
Observational Constraints on the Number, 
Albedos, Sizes, and Impact Hazards of the Near-

Earth Asteroids 
by 
 

Joseph Scott Stuart 
BSE Electrical Engineering and Computer Science 

University of Pennsylvania, 1993 
 
 

SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC AND PLANETARY 
SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF  
 

DOCTOR OF PHILOSOPHY IN EARTH, ATMOSPHERIC AND PLANETARY SCIENCES 
AT THE 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
 

June 2003 
 
 

© 2003 Massachusetts Institute of Technology.   
All rights reserved. 

 
 
 
 
 

 
Signature of Author:_______________________________________________________ 

Department of Earth, Atmospheric and Planetary Sciences 
21 March 2003 

 
 

Certified by:_____________________________________________________________ 
Richard P. Binzel 

Professor of Earth, Atmospheric, and Planetary Sciences 
Thesis Supervisor 

 
Accepted by:_____________________________________________________________ 

Ronald G. Prinn 
Head 

Department of Earth, Atmospheric, and Planetary Sciences 

   





 

Observational Constraints on the Number, 
Albedos, Sizes, and Impact Hazards of the Near-

Earth Asteroids 
by 
 

Joseph Scott Stuart 
 

Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on March 
21, 2003 in Partial Fulfillment of the Requirements for the Degree of Doctor of 

Philosophy in the Field of Planetary Science 

Abstract 
This work provides a statistical description of the near-Earth asteroids (NEAs) in 

terms of number, orbital parameters, reflectance spectra, albedos, diameters, and 
terrestrial and lunar collision rates. I estimate the size and shape of the NEA population 
using survey data from the Lincoln Near-Earth Asteroid Research project including more 
than 1300 NEA detections.  The NEA population is more highly inclined than previously 
estimated and the total number of NEAs with absolute magnitudes (H) brighter than 18 is 

. 170
901227+
−

The absolute magnitude and orbital parameter distributions for the NEAs are 
combined with reflectance spectra and albedo measurements.  I obtain a debiased 
estimate of the fraction of NEAs in each of 10 taxonomic complexes, and a debiased 
average albedo for each.  The number of NEAs larger than 1 km is 1090±180. 

Next, I determine the impact frequency, collision velocity distribution and collision 
energy distribution for impacts of NEAs into the Earth and Moon.  Globally destructive 
collisions (~1021 J) of asteroids 1 km or larger strike the Earth once every 0.60±0.1 Myr 
on average.  Regionally destructive collisions with impact energy greater than 4x1018 J 
(~200 m diameter) strike the Earth every 47,000±6,000 years.  The rate of formation of 
craters expected from the NEAs is found to be in close agreement with the observed 
number of craters on the Earth and Moon. 

These results combine the largest set of NEA discovery statistics from a single 
survey, the largest set of physical data on NEAs, and corrections for observational bias.  
The result is a comprehensive estimate of the total NEA population in terms of orbital 
parameters, absolute magnitudes, albedos, and sizes.  This improved description of the 
NEAs will help us to plan surveys to find and study the remaining undiscovered NEAs, to 
connect the NEAs to their origins in the main-belt, to connect the NEAs to meteorite 
samples, to compare the lunar and terrestrial cratering record to the current population of 
potential impactors, and to understand the magnitude of the NEA impact hazard to the 
Earth’s biosphere. 
 
Thesis Supervisor: Richard P. Binzel 
Title: Professor of Earth, Atmospheric, and Planetary Sciences
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Chapter 1 Introduction 
The near-Earth asteroids (NEAs) are a population of small, sun-orbiting bodies 

whose orbits bring them near to the Earth’s orbit.  NEAs and other groups of asteroids 

sparsely fill the inner solar system interior to Jupiter’s orbit (Figure 1.1).  NEAs provide a 

link between the meteorites and the main-belt asteroids that is important for placing the 

geochemical information obtained from the meteorites into a spatial context to 

understand the formation of our solar system.   The NEAs have the potential to collide 

with the Earth, leaving interesting geological formations and producing extreme 

devastation that may have substantially altered the evolution of life on Earth.  Collisions 

of NEAs on the Earth are a long-term hazard for Earth’s inhabitants. 

 
Figure 1.1 Inner Solar System On March 21, 2003 (JD 2452720).  The five inner-most planets, are in 
black (except for the Earth, in blue).  The first 5,000 numbered asteroids are shown as black points.  Also 
shown are the orbits and locations of  three prototypical NEAs: (1221) Amor in orange, (1862) Apollo in 
green, and (2062) Aten in red. These illustrate the orbital groups named for those three asteroids. 
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1.1 History of Impact Threat 
The possibility of small celestial bodies approaching and colliding with the Earth 

was recognized even before the first asteroid was discovered in 1801.  Edmond Halley 

speculated in 1705 that comets could strike the Earth.  For most of the first century after 

asteroids were discovered, they seemed to be confined to the main belt where they would 

pose no threat to the Earth. 

In 1908, a small asteroid exploded in the air above an area of Siberia known as 

Tunguska.  Atmospheric pressure waves, seismic waves, and dust clouds from that event 

were observed over much of the Earth.  The first scientist to visit the site, Leonid Kulik, 

wasn’t able to get there until 1927 but still found vast devastation.  By then, most 

scientists already suspected that the Tunguska explosion had been caused by a small 

comet or asteroid impact.  Only in the last few years has consensus emerged that the 10 

megaton explosion was caused by an asteroid rather than a comet (Sekanina 1998). 

By 1951, when E. J. Öpik derived formulas for calculating the probabilities of 

asteroids colliding with planets (Öpik 1951), it was clear to the small number of asteroid 

researchers that asteroids could collide with the Earth.  At the same time, there was an 

ongoing debate about the origin of the craters on the Moon.  The idea that most were 

volcanic fell by the wayside as evidence mounted that the craters were from impacts.  

Then E. M. Shoemaker proved that Barringer Crater in Arizona was from an impact 

(Shoemaker 1960).  Within a few years, Shoemaker’s detailed comparison of Barringer 

Crater and several lunar craters had convinced nearly everyone that most of the craters on 

the Moon were of impact origin.  The lunar samples returned by the Apollo missions 

removed any remaining doubt, and greatly enhanced our understanding of impacts.  With 

so many impact craters easily visible on the Moon, the sometimes violent nature of the 

solar system was inescapable. 

Even so, the fact that asteroid impacts could happen on the Earth was not widely 

recognized by the public.  A group of M.I.T. students probably did more to popularize the 

threat of asteroid impacts than anyone else.  A close approach to the Earth of the large 

NEA (1566) Icarus in 1967 prompted M.I.T. professor Paul Sandorff to assign to his 

systems engineering students the task of planning a mission to deal with a pending Earth 
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impact of an asteroid like (1566) Icarus with only 18 months warning.  The results of the 

students’ efforts were widely publicized with an article in Time Magazine, a book (Li 

1979), and eventually, a Hollywood movie (Meteor, 1979). 

In the same year Meteor was released, Louis Alvarez  and colleagues made a 

crucial scientific discovery.  They found a concentration of iridium in the geological 

stratum at the Cretaceous-Tertiary boundary.  The 65 Myr old K/T boundary corresponds 

to a mass extinction event that saw the demise of 80% of Earth’s species, including the 

dinosaurs.  Iridium is rare on Earth, but common in meteorites, so Alvarez et al. 

attributed the mass extinction to an impact (Alvarez et al. 1980).  This was the beginning 

of widespread recognition that impacts have profoundly affected life on Earth.  The 

coincidence of a large impact at the K-T boundary has since been confirmed by a number 

of geochemical analyses (Bauluz et al. 2000) and by the discovery of the 65 Myr old, 170 

km diameter Chicxulub impact crater off the Yucatan Peninsula of Mexico (Frankel 

1999). 

In 1991, NASA convened two working groups to consider the hazard posed by 

asteroid and comet impacts and to suggest strategies for mitigating the threat.  The 

resulting Spaceguard Survey (Morrison 1992) has greatly influenced scientific attitudes 

about the impact hazard, and has motivated the U.S. and other governments to support 

NEA research. 

A truly extraordinary event occurred in 1994 that further publicized the dangers 

posed by asteroid and comet impacts.  The comet Shoemaker-Levy 9, while passing by 

Jupiter, was captured into orbit about Jupiter and torn apart into a few dozen pieces which 

then collided into the giant planet (Levy 1998).  Fortunately, this event was predicted far 

enough in advance that a major observational campaign was undertaken involving three 

interplanetary spacecraft (Galileo, Ulysses, and Voyager 2), the Hubble Space Telescope, 

and many Earth-based observatories.  The resulting pictures of Earth-sized scars in 

Jupiter’s atmosphere drove home the message that impacts continue to occur in our solar 

system. 

In the late 1990s and early 2000s, due to the success of the many NEA search 

programs, and improvements in predicting NEA orbital trajectories, a series of 
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predictions have been made that specific NEAs may hit the Earth at predictable times a 

few decades later.  The first of these predictions, made in early 1998, involved (36396) 

1997 XF11, which was predicted to have a small probability of impacting the Earth in 

2028.  The asteroid was quickly proven safe with more observations and better orbit 

analysis, but the resulting media attention brought the issue of asteroid impacts to public 

awareness.  That episode highlighted the need for the NEA community to develop 

methods of clearly communicating the dangers of asteroid impacts without hyperbole.  

The Torino Scale (Binzel 2000) was adopted as a result.  Several more predictions have 

been made of potential NEA impacts, but most have been proven safe after further 

observations allowed for more accurate orbit determination. 

1.2 History of NEA Discovery 
When the first NEA was discovered [(433) Eros in 1898] it was not initially called 

an NEA.  However, it was recognized as an unusual object;  it was the first asteroid 

discovered that was not confined to the main belt, and the first that crossed the orbit of a 

planet (Mars).  Several decades passed before astronomers found asteroids that closely 

approach or cross the Earth’s orbit. In 1932, Delporte discovered (1221) Amor and 

Reinmuth discovered (1862) Apollo.  Apollo and Amor quickly became  the archetypes 

and namesakes of two groupings of NEAs.  The Amor asteroids have orbits that are 

entirely beyond, but close to, the Earth’s orbit.  The Apollo asteroids have orbits that 

cross the Earth’s orbit.  Continuing in the competition to find asteroids that approach 

closer to the Earth, Delporte found (2101) Adonis in 1936, which passes 2.4 million km 

from the Earth’s orbit.  Reinmuth found (unnumbered) Hermes, in 1937, which passed 

only 800,000 km from the Earth in 1937. 

The growing number of asteroid discoveries prompted the astronomical community 

to establish the Minor Planet Center (MPC) in 1947 to serve as a central repository for 

asteroid observations,  to maintain a catalog of asteroid orbits, and to quickly notify 

astronomers of important observational opportunities.  The MPC still serves those roles 

in 2003, and also coordinates follow-up observations to pin down the orbits of newly 

discovered NEAs and other interesting asteroids. 
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The work of the MPC was increased when the first dedicated survey to find 

asteroids, the Yerkes-MacDonald Survey, was started in 1950 by G.P. Kuiper (Kuiper et 

al. 1958). The survey ran from 1950 to 1952 and discovered 1550 asteroids. That was 

followed by the Palomar-Leiden Survey in 1960 (van Houten et al. 1970), which found 

over 2000 asteroids in two months of observations.  Both of those surveys were designed 

to find main-belt asteroids.  The first search specifically designed to find NEAs was the 

Palomar Planet-Crossing Asteroid Survey, started in 1973 by E.M. Shoemaker and E.F. 

Helin (Helin and Shoemaker 1979).  They discovered 5 new NEAs, 7 new mars-Crossers, 

and many main-belt asteroids. 

In the 1980s, the advent of charge-coupled devices (CCDs) as astronomical 

instruments revolutionized the search and study of asteroids of all types (Janesick and 

Elliot 1992).  The first group to make use of CCDs to search for asteroids was 

Spacewatch, which discovered its first asteroid in 1985, but became fully operational as a 

large search effort in 1990 (McMillan 2000).  

Complementing Spacewatch, the Lowell Observatory Near Earth Object Search 

(LONEOS) began in 1993 with the principal goal of discovering NEAs and near-Earth 

comets.  In 1995, E.F. Helin began the second Palomar survey to find NEAs, the Near 

Earth Asteroid Tracking Program (Pravdo et al. 1997).  In 1996, MIT Lincoln Laboratory 

began the Lincoln Near-Earth Asteroid Research (LINEAR) program (Stokes et al.  

2000).  Spacewatch, LONEOS, NEAT and LINEAR are still operating in 2003. 

1.3 History of Population Estimates 
E. J. Öpik started efforts to estimate the total number of NEAs, calculating that 

there are approximately 34 Apollo type NEAs with diameters larger than 1.0 km (Öpik 

1963).  He was soon followed by Whipple (1967) who predicted that there must be at 

least 50 Apollos bigger than 1 km.  Both of those predictions were made with fewer than 

10 known Apollos.  Thanks to a continued slow trickle of discoveries of NEAs, and then 

to the success of the Palomar Planet Crossing Asteroid Survey, by the late 1970s the 

number of known NEAs had risen to about 50.  This almost two-fold increase in the 

number of known NEAs resulted in about a 30-fold increase in the estimate of the total 

number of NEAs.  G.W. Wetherill (1976) suggested that there are about 1200 NEAs 
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bigger than 500m.  Helin and Shoemaker (1979) estimated that there were 1500 – 2500 

NEAs brighter than absolute magnitude 18 (absolute magnitude is defined in Appendix 

A.1).  Through the 1980s and early 1990s, the 1979 results of Helin and Shoemaker stood 

as the best estimates of the NEA population, with Shoemaker et al. (1990) making a 

minor adjustment to that estimate. 

In 1993 and 1994, Rabinowitz and coauthors (Rabinowitz et al. 1993, Rabinowitz 

1994) used data from Spacewatch to speculate that there is a belt of small (less than 50 m 

diameter) asteroids in low eccentricity orbits very near the Earth.  The first new estimate 

of the number of large NEAs since the Palomar estimates of the late 1970s lowered the 

estimated number of NEAs with absolute magnitudes brighter than 18 to 700 ± 230 based 

on 26 NEAs detected in that size range (Rabinowitz et al. 2000).  Also in 2000, a new 

technique was used by Bottke et al. (2000, 2002) that combined Spacewatch observations 

of NEAs with dynamical models of the origins of NEAs to estimate that there are 960 ± 

120 NEAs brighter than absolute magnitude 18.   A.W. Harris (2001) used the results of 

all of the NEA survey programs to estimate the number of NEAs as ~1000 brighter than 

absolute magnitude 18.  D’Abramo et al. (2001) applied a simple probabilistic model to 

data from the LINEAR survey to estimate the number of NEAs brighter than absolute 

magnitude 18 as 855±101.   The same year, J. S. Stuart (2001) performed a detailed 

analysis of the LINEAR survey to estimate the NEA population; that work is presented in 

Chapter 2.  A. W. Harris (2002) extended the population model of Stuart to smaller sizes 

to estimate that there are approximately 0.5 million NEAs with absolute magnitudes less 

than 24.5 (which is approximately the range for the Tunguska impactor).  

1.4 Origin of the NEAs 
NEAs had not been discovered when Daniel Kirkwood noticed gaps in the main-

belt asteroids (Kirkwood 1876).  But those gaps became important in understanding the 

relationship between the main-belt asteroids and NEAs.  Early work on the origins of the 

NEAs concluded that NEAs must be constantly resupplied by some reservoir of small 

objects (Öpik 1963) because they survive for only a few million years before colliding 

with a planet, or the sun, or being ejected from the solar system.  Recent analysis 
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confirms that NEAs can survive the chaotic dynamics of the inner solar system for only a 

few tens of millions of years (Gladman et al. 2000). 

With such short lifetimes, the NEAs must be escapees from another group of small 

objects.  Early researchers concluded that most NEAs must be extinct comets (Öpik 

1961, 1963) because there weren’t enough Mars-crossing asteroids to supply the NEAs.  

Over a decade later, the state of knowledge was much the same with the main belt being 

thought incapable of supplying NEAs through gravitational interactions with the planets 

(Wetherill 1976).  A breakthrough came in the early 1980s when J. Wisdom discovered 

that chaotic dynamics in one of the Kirkwood gaps (the 3:1 commensurability with 

Jupiter in which an asteroid completes three orbits for each orbit of Jupiter) could quickly 

increase the eccentricity of an asteroid to make it cross the orbit of Mars or even the orbit 

of Earth or Venus (Wisdom 1981,1982,1983,1985).  At about same time, J. G. Williams 

showed that secular resonances are capable of quickly increasing the eccentricities of 

main-belt asteroids to make them planet crossing (Wetherill 1979).  The dynamics of the 

main-belt source regions were further explored by many researchers (Morbidelli et al. 

2002a for a review) culminating with the work of Bottke et al. (2000, 2002) in which all 

of the potential NEA source regions are combined into a statistical model of the origins 

of the NEAs. 

Taking a different approach to the problem of the origins of the NEAs, Binzel et al. 

1992 showed that physical properties of the NEAs (spin rate and shape) match quite well 

with small (<5 km diameter) main-belt asteroids.  This represented some of the first 

physical data on main-belt asteroids of comparable size to NEAs, and loosely constrained 

the cometary fraction of the NEA population to between 0 and 40 percent. 

If the NEAs are derived from main-belt asteroids, they should be of similar 

composition.  The main-belt asteroids are a diverse set of bodies that formed from a 

heterogeneous cloud of gas and dust over a range of temperatures, and they have 

undergone a variety of post-formation geological modification.  Diversity in the 

composition of asteroids was first noticed by studying differences in their colors 

(Bobrovnikoff 1929).  Systematic broadband photometry (Wood and Kuiper 1963, 

Chapman et al. 1971), combined with albedos (Chapman et al. 1975) lead to the 
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recognition of two broad classes of asteroids:  the dark, “carbonaceous” types (C-types) 

that dominate the mid and outer main belt, and the brighter, “stony” types (S-types) that 

dominate the inner part of the main-belt.  A more sophisticated taxonomy, based on 

eight-color photometry was introduced by Tholen (1984) in which the asteroids were 

divided into 14 classes.  The advent of CCD spectroscopy in the 1980s allowed for a 

much richer description of the spectral reflectance properties of asteroids.  These high 

resolution spectra were developed into an asteroid taxonomy comprising 26 classes by 

Bus (1999, Bus and Binzel 2002a, Bus and Binzel 2002b).  I use the Bus taxonomy in 

Chapter 1 to address the compositional and size distribution of the NEAs. 

Despite the likelihood that most NEAs are supplied from the main-belt, there are 

also undoubtedly comets among the NEAs.  Comets are distinguished from asteroids, 

observationally, by virtue of displaying comae and tails when they are heated by the sun.  

Asteroids do not, and were thus named “star-like” by 19th century astronomers.  This 

definition is not quite as simple as it sounds because comets may exhibit very little coma 

when weakly heated.  Similarly, an asteroid could exhibit a temporary coma or tail if dust 

from its surface were kicked off from a small impact.  Compositionally, asteroids are 

defined as being made of rock and metal, and formed in the inner solar system at 

temperatures too high for ices to condense from the solar nebula.  Comets are made of 

ice, with an unknown, possibly large amount of dust and organic solids, and they formed 

further from the sun in cooler parts of the solar nebula.  There is also overlap in the 

compositional definition since there are surely objects that are roughly equal mixes of 

ices and rocky material that formed near the boundary where ices could condense from 

the solar nebula. 

Furthermore, the observational and compositional definitions of asteroids and 

comets are mismatched.  After repeated passes through the inner solar system, comets 

that do not disintegrate into dust may lose most of their volatile ices and stop producing 

comae and tails; they become extinct comets.  Or, they may build up a thick layer of dust 

and organic solids that insulates and covers the volatile ices preventing sublimation, 

rendering the comet dormant.  These extinct and dormant comets would appear to be 

asteroids.  Their orbits may also be modified to resemble asteroid orbits by interactions 

with Jupiter and the other planets.  In this work, I use the term NEA to refer to objects 
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that meet the observational definition of asteroids.  I will, however, further discuss the 

issue of extinct and dormant comets within the NEA population in Chapter 1. 

1.5 Meteorites and Resources 
The meteorites are an extraordinarily valuable sample of a wide range solar system 

materials that have undergone far less geological processing than rocks from the Earth.  

Chemical, elemental, and radioisotope analyses of meteorites led to nearly all of our 

current understanding of how the solar system, and the Earth itself, formed.  Given that 

meteorites are in fact extraterrestrial, then they are, by definition, samples of rocky and 

metallic NEAs.  To take full advantage of the meteorites, we must understand where they 

formed in the solar system and how they came to the Earth.  Thus, an understanding of 

the NEAs, how they derive from the main-belt asteroids, and how they connect to the 

meteorite samples (Burbine 2000) is important to better understand the formation of the 

solar system, the Earth, and the formation of planets around other stars. 

Two important steps have been made in connecting the meteorites to NEAs and 

main-belt asteroids.  The first is that the genealogy of the Howardite-Eucrite-Dioginite 

(HED) meteorites has been definitively traced to the main-belt asteroid (4) Vesta 

(Burbine et al. 2001, Binzel and Xu 1993).  The second is that the most abundant type of 

meteorite, the ordinary chondrites, have been tentatively associated with the most 

abundant type of NEAs and inner main-belt asteroids, the S types (Binzel et al. 1996). 

In a very real sense, the NEAs are the Earth’s nearest neighbors:  many NEAs 

require less rocket fuel to reach, land on, and return material from than does the Moon.  

As humanity extends its operations in space the NEAs will eventually become a valuable 

repository of raw material including metals, but perhaps most importantly: water (Rivkin 

et al. 2002).  Because of their accessibility, the NEAs may also provide convenient 

destinations for testing spacecraft as a step toward exploring more distant parts of the 

solar system.  This process has already begun with the phenomenally successful trip to 

the asteroid (433) Eros by an unmanned NASA spacecraft (Veverka et al. 2001). 

1.6 Some Definitions 
The NEAs are dynamically defined as all asteroids with perihelion distances less 

than 1.3 astronomical units from the sun.  Perihelion is the point in a solar elliptical orbit 
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that is closest to the sun, and an astronomical unit (AU) is the distance of the Earth from 

the sun.  The NEAs are divided into three groups: Amors, Apollos, and Atens.  The 

Amors have perihelion distances less than 1.3 AU, and greater than 1.017 AU, which is 

currently the maximum distance of the Earth from the sun.  Thus Amor asteroids do not 

currently cross the Earth’s orbit.  The Apollos have perihelion distances less than 1.017 

AU and semimajor axis greater than 1 AU.  The semimajor axis is half of the length of 

the longest axis of the elliptical orbit (the Earth’s semimajor axis is 1 AU).  Aten 

asteroids have semimajor axes less than 1 AU, and aphelion distances greater than 0.983 

AU, which is the minimum distance of the Earth from the sun.  Aphelion is the point in a 

solar elliptical orbit which is furthest from the sun.  Only one asteroid has been 

discovered with aphelion less than 0.983 AU (2003 CP20 discovered 11 February 2003).  

As more members of this class of asteroids are discovered, they may be classified as 

NEAs.  See Figure 1.1 for a depiction of some asteroid orbits and Appendix A.2 for 

defintions of asteroid orbital parameters. 

The definition of NEA as having a perihelion distance less than 1.3 AU is a 

somewhat arbitrary definition that is maintained primarily for backward compatibility 

with previous research.  On the other hand, there is no other definition that is particularly 

better.  The boundary at 1.3 AU was chosen to be near a minimum in the distribution of 

perihelion distances of the asteroids so that the fewest asteroids would be near the 

boundary (Shoemaker et al. 1979).  With timescales of tens of millions of years, the 

orbits of Amors may be perturbed by gravitational interactions with the planets to drift 

out beyond the 1.3 AU boundary, or they may drift inward to become Apollos.  Likewise, 

Apollos and Atens can drift into other categories on similar timescales.  On even longer 

timescales, asteroids may move from deep within the main belt into near-Earth space.  

The definition of NEA using a perihelion distance of 1.3 AU provides a very simple 

definition that uses the current orbital elements and does not require extensive orbit 

analysis to determine if the asteroid may become Earth-crossing in the future (or was in 

the past).  At the same time, it is a set of asteroids that is much smaller than the whole 

catalog of main-belt asteroids, and contains the vast majority of asteroids that could 

become Earth-crossing in several tens of millions of years. 
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1.7 Scope of this Work 
When a telescopic survey detects asteroids, two types of measurements are made:  

astrometry and photometry.  Astrometry is the process of measuring the position of the 

asteroid in relation to the background stars, which are used to define a common positional 

reference system.  Astrometry spanning a few weeks or months is used to calculate an 

osculating orbit for the asteroid.  The osculating orbit is an ellipse described by six 

parameters, defined in Appendix A.2, and a time, or epoch, for which the orbit is valid.  

The osculating orbit may be used to predict the location of the asteroid for times near the 

epoch.  It may also be propagated to a different epoch by taking into account gravitational 

perturbations from the planets, and other factors.  The NEAs have a range of orbits that 

make some NEAs easier to discover than others.  There is thus an observational selection 

effect or bias that makes the distribution of orbital parameters for the known NEAs 

unrepresentative of the distribution for the as-yet-undiscovered NEAs.  This 

observational bias depends in complicated ways on the orbits of the NEAs, as well as on 

the surveying strategy used.  An important aspect of understanding the distribution of 

NEAs is to correct for this observational bias to obtain the true, unbiased distribution of 

the orbital parameters of the NEAs. 

Photometry is the process of measuring the brightness of an asteroid.  As with 

astrometry, the background stars are used for calibration.  The apparent brightness of an 

asteroid depends on many factors:  the brightness of the sun, the distance of the asteroid 

from the sun and the observer, the size of the asteroid, its reflectivity, or albedo, the 

asteroid’s phase angle (i.e. the angle between the observer and the sun as measured at the 

asteroid), and a variety of observer specific parameters such as weather, detector 

sensitivity, etc.  The brightness of the sun is well known.  An asteroid’s orbit, computed 

from astrometry spanning a few weeks or months, provides accurate enough information 

about the location of the asteroid relative to the Sun and Earth to be able to account for 

the asteroid’s distance from the Sun, its distance from the observer, and its phase angle.  

The background stars are used to measure observer specific parameters such as 

atmospheric extinction and detector sensitivity.  With each of those factors accounted for, 

the remaining variables that control the brightness of an asteroid are its size and albedo.  
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Those two parameters can be combined into a single parameter, the absolute magnitude 

(defined in Appendix A.1). 

