

# EPRI Update on Latest Research and Testing of Control Systems



#### **Dr. Arindam Maitra, Technical Executive, EPRI**

#### Microgrid & DER Controller Symposium MIT Samberg Conference Center, Cambridge, MA Feb 16<sup>th</sup>, 2017

# A Practical Microgrid Goal by 2020...

Maximize project lifecycle value for economic and technically feasible opportunities in our evolving grid environment

- Creating a microgrid is complicated ....
  - Involves multiple power, operations management and control system components from diverse vendors that must be integrated and optimized for interoperability and security
  - Integrated controls, communication & coordination, and new protection approaches are needed
  - Assets within the microgrid must comply with the distribution system operator's interconnection requirements





#### **Key Parameters Impacting Microgrid Operations and Cost**



A variety of factors, many interconnected, impact the overall design and cost of a microgrid. Certain factors are considered fixed inputs (i.e. assumptions) while other factors are varied to in order to evaluate the sensitivity of their impact on overall cost.



## **Microgrid Business Models Can Impact Controller Operation**

#### THIRD-PARTY MODEL

- End user(s) or 3rd party own and finance microgrid
- End user(s) or 3rd party determine economic dispatch (potentially with utility guidance)
- Utility, end user(s) or 3rd party agree on appropriate islanding conditions
- End user(s) see net change in bills

#### UNBUNDLED MODEL

- Utility or 3rd party owns and finances microgrid on behalf of end user(s)
- Utility or 3rd party dispatches DER assets on behalf of customer(s)
- Utility and end user(s) agree on appropriate islanding conditions
- End user(s) pays utility for grid assets, pay implementer (utility/3rd party) for microgrid assets, receives credit from DER

#### INTEGRATED UTILITY MODEL

- Utility owns and finances microgrid
- Utility dispatches DER assets based on system economics
- Utility and end user(s) agree on appropriate islanding conditions
- End user(s) pays utility for resiliency/premium power service



For more information – "Microgrids: Expanding Applications, Implementations, and Business Structures". EPRI/SEPA whitepaper.



# **Transitions and Impact of Controls**





#### **Develop Consistent Approaches to Evaluate Microgrid Adoption:** *Evaluation, Design, Testing & Demo*





#### **EPRI Microgrid Feasibility and Design Projects**





# **List of Current Microgrid Controller Projects**

## DOE Microgrid Projects

- FOA 997 Controller (End Date May 2017) Spirae Controller
- DMS Structuring Project Phase 1/2 (October 2015 November 2017) Schneider & GE Controller
- ADMS Test bed (November 2016 November 2019) Schneider & GE Controller
- ARPA E with UTK TI Controller

## DoD Microgrid Projects

- Transportable Microgrid (Dec 2016-Dec 2018). SEL Controller
- Fort Hunter Liggett (Sep 2016 Dec 2017). LBNL Controller

## NYSERDA Microgrid Projects

Phase 2 BNMC NYSERDA Spirae/OpusOne Controller

#### • Utility Funded Demonstrations

• NCEMC, Xcel, HydroOne, Central Hudson



## **Microgrid Controller Test Options – Which is Better?**



#### Pure simulation

Abstract or realtime

Need to integrate MGC



#### <u>CHIL</u>

Interface real controller *Real-time simulation* 



#### CHIL & PHIL

Interface real controller and assets *Power interface, more complex* 



#### **Power**

Real controller and assets Simple EPS model

CHIL = Controller Hardware-in-the-Loop; PHIL = Power Hardware-in-the-Loop

MGC = Microgrid controller; DER = Distributed Energy Resource; G = Generator; EPS = Electric Power System



# Need IEEE 2030.8 to Define Microgrid Controller Testing Procedures and Evaluations

| Test case:                                                                  | Met Requirement? |
|-----------------------------------------------------------------------------|------------------|
| A.1.1: DER available (renewables only); Wave offline.                       | $\checkmark$     |
| A.2.1: System importing power at PCC                                        | $\checkmark$     |
| A.2.2: System importing power at PCC (loss of one generator)                | ✓                |
| A.3.1: System exporting power at PCC                                        | $\checkmark$     |
| A.3.2: System exporting power at PCC (loss of one generator)                | $\checkmark$     |
| A.4.1: System net-zero power at PCC                                         | $\checkmark$     |
| A.4.2: System net-zero power at PCC (loss of one generator)                 | $\checkmark$     |
| A.4.3: System net-zero power at PCC (loss of communications MG/Wave)        | $\checkmark$     |
| B.1.1a: Planned disconnection using microgrid controller interface          | $\checkmark$     |
| B.1.1b: Planned disconnection (high renewable penetration)                  | $\checkmark$     |
| B.1.2: Planned disconnection (loss of one generator)                        | $\checkmark$     |
| B.2.1: Unplanned disconnection via manual breaker trip                      | $\checkmark$     |
| B.2.2: Unplanned disconnection via manual breaker trip (loss one generator) | $\checkmark$     |
| B.2.3: Unplanned disconnection via protective relay trip                    | ✓                |



## Need for an Uniform Way to Evaluate Multiple Vendor Control Systems

- Single product compliance
  - Does it meet IEEE 2030.7 core level functions?
  - Does it meet additional customer requirements?
- Product comparison
  - How do these controllers compare?
- Requires testing in the context of a microgrid system
- Site-specific compliance
  - Is it capable of managing *this* microgrid's assets in order to meet *these* interconnection requirements?





Function currently supported Function partially supported

### **CHIL & PHIL for Site-Specific Evaluation**

- Model of site EPS
- Actual or representative DER
  - reduce modeling inaccuracies
  - proprietary controls





#### **Verify Controller Functions and Capabilities**







# CHIL/PHIL Test @NREL

PHIL & CHIL evaluation of microgrid controller for Buffalo Niagra Medical Campus (BNMC) site





Figure 3. Relationship between transition and dispatch functions.





# **Establish End-to-End Connectivity**



 DER Device Functions

 Status Monitoring

 Output Forecasting

 Fixed PF

 Volt-VAR

 Volt-Watt

 ...



# **DER Group Functions and Messages**





## **Microgrid Controller Testing @ EDF Concept Grid**



#### Benefits of Testing at EDF's Concept Grid:

- Verify capabilities of Wave controller in an environment not limited by the scale or capacity of the power system it is
- Verify communication latency issues

| Equipement<br>type | symbo<br>I | Equipment details             |
|--------------------|------------|-------------------------------|
| Air conditioner    | A/C 1      | Mitsubishi 1 kVA              |
|                    | A/C 2      | Mitsubishi 1.4 kVA            |
|                    | A/C 3      | Daikin 3.5 kVA                |
|                    | A/C 4      | Daikin 3.5 kVA                |
| inverter           | =\~ 1      | SMA STP 15000TL-10            |
|                    | =\~ 2      | Fronius IGplus 150V-3         |
|                    | =\~ 3      | SMA Sunny island<br>SI6.0H-11 |
| Washing<br>Machine | WM 1       | Electrolux 2.2 kVA            |
|                    | WM 2       | Electrolux 2.2 kVA            |
|                    | WM 3       | Boch 2.4 kVA                  |
| served             |            |                               |