the data
from all communication registers are simul
taneously placed in the destination CE's A2
address.

SPSOFTWARE

As mightbe expected, the development ofthe
SP required the development ofa new program
ming language. The need for programmer effi
ciency biased the choice of language towards a
high-level compiler language, butanything less
than a highly optimizing compiler was consid
ered inadequate for the intended applications
of the SP. Resource requirements for the de
velopment of a highly optimizing compiler pre
vented the development of an optimizing com
piler. Instead, we chose to achieve the neces
saryrun-time efficiencyby programmingat the
assembler level. However, SPL incorporates a
number of features that eliminate many of the

23

Gilbert - The Synchronous Processor

DO (I = 1,20)
DO (J = 1,20)

K = ALPHA X SIN (I X BETA)
L=JXJ

% LTA ARRAY1 (K,J)
% MPY ARRAY2 ((1,L)

FIN
FIN

Fig. 4 - This FORTRAN code produces multiple copies
of executable assembler code (shown with a %).

burdens normally associated with assembler
programming. Moreover, the full power of a
high-level language, FORTRAN, is available at
translate time. This feature makes it possible,
for instance, to refer to multidimensional ar
rays as data objects and to generate "unrolled"
or straight-line code (Fig. 4).

Of the eight lines appearing in Fig. 4, only
two assembler instructions - LTA (load the T
register) and MPY (multiply) - generate code
that survives the translation process. These
instructions are flagged by the symbol %. The
translator program recognizes this symbol as
a command to "hide" instructions from the
FORTRAN compiler. The FORTRAN instruc
tions, when compiled, create a group of these
assembler instructions.

The operands of the assembler instructions
in Fig. 4 are previouslydefined elements oftwo
dimensional arrays. Since the indices of these
elements are complicated functions ofthe loop
variables I and J, but are common to all CEs, it
is undesirable to compute them in real time.
Instead, the addresses are computed at trans
late time and associated with the LTA and MPY
instructions. As a result, this pair of instruc
tions is replicated 400 times, once for each
instance of the combination (I,J). The illustra
ted code fragment will, therefore, generate 800
machine instructions and consume 800 words
of memory. In this case the performance ad
vantage gained by unrolling the code justifies
the concomitant increase in storage-space re
quirements.

The code-unrolling technique is only one of
the features that facilitates efficient array han
dling. The SP's hardware supplies a wayto step

24

through arrays at run-time and SPL supports
this capability. The AM contains hardware that
injects a 16-bit address onto the local memory
bus at a time when the CE's TMS 320-20 is
receivingdatafrom a previous instruction. This
feature provides two immediate benefits: the
elimination of "dead time" when the TMS 320
20 is fetching data, and, because the injected
address is 16 bits wide, the elimination ofpag
ing schemes that the programmer would nor
mally be forced to use. In addition, SPL lets
programmers define subarrays as dimensioned
pieces of larger arrays, further easing the task
of array manipulation.

A key element of SPL is support for concur
rency of computation and control. Referring
back to Fig. 3, a programmer writes code that
integrates computation and control. In the il
lustrated code fragment, the loop length param
eter, NY, is defined at translate time. It is not a
run-time parameter. The WOP (loop), REPL
(repeat loop), and CALL (call) instructions are
control instructions, used only by the AM.
WOP and REPL delineate the boundaries of a
program loop; CALL transfers control to an
other block of code within the AM. The arith
metic instructions ADD (add) and MPY (mul
tiply), however, are used only by the array of
CEs. The SPL translator scans the illustrated
segment and separates the arithmetic instruc
tions from the control instructions. A single
AM instruction, XEQ (execute), replaces the
two arithmetic instructions in the AM code
space.

The XEQ instruction references the base ad
dress of the CE instruction block in CE code
space. An AM program is thus translated to a
sequence of control instructions interspersed
with XEQs that refer to CE code space. These
XEQs are similar to CALLs because different
XEQs can refer to the same CE code address.
The key difference between CALL and XEQ in
structions is that the CALL instruction trans
fers control from one location inAM code space
to another in AM code space, but the XEQ
instruction merely indicates the starting ad
dress ofthe next blockofCE instructions to be
broadcast to the CE array.