The number of NEAs, and of asteroids in general, increases rapidly as one moves to 

smaller and smaller sizes (or dimmer absolute magnitudes).  However, smaller asteroids 

are dimmer (other factors being equal) than larger asteroids, and dimmer asteroids are 

more difficult to find with telescopic surveys.  So, for example, it is likely that all or 

nearly all NEAs larger than about 5 km have already been found.  However, perhaps only 

about half of the NEAs larger than 1 km have been found, and only a small fraction of 

NEAs larger than 100 m have been found.  Characterizing the number of NEAs as a 

function size or absolute magnitude, by accounting for this size-related observational 

bias, is another important aspect of understanding the distribution of the NEAs. 

This work seeks to provide a comprehensive description of the NEAs:  their 

number, orbital distribution, compositional distribution, albedos, sizes, impact hazards, 

lunar cratering rates, and terrestrial cratering rates.  A key theme is to account for the 

various observational selection effects that cause the catalog of known NEAs to differ 

from the true distribution.  I first use the results of the LINEAR survey to estimate the 

number of NEAs as a function of absolute magnitude and orbital parameters, in Chapter 

2.  Chapter 3 addresses the question of observational selection effects in the observed 

NEA population in order to begin to describe the compositional distribution, albedos and 

sizes of the NEAs.  This analysis is extended in Chapter 1, by combining Chapter 2’s 

results with taxonomic and albedo data.  This combination produces a description of the 

compositional distribution, albedo distribution and size (diameter) distribution of the 

NEAs.  I use this new model of the NEA population in Chapter 5 to assess the hazard 

posed to the Earth from asteroid impacts.  Chapter 5 also calculates the rate of crater 

formation expected from this NEA population model, and compares that with the 

observed cratering record on the Earth and Moon. 
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Chapter 2 An NEA Population Estimate from the 
LINEAR Survey1 

2.1 Abstract 
I estimate the number of near-Earth asteroids (NEA) and their orbital distributions 

using survey data from the Lincoln Near-Earth Asteroid Research (LINEAR) project 

covering 375,000 square degrees of sky and including more than 1300 NEA detections.  

A simulation of detection probabilities for different values of orbital parameters and sizes 

combined with the detection statistics in a Bayesian framework provides a correction for 

observational bias and yields the NEA population distribution as a function of absolute 

magnitude, semi-major axis, eccentricity, and inclination.   The NEA population is more 

highly inclined than previously estimated, and the total number of NEAs with absolute 

magnitudes less than 18 is 1227 . 170
90
+
−

2.2 Introduction 
Because of the interest in NEAs, and primarily because of the risk of devastation 

from impacts, the US Air Force and MIT Lincoln Laboratory began the Lincoln Near-

Earth Asteroid Research (LINEAR) project in 1996.  NASA began contributing 

operational and developmental support to LINEAR in 1999.  The LINEAR project 

evolved from a long and successful program of developing electro-optical space-

surveillance technology to detect and catalog Earth orbiting artificial satellites.  The 

advances those programs made in highly sensitive, large format, frame-transfer charge-

coupled devices (CCDs), as well as the advances made in moving target detection 

algorithms, were naturally applied to the problem of discovering and cataloging NEAs.  

The LINEAR program operates with a Lincoln Laboratory developed, 2560x1960-pixel, 

frame-transfer CCD mounted on a 1-meter telescope from the U.S. Air Force ground-

based electro-optical deep-space surveillance (GEODSS) system in Socorro, New 

Mexico.  This telescope and CCD can achieve a limiting visual magnitude of 22 over a 2 

                                                 
is chapter is an expanded version of: Stuart, J.S. A Near-Earth Asteroid Population Estimate from the 

LINEAR Survey,  Science 294, p.1691-1693, 23 Nov 2001.  The results presented here are identical to the 
results in that paper.  The descriptions and explanations have been expanded. 

1 Th
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square degree field of view with less than 100 seconds of integration time.  During a long 

winter night, using a 10-second integration time, the system can image about 1200 square 

degrees of sky five times over (the moving target detection algorithm uses five images of 

the same field of view, over an interval of 2 hours, to detect asteroids).  For further 

descriptions of the LINEAR project, see Viggh et al. (1998a, 1998b), and Stokes et al. 

(1998, 2000). 

Since beginning full scale operations in 1998, LINEAR has been responsible for 

about 70% of the world-wide total number of asteroid detections, and NEA discoveries.  

It has discovered more than half of the currently known NEAs and has detected over 75% 

of the known NEAs.  LINEAR has discovered nearly 5 times as many asteroids 

(including main-belt asteroids) as the next most prolific observatory.  The large amount 

of data produced by LINEAR yields a significant advance in understanding the statistics 

of the NEA population. 

2.3 LINEAR Survey Data 
Because of the huge volume of data produced by the LINEAR CCD, the raw data 

from the searches were not archived until high-speed, large-capacity tapes became 

available in 2002.  Instead, a summary of each night’s observing is produced and stored.  

The summary contains a record for each field searched, including the computed visual 

magnitude for a star with a signal-to-noise ratio of 6 (SNR6).  This number is obtained by 

selecting a few hundred solar-type stars from the USNO SA2.0 star catalog and using 

their cataloged magnitudes to calculate a color-corrected CCD magnitude.  The CCD 

magnitude is defined as the V magnitude of a solar-type star that produces the same 

photoelectron generation rate in the unfiltered CCD sensor as the star does.  The USNO 

SA2.0 provides calibrated B and R magnitudes that are converted to V magnitudes using 

a linear fit to (B-V) versus (B-R).  The V magnitude is converted to a CCD magnitude by 

adding an offset that is determined by a blackbody spectrum for the star whose effective 

temperature is estimated from the catalogued B and R magnitudes (Rork 1998). 

The CCD magnitude is converted to a signal flux with the equation , 

where F is the expected flux, and M

0.410 CCDMF −=

CCD is the catalogued magnitude with color 

corrections to convert to CCD magnitude.  This expected signal flux, for each star, Fi, is 
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divided by the measured signal for that star, Si, determined with a single pixel aperture.  

The typical seeing at the LINEAR site is 2" (full-width at half-maximum of the point-

spread function).  The plate scale is 2".26 per pixel, so the single-pixel aperture captures 

about 60% of the photon flux, on average.  The resulting gain ratios are linearly averaged 

to produce the average gain value for the image 
1

1 L

i i
i

G F
L =

= ∑ S , where Si is the 

measured signal from one of the stars, and L is the number of catalogued stars used.  The 

average gain, G , is the correction factor to convert CCD signal to expected 

(catalogued) flux and is used to calculate the magnitudes of stars and asteroids from the 

CCD measurements. 

So if an asteroid has a signal level of  Sa, using a single-pixel aperture, the reported 

magnitude for the asteroid is ( )102.5logast aM S G= − .  The magnitude of a star with 

signal-to-noise ratio of six is calculated as ( )6 102.5log 6SNRM Gσ= − , where σ is the 

spatially averaged, single pixel, RMS sky background noise for the image.  MSNR6 is a 

good estimate for the faintest object that can be detected by the search system, and I will 

use this as the limiting visual magnitude for the search. 

Unfortunately, during the time period in which the data for this analysis were 

collected, the SNR6 stellar magnitude was recorded for only the first of the five frames.  

On many nights, when the weather was variable, ( ) the SNR6 stellar 

magnitudes fluctuate enough to make limiting magnitude determination uncertain.  On 

the other hand, on many nights, the weather was more stable, and the SNR6 magnitudes 

were more constant, .  It seems reasonable to conclude that on the night 

illustrated in Figure 2.2 the weather was constant enough to assume that the limiting 

visual magnitude for the first image in each field is an acceptable expression of the 

overall limiting magnitude for the field.  Recently, the telescope control software was 

modified to record SNR6 limiting magnitudes for every frame of all fields.  These data 

confirm (Figure 2.3) that on nights when the first frame SNR6 magnitudes are steady, the 

intervening frames are similarly calibrated. 

Figure 2.1

Figure 2.2
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Figure 2.1Limiting Magnitudes for a Variable Night, Day 349, 1998.  The limiting visual magnitudes 
for each field is plotted over the course of a single night.  The limiting visual magnitude is calculated as the 
magnitude for an average SNR6 star, see text above for details of calculation.  The SNR6 limiting visual 
magnitude was available for only the first of five frames.  The extreme variability over the course of the 
night, due to changing weather conditions, makes it impossible to calibrate the frames for which the SNR6 
limiting magnitude was not recorded.  Nights with this sort of variability were not used in this analysis.   
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Figure 2.2 Limiting Magnitudes for a Consistent Night, Day 63, 1998.  The limiting visual magnitudes 
for each field is plotted over the course of a single night.  The limiting visual magnitude is calculated as the 
magnitude for an average SNR6 star, see text above for details of calculation.  The SNR6 limiting visual 
magnitude was available for only the first of five frames.  The weather on this night was reasonably 
consistent throughout the night, so the SNR6 limiting visual magnitude for the first of the five frames was 
assumed to be representative of the limiting visual magnitude for the remaining four frames in each block.  
The overall limiting visual magnitude for the night was estimated by averaging the limiting visual 
magnitude from the first frames. 
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Figure 2.3 Limiting Visual Magnitude for a Night with All Frames Available, Day 335, 2002.  The 
limiting visual magnitudes for each field is plotted over the course of a single night.  The limiting visual 
magnitude is calculated as the magnitude for an average SNR6 star, see text above for details of 
calculation.  Red triangles show the limiting visual magnitude for the first of the five frames in each field.  
The black dots show the limiting visual magnitude for the other four fields.  Around 8:30 UTC, heavy 
clouds moved in so that only three frames were acquired for the last field.  The limiting visual magnitudes 
for the intermediate frames (black dots) match the limiting visual magnitudes for the first frame of each 
block (red triangles).  This validates the use of the first frame limiting visual magnitudes as a measure of 
the overall limiting visual magnitude for the night. 

To test the validity of using the SNR6 limiting magnitude as the detection limit for 

NEAs, I compared the SNR6 limiting magnitude to the limiting magnitude derived from 

observations of main-belt asteroids.  The catalog of numbered and multi-opposition main-

belt asteroids from the Minor Planet Center was propagated to determine which asteroids 

should have been within the telescope search area each night, and how bright those 

asteroids were.  The catalogued asteroids were compared with the detected asteroids.  The 

ratio of detected asteroids to total expected asteroids within the field of view gives a 

direct measure of the detection efficiency of the sensor, as a function of apparent visual 

magnitude, for each night.  I found that the SNR6 limiting magnitude, on average, 

matches the apparent visual magnitude at which main-belt asteroids have a 50% 

probability of being detected by the LINEAR moving-target detection algorithm (

).  To test whether these two methods give statistically similar results, I used a paired 

t-test.  The resulting t-statistic is 2.01, which has a p-value of 0.06 in a two-tailed 

Figure 

2.4
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student's t distribution.  Thus, the two methods produce results that are not statistically 

different.  Because the limiting magnitudes determined from main-belt asteroids used the 

catalogued, V-band, absolute magnitude to calculate apparent visual magnitude, this 

comparison also validates the treatment of the SNR6 limiting magnitudes as visual 

magnitudes that do not need further color corrections. 
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Figure 2.4 Comparison of Limiting Magnitude Calculations.  Limiting visual magnitudes, as calculated 
by two different methods are shown for 23 nights.  The red circles give the limiting visual magnitude for 
each night as determined by the apparent visual magnitude at which main-belt asteroids had a 50% 
probability of detection on each night.  The black squares are the limiting visual magnitude calculated as an 
average of stars with signal-to-noise ratios of 6 (see text above for further description).  The error bars 
plotted with the SNR 6 values give the one standard deviation variability between fields on each night.  On 
average the two methods give similar results.  Using a paired t-test, the difference between the two methods 
is not statistically significant at the 5% level (t = 2.01, p=0.06). 

Most asteroids are not spherical bodies, and an asteroid’s brightness will change as 

the asteroid rotates and presents changing cross-sectional area to the observer.  This 

effect can be studied by measuring the changing brightness of an asteroid through several 

rotation periods to compile a rotational lightcurve (e.g. Slivan 1995).  Rotational 

lightcurves have not been measured for most of the NEAs detected by LINEAR.  This 

introduces an additional uncertainty into the calculation of an asteroid’s absolute 

magnitude from its observed brightness.  Because of a lack of knowledge of the rotational 
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states of most NEAs, no attempt has been made to account for the effect of rotational 

lightcurve variation. 

There is a disadvantage to using the main-belt asteroids as the primary method of 

determining the limiting magnitude each night.  On many nights, there aren’t enough 

main-belt asteroids within the search area to make the calibration.  The density of main-

belt asteroids falls rapidly with increasing ecliptic latitude.  For fields more than 30 

degrees away from the ecliptic plane, there are rarely enough main-belt asteroids to 

determine the limiting magnitude.  NEAs are detected at higher ecliptic latitudes than 

main-belt asteroids, primarily because of their proximity to Earth, and also because they 

tend to have higher orbital inclinations.  Part of the power of the LINEAR data is that 

observations are taken over the entire sky, not just in the ecliptic.  In order to be able to 

use some of this high latitude data, I use the SNR6 limiting magnitude rather than the 

main-belt asteroids to calibrate the limiting magnitude in my population estimates. 

For each of the nights with consistent atmospheric transparency (as in ) 

the SNR6 limiting magnitudes are averaged together to define a single limiting 

magnitude for the night.  The data from hundreds of nights are then combined together 

(as described below) to determine long-term detection efficiency.  Thus, variation of the 

limiting magnitude within a night, and random errors in determining the limiting 

magnitude for an individual night are averaged out over hundreds of nights and have very 

little effect on the final estimate of the NEA population.  However, if there is a systematic 

bias that causes the limiting magnitude to be over- or under-estimated every night, then 

that would potentially have a large effect on the final NEA population estimate.  This 

potential source of bias has been included in the uncertainty estimates by simulating the 

effects of increasing or decreasing all of the nightly limiting magnitudes by 0.1 

magnitudes.  This level of systematic bias in the limiting magnitude calculation results in 

a 7% uncertainty in the final population estimates, and that uncertainty has been added in 

quadrature with the Bayesian error estimates described below. 

Figure 2.2

The calculation of limiting magnitude does not account for trailing losses.  The 

telescope tracks at sidereal rate to keep the background stars from moving across the 

CCD during an image.  An object moving relative to the stars will therefore move across 

 27



Chapter 2 

the CCD during an image, spreading its signal over multiple pixels.  The signal strength 

in any one pixel will thus be reduced, an effect termed trailing loss.  However, each pixel 

on the LINEAR CCD subtends 2.26 arcseconds, and the maximum integration time that 

LINEAR uses is about 10 seconds.  That means that an NEA must be moving faster than 

5° per day to move one pixel during the longest images.  About 1% of the NEAs that 

LINEAR detects are moving faster than 5° per day.  The trailing losses for LINEAR are 

thus minor.  If a model for trailing losses were included in this analysis it would tend to 

increase the resulting estimate of the number of NEAs, though not significantly. 

In three years of operation starting in March 1998, and ending February 2001, the 

LINEAR project searched almost 500,000 square degrees of sky on nearly 600 nights, 

discovering 657 new NEAs and over 110,000 new main-belt asteroids.  After examining 

plots similar to Figure 2.2, and selecting only those nights on which the limiting visual 

magnitudes were reasonably consistent, I was left with 412 usable nights.  The limiting 

magnitudes on those 412 nights range from 13.0 to 20.3 with 99% in the range 15 to 20.  

The accepted nights covered more than 375,000 square degrees of sky, and included 1343 

detections of 606 different NEAs.  The total sky coverage is depicted in Figure 2.5. 
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Figure 2.5 Sky Coverage.  An equal-area projection of the entire celestial sphere in right ascension, and 
declination coordinates showing the area coverage and accumulated depth of the LINEAR survey data used 
in this analysis.  The ecliptic plane is plotted in black for reference.  More than 375,000 square degrees of 
sky were surveyed from March 1998 through February 2001.  Since the moving target detection algorithm 
uses five images of the same field to detect moving asteroids, this represents nearly 2 million square 
degrees of sky imaged.  The color-coded accumulated depth is the equivalent limiting magnitude from 
combining multiple searches of each field.   The SNR6 limiting magnitude for each field is converted to an 
equivalent integration time by assuming that the signal to noise ratio is proportional to the square root of 
the integration time.  The equivalent integration times are then summed for all of the nights on which 
LINEAR searched a given field.  The summed equivalent integration times are then converted back into 
astronomical magnitudes.  This figure appears as Figure 1 of Stuart (2001). 

2.4 Debiasing Technique 
To estimate the size and nature of the asteroid population from the available 

observational data, I must remove the observational biases from the data.  The search 

program preferentially detects asteroids that are bright in the sky over New Mexico on 

nights when the search is operating.  Thus, a complicated combination of an asteroid’s 

intrinsic brightness and orbital parameters, along with the telescope properties and 

weather in New Mexico determine whether any given asteroid is likely to be detected.  

To account for observational bias, I begin by defining a four dimensional parameter space 

in which near-Earth asteroids may be placed.  I then use the pointing history of the 

telescope, the nightly limiting magnitude, and the laws of orbital dynamics to estimate the 
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probability of detection for asteroids in all parts of the four-dimensional parameter space.  

This probability of detection for different regions of the parameter space, combined with 

the actual number of asteroid detections in each part of the parameter space, then allows 

me to estimate the number of asteroids in each part of the parameter space. 

The four dimensional space consists of the asteroid’s semi-major axis, a, its 

eccentricity, e, its inclination, i, and its absolute magnitude, H.  In the a direction, the bins 

are 0.1 AU wide from 0.6 AU to 3.6 AU.  In the e direction the bins are 0.1 in width from 

0.0 to 1.0.  Bins with a-e values that do not meet the definition of NEA are excluded from 

the analysis.  In the i direction, the bins are 5° wide from 0° to 50°, with the last bin 

extending to 180° to include the few objects with very large inclinations.  In the H 

direction, the bins are 0.5 magnitudes wide from 11 to 23 magnitudes.  The a-e-i-H space 

was thus divided into 49,200 bins. 

2.5 Detection Probability Analysis 
With the a-e-i-H space divided into a multitude of bins, I determined, for each bin, 

the probability that an asteroid with the specified values of a, e, i, and, H, would have 

been detected by the LINEAR search.  In order to fully specify an asteroid orbit, one 

needs to specify, in addition to a, e, and i, three angles: the longitude of the ascending 

node, the argument of perihelion, and the mean anomaly (Ω, ω, M).  It is widely believed 

that, for the total population of near-Earth asteroids, those three angles are uniformly 

distributed between 0 and 2π.  Given the perturbations that occur because of planetary 

encounters in the inner solar system, and the relative ease by which these angles are 

altered, there is no plausible mechanism by which any of these three parameters would 

become non-uniformly distributed.  So, to determine the probability of detection of an 

asteroid in a particular a-e-i-H bin, I averaged over the other three orbital parameters 

assuming a uniform probability distribution for Ω, ω, and M. 

For each a-e-i bin, 200 ellipses were generated by randomly selecting 200 values of 

argument of perihelion and longitude of the ascending node.  All were assigned a-e-i 

values for the center of the bin.  For each of these 200 ellipses, 720 test particles were 

placed on the ellipse at every half degree of mean anomaly.  All of these test particles are 

then propagated, by a two-body propagation algorithm, to every night that the telescope 
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searched.  The solar phase function and the heliocentric and geocentric distances are 

computed to find the difference between absolute magnitude and apparent visual 

magnitude.  The locations of the test particles are checked against the pointing history 

from the LINEAR telescope.  Any time a test particle falls within the field of view of the 

telescope, the limiting magnitude for that night, along with the observing geometry for 

the test particle, is used to determine the faintest absolute magnitude (largest value of H) 

that would be detectable in that telescope field.  If the maximum absolute magnitude, H, 

for the new detection is fainter than the currently recorded detection threshold, then the 

record is updated to the new H.  All 720x200 test particles in a single a-e-i bin are 

compared against the pointing history for all of the nights.  At the end, each test particle 

had a limiting absolute magnitude indicating that anything brighter than that value 

(smaller H) should have been detected by the search.  This analysis is depicted in 

. 

Figure 

2.6

After performing this simulation for each a-e-i bin, I calculate what fraction of the 

720x200 pseudo-asteroids would have been detected for the value of H associated with 

each of the H bins.  These numbers are the probabilities of detection for each a-e-i-H bin.  

If for example, an a-e-i-H bin ends up with a probability of detection of 20%, this implies 

that, had there been a single real asteroid with the given values of a-e-i-H, then our search 

would have had a 20% chance of detecting it.
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Select ellipses with random orientations

Populate each ellipse with test particles with 
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Check against pointing

Record maximum H at which test 
particle is detectable

In each a-e-i-H bin 
calculate fraction of test 

particles detected

Detection probability for each a-e-i-H bin

Select ellipses with random orientations

Populate each ellipse with test particles with 
evenly spaced mean anomalies

Check against pointing

Record maximum H at which test 
particle is detectable

In each a-e-i-H bin 
calculate fraction of test 

particles detected

Detection probability for each a-e-i-H bin

Telescope logs

Define H bins

Define a-e-i bins

Telescope logs

Define H bins

Define a-e-i bins

 

Figure 2.6 Flowchart for Detection Probability Analysis.  Shows the steps in calculating the detection 
probability for the LINEAR data used in estimating the NEA population.  Inputs are in red, outputs are in 
blue, and processes are in black.   
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2.6 Debiasing 
For each of the 49,200 bins in a-e-i-H space, I estimate the value of N, the true 

number of NEAs in the bin.  Using a binomial statistical model with N asteroids, and 

detection probability p, the probability distribution for the number of detections x, is a 

binomial distribution 

 ( ) ( )N,P 1 N xx
p

N
x p p

x
− 

= − 
 

. (2.1) 

(2.1)

(2.1)

The quantity x/p is an unbiased estimator of the number of asteroids, N.  Thus, my 

estimate for the total number of NEAs in any of the bins is <N> = x/p, where x is the 

observed number of NEAs in a bin, and p is the detection probability calculated in each 

a-e-i-H bin. 

I also need to determine the uncertainty in the estimate of the number of NEAs in 

each bin.  We can treat equation  as a likelihood function for the true number of 

asteroids in a bin, and use Bayes’ Law to convert it to a posterior distribution for the 

number of NEAs in a bin: 
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(2.2)

Pr(N) is the prior probability distribution function for N, and Po(N) is the posterior 

probability distribution function for N.  In a Gaussian distribution, one standard deviation 

around the mean encompasses about 68% of the integrated probability.  To determine a 

similar uncertainty value for the posterior PDF for N given in equation (2.2), I find the 

points above and below the estimator <N> such that about 68% of the probability from 

equation  is contained between them, and label those points NU and NL.  NU can be 

thought of as the largest number of NEAs that could actually exist in the bin and still 

allow my estimate, <N>, to be within one standard deviation of the true value given the 

binomial statistical model in equation .  This defines an upper and lower one 

standard deviation uncertainty as NU -<N>, and <N>- NL.  The uncertainties are added in 

quadrature when adding together the number of NEAs in multiple bins to obtain the total 

number of NEAs. 
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The prior distributions that I use start as Gaussian distributions that specify the 

number of NEAs as a function of absolute magnitude.  First, two absolute magnitude 

distributions were defined:  a “lower” cumulative distribution ( ) 3.5 0.3510− +< = H
LC H , and 

an “upper” cumulative distribution ( ) 4.3 0.4210− +< = H
UC H .  The lower cumulative 

distribution sets the number of NEAs with H<18 at 630, while the upper cumulative 

distribution sets the number of NEAs with H<18 at 1819.  These two cumulative 

distributions are converted to incremental distributions in the same 0.5 magnitude wide 

bins as used above, so that each H bin has a lower value and an upper value assigned to it.  

The prior distribution for each H bin is then defined as a Gaussian distribution whose 

mean is midway between the lower and upper value, and whose standard deviation is half 

the difference between the lower and upper value.  In H bins where the Gaussian 

distribution would place a significant fraction of its power at unphysical values 

corresponding to a negative number of asteroids, a Poisson distribution is convolved with 

the Gaussian distribution to obtain a prior distribution with the desired mean but with no 

power at negative values.  The resulting prior distributions are used to determine 

uncertainties, but do not affect the value of <N>. 

In principle, a fully Bayesian analysis could be performed using equation (2.2) to 

define the posterior distribution for the number of NEAs in each bin, and using the 

maximum aposteriori estimator as the estimate for the number of NEAs in the bin.  

Summing bins would be performed by convolving together the posterior distributions for 

those bins.  This results in a problem, however.  The binomial likelihood function, and 

therefore the posterior distributions in equation (2.2), have means that are always greater 

than zero, even when there are no detections in a bin.  When the posterior distributions 

are convolved together to sum the bins, the means add.  After summing several bins the 

Law of Large Numbers drives the convolved posterior distributions to become nearly 

Gaussian with the maximum aposteriori estimator becoming very close to the mean of 

the posterior distribution.  Thus, summing together many bins with no detections would 

result in a very large estimate for the total number of NEAs.  If the bin size were 

decreased, the resulting estimate for the number of NEAs would increase linearly with 

the number of bins even though no new detections were made.  This runaway process in 
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the posterior distributions can be controlled only by selecting very tightly constrained 

prior distributions.  But then, the actual observations have very little effect on the final 

answer since it is controlled primarily by the prior distribution.  The method I use here is 

equivalent to using the maximum likelihood estimator, and simply summing the 

maximum likelihood estimators when combining bins.  That is because the unbiased 

estimator defined above is equivalent to the maximum likelihood estimator for a binomial 

likelihood function. 

When the binomial distribution in equation  is used as a likelihood function, 

there is an asymmetry around the unbiased estimator, <N>.  The asymmetry is preserved 

by Bayes’ Law to produce an asymmetrical aposteriori probability distribution function.  

When the uncertainties are determined for the number of NEAs in a bin, this asymmetry 

causes the upper uncertainty value NU -<N> to always be larger than the lower 

uncertainty value <N> - NL.  The one standard deviation uncertainties are always larger 

on the upper side than on the lower side.  This is a natural consequence of using a 

binomial statistical model.  In essence it says that it is more likely that the number of 

NEAs in a bin is larger than we think and we happened to miss more than expected in the 

present experiment than that the number of NEAs in a bin is small and we happened to 

find more than expected. 

(2.1)

2.7 Absolute Magnitude and Orbital Element Distributions 
With an unbiased estimate of the number of NEAs in each a-e-i-H bin, I could, in 

principle, provide a full 4-dimensional map of the asteroid population.  However, because 

there are more bins than asteroids, the number of detections in any given bin is small 

(either 0 or 1 in almost all cases), so the noise in the estimates for individual bins is large.  

However, by summing over any three of the dimensions, I obtain an estimate of the 

distribution over the fourth parameter with robust statistics (no fewer than 20 detections 

per 1-dimensional bin). 

