Electric Power HIL Controls Collaborative

Chris Smith

Microgrid and DER Controller Symposium

2/16/2017

This work is sponsored by the Department of Energy, Office of Electricity Delivery and Energy Reliability under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

- EPHCC Overview
- Simulation Platforms
- Organization of Repository
- Component Details
- Typical Usage

Electric Power HIL Controls Collaborative (EPHCC)

HILLTOP Simulation Platforms

Organized for Collaborative Design

- Unit test model
 - Shows how component would typically be used
 - Which function a component does and does not meet
 - Allows for checking compatibility across simulation tools

- Documentation sheet
 - High level overview
 - References, theory, assumptions, parameters, etc.

Diesel Powered Synchronous Machine

- 1 MVA
- 480Vac
- 3 phase

- Field verified model elements
 - Governor
 - Field Regulator
 - Prime mover
 - Electric machine

CHIL Integration – SEL 751 Relay

OPAL-RT INTERFACE WIRING DIAGRAM

- SEL Collaboration
- Three feeder protection relays
 implemented in hardware
- Hardware I/O interface to PTs, CT's, breakers
- Protection features:
 - Overcurrent (50, 51)
 - Over/under voltage (27, 59)
 - Synchronism check (25)
 - Grid-tied protection
 - Islanded protection
- Modbus TCP interface

Component Inventory for Model Curation

Component Type 🛛 🔻	Repo. Category	Description	IP Owner 🔻	Dev. Environment	Real-time Platform	Verification	Fidelity
Breaker	SW device model	Ideal switch w/ time delay	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
Breaker	SW device model	Oil					
Breaker	SW device model	Gas-insulated	SEL				
Breaker	SW device model	Molded case					
Cable	SW device model	Cable, RL, not coupled	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
Cable	SW device model	Cable, RL, coupled	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
Cable	SW device model	Cable, Pi section	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
Transformer - 3ph	SW device model	D-Yg, linear magnetizing branch	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT		
Transformer - 3ph	SW device model	D-Yg, non-linear magnetizing branch					
Transformer - 3ph	SW device model	Yg-Yg					
Transformer - 3ph	SW device model	D-D					
Transformer < 3ph							
DG - Machines	SW device model	Diesel genset	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	3 - agrees with literature	
DG - Machines	SW device model	Diesel genset	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	4 - unit tested	
DG - Machines	SW device model	Governor	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
DG - Machines	SW device model	AVR	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
DG - Machines	SW controller	Diesel genset controller	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT		
DG - Power Electronics	SW device model	Generic power converter, 3ph, bidirectional, average model	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT		
DG - Power Electronics	SW device model	Generic power converter, 3ph, bidirectional, switching model	MIT-LL		OPAL-RT		
DG - Power Electronics	SW controller	Battery: grid-tied power converter controller	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
DG - Power Electronics	SW controller	PV: Grid-tied inverter controller	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
Load	SW device model	Static PQ					
Load	SW device model	Static RL	MIT-LL	Matlab 2011b, SimPwrSys	OPAL-RT	2 - textbook implementation	
Load	SW device model	Static ZIP					

Work continues to identify additional key components and additional industry partners

- A new microgrid has a "special" critical load
- Customers want to be ensured that it can always be supported
- Everyone thinks it should be fine except:
 - During worse case conditions (hard to run on the real system)
 - Unsure if all the relay protections will allow
 - Too costly to run through all the scenarios on site

- An engineer quickly assembles a model that uses
 - Existing components
 - Existing test feeder
 - New site specific load stimuli
- Simulations are run and things look good but
 - one relay function isn't available (under frequency 81)
- The relay component is modified to include new feature
- Simulations are re-run and an under frequency trip is found
- Settings are tweaked and now things look good
- New component is uploaded to EPHCC repository

Use Case: Evaluate new technology ability to provide grid services

Use Case: Evaluate novel energy storage technology

Use Case: Evaluate effect of high PV penetration on feeder

Use Case: System integrator evaluates applicability of novel solution

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

EPHCC - 15 CLS - 02/16/2017

- EPHCC Repository is an excellent source of models for microgrid simulation
- FY15 repository is public
- FY17 will be made public on GitHub in coming weeks
- Interest in working with users to improve
 - Breadth of components
 - Validation
 - Test cases
 - Simulation platforms

https://github.com/powersystemshil

Collaboration will reduce cost to simulate microgrids

...and accelerate deployment!