The next-to-Iast instruction in the block of

The Lincoln Laboratory Journal, Volume I, Number 1 (19881

CE code tells the AM that the last instruction of
the sequence follows. The AM responds to this
information byqueuing up the nextblock ofCE
code. This approach to broadcasting the CE
commands provides the speed and efficiencyof
direct memoryaccess (DMA) type transferwith
out needing additional hardware or setup time.

When the host vectors the AM to a starting
address, the SP starts to execute. The AM then
executes control instructions until the first
XEQ instruction is encountered. At that point,
the AM initiates the transfer ofCE instructions
(located at the referenced address) to the array
of CEs. Once initiated, this transfer proceeds
without further intervention of the AM, allow
ing the AM to perform control instructions
while the CEs perform computation. When the
AM encounters a secondXEQ, it queues up the
base address of the associated block of CE
instructions, flags the XEQ as pending, and
then continues to execute control instructions
until it encounters another XEQ instruction.
At this point, with one block of CE code pend
ing and another XEQ awaiting execution, the
AM halts operation on the control instructions.
When the first block of CE code is completely
broadcast, the AM begins to transmit the pend
ing block of CE instructions immediately. The
last XEQ to be encountered is queued up as
pending and the AM proceeds with control
instructions. With this instruction pipelining,
the computational array is kept busyexecuting
arithmetic instructions and the array spends
a very small amount of time waiting for
instructions.

DATA-DEPENDENT BRANCHING

Although the lockstep execution character
istic ofSIMD processing poses no hardship for
most signal-processing applications, in some
circumstances it is useful to retain a version of
data-dependent branching. For example, if the
power of the SP were brought to a real-time
medical imaging application, an intensity
threshold that indicates the possible presence
of cancerous tissue could be set. Then, if the
threshold is exceeded, the transform operation
could be modified to increase the image resolu
tion in the area of suspect tissue.

The Lincoln Laboratory Journal, Volume 1, Number 1 (1988)

Gilbert - The Synchronous Processor

To address such applications, SPL has a
conditional NOP (null operation) capability by
which anycomputational elementcan be forced
to execute NOPs - effectively idling - depend
ing on the results ofan arithmetic or logic test.
This lets one section of the array focus on the
transform operation while other sections await
the completion of the operation.

The implementation of this data-dependent
branching feature makes unconventional use
of the TMS 320-20's instruction counter. The
counterwas designed to address program mem
ory, but since the CEs have no such memory,
they simply execute the instruction stream
broadcastbythe AM. The program counterplays
no role in fetching instructions. Instead, the
most significant bit (MSB) of the instruction
counter determines whether the CE executes
the incoming instruction streamorNOPs. When
the conditional-branch mode is enabled (by
setting an appropriate flip-flop), the presence
of a "I" in the MSB of the program counter
substitutes NOPs in the CE's instruction
stream. Conversely, a "0" in the MSB of the
program counter permits the passage of the
broadcast instruction stream to the TMS 320
20 for execution (see Table).

Table - Form of Data-Dependent
Branching Maintained by SPL

Accumulator,e 0 Accumulator = 0

Instruction Program Instruction Program Instruction
Cycle Counter Counter

1 0032 Bl 0032 Bl

2 0033 FFFC 0033 FFFC
3 0034 INST 1 FFFC Nap

4 0035 INST 2 FFFD Nap

5 0036 INST 3 FFFE Nap

6 0037 INST 4 FFFF Nap

7 0038 B ooסס B

8 0039 ooסס 0001 ooסס

9 ooסס INST 5 ooסס INST 5

Note: SPL maintains a form of data-dependent branching
by the use of the branch-on-zero (Bl) instruction. The data
dependent branching is possible because the TMS 320
20's program counter is not used to access program mem
ory; computation instructions are broadcast to the SP array
by the AM. To execute either string of N instructions or a
string of N Naps (depending upon whether the accumulator
flag is set). program a Bl instruction to an address that is N
less than 64K. If the branch is taken. Naps will be perfomed
until the program counter rolls over.