The number of NEAs as a function of absolute magnitude is shown as a binned, 

non-cumulative distribution in Figure 2.7, and as a cumulative distribution in Figure 2.8.  

The estimated number of NEAs with H<18 is 1227 .  Much of the literature on 

asteroid population estimates assumes an exponential form for the number of NEAs as a 

170
90
+
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function of absolute magnitude.  To compare with that body of work, I fit a straight line 

to the logarithm (base 10) of the non-cumulative H distribution (Figure 2.7).  The non-

cumulative best fit line is  , where N(H) represents the number of NEAs 

in the bin of width 0.5 whose upper limit is H.  The linear least-squares fit for the offset is 

–4.33±0.22, and for the slope is 0.39±0.013.  Translating the non-cumulative fit to a 

cumulative distribution yields a fit of .  The latter is the straight green 

line shown in Figure 2.8. 

-4.33 + 0.39HN(H)=10

N(<H) -3.88 + 0.39H=10
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Figure 2.7 Non-Cumulative Absolute Magnitude Distribution of the NEAs.   The number of NEAs, as 
estimated in this work, versus absolute magnitude is shown as black squares.  The grey shaded region 
indicates the one-standard-deviation error envelope.  The number of known NEAs (as of 18 April 2003) are 
shown as red circles.  The bin size is 0.5 magnitudes, and points are plotted at the top of the bin (that is the 
bin from 17.5 to 18 is plotted at 18).  The green line is a linear-least-squares fit to the base 10 logarithm of 
the estimated number of NEAs in the bins from 14.5<H<18.5.  The equation for the line is 

. -4.33 + 0.39HN(H)=10
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Figure 2.8 Absolute Magnitude Distribution of the NEAs.  The cumulative number of NEAs, as 
estimated in this work, with absolute magnitudes brighter than H is shown (black squares).  The grey 
shaded region around the curve indicates the 1σ error envelope.  For comparison, the absolute magnitude 
distribution of the known NEAs (as of 18 April 2003) is shown as red circles.  The green line without 
symbols shows the same exponential function as in , but converted to a cumulative distribution.  
The equation for the line is -3.88  0.39N( ) 10 HH +< = .  (433) Eros and (1036) Ganymed are the only two 
NEAs with H<13.  The LINEAR data used in this survey happened to find Eros, but not Ganymed.  That is 
why the estimated population is lower than the known population at H<13.  This figure is adapted from 
Figure 2 of Stuart (2001). 

Figure 2.7

The projection of the estimated number of NEAs onto the inclination dimension of 

the a-e-i-H space is shown in Figure 2.9.  The a-e-i-H space is collapsed into one 

dimension by summing the estimated number of NEAs in each bin (<N>) over the a, e, 

and H dimensions.  In the H dimension, only the bins up to H<18.5 have been included in 

the sum.  This is to allow the inclination distribution to reflect just the large NEAs while 

including the bins with the most detections.  For the data used in this analysis, more 
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detected NEAs fell into the bin 18.0<H<18.5 than any other H bin (70 out of 606 detected 

NEAs had 18.0<H<18.5, and 341 detected NEAs had H<18.5). 
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Figure 2.9 Inclination Distribution of the NEAs.  The number of NEAs with H<18.5, as estimated in this 
work, is shown as a function of orbital inclination (black squares).  The shaded region indicates the 1σ error 
envelope for the estimate.  The NEA inclination distribution as estimated by Bottke et al. (2000, 2002) is 
plotted as blue triangles, and the currently known population (as of 18 April 2003) is shown as red circles.  
All three curves are plotted with a bin size of 5°, and in all three curves, the last bin (at inclination of 47.5°) 
contains all of the NEAs with inclinations greater than 45°.  The curve from the Bottke et al. distribution 
has been renormalized so that the total number of NEAs under the blue curve is the same as the total 
number of NEAs under the black curve.  This figure is adapted from Figure 3 of Stuart (2001). 

The marginal distribution over semimajor axis is given in Figure 2.10.  The 

semimajor axis distribution is computed in the same manner as the inclination 

distribution, summing over the e, i, and H dimensions.  The estimated distribution is 

similar to the distribution of known NEAs with some enhancement at semimajor axes 

larger than 2 AU.  That enhancement is due to the simple observational selection effect 

that NEAs with semimajor axes beyond 2 AU spend a lot of time far away from the Earth 

38 



  Chapter 2 

and are thus fainter.  The spikiness in the semimajor axis distribution below 2.5 AU is not 

statistically significant.  A smoother looking distribution can be fit to the given 

distribution with acceptable χ2 values.  The lack of corresponding spikes and dips in the 

distribution of known NEAs leads to the conclusion that the spikiness of the estimated 

distribution is probably not real. 
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Figure 2.10 Semimajor Axis Distribution of the NEAs.  The number of NEAs with H<18.5, as estimated 
in this work, is shown as a function of semimajor axis (black squares).  The shaded region indicates the 1σ 
error envelope for the estimate.  The NEA semimajor axis distribution as estimated by Bottke et al. (2000, 
2002) is plotted as blue triangles, and the currently known population (as of 18 April 2003) is shown as red 
circles.  All three curves are plotted with a bin size of 0.2 AU.  The curve from the Bottke et al. distribution 
has been renormalized so that the total number of NEAs under the blue curve is the same as the total 
number of NEAs under the black curve.  This figure is adapted from Figure 3 of Stuart (2001). 

The marginal distribution of the NEAs over eccentricity is shown in Figure 2.11.  

The eccentricity distribution is calculated the same way as the inclination distribution, 

summing over the a, i, and H dimensions.   As with the semimajor axis distribution, the 
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eccentricity distribution is similar to the known distribution and the estimate of Bottke et 

al. (2000, 2002). 
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Figure 2.11 Eccentricity Distribution of the NEAs.  The number of NEAs with H<18.5, as estimated in 
this work, is shown as a function of eccentricity (black squares).  The shaded region indicates the 1σ error 
envelope for the estimate.  The NEA eccentricity distribution as estimated by Bottke et al. (2000, 2002) is 
plotted as blue triangles, and the currently known population (as of 18 April 2003) is shown as red circles.  
All three curves are plotted with a bin size of 0.1.  The curve from the Bottke et al. distribution has been 
renormalized so that the total number of NEAs under the blue curve is the same as the total number of 
NEAs under the black curve.  This figure is adapted from Figure 3 of Stuart (2001). 

2.8 Comparisons to Other NEA Population Estimates 
In recent years, two other estimates of the NEA population have been published 

based on detections from automated surveys.  Rabinowitz et al. (2000) used 34 NEA 

detections made by the Near-Earth Asteroid Tracking project, and a Monte-Carlo 

simulation to correct for the effects of observational bias.  The input to the Monte-Carlo 

simulation was randomly generated populations of asteroids with orbital parameter 

distributions that match a debiased population estimate based on Spacewatch data 
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(Rabinowitz 1993).  That estimate predicted the existence of  750 +/- 250 NEAs with 

H<18.  The inclination distribution used in that analysis was quite different from the 

inclination distribution derived here in that it assumed far fewer NEAs at inclinations 

near 25° and far fewer with inclinations greater than 40°.  To test whether the difference 

between the size of the NEA population predicted here (~1250) and that predicted by 

Rabinowitz (~750) is due to the differences in the distribution over the orbital elements, I 

constrained my population model to match the known NEAs in their distributions over a, 

e, and i, and allowed the model to vary the number of NEAs as a function of absolute 

magnitude.  This was done by averaging together the detection probabilities from the 

Monte Carlo simulation using weights in each a-e-i bin proportional to the number of 

NEAs with H<18 in the bin.  Thus, the four dimensional parameter space of a-e-i-H was 

collapsed to a one dimensional space in H by assuming that the distribution over a, e, and 

i matches the known population.  Estimates of the number of NEAs in each H bin were 

then obtained as before by dividing the number of detections in the H bin by the averaged 

detection probability for that H bin.  The number of NEAs in the H bins below 18 were 

then summed.  Using this constraint, my model predicts that there are 780 ± 75 NEAs 

with H<18.  The very close match between this constrained estimate and the estimate by 

Rabinowitz et al. indicates that the difference between the two estimates is caused by the 

different distributions of the orbital elements. 

The data from the LINEAR survey has been analyzed by other researchers to 

estimate the number of NEAs as a function of absolute magnitude.  D’Abramo et al. 

(2001) applied a simple probabilistic model to the number of new discoveries and 

serendipitous detections of previously discovered NEAs made by LINEAR in 1999.  The 

basis of this model is to assume that within a small range of absolute magnitude 

(D’Abramo et al. used 0.5 magnitude bins, as do I) the probability of discovering any 

particular new NEA is the same as the probability of serendipitously redetecting any 

particular known NEA.  Thus, the detection efficiency within each magnitude bin is the 

number of redetections divided by the number of previously known NEAs in that bin.  

The total number of asteroids in a bin is then the number of previously known NEAs plus 

the number of new discoveries divided by that detection efficiency.  This method was 

also used by Shoemaker et al. (1990) as a “sanity check” for a more elaborate debiasing 
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method.  D’Abramo et al. estimated that there are 855±101 NEAs with absolute 

magnitudes brighter than 18.  This is substantially lower than the number found here.  

The method used by D’Abramo et al. assumes that the NEAs that have not yet been 

discovered are as easy to detect as NEAs that have already been discovered.  However, 

this is not the case.  NEAs on some types of orbits, particularly high inclination orbits, are 

more difficult to discover than others, and those that are easier to discover tend to get 

discovered first.  Thus the detection efficiency for new discoveries is lower than the 

detection efficiency for redetections, even if the survey is not performing targeted follow-

ups.  By assuming that the detection efficiencies are the same for new NEAs and for 

redetections, the D’Abramo et al. method implicitly assumes that the distributions of 

orbital elements of undiscovered NEAs matches the distribution of orbital elements of the 

known NEAs.  Because of this, the method used by D’Abramo et al. can only be 

considered a lower limit to the number of NEAs. 

Bottke et al. (Bottke 2000, 2002) examined the dynamical mechanisms that remove 

asteroids from the main asteroid belt and deposit them into the inner solar system.  They 

estimated the fraction of time that asteroids from each of four different source regions 

would spend in various portions of the a-e-i parameter space.  By matching that analysis 

against observational data from the Spacewatch telescope, Bottke et al. estimated the 

fraction of the NEA population due to each of the three source regions and the total size 

of the population.  Their analysis predicted that there are 910±120 NEAs with H<18, 

substantially fewer than estimated here.  The semimajor axis and eccentricity distribution 

obtained here match the Bottke et al. distributions reasonably well (Figure 2.10 and 

).  The inclination distribution estimated by Bottke et al. was significantly 

depleted in inclinations near 25° and greater than 40° (Figure 2.9) compared to my 

estimate.  The four source regions that control the distribution of orbital elements in their 

analysis do not produce inclinations as high as those estimated by this study.  Again, this 

difference in the inclination distribution, combined with the difficulty in finding high 

inclination NEAs, explains the discrepancy in the number of NEAs with H<18.  Two 

classes of asteroids in the main belt, the Hungarias, and the Phocaeas, have inclinations 

near 25° and could produce NEAs with high inclinations when perturbed into near-Earth 

orbits (Migliorini et al. 1998).  Bottke et al. (Bottke, personal communication 2002) are 

Figure 2.11
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presently expanding their analysis to include Hungarias and Phocaeas.  Perhaps with the 

addition of the new source of high inclination objects, Bottke’s inclination distribution 

will agree with the one presented here. 

Shoemaker published an estimate of the NEA population (Shoemaker et al. 1990) 

that was based on a combination of observational data from the Palomar Survey and 

counts of the number of craters on the Moon (Shoemaker 1977).  Shoemaker’s estimate 

puts the number of NEAs with H<18 at around 1500 objects with poorly defined but 

presumably fairly large error bars.  That roughly agrees with this estimate. 

The population estimate presented here was published in 2001 (Stuart 2001), and 

the results were used by Harris (2002) to estimate the number and impact frequency of 

smaller objects, in the size range thought to have caused the Tunguska impact.  Harris 

estimated the relative number of NEAs in bins of 0.5 absolute magnitudes from 

21.5<H<25.5.  He then normalized his population estimate in the two largest size bins to 

the number given in this work to convert his relative numbers to an absolute estimate of 

the number of small NEAs.  He also calculated expected impact rates for those NEAs.  

The Tunguska impact is thought to have been an asteroid in the range of H=24-24.5.  

Harris determined that there are roughly a half million NEAs in that H bin, and that 

impacts of those NEAs should occur approximately once every 1000 years. 

Extending the size distribution of NEAs to even smaller sizes is the work of Brown 

et al. (2002).  They used United States Department of Defense and Department of Energy 

satellites designed to detect nuclear explosions to determine the rate of impact into the 

Earth’s atmosphere of small NEAs in the range of 1-10m (approximately 28<H<33).  

Brown et al. report that a single exponential function (i.e. a straight line on a log-log plot 

such as ) matches the size distribution of their estimated flux of small 

impactors, and, when extended to larger sizes, matches the estimates in this work in the 

range 22.5<H<20.  Brown et al. also note that the same exponential size distribution 

nicely fits the number of impactors near 0.1 m (approximately H=38) as estimated by the 

meteoroid fireball counts from a network of Canadian fireball cameras (Halliday 1996).  

At those sizes, the size distribution is significantly steeper than the straight line fit 

presented here for 14<H<18.5. 

Figure 2.8
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2.9 Conclusions 
I have combined the largest existing set of NEA detections from a single survey 

with a model of observational bias effects to estimate the number of NEAs as a function 

of absolute magnitude, semimajor axis, eccentricity, and inclination.  The estimated 

population matches other estimates in the distributions over semimajor axis and 

eccentricity, but predicts significantly more NEAs at high inclinations than other 

estimates.  These high inclination NEAs may point to a significant contribution to the 

NEA population from the Hungaria and Phocaea asteroid families.  The number of NEAs 

with absolute magnitudes less than 18 is 1227 , higher than other recent estimates. 170
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Figure 2.12 Fractional Completeness of NEA Catalog.  Using the cumulative number of NEAs versus 
absolute magnitude ( ), and the MPC catalog of NEAs known as of 18 April 2003, the cumulative 
completeness of the catalog is determined.  About half of the NEAs with H<18 have been discovered. 

Figure 2.8

As of 18 April 2003, the Minor Planet Center lists 613 known NEAs with H<18.  

Thus, the current catalog of NEAs is about 50% complete for NEAs with H<18.  The 

current catalog is apparently complete, to within a few asteroids, for H<14.5.  The 
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fraction of the NEAs that have already been discovered for each absolute magnitude bin 

is shown in Figure 2.12. 

As the LINEAR Project continues to scan the skies in the next several years, more 

data will become available to refine these estimates.  The system has recently begun to 

record, for every search field, several photometric parameters in addition to the SNR6 

limiting magnitude used here.  That information should help to refine the estimates of the 

limiting magnitude and to ensure that there is no systematic bias in the determination of 

the detection efficiency of the system.  The inevitable increase in the sheer number of 

detections will improve the statistical accuracy of the population estimates.  More 

detections may also allow for characterization of the NEA population at higher 

inclinations (beyond 50°) and at fainter absolute magnitudes.
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Chapter 3 Albedo Bias in NEA Discovery. 
3.1 Abstract 

In this Chapter, I analyze a simple model of NEA discovery bias.  The NEAs are 

divided into two categories mirroring a coarse taxonomy of main-belt asteroids that 

divides them into high albedo S-types and low albedo C-types.  The observational bias 

that results from a magnitude-limited discovery survey is expressed as the ratio of 

discovered S-types to discovered C-types.  The contributions to this bias from the albedos 

and solar phase functions of the two classes of NEAs, and from the overall completeness 

level of the discovery survey is discussed.  I find that this simple model of NEA 

discovery bias cannot be applied to current NEA survey programs and I develop another 

model based on the NEA orbital distributions presented in section 2.7. 

3.2 Introduction 
 Like the main-belt asteroids, the NEAs display a diversity of surface reflectance 

properties (e.g. Gradie and Tedesco 1982; Bus and Binzel 2002b).  Reflectance 

spectroscopy of asteroids has been used since the mid-1960s to classify the asteroids into 

groupings (Wood and Kuiper 1963, Chapman et al. 1971).  The groupings were 

eventually formalized into taxonomic systems.  The taxonomies initially comprised a few 

broad classes (Chapman et al. 1975).  Thanks to improvements in technology (primarily 

CCD spectrographs) and to a larger sample of measured asteroids that shows more 

diversity, the taxonomies have expanded over the years to more finely describe the 

spectral characteristics of the asteroids (Tholen 1984, Bus 1999). 

A telescope survey that detects NEAs down to some limiting magnitude (such as 

LINEAR) will be able to detect smaller NEAs if they have higher albedos and more 

favorable phase functions than if the NEAs have lower albedos and more severe 

darkening at high phase angles.  Since the number of asteroids increases rapidly at 

smaller sizes, there is a substantial bias toward finding more NEAs with higher albedos 

and more favorable phase functions.  To understand the relative proportions of the 

various taxonomic classes among the NEAs, and to determine the number of NEAs as a 

function of diameter, one must first account for the observational selection effects that 

favor the discovery of higher albedo asteroids. 
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Further observational bias in asteroid discovery can be attributed to phase angle 

effects.  Two asteroids with the same value of  absolute magnitude, H, but different 

values of  phase slope parameter, G, will have the same apparent brightness at zero phase 

angle (the H, G photometric system is described in Appendix A.1).  However, the 

asteroid with lower G will appear darker than the other at non-zero phase angles.  This 

effect is termed differential phase darkening.  Furthermore, the phase slope parameter is 

correlated with the geometric albedo.  Low albedo (darker) objects tends to have lower 

values of G  (Tedesco 2002).  Thus an asteroid that is already difficult to detect because 

of low albedo, is made more difficult to detect because of differential phase darkening. 

 Luu and Jewitt (1989) modeled the discovery circumstances of near-Earth 

asteroids to study the effects of albedo and differential phase darkening on discovery 

bias.  They assumed a bimodal population of NEAs that mirrors the first classification of 

main-belt asteroids into S- and C-types (Zellner 1973).  I have re-implemented the model 

of Luu and Jewitt in order to reevaluate their conclusions in light of the characteristics of 

current day search programs such as LINEAR.  I then present another model to calculate 

the discovery bias of asteroids based on the population estimates of section 2.7.  This 

model will be further developed in Chapter 1 by expanding the taxonomy to include a 

more detailed description of asteroid types and to account for additional sources of 

observational bias. 

3.3 Description of Luu and Jewitt Model 
The model of NEA discovery bias developed by Luu and Jewitt (hereafter referred 

to as the LJ model) uses a Monte-Carlo approach to generate NEAs and tests whether 

those NEAs are detected or not.  The statistical characteristics used to generate those 

Monte-Carlo NEAs are as follows.   

1) They are uniformly distributed in three dimensional space around the 

Earth, from its surface (∆ ∆

1.5 AU.  The orbits of the NEAs are not modeled, they are statically 

placed within this volume. 

min = 4.3x10–5AU) out to a distance of max = 
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2) The diameters of the asteroids are selected according to a power law 

distribution ( )N D D( )α−> ∝  with exponent, α, varying from 2.0 to 4.0, 

within the range of 1 to 10 km. 

3) Each asteroid is equally likely to be either S-type or C-type, with S-type 

asteroids assigned albedos and phase slope parameters of pS=0.150, 

GS=0.25, and C-type asteroids assigned albedos and phase slope 

parameters of pC=0.047, GC=0.15. 

NEAs are randomly generated with those statistical properties, and the geocentric 

distance, heliocentric distance, solar elongation, phase angle and apparent visual 

magnitude are all calculated.  To be detectable, a Monte-Carlo NEA must have a solar 

elongation greater than 90°, and must be brighter than the detectability threshold of 

Vlim=15.5.  Any Monte-Carlo NEA that meets those two criteria is deemed discovered 

and its properties are recorded.  The simulation continues generating Monte-Carlo NEAs 

until 10,000 NEAs are discovered.  Since equal numbers of S-types and C-types are 

generated, the resulting ratio of S-types to C-types (nS:nC) is the observational bias factor 

for how strongly S-types are favored over C-types for discovery.  The LJ model includes 

a final step in which the discovered Monte-Carlo NEAs are renormalized so that the 

model phase distribution matches the observed phase distribution for NEAs at the time of 

discovery, and the nS:nC ratio is recomputed.  As this final step does not appear to 

substantially change the results, and it was not described in detail in the paper, it was 

omitted. 

Table 3.1 gives the nS:nC bias factors from the original LJ work, as well as the 

values obtained from the current reimplementation using the same model parameters.  For 

each value of the power law index, α, the current implementation of the LJ model was run 

100 times.  The results from the runs were checked for statistical agreement, and then 

combined.  The current reimplementation agrees with the previously published factors, 

indicating that this is an accurate reimplementation of the LJ model. 
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power law index, α BS:C (from Luu & Jewitt) BS:C (reimplementation) 
2.0 5.61 ± 0.14 5.31 ± 0.01 
2.5 5.38 ± 0.13 5.43 ± 0.01 
2.8 5.73 ± 0.14 5.53 ± 0.02 
3.0 5.68 ± 0.14 5.57 ± 0.02 
3.5 5.65 ± 0.14 5.76 ± 0.02 
4.0 5.88 ± 0.15 5.94 ± 0.02 

Table 3.1 Model bias correction factors.  The bias correction factors from Luu and Jewitt 1989 are shown 
for comparison with the reimplementation of the same algorithm as presented here. 
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Figure 3.1Model bias correction factors.   The bias correction factors from Luu and Jewitt 1989 are 
plotted for comparison with the reimplementation of the same algorithm as presented here. 

3.4 Further Experiments with the LJ Model 
I next experiment with the LJ model to explore the effects of several of the 

parameter values.  I will use, as a baseline, the bias factor for the α=3.0 power law model.  

The results of these experiments are summarized in Table 3.2.  The first question I will 

address is the relative importance of albedo and differential phase darkening. 
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Experiment BS:C 

baseline 5.57 ± 0.02 
albedo only 4.67 ± 0.01 

phase slope, G only 1.19 ± 0.01 
pS=0.23, pC=0.12 2.91 ± 0.01 

Table 3.2 Bias factors for alternate scenarios.  The baseline scenario is the same as in Table 3.1, for the 
α=3 case with p 0.15, p  G .25,G The “albedo only” scenario sets G G .15, while 
leaving the albedos as in the baseline scenario.  The “phase slope, G only” scenario sets p  p .15, while 
leaving the phase slope as in the baseline scenario.  The “p 0.23, p 0.12” scenario uses the quoted 
values for albedo, and the baseline values for G. 

3.4.1 Differential Phase Darkening versus Albedo 
To separate the effect of albedo from the effect of differential phase darkening, I 

ran two sets of experiments.  As before, each experiment consists of 100 runs of the LJ 

model, and each run continued until 10000 asteroids were detected.  In the first 

experiment, I set the phase slope parameters of the two types of asteroids to be equal, 

G G ish them.  In the second experiment, I set 

the albedos of the two types of asteroids to be the same, p p

phase slope parameters to distinguish them.  The results are given in Table 3.2.  Almost 

all of the S:C discovery bias is produced by the difference in albedo, with the phase 

darkening playing a very minor role. This is to be expected, since the maximum 

difference in phase darkening with the G values used here occurs at a phase angle of 

about 80°, and is a difference of only about 0.22 visual magnitudes.  The factor of three 

difference in albedo assumed here, on the other hand, produces a difference of 1.2 visual 

magnitudes.  The lack of importance of the phase parameter in determining discovery 

bias accounts for the fact that this reimplementation closely matches the original LJ 

results despite the lack of a renormalization procedure being applied to the phase angle 

distribution.  Shoemaker et al. (1990) similarly finds that the S:C discovery bias 

attributable to differential phase darkening accounts for a bias factor of 1.24. 

S= C=0.047, S=0 C=0.15.  S= C=0
S= C=0

S= C=

S= C=0.15, leaving only the albedo to distingu

S = C =0.15, leaving only the 

Luu and Jewitt (1989) also include a simulation of discovery of main-belt asteroids 

to determine an S:C bias ratio for the main-belt.  Their bias ratios for main-belt asteroids 

are much lower than their model’s bias ratio for the NEAs.  They conclude that the 

difference in the bias ratio between the main belt and the NEAs is attributable to the fact 

that NEAs are often discovered at higher phase angles than main-belt asteroids, and the 

lower phase coefficient for C-type asteroids relative to S-type asteroids produces more 
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phase darkening for the C-types.  I have shown that the differential phase darkening is a 

minor contributor to the S:C bias ratio in the LJ model.  How can this apparent 

contradiction be resolved?  Luu and Jewitt did not consider the effects of overall 

completeness level on the bias ratio.  If a population of equal numbers of S- and C-type 

asteroids is say, 99.9% complete (meaning that 99.9% of the asteroids in the population 

have been discovered) then the observed bias ratio is necessarily going to be very close to 

unity.  Only if the survey is substantially incomplete can there can be a substantial 

observational bias in the observed S:C ratio.  I also implemented Luu and Jewitt’s model 

of main-belt asteroid discovery to reproduce their model bias numbers for that 

population.  I found that for the α=3 case, the overall completeness level approached 

25%, meaning that 25% of the randomly generated test asteroids were observable.  On 

the other hand, for the LJ NEA model in the α=3 case, only 0.8% of the test asteroids 

were observable.  This difference in completeness of the Luu and Jewitt NEA model 

versus their main-belt model accounts for the difference they computed for the S:C bias 

ratios of the NEAs and the main-belt population. 

For the phase coefficients assumed in the LJ model, G G

maximum difference in brightness due to phase loss occurs at a phase angle of about 80º, 

and is equal to about 0.22 magnitudes.  For LINEAR, a wide-area, ground-based survey, 

the average phase angle for detected NEAs is 28°.  The average difference in phase loss 

for G G agnitudes, or a factor of 1.13 in brightness.  

This same factor of brightening could be achieved by increasing the albedo of the S-type 

NEAs from 0.15 to 0.17.  That small a change in albedo is smaller than the uncertainties 

in the albedos of the NEAs. 

3.4.2 Changing the Albedos 
I next consider the question of how the assumed albedos affect the computed bias.  

For this I used albedo values similar to the current assumptions about S-type and C-type 

albedos (Morbidelli et al. 2002b), with a factor of two difference between the types,  

p 0.23, p nce between the albedos substantially 

reduces the resulting bias factor, as seen in Table 3.2. 

C=0.15 and S=0.25, the 

C=0.15 and S=0.25 is about 0.13 m

S= C=0.12.  As expected, the lower differe
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3.4.3 Limiting Magnitude of Survey 
Another consideration is the effect of the limiting magnitude of the survey.  Current 

search programs routinely achieve limiting magnitudes in the range of  V V

(e.g. Pravdo et al. 1997, and Stokes et al. 2000).  This produces a problem for the LJ 

model.  A limiting magnitude this faint easily allows for the detection of 1 km diameter 

asteroids out to the model’s geocentric distance cutoff of 1.5 AU.  Applying the LJ model 

with a deeper limiting magnitude creates an artificial cutoff where most simulated objects 

are discovered right at the maximum distance of 1.5 AU, and none are discovered beyond 

that.  Thus the increased limiting magnitude fails to make the model representative of the 

current search effort in which 1 km objects are routinely discovered beyond 1.5 AU.  A 

possible solution to this is to increase the cutoff distance in the LJ model so that Monte-

Carlo asteroids can be generated at heliocentric distances beyond 1.5 AU.  However, in 

order to allow the discovery distances to be limited by the newly increased detectability 

threshold, rather than by an arbitrary cutoff, the distance cutoff for generating Monte-

Carlo asteroids must be increased to about 3.5 AU from the Earth, or well into the main 

belt.  The simulation would then be based on the assumption that NEAs are uniformly 

distributed within a volume extending outward from the Earth to the main belt, an 

assumption that is indefensible.  A better approach is to include orbital dynamics and a 

model of the orbital distributions of the NEAs in the simulation.  This will create a more 

realistic description of the spatial distribution of NEAs. 

3.5  Bias Model Based on Orbital Distributions 
The capabilities of current search programs to detect NEAs when they are as far 

away as the main belt makes it necessary to properly model the orbits of NEAs to get an 

accurate picture of discovery geometry.  Thus, I started with a model of the NEA 

population from section 2.7 that provides an estimate of the distribution of the NEAs in a 

three dimensional space of orbital parameters.  As in the LJ model, I used a 

pseudorandom number generator to create test particles such that the resulting 

distributions of the three orbital parameters, semi-major axis, eccentricity, and inclination 

would match the real NEA population.  The other orbital parameters, argument of 

perihelion, longitude of the ascending node, and mean anomaly, were all uniformly 

distributed from 0 to 2π.  At this stage of the simulation, the test particles were not 

lim=18 to lim=19 
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assigned sizes or brightnesses.  The randomly generated orbits were propagated and the 

daily positions were checked against three years of pointing history from the LINEAR 

system (the same pointing described in section 2.3).  Any time a test particle fell within 

the telescope’s field of view, without regard to brightness, the event was noted, along 

with enough information to completely recover the viewing geometry later (the 6 orbital 

elements, the search’s limiting magnitude, the geocentric distance, the heliocentric 

distance, and the phase angle).  The orbits of test particles that never fell within the field 

of view were separately recorded. 

The second part of the simulation was to apply various models of size, and albedo 

to determine which test particles would be detected by the survey.  In the simplest case, 

the simulation can assume the same parameters as the LJ model, albedos and G values for 

S-types and for C-types, and the same population slope parameters and produce bias 

factors comparable to the LJ model, but more appropriate for the results of current search 

programs.   Those results are given in Table 3.3 as the LINEAR model. 

power law index, α B plementation) S:C(reim BS:C(LINEAR model) 
2.0 5.31 ± 0.01 1.79 ± 0.03 
2.5 5.43 ± 0.01 1.89 ± 0.03 
2.8 5.53 ± 0.02 1.97 ± 0.03 
3.0 5.57 ± 0.02 2.03 ± 0.04 
3.5 5.76 ± 0.02 2.13 ± 0.04 
4.0 5.94 ± 0.02 2.25 ± 0.05 

Table 3.3  The bias correction factors for discovery bias of S-type and C-type NEAs using the same 
parameters as the Luu & Jewitt model.  The second column repeats the values from Table 3.1 for the 
reimplementation of the LJ model.  The third column gives the bias correction factors using the same 
parameters as the LJ model for NEA size limits, power law index, albedos, and phase slope parameters, but 
using the NEA absolute magnitude and orbital element distributions from section 2.7 and the pointing 
history from LINEAR to model the NEA population and the discovery circumstances. 

3.6 Conclusions 
NEAs of different taxonomic classes have different observational selection effects.  

The observed ratios of class number is therefore not representative of the true ratios in the 

complete NEA population.  The two most important factors that control this differential 

selection bias are the albedos of the classes, and the overall completeness level of the 

survey.  Dark, low albedo NEAs are more difficult to discover than similar sized, high 

albedo NEAs, and will thus be under-represented in the observed NEA population.  As 

the survey of NEAs becomes complete, or finds all of the NEAs down to some size limit, 
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this bias will naturally disappear since the observed population becomes identical to the 

complete population. 

Other factors besides albedo and survey completeness affect the observational 

selection biases.  Differential phase darkening also produces a selection bias against 

darker objects.  However, the size of the selection effect that is due only to differential 

phase darkening is insignificant when compared to the bias due solely to albedo.  Indeed, 

the effect of differential phase darkening for the model used here is smaller than the 

effect of small changes in the albedo of S- and C-type NEAs. 

The NEA absolute magnitude distribution from section 2.7 has a slope of 0.39.  

This translates to a slope in the diameter distribution of α=1.95.  The current best estimate 

for the albedos of the S- and C-type NEAs (Table 4.7) is pS=0.23, p

size distribution and those albedos with the LINEAR bias model, the observational bias 

ratio is B

C=0.12.  Using this 

S:C=1.30±0.02. 

To accurately model the selection biases for the currently known population of 

NEAs, one must account for the ability of current search programs to discover NEAs 

when they are as far away as the inner main-belt.  Thus, the orbits of the NEAs must be 

accurately modeled along with the parameters of the NEA survey programs to capture 

effects relating to observing geometry.  In the real world, when a survey like LINEAR 

discovers an NEA, its taxonomic classification and albedo are not known.  Another 

observational program must obtain the NEA’s reflectance spectrum over visible and near-

infrared wavelengths to determine taxonomy.  To determine its albedo, the NEA must be 

measured in the visible and thermal infrared parts of the spectrum by a third 

observational program.  These additional surveys introduce their own selection effects 

which must be accounted for to convert the observed distributions of taxonomic classes 

and albedos into an estimate of the true, unbiased distributions.  The NEAs have also 

been found to be more diverse than a simple S/C bimodal distribution.  Including other 

taxonomic categories, each with its own albedo will also change the bias ratios.  

Analyzing these effects will be the focus of Chapter 1.
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Chapter 4 Albedos and Diameters of the NEAs 
4.1 Abstract 

I present a model of the near-Earth asteroid albedo distribution.  The albedo 

distribution is based on a bias correction method described here and applied to albedo and 

spectral measurements of the NEAs.  I find that the bias-corrected, fractional abundances 

of the taxonomic complexes are as follows: A-0.2%; C-10%, D-18%, O-0.4%, Q-14%, 

R-0.1%, S-22%, U-0.4%, V-2%, X-34%.   Overall, the bias-corrected mean albedo for 

the whole NEA population is 0.14±0.02.  Using this mean albedo, an absolute magnitude 

of 17.7±0.1 translates to an estimated diameter of 1 km.  I find that there are 1090±180 

NEAs with diameters larger than 1 km. 

4.2 Introduction 
Recent estimates of the number of near-Earth asteroids (NEAs) constrain the size of 

the population as a function of absolute magnitude (Bottke et al. 2000, Stuart 2001, 

Bottke et al. 2002;  see also section 2.7).  The reflectivity, or geometric albedo (Russell 

1916) must be known to estimate the size of an NEA from its measured absolute 

magnitude (e.g. Harris and Harris 1997, Fowler and Chillemi 1992).  Since few albedo 

measurements have been made for NEAs, the absolute magnitudes cannot be converted 

to physical sizes.  Albedo measurements are available for fewer than 1% of the NEAs, 

and those albedo values span a wide range, from 0.023 to 0.63.  This factor of 27 

variation in albedo corresponds to more than a factor of 5 uncertainty in the diameter of 

an NEA with a given absolute magnitude.  Therefore, the size of the population as a 

function of diameter is poorly known. 

Several past attempts have been made to estimate the albedo distribution of the 

NEAs.   Luu and Jewwit (1989) used a Monte-Carlo simulation of NEA discovery to 

estimate the observational bias in the ratio of an assumed bimodal population of light (S-

type, albedo = 0.15) and dark (C-type, albedo = 0.047) NEAs (see Chapter 1 for more 

description of that work).  Shoemaker et al. (1990) used a similar argument to obtain a 

mean albedo for the NEAs and to convert their absolute magnitude distribution to a 

diameter distribution (and ultimately to distributions for impact energy and crater 
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the order-of-magnitude increase in the number of known, catalogued NEAs, to take 

account of the capabilities of current NEA search programs that lead to observational 

biases that are different from those of the search programs of the 1980s, and to include 

the latest taxonomic classifications and albedo measurements for NEAs. 

Morbidelli et al. (2002b) have recently conducted a similar study.  They attempt to 

define a reasonable albedo distribution for each of the main-belt source regions that their 

earlier work (Bottke et al. 2000, and Bottke et al. 2002) identified as being the most 

important suppliers of asteroidal and cometary material to the NEA population.  The 

albedo distributions of the main-belt source regions can then be combined in the correct 

proportions to yield an albedo distribution of the NEAs.  Unfortunately, the albedo 

distribution of the main-belt source regions is poorly known for asteroids in the same size 

range as the NEAs.  Thus, the albedos of the small members of the main-belt source 

regions that ultimately become the NEAs must be extrapolated from the albedos of the 

larger members.  The work presented here is a complementary approach that uses direct 

observation of the physical properties of a subset of the NEAs to determine the albedo 

distribution of the NEAs for which albedos are not available. 

The rest of this chapter describes the debiasing of the NEA taxonomy and albedo 

data in an essentially two-step process.  First, the absolute magnitude and orbital element 

distributions from section 2.7 are combined with albedo measurements within each 

taxonomic complex to define an average albedo for each complex.  Second, the average 

complex albedos are combined with the observed fractional abundances of the complexes 

to produce debiased fractional abundances for each complex.  The average complex 

albedos and debiased fractional complex abundances are combined to derive an overall 

average albedo and a diameter distribution for the NEAs. 

4.3 Spectroscopic and Albedo Data 
Building on the success of the Small Main-belt Asteroid Spectroscopic Survey, a 

multi-wavelength observing program has been (and is continuing to be) carried out to 

obtain spectra and albedos for NEAs.  This program comprises visible spectroscopy, 

near-infrared spectroscopy, and thermal infrared flux measurements.  The visible 
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and on the  Magellan I Telescope at Las Campanas Observatory.  Near-infrared 

spectroscopy is collected at the NASA Infrared Telescope Facility.  The W.M. Keck 

Observatory is used to obtain thermal flux measurements for albedo modeling. 

The visible and near-IR spectra obtained for the NEAs were reduced with the 

Image Reduction and Analysis Facility (IRAF) software using the standard techniques 

described by Bus and Binzel (2002a).  The resulting spectra were converted to spectral 

types using the Bus taxonomy as described in Bus and Binzel (2002b).  The spectral 

types were combined into a smaller number of complexes as described in Bus and Binzel 

(2002b). 

The thermal flux measurements from Keck were converted to estimates of albedo, 

radiometric diameter, and beaming parameter using the Near-Earth Asteroid Thermal 

Model described by Harris (1998).  The albedo values used in this work are from Delbo 

et al. (2003), and Harris and Lagerros (2002).  These data are summarized in Table 4.1 

and Figure 4.1.   Further detail is given in Table 4.2, in which the NEATM albedo, 

taxonomic classification, and absolute magnitude are given for each of the 36 NEAs with 

NEATM albedo measurements.  The publications from which the albedo values are taken 

are also listed in Table 4.2. 

Taxonomic  # of NEA # of NEA 
Complex Includes Albedos Spectra 

A A 0 1 
C C,C-subgroups,B,F,G 6 23 
D D,T 1 9 
O O 1 6 
Q Q, Sq 7 80 
R R 0 1 
S S,K,L, S-subgroups 12 125 
U U 0 3 
V V 3 14 
X X,X-subgroups,E,M,P 6 48 

Totals  36 310 

Table 4.1 NEA Spectral and Albedo Data.  The taxonomic complexes of Bus and Binzel (2002b) are 
grouped into 10 complexes.  The number of NEA spectra and NEATM albedos (Delbo et al. 2003) 
available for each complex is given. 
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Figure 4.1 NEA Spectral and Albedo Data.  The taxonomic classes of Bus and Binzel (2002b) are 
grouped into 10 complexes.  The number of NEA spectra and NEATM albedos (Delbo et al. 2003) 
available for each complex is given. 
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Name Complex
Absolute 

Magnitude Albedo Reference 
(433) Eros S 11.2 0.21 1 

(1566) Icarus Q 16.0 0.33 2 
(1580) Betulia C 14.6 0.17 2 

(1627) Ivar S 12.9 0.15 3 
(1862) Apollo Q 16.3 0.26 4,2 

(1866) Sisyphus S 13.0 0.15 3 
(1915) Quetzalcoatl S 19.0 0.31 2 
(1980) Tezcatlipoca S 14.0 0.14 1,2 

(2100) Ra-Shalom C 16.1 0.08 3 
(2201) Oljato Q 16.9 0.24 2 

(3200) Phaethon C 14.5 0.11 4,2 
(3551) Verenia V 16.8 0.53 2 

(3554) Amun M 15.9 0.17 4,2 
(3671) Dionysus C 16.7 0.16 2 
(3757) 1982 XB S 19.0 0.34 2 
(4034) 1986 PA O 18.2 0.52 3 

(4055) Magellan V 14.9 0.31 3 
(4660) Nereus E 18.7 0.55 3 

(5587) 1990 SB Q 13.6 0.5 3 
(5604) 1992 FE V 17.4 0.32 3 

(5751) Zao E 14.9 0.36 3 
(6053) 1993 BW3 Q 15.2 0.18 5,2 

(6178) 1986 DA M 15.1 0.14 4,2 
(6489) Golevka Q 19.1 0.63 6,2 
(9856) 1991 EE S 17.0 0.30 7 

(14402) 1991 DB C 18.9 0.14 3 
(16834) 1997 WU22 S 15.4 0.3 3 

(19356) 1997 GH3 S 17.0 0.34 3 
(25330) 1999 KV4 C 16.3 0.05 3 

1999 FK21 S 18.0 0.32 3 
1999 NC43 Q 16.1 0.14 3 
2000 BG19 P 17.8 0.04 3 

2000 PG3 D 15.7 0.042 3 
2001 FY S 18.8 0.52 3 

2002 BM26 P 20.1 0.02 3 
2002 CT46 S 20.8 0.32 3 

Table 4.2 Details of NEATM albedo measurements used here.  Shown are the MPC catalog number (if 
the asteroid is numbered) and name or provisional designation along with the taxonomic complex from the 
Bus Taxonomy, the V-band absolute magnitude, the V-band albedo from the NEATM thermal model, and 
the publication from which the albedo was obtained.  The reference numbers correspond to the following 
papers: 1 – Harris and Davies (1999); 2 – Harris and Lagerros (2002); 3 – Delbo et al. (2003); 4 – Harris 
(1998); 5 – Pravec et al. 1997; 6 – Mottola et al. 1997; 7 – Harris (1998). 
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4.4 Trends in Albedo Data 
To test for correlations between the albedos of NEAs and their orbital parameters or 

absolute magnitudes, I have utilized a larger set of NEA albedo data, including albedo 

measurements from a variety of methods.  Most of these 80 albedo measurements are 

taken from Table 1 of Binzel et al. (2002a), except for two that are noted in Table 4.3.  

Note that many of the albedo measurements used to look for trends in the albedo data are 

not used in the rest of the analysis in this chapter because they are not from the NEATM 

thermal model and I have no bias correction model for the disparate sources of these 

other albedo measurements.  There are suggestions that the albedos of S-type asteroids 

increase with decreasing size when main-belt asteroids are combined with NEAs (Binzel 

et al. 2002b). Looking at just the NEAs, however, this trend is not compelling (Figure 

4.2).  Formally, the correlation between absolute magnitude and albedo is not quite 

statistically significant at the 95% level.  None of the taxonomic complexes exhibit a 

convincing correlation between albedo and absolute magnitude, so I assume that there is 

no correlation in debiasing the NEA albedo data. 

Scatter plots of albedo versus orbital parameters are given in Figure 4.3, Figure 4.4,  

Figure 4.5, and Figure 4.6.  There is no statistically significant correlation between 

albedo and eccentricity (Figure 4.4) or inclination (Figure 4.5).  There is perhaps some 

correlation between albedo and semimajor axis (Figure 4.3).  This correlation is better 

explained as a dependence of albedo on the Jovian Tisserand parameter (Figure 4.6). 

NEA 
Designation 

Taxonomic 
Complex 

Tisserand 
Parameter Albedo Albedo Source 

2000 PG3 D 2.547109 0.042 NEATM*
3552 D 2.313653 0.02 RPB,AIII

1999 JM8 P 2.985565 0.02 Radar*
5370 C 2.730813 0.05 RPB,AIII

14827 C 2.928258 0.05 RPB,AIII
3360 C 2.963798 0.07 RPB,AIII

1996 JA1 V 2.958596 0.30 RPB,AIII

Table 4.3 Albedos and Taxonomic Complexes for NEAs with T asured albedos.   Of the 
NEAs with known albedos and T  3, 6 out of 7 have low albedos consistent with cometary origin.  The 
sources for the albedo measurements are as follows:  NEATM – The NEATM model (Delbo et al. 2003);  
RPB, AIII – Taken from Binzel et al. (2002a);  Radar -  Albedo obtained by combining a radar derived 
shape model with optical brightness measurements (Benner et al. 2001).  The two marked with * are the 
two additional albedo measurements that do not appear in Binzel et al. (2002a). 

J<3 and me
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Figure 4.2 Visual Geometric Albedo versus Absolute Magnitude for S-Type NEAs.   Black squares 
show the albedos of 80 NEAs from Table 1 of Binzel et al. (2002a) and Table 4.3, with 30% error bars.  
The correlation between p  H is not quite statistically significant at the 95% level using a 2-sided t-test 
(r = 0.35, t=2.01, pval=0.054). 
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Figure 4.3 Visual Geometric Albedo versus Semimajor Axis for NEAs.  Black squares show albedos of 
80 NEAs from Table 1 of Binzel et al (2002a), with 30% error bars.  The correlation between p  
semimajor axis is statistically significant at the level of 98.8% using a 2-sided t-test (r = -0.28, t=-2.58, 
pval=0.0116).  If the two points with largest semimajor axis are excluded, the significance of the 
correlation decreases to 97% (r = -0.21, t=-1.84, pval=0.069). 
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Figure 4.4 Visual Geometric Albedo versus Eccentricity for NEAs.  Black squares show albedos for 80 
NEAs from Table 1 of Binzel et al (2002a), with 30% error bars.  The correlation between p d e is not 
statistically significant (86%) using a 2-sided t-test (r = -0.17, t=-1.48, pval=0.14). 
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Figure 4.5 Visual Geometric Albedo versus Inclination for NEAs.  Black squares show albedos for 80 
NEAs from Table 1 of Binzel et al (2002a), with 30% error bars.  The correlation between p d i is not 
statistically significant (93%) using a 2-sided t-test (r = -0.20, t=-1.79, pval=0.077). 
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Figure 4.6 Visual Geometric Albedos versus Tisserand Parameter for NEAs.   Black squares show the 
albedos of 80 NEAs from Table 1 of Binzel et al. (2002a) and Table 4.3, with 30% error bars.  This plot is 
similar to Fig. 1 of Fernandez et al. (2001), but with only NEAs plotted.  There is a marked difference in 
the distribution of albedos for NEAs with T  and for NEAs with T  The correlation between p  
T s statistically significant (97%) using a 2-sided t-test (r = 0.24, t=2.20, pval=0.031).  NEAs on orbits 
consistent with cometary origin tend to have very low albedos, also consistent with cometary origin. 

J<3 J>3.  V and
J i

The dependence of albedo on Jovian Tisserand parameter is indicative of extinct 

comets within the NEA population.  The presence of extinct comets in the NEA 

population has long been an open question (for example, Öpik 1961, Wetherill 1988, 

Weissman et al. 1989, Weissman et al. 2002).  If such exist, they are expected to have 

low albedos and featureless, reddened spectra similar to D-type asteroids (for example, 

Lagerkvist 1993,  Hicks et al. 2000).  NEAs of cometary origin may also be 

distinguishable by their orbital properties (for example, Kresák 1979; Harris and Bailey 

1998).  In particular, extinct comets may be expected to be dynamically linked to Jupiter 

(Kresák 1979), because the great mass of Jupiter makes it the most effective body for 

changing cometary orbits into NEA-like orbits.  Linkage to Jupiter may be revealed by 

the Tisserand parameter (defined in Appendix A.3).  Tisserand parameter values less than 

3 indicate that an object is dynamically linked to Jupiter and is thus a candidate for being 

an extinct comet.  An asteroid or comet may not change its Tisserand parameter solely by 

gravitational interactions with Jupiter, so an object with TJ  < 3, that is not interacting 

with other planets will remain on an orbit with TJ  < 3.  However, an object may change 
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its value of TJ  by non-gravitational forces (for example, cometary outgassing) or by 

interactions with other planets.  The NEAs are in orbits that bring them close to Mars and 

Earth and possibly other planets, and those interactions could change the value of TJ.  

Therefore, the TJ =3 boundary is not expected to be a completely rigid barrier between 

NEAs of cometary origin and NEAs of asteroidal origin, but the gravitational effects of 

Jupiter are strong enough to dominate the other orbital perturbations. 

It was noted by Fernandez et al. (2001) that the T

marked bifurcation in the albedos of asteroids, with asteroids on the T

boundary having very low albedos similar to cometary nuclei.  Using all currently 

available NEA albedo data confirms the trend: 6 out of 7 NEAs with T

very low albedos.  Figure 4.6 illustrates this effect, and the albedos for NEAs with T

used in Figure 4.6 are given in Table 4.3. 

4.5 Trends in Taxonomic Data 
As with the albedos, the relative abundances of the taxonomic complexes show 

some correlations with orbital parameters.  Figure 4.7, Figure 4.8, and Figure 4.9, show 

that the trend is best explained as a correlation with the Jovian Tisserand parameter, T

The darker complexes are more prevalent in the T  part of the parameter space than in 

the T  space.  This is also shown in Figure 4.10 where we see that even before 

debiasing, the darker complexes (C, D, and X) are more abundant than the bright 

complexes (S, and Q) for T 3.  As illustrated in Figure 4.11 through Figure 4.16 there 

do not appear to be any other trends in the relative abundances of the major taxonomic 

complexes versus the orbital parameters. 

J =3 boundary is associated with 

J < 3 side of the 

J < 3 also have 

J < 3 

J. 

J<3

J>3

J<
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Figure 4.7 Semimajor Axis and Eccentricity for the NEAs.  The taxonomic complexes are grouped into 
dark and light groups.  The curved line that intersects the X axis at 1.3 AU delineates the edge of the NEA 
population as asteroids with perihelion less than 1.3 AU.  The curved line that intersections the X axis at 1 
AU delineates the Earth-crossing region.  The other line divides the space into regions with T  and T , 
for asteroids with inclination of 0.  A few of the NEAs are plotted with filled symbols to indicate that they 
have T  even though they appear on the left side of the T  boundary.  The nonzero inclination of those 
NEAs reduces their Tisserand parameter to below 3.  NEAs with T 3 have a higher abundance of dark 
taxonomic complexes than do NEAs with T  

J<3 J>3

J<3 J=3
J<

J>3.
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Figure 4.8 Semimajor Axis and Eccentricity for the Dark NEA Complexes.    The curved line that 
intersects the X axis at 1.3 AU delineates the edge of the NEA population as asteroids with perihelion less 
than 1.3 AU.  The curved line that intersections the X axis at 1 AU delineates the Earth-crossing region.  
The other line divides the space into regions with T  and T , for asteroids with inclination of 0.  A few 
of the NEAs are plotted with filled symbols to indicate that they have T 3 even though they appear on the 
left side of the T  boundary.  The nonzero inclination of those NEAs reduces their Tisserand parameter to 
below 3.  Among the dark taxonomic complexes, the NEAs with the lowest values of T inated by 
the D-types, which have the darkest surfaces. 
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Figure 4.9 Semimajor Axis and Eccentricity for the Bright NEA Complexes.    The curved line that 
intersects the X axis at 1.3 AU delineates the edge of the NEA population as asteroids with perihelion less 
than 1.3 AU.  The curved line that intersections the X axis at 1 AU delineates the Earth-crossing region.  
The other line divides the space into regions with T  and T , for asteroids with inclination of 0.  A few 
of the NEAs are plotted with filled symbols to indicate that they have T 3 even though they appear on the 
left side of the T  boundary.  The nonzero inclination of those NEAs reduces their Tisserand parameter to 
below 3.  The relative distributions of S and Q type NEAs do not depend on eccentricity and semimajor 
axis. 

J<3 J>3
J<

J=3

 69



Chapter 4 

Observed Fractional Abundances

0

0.1

0.2

0.3

0.4

0.5

A C D O Q R S U V X

Taxonomic Complex

Fr
ac

tio
na

l A
bu

nd
an

ce Tj<3 Tj>3 All NEAs

 
Figure 4.10 Observed Fractional Abundances of the Taxonomic Complexes for T 3 and T   
The NEA classifications from Table 4.1 and Figure 4.1 are divided according to the Jovian Tisserand 
parameter.  Even before debiasing, the dark NEA complexes, particularly the D-type NEAs are more 
prevalent among the NEAs with T 3 than among the NEAs with T 3.  The bars are in left-right order as 
indicated in the caption. 
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Figure 4.11 Eccentricity and Inclination for the NEAs.  The taxonomic complexes are grouped into dark 
and light groups.  The relative abundances of dark and light types do not depend upon inclination and 
eccentricity. 
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Figure 4.12 Eccentricity and Inclination for the Dark NEA Complexes.  The relative abundances of the 
C, D, and X complexes do not depend upon inclination and eccentricity. 
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Figure 4.13 Eccentricity and Inclination for the Bright NEA Complexes.  The relative abundances of 
the S and Q type NEAs do not depend on inclination and eccentricity. 
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Figure 4.14 Semimajor Axis and Inclination for the NEAs.  The taxonomic complexes are grouped into 
dark and light groups.  The relative abundances of the dark and light groups do not depend on inclination 
and semimajor axis. 
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Figure 4.15 Semimajor Axis and Inclination for the Dark NEA Complexes.  The relative abundances of 
the C, D, and X types do not depend on inclination and semimajor axis. 
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Figure 4.16 Semimajor Axis and Inclination for the Bright NEA Complexes.  The relative abundances 
of the Q and S types do not depend on inclination and semimajor axis. 