25

Gilbert - The Synchronous Processor

IMPROVED TECHNOLOGY

Construction of the SP began five years ago.
The technology used in its construction is,
therefore, outdated. A larger version of the SP,
consisting of 1,024 CEs built around the TMS
320-C30 (the successor to the TMS 320-20),
could boost SP performance by almost two
orders of magnitude - to 33 GFLOPs (billion
floating-point operations per second). The TMS
320-C30 is a 32-bit floating-point processor
with a clock speed of 16 MHz, which yields a
computation speed of 33 MFLOPs. The device
also offers the increased precision and dynam
ic range inherent to floating-point representa
tion. On-chip storage for the TMS 320-C30 con
sists of 2K 32-bit words; eight 40-bit registers
are also included on chip, to increase interme
diate precision and dynamic range.

Despite the two orders-of-magnitude increase
in performance, the enlarged SP array will oc
cupy only about 4 ft3. It will consume less than
4 kW. By taking advantage of the increased
density of memory chips and by consolidating
some of the circuit functions into gate-array
integrated circuits, the number of integrated
circuits required for each CE could be cut to

26

about one fourth the number required for the
present configuration.

To balance communication and computation
capabilities in the enhanced SP, internal data
paths must be byte-wide, rather than bit-wide.
Byte-wide communication is the most practical
method of increasing internal communication
speed; itprevents internal communication from
becoming a bottleneck to system throughput.

The word size of the TMS 320-C30 is twice
that of the TMS 320-20. The TMS 320-C30 exe
cutes instructions at four times the speed of
the older DSP chip - 33 MIPS vs 6 MIPS. This
combination produces an eightfold increase in
data throughput for each CEo

CONCLUSION

The SP project has convinced us thatSIMD is
indeed an efficient computer architecture and
is practical for an important class of comp
utation-intense problems. The SP is an effec
tive realization of the SIMD concept. Much of
the success of the project is due to the SPL
language, which significantly simplifies SP pro
gramming and thereby enhances programmer
productivity.

The Lincoln Laboratory Journal, Volume I, Number 1 (1988)

Gilbert - The Synchronous Processor

Append.ix: FFT Application

The two-dimensional FIT is an example ofan appli
cation that is well suited to the architecture of the
SP. The implementation of a two-dimensional FIT
also reveals how the SP combines communication
and computation.

The FFT algorithm in this Appendix is based on
the standard row-column technique. Each of the

Fig. B - Column-dependent vertical roll.

00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

00 01 02 13 14 15 26 27 28

10 11 12 23 24 25 06 07 08

20 21 22 03 04 05 16 17 18

30 31 32 43 44 45 56 57 58

40 41 42 53 54 55 36 37 38

50 51 52 33 34 35 46 47 48

60 61 62 73 74 75 86 87 88

70 71 72 83 84 85 66 67 68

80 81 82 63 64 65 76 77 78

q. p = 0•.... (N/n) - 1
i,j = 0•...• N - 1
R.C = 0•...• n- 1.

i =q + R(N/n)
j = p + C(N/n)

rows is Fourier transformed and then each of the
resulting columns is Fourier transformed. For this
example. the input data comprise an N X N-dimen
sional array; the array of CEs is dimensioned n X n.
For the existing SP. n = 8. but there is no need to
limit the description ofthe algorithm to this particu
lar dimension. Both N and n are powers of two.
Moreover. N is a multiple of n2•

Initially. the data are arranged in "natural order."
That is. each row ofdata is assigned to a single row of
CEs and is divided evenlyamong the n columns (Fig.
A). The first N/n elements of the first row of data
reside in the first CEo the second N/n elements
reside in the second CEo and so on. In addition. the
first N/n elements of the first column reside in the
first CEo the next N/n elements of the first column
reside in the next lower CE in the column ofCEs. and
so forth.

The data are first rearranged so that each row of
data is contained in a single CEo Then. a one-dimen
sional FFT. performed simultaneously in all n2 CEs.
transforms n 2 rows of data at once. The entire data
array of N rows is thus row-transformed in N/n2

operations. Next. the data are rearranged so that
each column ofresultants is containedwithin asin
gle CEo Simultaneous one-dimensional transforms
then transform all columns of data in N/n2 opera
tions. Finally. the results of the column transforma
tion are restored to natural row-column order.