The Jovian Tisserand parameter will be discussed further in section 4.9.  In the 

initial analysis presented next, I assume that the spectral properties and albedos of the 

NEAs and are not correlated with the orbital parameters, absolute magnitude, or diameter 

of the NEAs.  I will address the effects of the correlation with T

simpler case of no correlation in order to show how the debiased population changes 

when this correlation is allowed in the solution. 

4.6 Absolute Magnitude and Diameter Distributions 
Before proceeding to a discussion of the methods used to debias the albedo and spectral 

data, I will first explain several equations necessary for working with population 

distribution functions based upon absolute magnitude or diameter.  The absolute 

magnitude system and equations for converting between absolute magnitude and 

diameter are defined in Appendix A.1. 

My population model fits an exponential distribution to the number of NEAs versus 

absolute magnitude of the following form: 

 ( )

J after discussing the 

10 HN H B β< =  (4.1) 
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where the exponent is 0.39 0.013β = ±  ( 0.35 0.02β = ±  in Bottke’s model).  Equation 

 gives the cumulative number of NEAs with absolute magnitudes less than (i.e. 

brighter than) a specified value.  That equation assumes that the population can be 

approximated by a simple exponential function.  The number of NEAs can be expressed 

equivalently as a diameter distribution, or the cumulative number of NEAs with 

diameters greater than a specified value: 

(4.1)

 ( )N D AD α−> =  (4.2) 
Using equation (A.2), the exponential slope of the absolute magnitude distribution, β, can 

be converted into the power-law slope of the diameter distribution quite simply 

as 5α β= .  Likewise, the scaling constants, A, and B, can be related by 2.5 10 C
VA Bp β β−= , 

where pV is the visual geometric albedo, and C=15.618 is a constant that defines the 

absolute magnitude system. 

I now assume that the NEAs can be divided into M taxonomic complexes where all 

the members of a complex, i, have the same albedo, pi, and the population distribution of 

each taxonomic complex follows equations (4.1) and (4.2).  For each complex I may 

write that the number of NEAs of that type with absolute magnitudes brighter than H, is 

given by  

( ) ( ) 10 H
i i iN H f N H f B β< = < =  (4.3) 

 

where the fi are the magnitude-limited fractional abundances of each complex, and 

.  These magnitude-limited fractional abundances are the proportions of the 

NEAs that would fall into each of the taxonomic complexes if one were to classify all of 

the NEAs up to some limiting absolute magnitude.  The population in each complex can 

also be described by a diameter distribution given by 

1

1
M

i
i

f
=

=∑

( ) ( )i i iN D g N D g AD α−> = > =  (4.4) 
where the gi are the diameter-limited fractional abundances of each complex, and 

.  These diameter-limited fractional abundances are the proportions of the NEAs 

that would fall into each of the taxonomic complexes if one were to classify all of the 

NEAs down to some limiting diameter.  The f

1

1
M

i
i

g
=

=∑

i differ from the gi because the members of 
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one complex have a different albedo from the members of the other complexes and the 

number of objects increases rapidly with decreasing size.  The fi and gi can be related by 

the following equations: 

2.5

2.5

1

i i
i M

j j
j

fg
f

β

β

ρ

ρ

−

−

=

=

∑
  (4.5) 
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1

i i
i M

j j
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β

β

ρ

ρ
=

=

∑
 (4.6) 

I am now in a position to define an average albedo for all the NEAs, averaging over 

all of the M taxonomic complexes.  I start with the definition that I want an average 

albedo, pN such that when equation (A.2) is used, ( ) ( )N D N H> = <  for all diameters 

and absolute magnitudes.   This “number-averaged” albedo is slightly different from the 

geometric mean which is usually used to average together albedos from different objects.  

The number-averaged albedo assures that the number of NEAs brighter than a given 

absolute magnitude is equal to the number with diameters larger than the equivalent 

diameter when the number averaged albedo is used in equation (  to convert between 

absolute magnitude and diameter.  The number-averaged albedo may be calculated from 

the albedos of each complex and either the magnitude-limited fractional abundances or 

the diameter-limited fractional abundances as follows: 

A.2)

 

1
2.5

2.5

1

M

N i i
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p f p
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=
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∑  (4.7) 
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∑  (4.8) 

4.5) 4.6)

If one is interested in a particular diameter, D se the average 

albedo, p olute magnitude, H alent to D

can calculate H p D

nice property that the same answer will be obtained if the values of  p ed in 

subgroups, and then the subgroups averaged or if all are averaged at once. 

If equations (  and (  are used to relate fi and gi, then equations (4.7) and (4.8) give 

identical values.  They are two different ways to calculate the same value of pN. 

o, then one can u

N to define an average abs o, that is equiv o.   One 

o by using N and o in equation (A.2).  This averaging function has the 

i are averag
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4.7 Magnitude-limited Debiasing 
In any telescope search program to discover or study asteroids, the primary 

observational selection effect is that the telescope is flux limited.  That is, objects with 

bright apparent magnitudes are more likely to be observed than fainter objects.  Since I 

am assuming that there are no correlations between the orbital parameters and the 

spectral properties of the NEAs, the primary selection effect is that NEAs with brighter 

absolute magnitudes are more likely to be discovered, and observed for spectra.  

Therefore, as a first step, I assume that the observed fractional abundances of NEA 

spectral types, and the observed albedos within a taxonomic complex are absolute 

magnitude limited samples, or equivalent to the (4.3).  I can then 

use equation (4.7) to obtain debiased or diameter-limited values. 

Contrary to the assumptions made above, the actual NEAs within a single 

taxonomic complex do not all have the same albedo.  To define an average albedo within 

each complex I assume that each albedo measurement within a single complex represents  

a subset that have that albedo.  I assume that the measured albedos are a magnitude-

limited sample of the albedo values within a complex, and I use equation (4.7) to obtain 

an average albedo for each complex.  So, for example, 12 members of the S complex 

have had their albedos measured, and the average albedo for this complex would be 

calculated by averaging the 12 measured albedos with equation (4.7) where the 

fi defined in equation 

1
12if = .   

A similar averaging is done for each of the other taxonomic complexes.  Three of the 

taxonomic complexes have no NEA members with a measured albedo, so the A, R, and 

U complexes have been assigned albedos from average main-belt values2.  These three 

complexes (and the O complex with only a single measured albedo) represent a tiny 

fraction of the NEAs and so they have very little effect on the final answer.   The D 

complex also has only one member with a NEATM measured albedo, and there are 

enough D-types to significantly affect the final answer.  However, the measured albedo 

                                                 
e average albedos for main-belt asteroids in the A, R, and U taxonomic complexes were calculated as 

the geometric mean of the albedos from IRAS (Tedesco et al. 2002) that have the appropriate taxonomic 
classification from the file

2 Th

 Taxonomic Classifications, Version 3 in the Physical Data System Small Bodies 
Node (http://pdssbn.astro.umd.edu/SBNast/holdings/EAR-A-5-DDR-TAXONOMY-V3.0.html) which is a 
compilation of the taxonomies of  Tholen (1984); Barucci et al. (1987); Tedesco et al. (1989); Howell et al. 
(1994); and Xu et al. (1995). 
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for that D-type NEA (0.042) is quite similar to the average of main-belt D-types, so this 

NEA’s albedo is used as the albedo for the D complex.  The resulting debiased albedos 

are given in Figure 4.17.  The observed (magnitude-limited) and debiased (diameter-

limiter) fractional abundances are shown in Figure 4.18. 
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Figure 4.17 Debiased Average Albedos.  The debiased average albedo of each taxonomic complex is 
shown as calculated from equation (4.7) using NEATM albedos for NEAs with SMASS taxonomy 
classifications. Complexes marked with * have been assigned albedos from average main-belt values.  
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Figure 4.18 Fractional Abundances of NEA Taxonomic Complexes.  The observed fractional 
abundances are assumed to be absolute magnitude-limited and are converted to diameter-limited or 
debiased fractional abundances using the average albedos for each complex. 
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The debiased albedos and diameter-limited fractional abundances given in Figure 

4.17 and Figure 4.18 can be combined with equation (4.7) to obtain an average albedo for 

all of the NEAs.  The average albedo can also be used to provide an absolute magnitude 

that is equivalent to an average 1 km diameter NEA, and estimate the number of NEAs 

that are larger than 1 km in diameter.  These numbers are summarized in Table 4.4. 

 This Chapter Chapter 2 
average NEA albedo 0.16 ± 0.02 0.11 (assumed) 
H equivalent to 1 km 17.63 ± 0.1 18 (assumed) 

number NEAs bigger than 1 km 885 ± 149 1227±170 
Table 4.4 Summary of Average NEA Properties for Magnitude-Limited Debiasing.  The current work 
is compared to the results from section 2.7.  There, it was assumed that the average albedo of the NEAs was 
0.11, meaning that an absolute magnitude of 18 was equivalent to a 1 km NEA.  The debiased albedos, 
corresponding absolute magnitudes and number of multi-kilometer NEAs shown is derived from the 
assumption of an absolute magnitude-limited survey described above. 

To calculate uncertainties for magnitude-limited debiasing, I assumed a 

straightforward Gaussian model of errors.  The standard formula for propagating 

uncertainties (Bevington 1969, pg. 59) is 

 
22

2 2
f x

f f
x y

2
yσ σ σ

 ∂ ∂ = +   ∂ ∂   
 (4.9) 

where f is a function of x and y, 2
fσ  is the one-standard-deviation uncertainty for f, and x 

and y are uncorrelated ( ).  Each of the albedo measurements from NEATM are 

assigned uncertainties of 30%.  The uncertainty in the albedo is difficult estimate 

precisely, because the un s primarily from uncertainties in the thermal 

model used to perform an statistical noise in the thermal IR data.  

An unertainty of 30% is perhaps larger than necessary, but is a safe limit (Delbo 2003).  

The observed fractional abundances of each of the taxonomic complexes are assigned 

Poisson error bars (

2 0xyσ =

certainty stem

 the calculation rather th

Nσ N= ).  The uncertainty in the value of B is taken from the linear 

least-squares fit to the log of the number of NEAs as a function of absolute magnitude 

( .  All of these uncertainties are combined by equation (4.9) to calculate the 

one-standard-deviation uncertainty in the average albedo of the taxonomic complexes, 

the debiased-fractional abundandances of the taxonomic complexes, and the overall, 

average albedo of the NEAs. 

Figure 2.7)
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4.8 Alternate Bias Estimation 
As an alternative to assuming that the observational bias in our spectral and albedo 

data was simply absolute magnitude-limited, I estimated the observational bias with a 

simulation of the observational programs. To estimate the bias in the known NEA 

population that is due to albedo, I began by generating pseudorandom asteroid orbital 

elements that match a debiased population model.  Nominally, I use the population model 

from section 2.7, for comparison, I also tried the population model by Bottke et al. 

(2002).  Bottke’s distribution differs from my distribution in a few keys ways.  First, 

Bottke et al. found a slightly shallower slope in the absolute magnitude distribution, 

meaning that it predicts slightly fewer small NEAs relative to a given number of large 

NEAs.  Also, my distribution predicts substantially more NEAs at high inclination, 

primarily as a “bump” in the distribution around an inclination of 25°, and also in a larger 

tail going out to inclinations as high as 50°.  I found that the two models are similar 

enough that the resulting biases are not dependent upon which population model is 

chosen as a starting point (see Table 4.5). 

The population model takes the three dimensional space of orbital elements, semi-

major axis, eccentricity, and inclination, (a,e,i), and divides the space into a number of 

cells.  For each cell the population model specifies the fraction of NEAs whose 

parameters fall within that cell.  Thus, a pseudorandom number generator was used to 

produce test particles with values of (a,e,i) that statistically match the population model.  

Within each cell, the values of (a,e,i) were offset from the cell center with a uniform 

distribution so that the pseudorandom asteroids would fill the volume of the cell rather 

than all being located at the cell center.  The other orbital parameters, longitude of the 

ascending node, argument of perihelion, and mean anomaly, were all assumed to be 

uniformly distributed from 0 to 2π, and values for them were assigned for each test 

particle.  At this stage of the simulation, no size or brightness information was specified 

for any of the test particles.  30000 test asteroid were generated in this manner. 

Each test asteroid had its orbit propagated (with a simple two-body propagation), 

and an ephemeris generated for each night on which the LINEAR survey operated (the 
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mechanism for nights with poor weather).  A record was generated each time any test 

asteroid fell within the field of view of the sensor, without regard to brightness or limiting 

magnitude.  The output record included the test asteroid’s orbital elements, its 

heliocentric coordinates, geocentric coordinates, solar phase angle, the limiting 

magnitude of the telescope on that night, and the time.  In short, enough information to 

quickly reconstruct all the relevant details of the potential observation without having to 

repropagate the orbit.  A separate file of records was generated for those test asteroids 

that never fell within the field of view of the telescope.  Those records contained only the 

orbital elements of the unobservable test asteroids.  5096 test asteroids never fell within 

the field of view.  24904 of the test asteroids did fall within the field of view.  Those 

24904 test asteroids generated 184521 potential observations, or an average of 7.4 

potential sightings for each potentially observable test asteroid (POTA). 

Armed with the list of POTAs and the properties of each potential observation, it is 

a quick matter to apply any desired distribution of absolute magnitudes, or, equivalently, 

any desired distribution of diameters and albedos, to the list of potentially observable 

asteroids.  Determining which of the test asteroids would have actually been observed 

given its designated size, its calculated apparent brightness, and the nightly limiting 

magnitude for the telescope was then a simple scan through the list with no orbit 

propagation or field of view checks required.  Thus, many different combinations of 

diameter and albedo could be tried with little computer time required. 

For each of the real NEAs in our dataset with measured albedos, I know its absolute 

magnitude, spectral complex, albedo, and diameter.  For each of these asteroids I 

conducted a simulation of the discovery and measurement bias for that particular 

asteroid.  For example, one of our real NEAs (3200) has a measured albedo of , 

and an absolute magnitude of 

0.14Vp =

14.3H = , giving a diameter of 5.53 km

the test asteroids were assigned albedos of 0.14, and diameters of 5.53 km.  Assigning all 

30000 test asteroids the same albedo and diameter allows me to average over the orbital 

parameter distribution and obtain a bias correction factor for this particular combination 

of albedo and diameter.  The combination of diameter and albedo, along with the other 

information recorded for each potential observation (namely, heliocentric and geocentric 

.  So, all 30000 of 
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distances, and phase angle) allow for the calculation of the apparent visual magnitude for 

each potential observation via equation (A.2) with a phase slope parameter value of 

 used for all test asteroids. ilar relationship between G and p

et al. (2002b). 

0.082 0.69 VG p= +

is used by Morbidelli 

3  A sim V 

discovered
discovered + undisc

If a potential observation had a computed apparent magnitude that was brighter 

than the limiting magnitude for that night, the POTA was deemed a discovered test 

asteroid.  If a POTA was never brighter than the relevant night’s limiting magnitude then 

it would be labeled an undiscovered test asteroid.  After all POTAs where thus processed, 

I ended up with a list of discovered test asteroids.   I also had two lists of undiscovered 

test asteroids (the test asteroids that never entered the field of view of the telescope and 

the test asteroids that were within the field of view but were never bright enough to be 

detected) that could be combined into one list.  The fraction of discovered asteroids (i.e. 

overed
) is then a measure of the discovery bias for NEAs with the 

given albedo and diameter.  This process was repeated for all of the NEAs in our dataset. 

So far, I have estimated only one part of the albedo bias, the part that is due to the 

discovery of the NEAs.  There is also a requirement to measure the spectra and albedos 

of the NEAs, and those processes add their own biases.  These additional measurement 

biases were calculated in a similar manner to the discovery bias.  I started with the list of 

discovered asteroids (with sizes and albedos attached), propagated their orbits, and 

determined which ones would have been measured for spectra with a simulation of the 

spectral observing programs.  Those test asteroids that had their spectra measured went 

into a simulation of the albedo measuring program to see which would have their albedos 

measured.  Those discovered test asteroids that were selected by the simulation for 

spectral and albedo measurements were deemed to be “measured” test asteroids.  I then 

calculated the fraction of measured test asteroids for each value of albedo simulated.  The 

fraction of measured test asteroids was then my estimate of the bias for a given albedo-

diameter pair.  This bias value is essentially the probability that a randomly selected NEA 

would have had been discovered and then gone on to have its spectrum and albedo 
                                                 
3 This linear relationship between G and pV was derived from a linear least squares fit to the values from the 
SIMPS catalog (Tedesco et al. 2002), excluding those with G=0.15. 
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measured.  This bias is only valid in a relative sense to the bias for other albedos because 

I used a starting population size (30000) that is much larger than the actual number of 

NEAs. 

To simulate the observational program to measure the spectra, I used the 

observational log books from observing runs to Palomar Observatory, and to Kitt Peak 

National Observatory from January, 1998 to March, 2002.  Over a total of 31 nights, 

distributed between the two observatories, spectra for 180 NEAs were measured in this 

time period.  I assume that the observational selection effects modeled for this subset of 

the observations is representative of the selection effects for the whole dataset.  

Histograms of the visual magnitudes at the times of observation indicate that the limiting 

magnitude for both observatories is about Vm= 19.5.  Thus, a single limiting magnitude 

was used for all the nights modeled in this simulation.  For each night on which 

observing was modeled at either of the locations, all of the discovered test asteroid’s 

orbits were propagated to local midnight for that night.  Any discovered test asteroid on a 

given night that was located above the observatory’s southern declination limit, and had a 

solar elongation of more than 50 degrees was added to a list of potentially measurable 

test asteroids (PMTAs).  All of the PMTAs for a given night were then ranked by a 

“measurement probability.”  The measurement probability was a combination of three 

probabilities that describe the interest in measuring an NEA.  The first probability, pB, 

modeled the desire to obtain bright asteroids because they are easier to observe, and 

varied linearly from 0 to 1 as the apparent visual magnitude for that night varied from 20 

to 10 (however, values of apparent visual magnitude greater than Vm= 19.5 were never 

measured in the simulation).  The second probability, pH , modeled the desire to obtain 

measurements for small NEAs, and varied linearly from 0 to 1 as the absolute magnitude 

varied from 10 to 22.  The third probability, pI, modeled the desire to obtain 

measurements for high inclination NEAs, and varied linearly from 0.2 to 1 as the 

inclination of the test asteroid varied from 0 to 90 degrees.  The final measurement 

probability was calculated as ( )( )( )1 1 1 1M B H Ip p p= − − − − p .  Any PMTA with a pM 

value greater than 0.7 was deemed to be measured.  The value of 0.7 is an arbitrary value 

chosen to provide a reasonable number of simulated measurements on each night for the 

full range of albedos.  As with the use of 30000 test asteroids, the choice of this arbitrary 
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cutoff sets the overall scale of the measurement biases that are calculated, but does not 

affect the relative bias between different values of albedo.  After a PMTA passed all of 

the tests and was measured on some night, it was removed from the pool of PMTAs for 

 Figure 4.19 Flowchart for Alternate Bias Estimation Procedure.  Shows the steps in calcula

the remainder of the nights so that any given PMTA was measured only once.  

ting the 
bias correction factors.  The input to the procedure is in red, output is in blue, and processes are in black. 

Select one NEA, with albedo pi diameter Di

Generate 30000 test particles with random orbits

Simulate discovery survey

Simulate spectral survey

Simulate albedo survey

Ni test particles with measured albedos

Bias correction 
bi = 30000/Ni

re
pe

at

Select one NEA, with albedo pi diameter Di

Generate 30000 test particles with random orbits

Simulate discovery survey

Simulate spectral survey

Simulate albedo survey

Ni test particles with measured albedos

Bias correction 
bi = 30000/Ni

re
pe

at

37 real NEAs with measured spectra and albedos37 real NEAs with measured spectra and albedos
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The test asteroids that were successfully measured by the spectral observing 

simulation were further tested to see if they would have their albedos measured by a 

simulation of the albedo measuring program.  The simulation for albedo measuring was 

very similar to the simulation for measuring spectra.  The simulation modeled seven 

observing nights at the W. M. Keck Observatory from March 2000 to February 2002.  

Each of the test asteroids with successfully measured spectra had its orbit propagated to 

local midnight for each night at the Keck Observatory.  The test asteroid’s diameter, 

albedo, and heliocentric and geocentric distances were used to calculate the expected 

thermal flux at 10 µm using a simple approximation of a blackbody at uniform 

temperature.  The observational limit for the telescope to be able to detect the asteroid 

and calculate its albedo was set at 2 mJy.  As with the spectral measurement, a thermal 

measurement probability was defined to account for the interest in measuring smaller 

NEAs, and high inclination NEAs.  This probability was defined as 

( )(1 1 1A H )Ip p= − − − p , with pH, and pI as defined above for the spectral measuring.  As 

before, any test asteroid with pA greater than 0.7, and thermal flux greater than 2 mJy was 

deemed to have its albedo measured. 

So, after assigning the same value of albedo and diameter to the 30000 test 

asteroids, processing them through the discovery simulator, the spectrum measuring 

simulator, and the albedo measuring simulator, some fraction of the test asteroids would 

have had their albedos measured.  The fraction of measured asteroids is then the 

probability of measurement for that NEA, and is the inverse of the observational bias for 

that NEA.  Let 30000
# test asteroids with measured albedoslb = .  The process was repeated 

for each of the 36 real NEAs in my sample with measured albedos. 

I wish to use these bias correction factors to average together the measured albedos 

within each taxonomic complex.  The bias correction factors as I’ve stated them account 

for observational selection effects as a function of both size and albedo.  Before 

averaging together the albedos from a complex of NEAs, I also need to account for the 

varying sizes of the NEAs within the complex.  If we’ve found one large NEA with a 

particular albedo, then there are probably many small ones out there with a similar 
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albedo.  But if we’ve found one small NEA with a particular albedo value that doesn’t 

imply that there are big NEAs like it.  I am assuming that the numbers of NEAs as a 

function of size follows a power law, equation ( .  To average together the albedos of 

NEAs with different sizes, I use that power law to correct the bias factors to the same 

diameter.  To correct for the varying sizes, I think of each NEA with a measured albedo 

as representing a group of similar NEAs with the same albedo and varying sizes.  It just 

happens that I have a measurement of one object from this group.  The observational bias 

I estimated suggests that there should be b

4.2)

l similar NEAs with the same albedo and the 

same diameter.  I use the following formula to convert that to the number of similar 

NEAs with the same albedo at 1 km diameter:  1(1)l lN b Dα+= , where the exponent has 

changed because I am using a differential distribution rather than a cumulative 

distribution.  The l subscript iterates over the NEAs with measured albedos, within one 

taxonomic complex.  The Nl yield diameter-limited fractional abundances for each 

measured albedo within a taxonomic complex by l
l

l

Ng
N

=
∑

.  The average albedo for 

each complex can then be computed by equation (4.5), averaging over all of the NEAs 

within the complex that have measured albedos, ρl. 

The results of this model are summarized in Table 4.5 (labeled as survey 

simulation).  The results are very similar to the results from assuming a magnitude-

limited sample (labeled magnitude-limited debiasing).  In addition, several test cases 

were performed where some of the assumptions within the observational simulation were 

varied to ascertain their effects on the final answer.  These experiments were to vary the 

limiting thermal flux for the albedo observing survey up or down by one order of 

magnitude (labeled high thermal flux and low thermal flux) , to vary the limiting visual 

magnitude for the spectral measuring program up or down by one visual magnitude 

(labeled dimmer spectral mag limit and brighter spectral mag limit), to use an 

alternate (a,e,i) NEA population distribution (labeled Bottke (a,e,i) distribution), and to 

use the same value of G=0.15 for all NEAs rather than having the phase slope parameter 

vary with the albedo (labeled no G variation).  None of these experiments made a 

substantial difference to the final answer. 
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Another variation that I tried in the simulation to determine the observational bias 

was to average over the sizes of the test particles within the simulation (labeled diameter 

averaging).  In this case, the 30,000 test asteroids that were generated for each of the 36 

NEAs with measured albedos were not all assigned the same diameter.  Diameters were 

chosen randomly in the range 1 km to 5 km according to the diameter distribution given 

by equation (4.2).  After propagating 30,000 test asteroids with random orbits, random 

diameters, and the same albedo value through the discovery, spectral measuring, and 

albedo measuring surveys, I obtained a bias correction factor for each of the 36 NEAs.  

Within each taxonomic complex, the bias correction factors were normalized to sum to 

one, and then used as diameter-limited fractional abundances (gi) to average together the 

measured albedos for a given taxonomic complex using equation (4.8) to get the average 

albedo for each taxonomic complex. 

As another point of comparison, I calculated an overall average albedo for the 

NEAs without using the spectral classifications at all (labeled no spectral data).  The 36 

measured albedo values were assumed to be a magnitude-limited sample of the albedos 

of the NEA population and were averaged with equation (4.7).  This last case does 

produce results that are substantially different from the magnitude-limited assumption 

that uses the spectral classifications.  The use of the taxonomic complexes to combine the 

albedos is likely to produce a better answer than combining the albedos directly.  First, 

the albedo survey was conducted with some consideration toward obtaining albedo 

measurements within each of the complexes to constrain the albedos of each complex.  

This could introduce some additional bias when the complexes are all combined into one. 

Because the NEA albedos are correlated with their taxonomic complex, the albedo survey 

would no longer be magnitude limited.  Second, there are an order of magnitude more 

measurements of NEA taxonomies than of NEA albedos, and the albedos do not vary 

nearly as much within a taxonomic complex as between taxonomic complexes.  The 

overall variation in the measured albedos in this sample is a factor of 27 (from a Q-type 

asteroid with albedo of 0.63 to a P-type with albedo of 0.023).  The variation within the X 

complex is a factor of 24.  The next largest variation is within the Q complex with 

albedos that vary by a factor of 4.5.  Thus, using the taxonomic complexes to weight the 
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albedo measurements results in a reduction of the uncertainty inherent in averaging a 

small sample from a widely varying population. 

 average 
albedo 

1 km equivalent 
H magnitude 

number bigger 
than 1 km 

magnitude-limited debiasing 0.155±0.02 17.63±0.1 885±146 
survey simulation 0.161 17.60 858 
high thermal flux 0.168 17.55 819 
low thermal flux 0.151 17.61 913 
brighter spectral mag limit 0.161 17.60 858 
dimmer spectral mag limit 0.161 17.60 858 
Bottke (a,e,i) distribution 0.163 17.59 847 
no G variation 0.163 17.59 847 
diameter averaging 0.160 17.60 858 
no spectral data 0.119 17.93 1155 

Table 4.5 Comparison of Debiasing Techniques.  The magnitude-limited debiasing case is as described 
above in section 4.7.  The survey simulation is as described above in this section.  All of the other cases are 
similar to the survey simulation case with a single parameter value changed.  For the high thermal flux 
case, the flux limit for successful observations from the Keck albedo survey was changed from 2 mJy to 20 
mJy, and for the low thermal flux case it was changed to 0.2 mJy.  The brighter spectral mag limit case is 
similar to the survey simulation case but with the limiting magnitude for successful spectral observing 
changed from 19.5 to 18.5 visual magnitudes.  For the dimmer spectral mag limit case, that quantity was 
changed to 20.5 visual magnitudes.  For the Bottke (a,e,i) distribution case, the test asteroids were 
generated according to the (a,e,i) distribution in Bottke, et al. 2002, all other parameters were the same as 
in the survey simulation case.  For the no G variation case, all NEAs had assigned phase slope parameters 
G=0.15 rather than having G linearly dependent upon the albedo as in the survey simulation case.  For the 
diameter averaging case, as described above, the test NEAs were assigned random diameters.  The case of 
no spectral data was obtained by assuming that the albedo measurements were a magnitude-limited sample 
without using spectral data.  With the exception of case where spectral data was excluded from the analysis, 
none of the variations are significantly different from the base case of magnitude-limited debiasing. 

As seen in Table 4.5 the simulations of the observational programs produce 

debiased results that are very similar to the simple assumption of the magnitude-limited 

debiasing of section 4.7.  Therefore, I have chosen to use the results of the simpler 

approach to proceed with an analysis of how the debiasing is affected by correlations 

between the taxonomic complexes and the Jovian Tisserand parameter. 

4.9 Debiasing with Tisserand Parameter 
Because of the association of dark objects with potentially cometary orbits (sections 

4.4 and 4.5), I have performed another debiasing of the NEAs with objects on T

orbits separated from objects on T T

albedo measurement (2000 PG3), and only 7 NEAs with T  

any source (Table 4.3).  Therefore, the average albedos for the taxonomic complexes 

from the magnitude-limited case given above (Figure 4.17) are used for both the T

J < 3 

J > 3 orbits.  Only one NEA with J < 3 has a NEATM 

J < 3 have albedo values from

J < 3 
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objects and the  T ic 

complexes are allowed to vary between the  T T

the same as the magnitude-limited debiasing described in section 4.7.  The split between 

the T T ply doubling the number of complexes of 

NEAs, with fewer members in each complex.  So, for example, the S-type NEAs are 

divided into a T T e albedo, and independent 

fractional abundances. 

Figure 4.20 igure 4.21

igure 4.22

Figure 4.21

Table 4.4 able 4.6

J > 3 objects.  However, the fractional abundances of the taxonom

J < 3 and J > 3 groups.  This debiasing is 

J < 3 and J > 3 groups is handled by sim

J < 3 group and a J > 3 group with the sam

 and F  show the observed and debiased fractional abundances 

of the taxonomic complexes for the two regions.  In both cases the debiasing amplifies 

the number of NEAs in the dark complexes and reduces the proportion of NEAs in the 

brighter complexes.  In F  the difference between the TJ < 3 and TJ > 3 NEAs is 

dramatically apparent with the TJ < 3 being much more dominated by very dark objects. 

 shows that the debiased fractional abundances in the TJ > 3 NEAs are similar 

to the NEAs as a whole shown in Figure 4.18, though with some shift toward the bright 

complexes. Table 4.6 lists the overall properties for the two regions.  Comparison of 

 and T  shows that the separation of the NEAs into two regions by the 

Tisserand parameter has a small effect overall, making the total population slightly 

darker. 

 TJ < 3 TJ > 3 Combined 
average albedo 0.084±0.01 0.165±0.06 0.140±0.02 

1 km equivalent H magnitude 18.31±0.1 17.57±0.2 17.75±0.1 
number bigger than 1 km 295±50 686±110 982±160 

Table 4.6 Summary of Average NEA Properties for Debiasing with Tisserand Parameter.  Average 
albedo, absolute magnitude equivalent to a 1 km diameter NEA, and predicted number of NEAs with 
diameters larger than 1 km for the NEAs with Jovian Tisserand Parameter greater than or less than 3 are 
given.  Comparison to Table 4.4 shows that separating the taxonomic complex by Tisserand parameter 
causes an slight overall darkening of the average albedo and slight increase in the number of 1 km NEAs. 
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Fractional Abundances for TJ < 3
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Figure 4.20 Fractional Abundances versus Taxonomy for NEAs with Jovian Tisserand Parameter 
Less than 3.  The observed fractional abundances are simple counts of the T 3 NEAs with spectra in each 
complex.  Debiased fractional abundances of the taxonomic complexes are computed with the magnitude-
limited debiasing of section 4.7.  The dark NEA complexes, particularly the D-types dominate in the T  
region.  
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Figure 4.21 Fractional Abundances versus Taxonomy for NEAs with Jovian Tisserand Parameter 
Greater than 3.  The observed fractional abundances are simple counts of the T As with spectra in 
each complex.  Debiased fractional abundances of the taxonomic complexes are computed with the 
magnitude-limited debiasing of section 4.7.  The bright NEA complexes (S,Q), are abundant in the T  
region, but there is a large contribution from the relatively dark X-types. 

J>3 NE

J>3
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Debiased  Fractional Abundances
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Figure 4.22 Debiased, or Diameter-Limited, Fractional Abundances versus Taxonomy.   The NEAs 
are separated into groups with Jovian Tisserand parameter greater than or less than 3,  and shown as a 
whole.  Overall, the S- and X-type NEAs are the most abundant.  However, in the T  region, the dark 
complexes, particularly the D-types dominate. The bars are in left-right order as indicated in the caption. 

igure 4.7 igure 

4.8 Figure 4.9 igure 4.10

able 4.7

J<3

There is a compelling case to be made that the fractional abundances of the 

taxonomic complexes differ between the NEAs with TJ<3 and TJ>3 (F , F

, , and F ).  Therefore the debiasing that includes this dichotomy is 

the best result.  The final debiased fractional abundances and average albedos of the ten 

taxonomic complexes are given in T . 

Taxonomic 
Complex 

Tj<3 Fractional 
Abundance 

Tj>3 Fractional 
Abundance 

Total Fractional 
Abundance Albedo 

A 0.000+0.000 0.003+0.003 0.002+0.002 0.200+0.020 
C 0.046+0.017 0.121+0.044 0.099+0.036 0.101+0.027 
D 0.435+0.204 0.065+0.030 0.176+0.082 0.042+0.013 
O 0.000+0.000 0.007+0.004 0.005+0.002 0.520+0.156 
Q 0.056+0.017 0.171+0.052 0.136+0.041 0.257+0.063 
R 0.000+0.000 0.002+0.002 0.001+0.001 0.340+0.034 
S 0.078+0.019 0.282+0.070 0.221+0.055 0.244+0.045 
U 0.000+0.000 0.006+0.003 0.004+0.002 0.300+0.030 
V 0.000+0.000 0.022+0.010 0.015+0.007 0.364+0.128 
X 0.385+0.156 0.322+0.130 0.341+0.138 0.072+0.025 
Table 4.7 Fractional Abundances and Albedos.  This table gives the best estimate for the fractional 
abundances and albedos of  the ten taxonomic complexes using the magnitude-limited debiasing method 
and separating each of the complexes according to the Jovian Tisserand parameter.  The T nd T  
columns are each normalized to unity.  Summing over the taxonomic complexes, the NEAs with T  
account for 30% of the NEAs, and those with T 3 account for 70% in a debiased, diameter-limited sample.   
These numbers are represented graphically in Figure 4.17, Figure 4.20, Figure 4.21, and Figure 4.22. 

J<3 a J>3
J<3

J>

90 



  Chapter 4 

4.10  Diameter Distribution of the NEAs 
So far, this analysis of the albedos and taxonomic categories of the NEAs has 

assumed that the number of NEAs is an exponential function of the absolute magnitude.  

The absolute magnitude distribution was given in Figure 2.8, and the best fit for the 

cumulative distribution was found to be  3.88 0.39( ) 10 HN H − +< = .  This power law is 

obtained from a fit to the binned, non-cumulative absolute magnitude distribution (

 which is not exactly a simple exponential function.  Using the albedos and fractional 

abundances from Table 4.7, I convert the binned, non-cumulative absolute magnitude 

distribution into a diameter distribution without first simplifying it to an exponential 

form.  This is done as follows: 

(A.2)

Figure 

2.7)

1. Assume that each taxonomic complex follows the binned, non-cumulative 

absolute magnitude distribution in Figure 2.7. 

2. For each complex, use the debiased, average albedo and fractional complex 

abundance, from Table 4.7 to convert the absolute magnitude distribution to a 

binned, non-cumulative diameter distribution.  This is done by using equation 

 to convert the absolute magnitude of each bin to a diameter, and to use the 

fractional abundances to scale the number of NEAs in the bin to the proper 

number of NEAs for each complex.  This produces 20 separate binned diameter 

distributions, one for each taxonomic complex, with the TJ < 3 and TJ > 3 groups 

separated as well. 

3. Sort all of these bins from all 20 diameter distributions in order from largest to 

smallest diameter, and then create a cumulative sum. 

The resulting cumulative diameter distribution is shown in Figure 4.23. 
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Figure 4.23 Cumulative Diameter Distribution.   The central red curve shows the cumulative number of 
NEAs larger than a given diameter.  The absolute magnitude distribution from onverted to a 
diameter distribution using the albedos and fractional abundances for the taxonomic complexes from Table 
4.7.  The dotted lines represent an approximate error envelope.  The upper side of the error envelope is 
computed by allowing the number of NEAs in each absolute magnitude bin to be one standard deviation 
above the best estimate for that bin, and allowing the albedo of each taxonomic complex to be one standard 
deviation lower than the best estimate for that complex and following the same procedure used to calculate 
the central red curve (described in the text).  The lower side of the error envelope is similarly calculated by 
allowing the number of NEAs in each H bin to be one standard deviation low, and the albedo of each 
taxonomic complex to be one standard deviation high.  Since the two sources of error are not added in 
quadrature, the error envelope is somewhat larger than one standard deviation.  The straight blue line is not 
a fit to the red curve, but is the power-law distribution derived by assuming an exponential absolute 
magnitude distribution.  The blue line has a power-law slope (α from equation (4.2)) of –1.95, and 962 
NEAs larger than 1 km, as in Table 4.6.  The number of NEAs with diameters larger than 1 km is 
1090±180. 

This final cumulative diameter distribution for the NEAs suffers from two 

problems.  One problem is minor, the other is unavoidable.  The first problem is that the 

analysis leading to the average complex albedos and the debiased fractional abundances 

assumed an exponential form for the number of NEAs as a function of absolute 

 Figure 2.8 is c
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magnitude.  The real absolute magnitude distribution was then added back in at the end of 

the analysis to obtain a diameter distribution.  A more rigorous approach would be to use 

the full absolute magnitude distribution from the beginning.  However, this would 

eliminate the possibility of using the magnitude-limited debiasing equations given in 

section 4.6, because the derivation of those equations requires an analytical form for the 

absolute magnitude distribution.  Including the full absolute magnitude distribution in the 

calculations of the observational bias is not warranted because it would be a minor effect 

on the bias correction factors and the resulting debiased fractional abundances and 

average albedos.  This more complicated approach also suffers from the second, 

unavoidable problem. 

The second problem with using the binned, noncumulative absolute magnitude 

distribution along with the debiased fractional abundances and average albedos to 

generate a diameter distribution is that it reverses the proper causal order.  Using this 

method makes the assumption that all of the taxonomic complexes have the same 

absolute magnitude distribution with its various bumps and wiggles lined up at the same 

place in absolute magnitude.  Those bumps and wiggles then get shifted when the 

absolute magnitude distribution is converted to a diameter distribution for each 

taxonomic complex.  When the diameter distributions for the complexes are summed to 

obtain the cumulative diameter distribution, the bumps and wiggles that were all lined up 

in absolute magnitude space get averaged out in diameter space.  This is very unlikely to 

be the case in the real world.  The more likely scenario is that the taxonomic complexes 

have differently shaped diameter distributions reflecting differences in material 

properties. Alternatively, all of the taxonomic complex could have the same diameter 

distributions.  Any bumps and wiggles in the diameter distribution would get smoothed 

out when converting to an absolute magnitude distribution.  In either case, the absolute 

magnitude distributions for the different taxonomic complexes are very unlikely to be 

perfectly aligned.  However, there is really no alternative to making this assumption.  

Every NEA that has been discovered has a measured absolute magnitude, whereas only 

about 3% of them have measured diameters.  The absolute magnitude distribution is 

better constrained than the diameter distribution.  Until the albedos and diameters of 
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nearly all of the NEAs have been measured, the best estimate of the diameter distribution 

will have to based on the absolute magnitude distribution. 

The cumulative diameter distribution shown in Figure 4.23 represents the best 

current estimate of the overall diameter distribution for the NEAs.  In the absolute 

magnitude distribution used to make the diameter distribution, the bin with the largest 

absolute magnitude was H=22.5.  For the complex with the lowest albedo, (D-types with 

albedo of 0.04) that absolute magnitude bin corresponds to a diameter of 0.18 km.  Below 

that size, the diameter distribution shown in Figure 4.23 is artificially incomplete because 

of the truncation of the absolute magnitude distribution.  This method of computing the 

diameter distribution gives a slightly higher estimate for the number of NEAs larger 1 km 

than the estimate given in Table 4.6.  The cumulative diameter distribution pegs the 

number of NEAs with diameters larger than 1 km at 1090±180. 

4.11  Summary 
I have presented several different methods for debiasing the albedos and complex 

abundances of the NEAs.  Here is a summary to highlight the techniques and assumption 

that were eventually used to arrive at the final, best answer (Table 4.7 and Figure 4.23).  

First, the equations of section 4.7 that describe debiasing an absolute-magnitude limited 

sample were found to give nearly identical results to the various simulations of 

observational bias, and so those equations were chosen as the best method for debiasing.  

The measured albedos in each taxonomic complex were then assumed to be an absolute-

magnitude limited sample.  Equation (4.7) was then used to obtain an average, debiased 

albedo within each complex. 

Next, I found that the taxonomic abundances differ for objects on different sides of 

the T albedo measurements, there is no way to 

separately debias the albedos of each complex while also separating according to the 

T  each complex were assumed to be the 

same on either side of the boundary.  All of the NEAs on the T < 3 side were assumed to 

be an absolute magnitude-limited sample, with each complex having its own albedo, and 

the fractional abundances of the complexes were debiased with equation (4.5).  The same 

procedure was performed separately for the NEAs with T o 

J=3 boundary.  Because of the scarcity of 

J=3 boundary.  Therefore, the albedos within

J 

J > 3.  After debiasing, the tw
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regions can be recombined to give the fractional abundances of the taxonomic complexes 

for the NEAs as a whole.  Those three sets of fractional abundances, for T T

and all NEAs are given in Figure 4.22 and Table 4.7. 

Lastly, I addressed the issue of the diameter distribution of the NEAs.  The 

foregoing debiasing calculations assumed that the absolute magnitude and diameter 

distributions of the NEAs follow simple formulas (equations (4.3) and (4.4)).  To 

partially relax that assumption, the binned, absolute-magnitude distribution from section 

2.7, Figure 2.7 was converted to diameter distributions using the debiased albedos and 

fractional abundances of each of the taxonomic complexes, while also accounting for the 

separation between T T eter distributions were then 

summed to compute a cumulative diameter distribution (Figure 4.23) for the NEAs. 

4.12  Discussion 
I’ve presented the results of debiasing the measured albedos of the NEAs.  Two 

different methods were presented for accounting for the observational bias, and several 

variations on one of the methods was presented to gauge the effects of parameters that 

were uncertain in the simulations.  The debiasing technique uses an averaging algorithm 

that ensures that the number of NEAs bigger than a given size will be the same as the 

number of NEAs brighter than the equivalent absolute magnitude limit.  For the purpose 

of counting asteroids, this type of average is an improvement over the geometric mean 

which is more appropriate when averaging the observed magnitude of objects with 

different albedos. 

The two debiasing methods and all of the variations produce essentially equivalent 

results. The average albedos for the taxonomic complexes come out being similar to the 

main-belt but generally a little bit higher than the main-belt averages. Table 4.8 

summarizes this for the three complexes for which there are an appreciable number of 

both MBA and NEA albedos available.  For the C-types, the NEAs are nearly twice as 

reflective as their main-belt counterparts, while the S-type NEAs are only slightly 

brighter, and the X-types are statistically the same.  That the NEAs tend to be slightly 

brighter than MBAs could be indicative of a correlation between albedo and size.  

Observed NEAs tend to be smaller than observed MBAs (because the greater distance of 

J < 3, J > 3, 

J < 3 and J > 3 NEAs.  Those diam
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the MBAs makes the small ones too faint to observe).  A correlation between size and 

albedo was not evident over the relatively small range of sizes of the NEAs analyzed in 

this paper.  If there is a trend that asteroids tend to be brighter at smaller sizes, then it 

may only be evident in an analysis that combines large MBAs with small NEAs.  

However, such a trend could also be indicative of a difference in albedo between MBAs 

and NEAs that is independent of size.  The NEAs are a highly selective subsample of the 

MBAs from regions near resonances.  Asteroids near those regions could have brighter 

albedos than the overall main-belt population. 

Taxonomic Complex Main-Belt Albedo NEA Albedo 
C 0.06±0.04 0.101±0.027 
S 0.20±0.06 0.244±0.045 
X 0.10±0.09 0.072±0.025 

Table 4.8 Comparison of Main-Belt and NEA Albedos.  The albedos for the main-belt are as defined in 
footnote (2, pg. 76).  The albedos for the NEAs are the debiased average albedos for the complex as in 
Figure 4.17.  The debiased albedos for the S and X complexes are indistinguishable from the average main-
belt values, however the C-type NEAs are somewhat darker than their main-belt counterparts. 

The debiased fractional abundances of the NEAs do not match with the debiased 

fractional abundances of large MBAs.  Bus and Binzel (2002b) present, in figure 19, 

debiased fractional abundances of  the taxonomic complexes within the main-belt.  The 

fractional abundances for the NEAs presented here do not match very well with the 

abundances for the MBAs.  This is not surprising.  The fractional abundances for MBAs 

as presented by Bus and Binzel (2002b) are for asteroids with diameters larger than 20 

km.  A collisional family of asteroids with diameters smaller than 20 km near one of the 

major resonance zones could contribute a substantial number of asteroids to the NEA 

population with taxonomic complexes that are not characteristic of the large asteroids 

near the same resonance zone.  Indeed, the taxonomic abundances of the NEA population 

may be the best way to reconstruct the spectral characteristics of the small asteroids that 

feed the resonance zones, if the NEAs can be traced back to their origins in the main-belt. 

The debiasing procedure I used assumed that there was no correlation between the 

albedos or spectra and the orbital parameters or size, other than the trend produced by the 

Tisserand parameter.  I made this assumption after inspecting the spectral and albedo data 

to look for trends.  I found no convincing evidence for such trends.  If such correlations 
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sophisticated debiasing technique will be needed to correct for observational bias while 

taking into account these trends.  With sufficient data, it may be possible to divide the 

orbital parameter space and absolute magnitude space into a number of cells and perform 

a survey simulation within each cell (similar to the technique used to define the (a,e,i,H) 

population) and debias the taxonomic complexes and albedos within each cell.  This 

would require a substantial increase in the number of measured spectra and albedos. 

The X-types form a substantial fraction of the NEAs.  As can be seen in Figure 

4.18, the relatively low average albedo of the X-types significantly boosts their fractional 

abundance after debiasing.  Since the albedos of the X-types span a large range (from 

0.023 to 0.55) the debiased albedo for the complex is particularly dependent upon the 

small number of measurements of very dark objects.  However, the resulting average 

albedo (0.072±0.025) is similar to values for the main-belt X-types (0.10, using IRAS 

albedos for E, M, and P type asteroids within SMASSII, and averaging with equation 

(4.8), assuming that the IRAS sample is diameter limited and that the population slope 

parameter β = 0.5, which is equivalent to a collisionally evolved population with diameter 

population slope parameter α = 2.5), so the debiasing technique is producing a reasonable 

estimate for the average NEA albedos.  It would be useful to obtain more albedo 

measurements of the X-type NEAs to further refine this average. 

If I combine the taxonomic complexes into two groups (complexes A, O, Q, R, S, 

U, and V become the bright group, and C, D, and X become the dark group), the bright 

objects account for 38% of the NEAs, and the dark objects account for 62%.  This 

produces a dark:bright ratio of 1.60.  The observed dark:bright ratio (before debiasing) is 

0.35.  The overall observational bias (factor by which bright objects are observationally 

favored over dark objects) is 1.46/0.35=4.61.   In section 3.5, I calculated a similar bias 

ratio between S- and C-type NEAs (Table 3.3).  The debiased S:C ratio from Table 4.7 is 

2.22, and the observed S:C ratio is 4.0.  Thus the observational bias is B

slightly larger than the value of B α=2.0 case).  

That simulation modeled the discovery of the LINEAR survey on a population of NEAs 

with diameters from 1 to 5 km.  It did not model the population to sizes as small as those 

sampled by the SMASS NEA survey and those results were dependent on the overall 

completeness level of the survey.  Since that model survey discovered a high percentage 

S:C=2.50.  This is 

S:C given in Table 3.3 (1.79 ± 0.03 for the 

 97



Chapter 4 

of all of the NEAs in the model population, the resulting observational bias factor was 

closer to unity than for the SMASS NEA sample which is less complete. 

I have presented an average albedo for the NEAs as a whole so that the estimates of 

the NEA population that are presented as a function of absolute magnitude may be 

converted to population estimates as a function of diameter.  The average albedo is 

slightly brighter than the generally assumed value of 0.11. Because most recently 

published estimates of the number of 1 km NEAs assumed the value of 0.11 when 

converting absolute magnitude to diameter, the estimates for the number of 1 km NEAs 

has been somewhat high.  I have found that there are about 1090 (±180) NEAs with 

diameters larger than 1 km.  Currently (18 April 2003), Minor Planet Center catalog lists 

543 known NEAs with absolute magnitudes H<17.75.  This implies that the current 

catalog of known NEAs larger than 1 km in diameter is about 50% complete for NEAs 

bigger than 1 km.

Other researchers recently found a different dark:bright ratio among the NEAs of 

0.87 (Morbidelli et al. 2002b).  That work debiased the albedos of the NEA population 

using a dynamical model of transport of NEAs from the main-belt to near-Earth space 

along with a model of the albedo distributions of the small main-belt asteroids within the 

main-belt source regions that are thought to supply the NEAs.  Those authors further find 

that the absolute magnitude threshold that corresponds to a 1 km diameter NEA is 17.85, 

or an average albedo 0.13.  That value is similar to the value found here (0.140±0.02). 

98 



 

Chapter 5 The NEA Impact Hazard 
5.1 Abstract 

With a new model of the orbital distribution and sizes of the near-Earth asteroids, it 

is useful to revisit the issue of asteroid impacts on the Earth and Moon.  This issue has 

been addressed many times in the last few decades (Shoemaker et al. 1990, Morrison 

1992, Morbidelli et al. 2002b).  However, the answer is dependent upon the model one 

chooses for the NEA population.  A new model of the NEA population warrants a new 

analysis of the NEA impact threat.  The ability to predict the lunar crater record, under 

the assumption of a steady-state population of NEAs, is a critical test for a new NEA 

population model.  The analysis proceeds in three major steps.  Step one is to analyze the 

probability of impact for NEAs into the Earth or Moon.  This step depends upon the 

orbital element distribution of the NEA population, and when combined with the size 

distribution yields estimates of the frequency of impacts as a function of impactor 

diameter, or impact energy.  The second step is to determine the sizes of craters produced 

by impactors with specific parameters and to combine this with the impact probabilities 

to obtain the expected rate of production of craters of various sizes.  The third step is to 

determine how many craters have already been made on the Earth and Moon and to 

compare this historical cratering record with the predicted rate of crater formation from 

the current NEA population. 

5.2 Introduction 
The first step in understanding the NEA impact hazard to the Earth is to establish 

the frequency with which NEAs collide with the Earth.  For an individual NEA with a 

well determined orbit, the future trajectory can usually be calculated with enough 

accuracy to rule out the possibility of an impact within the next century, or to provide an 

estimate of the likelihood of that NEA hitting the Earth at specific times in the future.  In 

this work, however, I seek to understand the long term collision hazard from all of the 

NEAs.  Many of the NEAs have not yet been discovered or had orbits accurately 

determined, so I cannot use the precise methods of orbit propagation to predict future 

impact events.  Rather, I will use analytical formulas that give the probability of an NEA 
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semimajor axis, eccentricity, and inclination.  The distribution of NEAs over those orbital 

parameters was determined in section 2.7.  Those results can be combined with the 

collision probabilities to obtain the overall collision probability for the entire population 

of NEAs. 

Öpik (1951) first developed a statistical model for calculating the probability of a 

test object in a Keplerian orbit hitting a target in a circular Keplerian orbit.  Öpik’s theory 

assumes that the test object and the target (e.g. an asteroid and a planet) both have 

uniformly distributed mean anomaly, argument of perihelion, and longitude of the 

ascending node.  Öpik’s theory also assumes that when the test object is very near to the 

target object, the motion of the two bodies is linear, and that the test object’s orbit is not 

perturbed, either by close approaches to the target, or by secular perturbations from other 

sources.  Öpik also introduced some correction factors to apply his theory to cases in 

which the target’s orbit is eccentric.  Wetherill (1967) provided a more rigorous extension 

to the case when both bodies are on eccentric orbits.  Shoemaker et al. (1979) present a 

method of calculating impact probability, an extension of Wetherill’s approach, that 

includes corrections for secular perturbations of the test object’s eccentricity, inclination, 

and argument of perihelion.  The corrections for secular perturbations are important when 

assessing the long-term collision hazard from a small number of NEAs, but are not 

important when averaging the impact probabilities from a large number of NEAs in an 

orbital distribution that is presumed to be in steady-state.  Effects of secular perturbations 

are not included in the impact probability calculations used here.  Greenberg (1982) 

improved upon Wetherill’s calculation by removing the need for a stochastic integration 

technique to deal with certain singularities in the calculation.  The singularity arises when 

the potential collision occurs at an apse of the particle’s orbit, and is a result of the 

approximation that the motion near the intersection point is linear.  Greenberg’s 

rederivation of the calculation is symmetrical enough in its treatment of the two bodies 

that one may simply switch the labels between the test object and the target body for part 

of the integration until the singularity is passed.  Namiki and Binzel (1991) point out an 

error in the equations presented in Greenberg (1982) and use a similar approach to derive 

impact probabilities.  Bottke and Greenberg (1993) also point out the same error in 
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does not correct for the singularity in the integration.  Farinella and Davis (1992) present 

a similar method for calculating collision probabilities in which they deal with the 

singularity by choosing sufficiently small integration step-sizes to achieve, in principle, 

arbitrarily good precision.  Manley et al. (1998) present a scheme similar to Greenberg’s 

that produces the same results as Greenberg’s method. 