Although simple to state. this prescription is not
trivial to implement. The SP is restricted to lockstep
communication. which requires all the CEs to fetch
data from the same local source address, move it
along the same relative path. and store it in the same
local destination address. This lockstep constraint
provides hardware and software simplicity. but it
isn't obvious that the data movements can be per
formed without a great deal of wasted motion.

In fact. the entire task can be efficiently performed
by successive applications of one simple transfor
mation. This is the first publication of this algo
rithm. A key element in the success ofthis commun
ication algorithm is the toroidal connectivity of the
array.

Let the row and column address of a given CE be
denoted (R.C) and the coordinates of the data ele
ments within a CE be denoted (q.p). Each CE origi
nally holds N/n elements of each row of data. The
overall row and column address ofa dataelement (ij)
are then given by

t=1

t=O

t=2

t=O

t=1

t=2

C=2

C=2

C=1

C=1

Fig. A - Natural order.

C=O

C=O

R=1

R=2

R=O

R=O

R=1

R=2

The Lincoln Laboratory Journal, Volume I, Number 1 (1988) 27

Gilbert - The Synchronous Processor

c

App. 1 -
Transformation Comprising Three Operations

i = t + un + R (N/n)
j = r + sn + C (N/n).

N is a multiple of n 2• so (N/n) - 1 (the total range of
q and p) is a multiple ofn. Anyparticularvalue ofq or
p may therefore be expressed as a multiple of n plus
a remainder that is less than n:

t=l

t=O

t=O

t=2

t=l

t=2

C=2C=l

Fig. C - Lockstep shift.

C=O C=l C=2

C=O

00 01 02 10 11 12 20 21 22

03 04 05 13 14 15 23 24 25

06 07 08 16 17 18 26 27 28

30 31 32 40 41 42 50 51 52

33 34 35 43 44 45 53 54 55

36 37 38 46 47 48 56 57 58

60 61 62 70 71 72 80 81 82

63 64 65 73 74 75 83 84 85

66 67 68 76 77 78 86 87 88

00 01 02 13 14 15 26 27 28

06 07 08 10 11 12 23 24 25

03 04 05 16 17 18 20 21 22

30 31 32 43 44 45 56 57 58

36 37 38 40 41 42 53 54 55

33 34 35 46 47 48 50 51 52

60 61 62 73 74 75 86 87 88

66 67 68 70 71 72 83 84 85

63 64 65 76 77 78 80 81 82

R=O

R=O

R=l

R=2

R=2

R=l

r. t = 0•.... n - 1
s. u = 0..... (N/n2) - 1.

p = r + sn
q=t+un

t - t - C t - C C Move each row of data in a CE
up the number of rows equal to
the column number of the CEo

C - C + t t - C Shift the rows of data to the right
by a number of CEs equal to t,
the row location within aCE.

t - C-t C Invert the data.

Theseequationsexpress the coordinatesofanumer
ical element in terms ofthe row and column address
of its assigned CE and in terms of r.s.t. and u. which
are internal coordinates repeated in each CEo

It it is possible to interchange t and C by a realiza
ble lockstep communication. then for fixed R. C. and
u (ie. within a portion of the memoryofasingle CE).
the row index. i. will be held constant while the
column index. j. will vary over the entire range (0 to
N-l) and r. s. and t go through their respective ranges.
With this variation. each row will be reassigned to a
single CEo as desired. This transformation is real
ized by a sequence of three operations as displayed
in the Table. All arithmetic is evaluated in modulo n.

Then.

The first operation consists of rolling data verti
cally within each CE by an amount that depends on
the column address ofthat CEo For example. move all
rows ofdata within the CEs ofcolumn 2 up two rows
within each CE (Fig. B). The second operation is a
transfer ofdata among CEs. As shown in Fig. B. shift
the rows containing 00.30. and 60 zero CEs to the
right. shift the rows containing 10. 40. and 70 one CE
to the right. and shift the rows containing 20.50. and
80 two CEs to the right. The results of carrying out
such shifts are illustrated in Fig. C. The parameter t
(the increment in the column address C) is inde
pendent of the CE coordinates. so this transfer can
be performed in lockstep. The third operation is an
inversion (t - -t) followed by a column-dependent
roll (Fig. D).