5.3 Impact Probability Calculations 
I use Greenberg’s method to calculate the collision probabilities and collision 

velocities of NEAs into the Earth and the Moon.  Greenberg’s method simplifies 

dramatically when the target body is in a circular orbit, and so I assume that the Earth is 

in a circular orbit 1 AU from the sun.  In fact, this simplification obviates the numerical 

integration, and the solution reduces to a simple analytical formula that can be evaluated 

very quickly for all of the a-e-i bins that were used to estimate the NEA population in 

Chapter 2.  For each bin, the a, e, and i values from the center of the bin were used to 

calculate the collision probabilities for all the asteroids within the bin.  The bins with 

center values of a=1.05, e=0.05 were the closest to having a problem with the singularity 

mentioned above.  In those bins, the collision occurs at a mean anomaly of 2.8°, which is 

far enough away from perihelion that there is no difficulty with the singularity.  

Therefore, there is no problem with singularities in any of the bins for which I am 

calculating collision probabilities.  Also, a-e-i bins which do not actually cross the 

Earth’s orbit (perihelion is greater than 1 AU) have zero probability of colliding with the 

Earth, and are simply skipped in the calculations. 

For the case of an NEA colliding into the Earth or the Moon, the target body is 

sufficiently more massive than the test object, that I ignore the geometrical size and the 

gravity of the NEA.  The collision probability and collision velocity depend upon the size 

and mass of the target body.  The collision probability is directly related to the capture 

cross-section of the target body which is defined as 
2

2
21 esc

enc

vR
v

σ
 

= + 
 

2 /v GM R , where G

, where R is the 

radius of the target body, v tween the two bodies, or the 

relative velocity before accounting for the gravitational attraction of the target body, and 

v  of the target body (  is the universal 

enc is the encounter velocity be

esc is the escape velocity 2
esc =
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constant of gravitation, and M is the mass of the target body).  The actual collision 

velocity is 2 .  The escape velocity for the Earth is 11.2 km/s, and for the 

Moon it is 2.38 km/s.  For both the capture cross section and the collision velocity, the 

e target body is largest when the encounter 

velocity, v encounter velocity is much larger than 

s very little effect on either the collision 

probability or the collision velocity.  If the test body is too large to ignore its gravity, then 

the cap  and the escape velocity (and hence the collision velocity) can 

be calculated by sim ing the combined radius and mass of the two objects 

2

2 2
coll esc encv v v= +

effect of the gravitational attraction of th

the escape velocity, the target body’s gravity ha

ture cross-section,

ply us

1 2 1,

enc, is low.  For collisions in which the 

( R R R= + M M M= + ). 

For a complete derivation of the equations for calculating impact probabilities, with 

descriptions of their meanings, see Greenberg (1982).  I will present the equations that I 

used for calculating the impact probability that are heavily based on Greenberg’s 

equations, but with simplifications to account for the fact that the target body is in a 

circular orbit.  While I have generally used astronomical units as the unit of length in 

discussing orbits, it more convenient to do the impact probability calculations in meters 

or kilometers so that the resulting velocities are in standard units.  If the radius of the 

target body is expressed in the same length units, and the orbital periods are calculated in 

seconds, the final probability has units of inverse seconds.  Let a1, e1, i1 be the semi-

major axis, eccentricity, and inclination of the test asteroid (i.e. one of the bin centers 

from the a-e-i bins defined in Chapter 2).  Let aE = 1 AU be the semi-major axis of the 

Earth, with the Earth’s eccentricity and inclination both assumed to be 0.  Let the 

heliocentric gravitational constant be GS (this is where one must be careful of the units to 

ensure consistency).  The orbital periods of the asteroid and Earth, respectively, are 
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The semilatus rectum of the asteroid’s orbit is ( )2
1 1 11p a e= − .  The cosine and sine of the 

true anomaly at which impact occurs are 

1

2
1 1

1

1
, 1e

p
a

e

−
= = 1C−C S .  Greenberg defines a 

coordinate system that is local to the collision point.  The following Cartesian coordinates 

all refer to that coordinate system.  The projections of the collision angle, α1 and its 

trigonometric functions, are calculated as 
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The heliocentric velocity, and its projections onto the local coordinate system can now be 

calculated as 
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In the local coordinate system, the Earth’s velocity is always the same, 

, , ,, 0, ,E S E E x E y E E zu G a u u u u= = = 0= .  The relative encounter velocity is then just the 

difference between the asteroid’s velocity and the Earth’s velocity: 
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 (5.4) 

The encounter cross sectional area, σ, is a function of the target size and mass, and the 

encounter velocity and is defined in the paragraph above.  Finally, the collision 

probability is 
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( ) ( )2
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The probability of collision in each a-e-i bin is then multiplied by the fraction of 

NEAs in that bin (technically, I should use 1 1( N
cp− − , but the probabilities are small 

enough that the difference is negligible), and the a-e-i bins are summed to obtain the 

probability of collision averaged over all of the NEAs.  Since my population model found 

no correlations between size and orbital parameters, this average collision probability can 

then be multiplied by the total number of NEAs larger than a given size (or brighter than 

a given absolute magnitude) to obtain the total collision probability for NEAs larger than 

the specified size. 

The methods for calculating collision probability outlined above are for the case of 

a target body in a heliocentric orbit, not for a satellite in orbit around a planet.  However, 

the collisional environment of the Moon should be nearly identical to that of the Earth.  

The only significant difference is that the Moon is much smaller than the Earth.  To 

calculate the collision probabilities and velocities for the Moon, I used the same method 

as for the Earth, but with the smaller mass and radius of the Moon when calculating the 

capture cross section and escape velocity.  The impact probabilities calculated for the 

Moon are really for a target body the same size and mass as the Moon in an Earth-like 

circular orbit 1 AU from the Sun.  The Earth and Moon provide some “shadowing” to 

each other, because some objects that might hit the Earth will hit the Moon and vice-

versa.  This is a very small effect.  For typical encounter velocities of NEAs and the 

Earth, the Earth’s gravitational capture cross section, when viewed from the Moon, 

subtends less than 1% of the sphere.  The Moon’s gravitational capture cross section is 18 

times smaller.  The shadowing effect is also offset by a small amount of gravitational 

focusing because the combined masses of the Earth and Moon will pull in some objects 

that would barely miss either the Earth or the Moon separately.  These corrections are all 

small enough to ignore in calculating average collision probabilities. 

In summary, the impact probability calculations make the following simplifying 

assumptions: 
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• that the longitude of the ascending node, the longitude of perihelion, and the mean 

anomaly are uniformly distributed from 0 to 2π, 

• that the orbital elements do not change over time (equivalent to assuming a steady-

state population for the NEAs since I am averaging the impact probability over all the 

NEAs), 

• that the target body (Earth or Moon) is in a circular orbit 1 AU from the Sun, 

• and that motion near the collision point is linear. 

In section 5.6, the impacting population will be compared with the cratering record on the 

Moon.  For that comparison, a further assumption is made that NEA population has been 

in a steady-state over the lunar cratering record, which spans 3 Gyr. 

The calculations of collision probability for a test asteroid into the Earth or Moon 

also produce the impact velocities.  The velocity is necessary to calculate impact energy 

and to estimate crater diameter, discussed below.  When the calculated impact velocities 

are weighted by the impact probability, and by the NEA population model from section 

2.7, the root-mean-square impact velocity for NEAs hitting the Earth is 20.9 km/s.  For 

that impact velocity, the gravitational capture radius of the Earth is 7540 km, as opposed 

to the Earth’s equatorial radius which is 6378 km.  The root-mean-square impact velocity 

for the Moon is 19.2 km/s, and the corresponding gravitational capture radius is 1751 km, 

compared to 1738 km for its geometric radius. 

The population model from section 2.7 is fairly spiky, that is, many a-e-i bins have 

no NEAs in them and some bins have many NEAs.  I also used a smoothed version of 

that population model to gauge the effects of this spikiness on the collision probability.  

The difference in the overall collision probability between the smoothed and unsmoothed 

population is only about 1%, a negligible amount.  I use the unsmoothed version in the 

subsequent analysis and in the plots of collision probability. 

When these impact probability calculations are averaged over the NEA orbital 

element distribution from section 2.7, the average impact probability for one NEA hitting 

the Earth is 1.50x10 n et al. (2002) have also calculated the average 

impact probability, but with a different method.  They used the 244 NEAs with absolute 

magnitudes less than 18 and perihelion distances less than 1.0 AU (i.e. those that cross 

–9 yr–1.  Morriso
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the Earth’s orbit) that had been discovered as of July 3, 2001 to represent the NEA orbital 

element distribution.  The orbits of those 244 NEAs were propagated for 100 years and 

all approaches to within 0.1 AU of the Earth were recorded.  The encounter velocity of 

each approach was used to determine the Earth’s gravitational capture cross-section for 

that encounter.  The number of encounters was then scaled by the ratio of the 

gravitational capture cross-sectional area to the cross-sectional area of the study sphere 

(0.1 AU radius).  Morrison et al. found that the “per NEA” impact probability is 1.68x10

et al. also found that the weighted, RMS impact velocity is 20.2 km/s, as 

opposed to 20.9 km/s calculated above.  As discussed in Chapter 2 the known population 

of NEAs is somewhat biased, particularly toward low inclination asteroids.  Thus, the 

high inclination NEAs are underrepresented in the sample used by Morrison et al.  High 

inclination NEAs are less likely to strike the Earth than low inclination NEAs [equation 

(5.5)], and they have higher impact velocities.  Thus, it is to be expected that the method 

used by Morrison et al. would yield an average impact probability that is slightly higher 

and an RMS impact velocity that is slightly lower than the method described above, 

which uses a debiased NEA population model. 

–

9 yr–1.  Morrison 
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5.4 Reassessing the Earth Impact Hazard 
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Figure 5.1 Probability of NEA Impact Versus Absolute Magnitude.  The distribution of orbital elements 
and absolute magnitudes for the NEAs (section 2.7) is combined with impact probability calculations 
(section 5.3) to obtain the cumulative probability of impact for NEAs brighter than a specified absolute 
magnitude. 

Figure 5.1 and Figure 5.2 show the cumulative collision probability for the Earth 

and Moon as a function of absolute magnitude and diameter, using the NEA population 

model of section 2.7, and the diameter distribution of section 4.10.  The overall collision 

hazard for the Earth for asteroids with absolute magnitudes less than 18 is

per year, which translates to an average of 1 impact every Myr.  In te

impactor diameter, the collision hazard for the Earth is tha  1 km

have a probability of  per year, or 1 impact every 0.60±0.1Myr. 

 0.5 6
0.21.8 10+ −
− ×  

rms of 

 or larger 
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0.4 6
0.31.67 10+ −
− ×

 107



Chapter 5 

0.1 1 10
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 

 

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y 
of

 Im
pa

ct
 p

er
 Y

ea
r

Diameter of NEA, km

 Earth
 Moon

 
Figure 5.2 Probability of NEA Impact Versus Diameter.  The distribution of orbital elements for the 
NEAs (section 2.7) is combined with the debiased diameter distribution (section 4.10), and impact 
probability calculations (section 5.3) to obtain the cumulative probability of impact for NEAs larger than a 
specified diameter. 

The real determinant of the damage from an asteroid impact is the total impact 

energy.  In order to calculate the impact energy, one must know the mass of the asteroid, 

not the diameter.  Converting from diameter to mass requires knowledge of the bulk 

density (and for better accuracy, a complete shape model, rather than just a diameter).  

The densities of asteroids are even less well sampled than their diameters.  However, for 

C-type and S-type asteroids, there does appear to be a fairly consistent trend (Britt et al. 

2002).  C-type asteroids have bulk densities clustered around 1400 kg/m

asteroids have bulk densities clustered around 2700 kg/m es with the broad 

understanding of asteroid formation and mineralogy, that C-types formed further out in 

the asteroid belt of lighter, fluffier material, and S-types formed at higher temperatures on 

the inner edge of the asteroid belt and are made of rockier material.  Individual asteroids 

could have bulk densities as high as 8000 kg/m etal content, or much 

3, whereas S-type 
3.  This agre

3 if they have high m
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lower if they have high internal porosity as result of being a loosely bound accumulation 

of boulders.  The bulk densities of taxonomic categories other than S-types and C-types 

are entirely unconstrained by actual measurements.  Britt et al. (2003) list density 

measurements for one V-type, one P-type, two M-types, one F-type, and one G-type 

asteroids.  Those are all large main-belt asteroids that may have very different internal 

porosities than NEAs.  In the absence of more density measurements I assume that all of 

the “dark” taxonomic types (C,D,X) have bulk densities of 1400 kg/m ll of the 

“bright” types (A,O,Q,R,S,U,V) have densities of 2700 kg/m , asteroids 

probably change from being gravitationally bound rubble piles to being monoliths 

(Pravec and Harris 2000).  Since a rubble pile has more internal porosity than a monolith, 

asteroids smaller than 200 m may have substantially higher densities than large asteroids.  

Most of the results presented here concern large asteroids, and there are no density 

measurements for asteroids smaller than 200 m, therefore, I’ve assumed that the bimodal 

density distribution applies at all sizes. 

igure 5.3

igure 5.3

igure 4.23

Figure 5.2

3, and that a
3.  At about 200 m

Using that density assumption, and the fractional abundances of the taxonomic 

types from Table 4.7, the probability of collision can be calculated as a function of impact 

energy, shown for the Earth and Moon in F .  To simplify the calculations, the 

curves in F  use the power-law distribution (straight blue line in Figure 4.23) 

rather than the full cumulative distribution (red curve in F ) as was used for 

.  The large uncertainty involved in assuming a density distribution does not 

warrant the extra precision to be gained from using the full cumulative distribution.  The 

flattening in the cumulative probability at the smallest energies is a result of limiting the 

calculations to asteroids larger than 25 m in diameter.  The steep falloff in the probability 

at the largest energies is real, however, and results from a lack of NEAs large enough to 

produce more energetic impacts. 

A recent report by a task force of the government of the United Kingdom of Great 

Britain (UK NEO Task Force 2000) focused on impacts larger than 4x1018 J (4 EJ) as 

being the most significant threat to humanity.  These would be from impactor diameters 

of about 200 m or larger.  I find that impacts of that energy strike the Earth every 47,000 

± 6,000 years.  Recent estimates of this value range from once every 63,000 ± 8,000 

years (Morbidelli et al. 2002b) to approximately once every 15,000 years (Morrison et al. 
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1994).  The differences in these estimates are due almost entirely to differences in the 

estimates of the number of NEAs larger than 200 m. 
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Figure 5.3 Probability of NEA Impact versus Impact Energy.  The distribution of orbital elements for 
the NEAs (section 2.7) is combined with the debiased diameter distribution (4.10), the impact probability 
calculations from section 5.3, and a bimodal density distribution to obtain the cumulative probability of 
impact for NEAs with impact energy greater than a given energy.  For comparison, 1 megaton of TNT is 
4.18x10 J.  The diameter distribution used for this plot is the simple power-law (straight blue line in 
Figure 4.23). Vertical lines represent the energy or possible range of energies for various events.  The 
energy from the Tunguska event is estimated as 4–8x10 Sekanina 1998).  The UK NEO Task Force 
identified 4x10 hreshold for large-scale regional destruction (UK NEO Task Force 2000).  Impact 
by a 1 km diameter asteroid at the RMS, Earth-impact velocity of 20.9 km/s with a density of 1400 km/m
or 2700 km/m would deliver an energy of 1.6x10 or 6x10 respectively.  The energy of the K-T 
impact event that formed the Chicxulub crater is estimated as 6x10  3x10 ope et al. 1997). 

The Tunguska event that devastated a region of Siberian forest in 1908 is estimated 

to have delivered 4–6x10 ith 5x10 ost likely value 

(Sekanina 1998).  This range of energies corresponds to an event that should happen, on 

average, every 2000 – 3000 years, using the impact frequencies derived here and shown 

in Figure 5.3.  However, some researchers have suggested, based on an analysis of the 

Shoemaker-Levy 9 impacts into Jupiter, that the Tunguska energy could have been as low 

15 

16 J (
18 J as a t

3 
3 20 J 20 J, 

23 – 24J (P

16 J of kinetic energy w 16 J being the m
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as 1x10  is the correct energy for the Tunguska 

event, then these events could occur as frequently as every 1000 years.  This estimate 

uses an extrapolation of the exponential fit to the number of NEAs versus absolute 

magnitude (Figure 2.8), and so it does not account for deviations from that simple 

function that might occur in the population of small NEAs.  Harris (2002) and Morrison 

et al. (2002) estimated the frequency of Tunguska-type impactors as once every 1000-

3000 years.  That estimate assumes that the average albedo of NEAs is 0.11, somewhat 

darker than the value of 0.14 found in section 4.9.  They also assumed a mean density of 

asteroids of 2500 kg/m  which is higher than the 2050 kg/m

impact probability-weighted average, that is the average density when 2700 kg/m

bright complexes and 1400 kg/m  dark complexes are averaged after being weighted 

by taxonomic abundances in Table 4.7 and by impact probabilities for NEAs with T

T ate by Harris and Morrison et al. of the number of Tunguska-type 

impactors and the frequency of Tunguska-type events is higher than the estimate given 

here because of the different values for NEA albedo and density. 

5.5 Cratering Dynamics 
A great deal of work has been done by many researchers to understand the 

dynamics of impact cratering.  This work has included observations of naturally 

occurring impact craters,  hydrocode computer simulations of impact events, and 

laboratory experiments with high velocity guns and high explosives.  The best review of 

this work is the book Impact Cratering: A Geologic Process by H. J. Melosh (Melosh 

1988).  Despite the extensive amount of work done in this area, formation of craters 

larger than what can be simulated in a laboratory remains poorly understood.  The current 

state of the art is to use empirical relationships, derived from laboratory experiments, that 

calculate the crater diameter given the kinetic energy and density of the impactor, along 

with the density and gravity of the target body.  These empirical relationships have been 

scaled up from laboratory impact experiments to the large sizes I am interested in here 

(kilometer-sized craters) and the results have been compared with hydrocode simulations.  

Additional ad-hoc relationships are used to decide when the crater formation moves from 

a strength-dominated regime in which the crater formation dynamics are dominated by 

effects derived from the material cohesiveness of the target, to the gravity regime where 

16 J (Boslough and Crawford 1997).  If this

3, 3 used here (2050 kg/m3 is an 
3 for 

3 for

J<3 or 

J>3). Thus, the estim
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the gravity of the target is the dominant force controlling crater formation.   Moving to 

even larger sizes, additional ad-hoc rules are used to determine when simple,  roughly 

hemispherical craters, undergo a variety of collapse mechanisms to become complex 

craters with collapsed walls, central uplifts, and multi-ring basins.  For a review of these 

empirical rules, see Melosh’s book, Ivanov et al. (2001), Grieve and Cintala (1992), 

Grieve and Shoemaker (1994), Shoemaker et al. (1990), and Holsapple (1993). Here, I 

am concerned only with large craters formed in rock, so only crater formation in the 

gravity regime on rocky surfaces will be considered. 

Chapter 7 of Impact Cratering: A Geologic Process by H. J. Melosh gives an 

excellent overview of the various steps in calculating crater formation.  Furthermore, a 

web-site run by Melosh (http://www.lpl.arizona.edu/tekton/crater.html) provides an 

interactive implementation of Melosh’s equations, and provides Fortran code that can be 

downloaded.  When a hypervelocity impact occurs, the excavated hole that forms seconds 

to minutes after the impact is referred to as the transient crater, and the diameter is 

customarily measured at the level of the pre-impact surface.  The transient crater then 

undergoes collapse (even for simple, bowl-shaped craters) with some of the material from 

the walls slumping down into the bottom of the crater.  This slumping increases the 

diameter of the final crater, and Melosh suggests using a factor of 1.25 to correct for this.  

The impact event also causes uplift around the crater so that the crater rim is above the 

original surface, and the rim-to-rim diameter is larger than the diameter as measured at 

the pre-impact surface.  Melosh suggests using another factor of 1.25 to correct for this 

effect.  Combined, the final crater diameter is 1.56 times larger than the transient crater 

diameter given by most crater scaling equations.  All of the crater scaling equations 

presented below give transient crater diameter that must be multiplied by 1.56 to convert 

to final rim-to-rim diameter.  One of the equations given below, the one from Shoemaker 

et al. 1990, did not have this factor as presented by Shoemaker et al., and yet in that 

paper, Shoemaker et al. treats the results of the equation as a final rim-to-rim diameter.  I 

have added the factor of 1.56 when using Shoemaker’s equation, because otherwise it 

gives results quite far off from the other crater scaling equations.  For large craters, 

additional modification occurs that increases the final crater diameter beyond the factor 
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simple bowl shape, they have central uplifts, or, for very large craters, multiple uplifted 

rings.  The diameter at which the transition from simple to complex craters occurs is not 

accurately known.  Most authors consider that modification to complex craters occurs 

around 15-20 km on the Moon, with the threshold diameter scaling inversely with 

gravity.  Melosh uses 18 km for the Moon and has the threshold scaling inversely with 

gravity, and inversely with the density of the target rock.  Here, I use Melosh’s value of 

18 km for the Moon, which scales to 3 km for the Earth.  For craters whose rim-to-rim 

diameters are above this threshold, the final diameter will be increased.  Most authors 

suggest using the scaling equation of Croft (1985).  The final crater diameter, D is 

calculated from the initial rim-to-rim diameter, D
f 

r as  

 
1.18

0.18
*

r
f

DD
D

=  (5.6) 

if Dr is larger than the threshold for transition to complex craters, D*..  Shoemaker (1990) 

suggests that a slightly simpler crater collapse factor of 1.3 can be applied above the 

threshold diameter to account for the increased diameter of complex craters.  Here I use 

Croft’s scaling rule. 

Various authors use different factors to account for the effects of oblique impact.  

All agree that a factor of ( )sin βα  should be used, where α is the impact angle, measured 

such that a vertical impact has α=90°.  However, authors differ on what the value of β 

should be.  In my calculations of crater diameters in which I compare the results of 

different scaling equations, I’ve used the value of β presented by the author associated 

with each equation. The statistical calculations for collision probability and velocity 

presented above are not accurate enough to give actual impact angles, calculation of 

which would require extremely well defined orbital parameters for the impactor and the 

target.  However, for a set of impacting bodies with stochastic orbits, the direction from 

which impacts occur should be uniformly distributed over the surface of a hemisphere.  

When a distribution that is uniform over a hemisphere is converted to a single impact 

angle, the resulting distribution of impact angles is proportional tosin(2 )α , which has a 

maximum at α =45° and a goes to zero at α = 0° and at α =90°.  Averaging over impact 

angles results in an average reduction in the crater diameter by a factor dependent upon β.  
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So, the factor of ( )sin βα  in equations ( , ( , ( , and( ,  may be replaced by 

a factor of 0.86, 0.82, or 0.75 depending upon whether the exponent, β is 1/3, 0.43, or 2/3, 

respectively.  This factor is slightly different from using the modal correction factors of 

5.7) 5.8) 5.10) 5.11)

sin(45 )βo

 

, which are 0.89, 0.86, and 0.79, respectively. 

 

2mv

0.29,ψϒ = =

Various authors use different units (cgs, mks, megatons of TNT equivalent, 

kilometers) in their equations.  I’ve converted all of the units in the following equations 

to the mks system to make comparison easier.  The first three scaling laws presented 

below are all from Melosh’s Fortran code and Chapter 7 of his book. 

Pi Scaling.  The method preferred by Melosh, and referred to as Pi-scaling, ultimately 

derives from the centrifuge-mounted gun experiments of Schmidt and Housen (1987): 

( )
1 3

1 30.78 0.44 0.221.16 sini
t i

T

D D v gρ α
ρ

− 
=  

 
 (5.7) 

where Dt is the transient crater diameter, ρi and ρt are the bulk densities of the impactor 

and target, respectively, v is the impact velocity, and g is the acceleration due to gravity at 

the surface of the target body. 

Yield Scaling.  Melosh also gives a crater scaling equation from Nordyke, 1962.  

Melosh’s version includes a correction for the depth to which the projectile penetrates. 

( )
1 6

1 31 3.40.0133 1.51 sini e
t i

T

gD W D
g

ρ α
ρ

  
= +     

 (5.8) 

where ge is the acceleration due to gravity on the Earth, and W is the kinetic energy of the 

impactor ( 1
2

=W , in Joules in the mks system). 

Gault Scaling.  The third crater scaling formula that Melosh presents is due to Gault, 

1974.   

 (
1 61 6

1 2 sini m
t

t

gD W
g

)ζψρ α
ρ

 
= ϒ  

 
 (5.9) 

where 0.25, 2ζ =

0.27, 0.28, 1

for transient craters smaller than 100 m in diameter, and 

ψ ζϒ = = =  for transient craters bigger than 100 m, and gm is the 

acceleration due to gravity at the surface of the Moon. 
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Shoemaker’s Scaling Law.  The crater scaling formula given in Shoemaker et al. 1990 

is as follows: 

( )
1 1

3.4 6 2
30.01436 sini e

t r
t

gD c W
g

ρ α
ρ

   
=    

  
  (5.10) 

 

where cr is the crater collapse factor, given as 1.3 for crater diameters larger than 4 km on 

Earth, with the minimum size for complex crater collapse scaling inversely with gravity.  

This formulation is quite similar to Melosh’s yield scaling, but without the correction for 

the penetration depth, and with slightly different treatment of the impactor and target 

densities. 

Pierazzo’s Scaling Law.  The last equation for estimating impact crater diameter is from 

Pierazzo et al. (1997).  This is quite similar to Melosh’s Pi-Scaling, as it is also ultimately 

derived from Schmidt and Housen (1987).  

( )
1 3

0.430.78 0.221.16 sini
t i

t

D D g vρ α
ρ

− 
=  

 
 (5.11) 

Figure 5.4 igure 5.5 and F  compare these scaling relations for impacts into the Earth 

and Moon. 
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Figure 5.4 Crater Diameter versus Impactor Diameter for the Earth.   The impactor is assumed to be 
spherical with density 2700 kg/m  have final impact velocity equal to the RMS impact velocity for the 
Earth, 20.9 km/s, and to strike at a 45° angle.  The target rock is assumed to be 2700 kg/m ilar to 
continental crust. 
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Figure 5.5 Crater Diameter versus Impact Diameter for the Moon.  The impactor is assumed to be 
spherical with density 2700 kg/m  have final impact velocity equal to the RMS impact velocity for the 
Earth, 19.2 km/s, and to strike at a 45° angle.  The density of the target rock is assumed to be 2700 kg/m
which is appropriate for lunar maria. 

3, to
3, 
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Continuing to use the assumption given above that dark NEAs (C, D, X complexes) 

have bulk densities of 1400 kg/m plexes) have bulk 

densities of 2700 kg/m  I can use any of the crater scaling laws to convert the impact 

rates that are given above as a function of impactor size into crater production rates for 

craters larger than a specified size, either on the Earth or on the Moon.  This rate of crater 

production represents the current rate of crater production from NEAs.  It does not 

include craters produced by comets.  The current rate of crater production, as derived 

from estimates of the NEA population can be compared with the historical cratering 

record. 

5.6 Crater Counting on the Moon 
The lunar maria are a unique resource for measuring the impact environment of the 

Earth and Moon.  The Moon has none of the atmospheric or geological processes that 

rapidly degrade and obliterate impact structures on the Earth.  The lack of an atmosphere 

on the Moon allows even very small bodies to strike the surface unhindered.  

Furthermore, each mare is thought to have been created in a geologically quick volcanic 

flow (most samples are 3.2-3.5 Ga, Stöffler and Ryder 2001), and to be little changed 

since then, except for the effects of impacts.  Thus the maria are nearly ideal surfaces that 

were “wiped clean” aeons ago and that have been accumulating impact craters ever since. 

There are, however, several problems with interpreting the cratering record on the 

lunar maria. 

• Even on the Moon, there are erosional processes that affect craters.  The craters on the 

lunar maria are under constant bombardment by small impacts that tend to make the 

craters shallower and broader. 

• Another problem for counting small craters is confusion between primary craters, 

generated directly by an asteroid or comet impact, and secondary craters, created by 

falling ejecta from a nearby, larger primary crater.  Erosion from microbombardment, 

and confusion between primary and secondary craters preferentially affects small 

craters such that some authors suggest using only craters with diameters larger than 

about 2 km. 

3 and that bright NEAs (S, Q, etc com
3,
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• At larger sizes, there are so few craters on any given mare that simple Poisson 

statistics yield large uncertainties.  The size above which the data become too 

uncertain varies depending upon the size and age of the particular mare, from 11 km 

to 50 km. 

• The maria give us a record of the impact history of the Moon that is integrated over 3 

to 3.5 Gyr, resulting in two problems.  First, any recent changes in the rate of crater 

formation will not be evident.  Second, to obtain an estimate of the rate of crater 

formation, as opposed to observed crater density, one must know the age of the 

geologic province.  Several of the front-side lunar maria were visited by Apollo 

spacecraft, and rock samples were returned to Earth.  Very accurate dates are known 

for those rocks but it is not clear whether those returned samples, which are quite 

limited in collection location and depth, are truly representative of the formation age 

of the entire mare at a depth that is appropriate for multi-kilometer impact craters. 

The most comprehensive assessment of the post-mare cratering rate is Chapter 8 of 

the book Basaltic Volcanism on the Terrestrial Planets (Hartmann et al. 1981, henceforth 

referred to as BVTP).  BVTP does not explicitly give uncertainties for their estimated 

cratering rates but suggest that crater counts by different authors differ by about 30%.  

Uncertainties in the area in which craters are counted and in the ages of geological 

provinces would increase the uncertainty in the crater rate to more than 30%.  A recent 

analysis by Stöffler and Ryder (2001), indicates that the ages used in BVTP for the maria 

are too old by about 4% on average.  This correction would increase the BVTP cratering 

rate by 4% at all crater diameters.  This correction has not been applied here in comparing 

the BVTP crater production function with the NEA population.  The BVTP crater 

production function used for comparison here has been taken directly from Table 8.4.1 of 

BVTP.  The cumulative crater density of the average of lunar frontside mare is divided by 

the average age of the returned lunar mare samples, 3.45 Gyr. 

Recent presentations of the lunar cratering rate by Neukum, Ivanov, and coauthors 

(Ivanov et al. 2001, Werner et al. 2002, Neukum and Ivanov 1994) include the craters on 

the older lunar highlands.  The lunar highlands formed before the end of the period of 

Late Heavy Bombardment, and Neukum/Ivanov crater production function is dominated 
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reason to believe that the impactor flux is currently the same as during the period of Late 

Heavy Bombardment, I prefer to use the post-mare lunar cratering rate as presented in 

BVTP to compare against the current cratering rate.   I also compare the lunar crater 

production function based on the NEA population model to the highlands production 

function of Neukum and Ivanov. 

5.7 Comparison with the Lunar Crater Record 
Figure 5.6 shows the BVTP crater production function for the average of front-side 

lunar maria, and the highlands crater production function of Neukum and Ivanov  

compared with the current cratering rate as predicted by my population model and 

various crater scaling laws.  The predicted crater production function from the NEA 

population model is quite similar to the function derived by counting craters on the lunar 

maria.  This is consistent with the NEA population being in steady-state, and with the rate 

of lunar crater production being constant for the last 3 Gyr.  It also agrees with other 

recent analyses of the rate of comet impacts and suggests that comet impacts are a minor 

contributor to the total impactor flux (Weissman et al. 2002).  The crater production 

function of Neukum and Ivanov matches the crater production function derived from the 

NEA population for crater diameters larger than 10 km.  However, there is a significant 

mismatch in the range of 1 to 10 km.  The largest difference is that the Neukum/Ivanov 

production function is a factor of 7 lower than the NEA production function at crater 

diameters of 2.8 km. 
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Figure 5.6 Lunar Cratering Rate.  The rate of formation of craters on the lunar maria (taken from BVTP) 
is compared with the expected rate of crater formation from the NEA population models presented here.  
The three curves showing the NEA model results use different crater scaling laws to derive crater 
diameters, but all use the same NEA population model from section 2.7. The crater scaling law by 
Shoemaker [equation (5.10)]gives the best match to the BVTP production function. The uncertainties 
shown for the preferred model, Shoemaker scaling, are calculated by increasing or decreasing the number 
of NEAs in the population model by 1σ (or 180 NEAs at 1 km).  These uncertainties do not include 
uncertainties in densities or crater scaling laws.  The overall rate of lunar crater formation as derived from 
the NEA population model, with the Shoemaker scaling law, matches the rate predicted by counting craters 
on the lunar maria (BVTP) over crater diameters from 2 km to over 100 km.  The lunar crater production 
function from Neukum and Ivanov is also shown for comparison (Ivanov et al. 2001).  This matches quite 
well with the NEA production function (Shoemaker scaling) from diameters of about 20 km to 60 km.  
However, outside that range, there is a severe mismatch with the highlands crater production function being 
a factor of 4 or more lower than the production function based on the NEA population model. 

The number of craters on the Moon matches the expected rate of crater formation 

from the NEA population model (Figure 5.6) with both the Melosh-Pi scaling law 

[equation (5.7)], and the Shoemaker scaling law [equation (5.10)].  However, the 

Shoemaker formula produces a closer match.  A linear least-squares fit to the logarithm 

of the BVTP cratering record, assuming 30% uncertainties for the BVTP crater counts, 

produces a logarithmic slope of –1.95±0.07.   Melosh’s Pi-Scaling formula produces a 

distribution of crater diameters with a slope of -2.34±0.08.  Assuming simple Gaussian 

statistics for these slopes,  -2.34±0.08 is 3.5σ away from the BVTP slope of -1.95±0.07.  
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Thus the crater size distribution derived from the NEA population and Melosh’s Pi-

Scaling formula is significantly steeper than the crater size distribution found in the 

BVTP.  The formula from Shoemaker produces a crater diameter distribution with a slope 

of –2.08±0.07.  This result is 1.2σ away from the BVTP slope, and is therefore 

statistically consistent with the slope of the BVTP crater size distribution.  The NEA 

population model derived here, combined with the Shoemaker crater scaling formula 

produces a good match to the BVTP crater production function. 

Werner et al. (2002) performed a similar comparison between the Neukum/Ivanov 

lunar crater production function, and the NEA population estimates of D’Abramo et al. 

(2001) and Rabinowitz et al. (2000).  They performed the calculations in the opposite 

direction, converting the lunar crater production function into a impactor size-frequency 

distribution.  This approach has the disadvantage that it must use an average impact 

velocity and impactor density.   It cannot use a distribution of impact velocities or a 

distribution of impactor densities, as was done here, because there is no way to estimate 

those quantities from an observed crater.  Werner et al. found reasonably good agreement 

between the Neukum/Ivanov crater production function and the NEA population 

estimates of D’Abramo et al. and Rabinowitz et al.  As discussed in section 2.8, those 

two NEA population estimates are lower than the NEA population estimate derived in 

section 2.7.  The Neukum/Ivanov crater production function is also lower than the BVTP 

crater production function for crater diameters from ~3 km to ~15 km. 

5.8 Comparison with the Terrestrial Crater Record 
Geologic processes of erosion and plate subduction make calculations of cratering 

rates on the Earth much more problematic than on the Moon.  Small craters on the Earth 

are erased quickly, very little of the Earth’s crust is old enough to have accumulated 

enough large craters to count, and much of the Earth is covered by oceans in which 

permanent craters do not form at all.  However, the craters that are observed on the Earth 

are available for close scrutiny.  Accurate ages can be obtained for each crater, and the 

crater rim and floor can be studied to characterize slumping and formation of complex 

crater features such as central uplifts.  The cratering record on the Earth has been studied 
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event was linked with an impact (Alvarez et al. 1980).  Figure 5.7 shows the rate of 

production of impact craters on the Earth (Hughes 2001) as determined by counting and 

dating impact structures, compared to the rate predicted from the NEA population.  I have 

used Melosh’s Pi-Scaling method to calculate the size of the impact craters, and I’ve 

assumed a density of 2700 kg/m or terrestrial target rocks.  As with the lunar crater 

production predictions, the sharp turnover in the predicted number of large craters on the 

Earth is because of a lack of NEAs large enough to produce such large craters.  On the 

Earth, however, the reduction in the number of very small craters, less than about 1 km 

diameter, is probably real. The simulation included NEAs down to 50 m in diameter.  At 

sizes below 50 m, the atmosphere shields the surface of the Earth from impact. 

3 f

Above crater sizes of about 15 km, the observed cratering rate on the Earth matches 

the rate predicted from the NEA population models.  Below 10 km, there is a pronounced 

deficit of observed craters.  Most researchers (Grieve and Shoemaker 1994, for example) 

attribute the deficit of small craters to erosion that erases them from the crater record, and 

assume that, in the absence of erosion, the production rate of craters should continue 

upward roughly as a power law.  Hughes (2001), however, argues that the deficit of small 

craters is a real feature of the rate of production of craters, and not due to some size-

dependent erosional process.  It is impossible to reconcile that view with observational 

data of NEAs.  A deficit of craters in the 10 km range would require a sharp deviation 

from a power law in the number NEAs starting at sizes around 1 km.  This marked 

reduction in the number of 1 km NEAs is not observed.  It is also impossible to reconcile 

this deficit of craters smaller than 10 km with the cratering record on the Moon which 

matches the observed population of NEAs down to crater sizes of 2 km.  
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Figure 5.7 Terrestrial Cratering Rate.  The rate of production of craters on the Earth as catalogued by 
Hughes (2001) is compared with the expected rate of crater formation from the impact of NEAs.  The NEA 
population model from section 2.7 is combined with three crater scaling laws to estimate the current crater 
production function on the Earth.  The preferred scaling law [Shoemaker, equation (5.10)] is shown with 
uncertainties computed by changing the number of NEAs in the population model by 1 standard deviation, 
and do not include uncertainties in NEA density or crater scaling laws.  The NEA population model 
combined with either the Shoemaker or Melosh-Pi scaling laws [equation (5.7)] matches the crater 
production function determined from counting craters on the Earth in the size range from 15 km to 35 km.  
Below 15 km, craters on the Earth are eroded by weather and so the counts of small craters are severely 
depleted. 

5.9 Conclusions 
The model of the NEA population developed in Chapter 2 and Chapter 1 has been 

used to predict the rate of impacts of NEAs into the Earth and Moon.  The Earth suffers 

globally catastrophic NEA impacts (larger than 1 km diameter impactor) every 500,000 

to 700,000 years, and regionally devastating impacts (4 EJ or more of impact energy) 

every 41,000 to 53,000 years.  Impacts with energies near that of the Tunguska impactor 

occur every 2000 to 3000 years.  The rate of crater formation on the Earth and Moon, as 

predicted by the NEA population model combined with a simple NEA density 
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assumption, impact probability estimates, and crater scaling laws, is consistent with the 

observed number of craters on the Earth and Moon. 

The observed terrestrial cratering rate matches the current cratering rate from 

NEAs.  The observed cratering rate on the lunar maria also matches the current cratering 

rate from NEAs.  Therefore, the terrestrial cratering rate matches the lunar cratering rate.  

The terrestrial cratering rate shown in Figure 5.7 is for recent geological time, 

approximately 125 Myr (Hughes 2001).  The cratering rate from the lunar maria extends 

over 3 Gyr (BVTP).  This suggests that the 3 Gyr cratering rate from the lunar maria is 

from a similar NEA population to the population that produced the terrestrial cratering 

rate.  This is consistent with the idea that the NEA population has been in steady-state 

since the end of the Late Heavy Bombardment 3 Gyr ago.  It is inconsistent with evidence 

that the cratering rate has increased in the last ~100 Myr (Grieve and Shoemaker 1994, 

Culler et al. 2000).
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Chapter 6 Conclusions and Future Work 
6.1 Conclusions 
There are  NEAs with absolute magnitudes brighter than 18. 170

901227+
−

 
The primary result of Chapter 2 is an estimate of the number of NEAs as a 

function of absolute magnitude (section 2.7).  The NEAs are best fit by a 

cumulative distribution of  (Figure 2.8).  This estimate 

means that the current catalog of NEAs (as of 18 April 2003) is 50% 

complete for H<18. 

-3.88 + 0.39HN(<H)=10

 
The NEAs are more highly inclined than previously thought. 

 
The debiasing of the LINEAR NEA detections presented in Chapter 2 

shows that even a wide area survey is significantly biased against NEAs 

with high inclinations.  In addition to the easily observed peak at ~5º, the 

debiasing shows that the inclination distribution of the NEAs has a second, 

large peak near 25º ( ).  This may be a signature of NEAs that 

originated in the Hungaria and Phocaea regions of the inner main belt, 

where asteroids have inclinations of 20º-30º.  The NEA inclination 

distribution also has broader tail than expected, with an unexpectedly large 

number of NEAs with inclinations up to 50º. 

Figure 2.9

 
Phase darkening is not a significant factor in bias corrections of ground-based 

discovery surveys of NEAs. 

 
As shown in Chapter 1, the effect of differential phase darkening is real 

for NEAs and increases the selection bias against lower albedo NEAs 

because lower albedo NEAs tend to have lower values for the phase slope 

parameter, G, than do NEAs with higher albedos.  However, the size of 

the selection bias due only to differential phase darkening is smaller than 

the uncertainties in the albedos of the NEAs, and is smaller than the 
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amount of bias caused by the completeness level of a survey (section 3.4).  

Most current analyses of selection bias in NEA surveys use Monte-Carlo 

simulations in which it is simple to include the effects of phase darkening.  

The lack of measured values of G for most NEAs should not be 

problematic in statistical models of the NEA population because the effect 

of changes in G is minor. 

 
The taxonomic complexes S, Q, C, X, and D account for almost all of the NEAs. 

 
Chapter 1 corrects for observational bias relating to differences in albedo, 

and finds that these five classes include ~97% of the NEAs in a diameter-

limited sample.  The C-types are the smallest of the five classes with 

~10% of NEAs. The Q-types account for 14%, and the D-types for 18%.  

The two largest classes are the S- and X-types with 22% and 34%, 

respectively. (Figure 4.22 and Table 4.7) 

 
The NEAs with TJ<3 differ in their taxonomic abundances from the NEAs with 

TJ>3. 

 
The NEAs with TJ<3 have a significantly higher proportion of their 

members in the D- and X-type taxonomic complex than NEAs with TJ>3 

(section 4.9).  This result combines dynamics and taxonomy into a 

consistent picture.  The NEAs that are dynamically linked to Jupiter 

(TJ<3) are more enriched in possible extinct comets (D-types) than are the 

NEAs that are not dynamically linked to Jupiter (TJ>3). 

 

After accounting for observational biases, in a diameter-limited sample, 

the NEAs with TJ<3 account for 30% of the total NEA population. 

 
The average albedo of the NEAs is 0.140±0.02. 
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When the albedos of the taxonomic complexes are weighted according to 

their relative abundances, the overall average albedo of the NEAs is 

slightly brighter than the generally assumed value of 0.11.  This means 

that the average absolute magnitude threshold for 1 km or bigger asteroids 

is H<17.75±0.1 (section 4.9). Separating the NEAs into two groups 

according to the Jovian Tissearnd parameter, I find that the NEAs with 

TJ<3 have an average albedo of 0.084±0.01, while the NEAs with TJ>3 

have an average albedo of 0.164±0.06. 

 
There are 1090±180  NEAs bigger than 1 km diameter. 

 
The primary result from this thesis, given in section 4.10, is the debiased 

diameter distribution of the NEAs.  The absolute magnitude distribution 

(Figure 2.7) is converted to several diameter distributions using the 

albedos and abundances of the taxonomic complexes.  The diameter 

distributions for the complexes are summed to obtain the overall diameter 

distribution for the NEAs (Figure 4.23). 

 
As of 18 April 2003, 543 NEAs have been discovered with H<17.75.  

Using the result that this corresponds to a diameter of 1 km, 50% of the 1 

km NEAs have been discovered. 

 
Impacts of NEAs larger than 1 km occur every 500,000 to 700,000 years on the 

Earth. 

 
The orbital element distribution from section 2.7 is combined with the 

diameter distribution from section 4.10, along with estimates of collision 

probability for NEAs (section 5.3) to derive the rate of impact of NEAs 

into the Earth (Figure 5.2).  Impacts of this size are believed to have global 

consequences by filling the atmosphere with enough dust to affect climate 

worldwide. 
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Impacts larger than 4x1018 J occur every 41,000 to 53,000 years on the Earth. 

 
The impact rate of NEAs into the Earth is combined with an assumption 

about the densities of asteroids to obtain rates of impact as a function of 

impact energy (Figure 5.3).  Impacts larger than 4x1018J are likely to 

produce widespread regional destruction (UK NEO Task Force 2000). 

 
Impacts in the energy range of the Tunguska event occur every 2,000 to 3,000 years 

on the Earth. 

 
The impact rate of NEAs into the Earth is combined with an assumption 

about the densities of asteroids to obtain rates of impact as a function of 

impact energy (Figure 5.3).  Impacts in the energy range of the Tunguska 

event (4-6x1016 J) occur every 2,000 to 3,000 years.  This rate could be as 

high as every 1000 years if the Tunguska event was only 1x1016 J. 

 
The current rate of crater production on the Moon matches the 3 Gyr post-mare 

crater record. 

 
The NEA orbital element distribution (section 2.7), and the diameter 

distribution (section 4.10) has been used, along with several methods for 

determining crater diameter, to determine the rate of formation of craters 

on the Moon (section 5.5).  The rate of crater formation, based on the 

NEA population derived here, matches the observed lunar cratering rate 

for craters from 2 to 100 km diameter (Figure 5.6). 

 
The current rate of crater production on the Earth matches the 125 Myr crater 

record on the Earth. 

 
The NEA orbital element distribution (section 2.7), and the diameter 

distribution (section 4.10) has been used, along with several methods for 

determining crater diameter, to determine the rate of formation of craters 

on the Earth (section 5.5).  The rate of crater formation, based on the NEA 
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population model derived here, matches the observed terrestrial cratering 

rate over the range of crater sizes that is not severely affected by erosion 

(craters larger than 15 km) (Figure 5.7). 

 
The cratering rate on the Earth and Moon have been constant for 3 Gyr. 

 
The crater density observed on the lunar mare is the cratering rate 

integrated over the 3 Gyr since the mare formed.  That rate matches the 

current cratering rate from NEAs.  This match is consistent with the 

cratering rate being constant for 3 Gyr, and with the NEAs being in a 

steady-state for that time. (section 5.9) 

 
Comets do not make a significant contribution to the impact rate on the Earth and 

Moon. 

 
The lunar crater density is consistent with the cratering rate expected from 

the NEAs (Figure 5.6).  There is no large excess of craters on the Moon 

that could be caused by long-period comets. 

6.2 Future Work 
LINEAR (and other asteroid search programs) continue to scour the skies and 

detect more asteroids.  These continuing data can be incorporated into the NEA 

population estimates to improve estimates of the size and shape of the NEA population.  

In addition to improving the accuracy of the estimate, more data should allow an estimate 

at dimmer absolute magnitudes (smaller sizes) and at higher inclinations.  Improvement 

can also be made in the photometric calibration of the LINEAR sensor.  A better 

understanding of LINEAR’s limiting magnitude, how it is affected by weather, stellar 

background, seasons, equipment changes, and asteroid colors will improve the accuracy 

of the population estimate. 

The LINEAR program also detects and catalogs a large number of main-belt 

asteroids.  A debiased estimate of the number of main-belt asteroids based on LINEAR 

data would be a useful addition to our understanding of the main belt.  It would also be 
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useful to combine this new estimate of the number of main-belt asteroids with estimates 

of the number of Mars crossers and NEAs.  A consistent picture of these three groups, 

could provide better understanding of the dynamical processes that transport asteroids 

around the inner solar system, and would help to determine which of the main belt 

resonance zones are the most important suppliers of NEAs. 

Estimates of the fractional abundances of the various taxonomic classes would be 

improved  by more albedo measurements of NEAs.  More measured albedos will also 

improve the conversion of the absolute magnitude distribution to a diameter distribution.  

Two of the taxonomic classes are of particular concern.  The albedos of the X-type NEAs 

can vary over a wide range, resulting in a large uncertainty in their average albedo and 

fractional abundance.  More albedo measurements of X-type NEAs would help to define 

how many of the X-types are very dark and how many are relatively bright, thus reducing 

the uncertainty in the fractional abundance of the X-types.  The D-type NEAs, 

particularly those with Jovian Tisserand parameter less than three, are potentially very 

dark objects.  More albedo measurements for the D-type NEAs will help to determine 

whether this class contributes many additional large NEAs to the total population. 

The slight mismatches between the expected lunar cratering rate from NEAs and 

the observed crater counts suggests that the dynamics governing the formation of large 

craters is not perfectly understood.  An experiment to observe the formation of a large 

crater is needed to refine the scaling laws and to calibrate hydrocode simulations.  

Several NEAs measuring in size from tens of meters to hundreds of meters should be 

intensively studied by orbiting spacecraft (similar to the NEAR-Shoemaker mission) and 

then diverted into trajectories that impact the Moon.  The geology of the impact sites 

should be carefully studied beforehand, as well.  During the impact, a suite of sensors on 

the Moon and above the impact sites would yield invaluable real-time information to 

refine models of impact crater formation.  Post-impact analysis of the geological changes 

produced by the impact would further enhance our knowledge of impact dynamics.  Of 

course, care must be taken to avoid mishap and misuse of asteroid deflection technologies 

(Harris et al. 1994).
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Appendix: Definitions 
A.1 Absolute Magnitude 

The principal photometric properties of asteroids are described by the IAU two-

parameter magnitude system for asteroids (Bowell et al. 1989) using the parameters H, 

and G.  The absolute magnitude, H, is the magnitude of the asteroid at unit distance from 

the observer and the Sun (1 astronomical unit) and at zero solar phase angle (fully 

illuminated).  The phase slope parameter, G, describes how the brightness falls with 

increasing solar phase angle, as less of the visible portion of the asteroid is illuminated.  

The apparent magnitude may be calculated from H, and G as (Bowell et al. 1989): 

 

( ) ( ) ( ) ( )( )

( )

( )

10 10 1 2

0.63
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 (A.1) 

 

 where R and ∆ are the distances from the sun and observer in astronomical units 

(AU), and α is the solar phase angle (observer-asteroid-sun angle).  The phase slope 

parameter is usually between 0 and 1, but can fall outside that range.  Smaller values of G 

indicate a more severe drop in brightness at high phase angle. 

The absolute magnitude is related to the diameter and geometric albedo of the 

asteroid, assuming a spherical asteroid with no variation across the surface, by (Harris 

and Harris 1997): 
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where D is the diameter in kilometers, and p etric albedo.  Care must 

be taken to ensure that H, G, and p easured at the same wavelength, usually in 

the middle part of visible wavelengths (V-band, Bessell 2002). 

V is the visual geom

V are all m
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A.2 Orbital Parameters 

plane of asteroid’s orbit

perihelion

asteroid’s
instantaneous
position

Ecli
ptic

 plan
e

ϒ (vernal equinox)

Ω

ω
f

i inclination

ascending node

 
• a = semi-major axis - the size of the ellipse 

• e = eccentricity - amount of deviation from a circle 

• i = inclination – angle between the orbit plane and the Earth’s orbit plane (the Earth’s 

obit plane is called the Ecliptic plane) 

• Ω = longitude of the ascending node – position where asteroid crosses the ecliptic 

plane going from South to North (ascending).  The angle is measured in the ecliptic 

plane from the vernal equinox. 

• ω = argument of perihelion – angle between the ascending node and the perihelion 

point (closest point to the sun).  The angle is measured in the orbital plane. 

• f = true anomaly – angle from perihelion to position of the asteroid, measured in the 

orbit plane. 

• mean anomaly is an angle that is used instead of true anomaly for specifying orbits.  

It is linearly proportional to time, and is converted to true anomaly by Kepler’s 

equation and a geometric transformation. 
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A.3 Jovian Tisserand Parameter 
The Jovian Tisserand parameter (Tisserand 1896) is a measure of the degree to 

which an asteroid’s orbit is dynamically linked to Jupiter.  The Tisserand parameter is 

calculated from the orbital elements by: 

 ( )22cos( ) 1J
J

J

a aT i
a a

= + − e  (A.3) 

where aJ is the semi-major axis of Jupiter (approximately 5.2 AU), and a,e,i are the semi-

major axis, eccentricity, and inclination of the asteroid.  TJ is approximately equal to 

Jacobi’s integral, which is a conserved quantity in the circular, restricted, three-body 

problem.  If an asteroid makes a close approach to Jupiter, its orbital elements may 

change drastically, but the value of TJ is approximately conserved.
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