Fig. 0 - Inverted.

The result of applying this three-step transforma
tion to naturally ordered data is

i = C + nu + (N/n) A
j = r + ns + (N/n) t.

Each row is placed within the local memory of a
single CEo Then that row is Fourier transformedwith
a standard one-dimensional FFT. which is executed
simultaneously by each CEo After all rows are sim
ilarlytransformed. it is necessary to redistribute the
results so that each column is placed within a single

28 The Lincoln Laboratory Journal, Volume 1, Number 1 (1988)

CEo This rearrangement is accomplished bya double
interchange:

C-t
R-r

or

t-t-C
r-r-R
C-C+t
R-R+r
t-C-t
r- R- r.

The result is

Return to natural order
Transform to column order

Gilbert - The Synchronous Processor

As required, for fIxed R, C, and s, the column indexj
is fIxed while the row index i varies from 0 to N-l, and
t, u, and r vary through their ranges. Each column
has been packed into a single CEo

Finally, the data are restored to natural order:

R-r

or

r-r-R
R-R+r
r- R- r.

The result is

i = t + nu + (N/n) r Column order
j = R + ns + (N/n) C.

i = t + nu + (N/n) R
j = r + ns + (N/n) C.

Natural order

Fig. E - The SP generated this two-dimensional FFT image. The bottom left image is the original gating-function input.
The images progress left to right, bottom to top, and include the transfer from natural order to row order. An FFT is
performed on the shifted data. The results of the FFT are transferred to natural order and then from natural order to
column order, at which point an FFT is performed. Finally the results are transferred back to natural order. The image at
the top right shows the resultant synchronous function.

The Lincoln Laboratory Journal, Volume I, Number 1 (1988) 29

Gilbert - The Synchronous Processor

All inter-CE data communication for a two-dimen
sional FFT can be performed in lockstep without
wasted motion. This algorithm for two-dimensional
FFTs has been implemented on the SP - the results
are shown in Fig. E. This technique is also applicable
to matrix multiplication.

For a single CE, a complex FFT of length N takes
9 N log2N cycles. An N X N row-column transform
takes 18 (N/n)2 log2N cycles (n = 8 for the SP). The
communications overhead required to access off
chip data for the location-dependent roll used to
reconfigure the data adds 40 (N/n)2 cycles. The com
munication time, which includes loading and un
loading the communication register as well as per
forming the actual shifts, is (N/n)2 (4n2 + 4) cycles.
Since the SP's clock rate is 6 MHz, the computation
and communication times to performa 1,024 X 1,024
full complex transform are

Computation time = 0.60 s
Communication time = 0.71 s.

If a single transform is performed, the communica
tion and computation times are additive. But if sev
eral transforms are performed in succession, the
communication and computation functions can be
overlapped, which reduces the effective time to the
greater of the two components. For transforms of
larger size, the computation time eventuallyexceeds
the computation time. Real to Hermitian transforms
can be performed in half the time required for full
complex transforms.

30

REFERENCES

1. M. Flynn, "Some Computer Organizations and Their
Effectiveness," IEEE Trans. Computers C·21, 948
(1972).

2. D.L. Slotnick, Borck, C.W., and McReynolds, R.C., "The
Solomon Computer," Proc. of the Fall Joint Computer
Conj. 22, 97 (1962).

3. D.L. Slotnick, "The Fastest Computer," Scientific Amer
ican 224, 76 (February 1971).

4. D.W. Hillis, The Connection Machine, MIT Press, Cam
bridge, MA (1985).

IRA GILBERT is the group leader ofthe ProcessorSystems
Group. He received a BS in physics from the Polytechnic
Institute of Brooklyn and a PhD in physics from Harvard
University. Ira's research is focused on digital signal pro
cessing. As a hobby, he studies neuroscience.

The Lincoln Laboratory Journal, Volume 1, Number 1 (1988)

r.

	JA 6140.rdo

