

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States
Government

pMatlab v0.7 Function Reference

Hahn Kim, Nadya Travinin
{hgk, nt}@ll.mit.edu

Table of Contents
Introduction ..3
pMatlab...4

pMATLAB ...4
pMatlab_Init ...4

pMatlab_Finalize ..5
pMatlab_ver..5

MPI_Abort..5
MatMPI_Delete_all...6

MPI_Run ..6
Distributed matrices and matrix manipulation...7

Elementary distributed matrices ..7
map/map ...7

map/zeros.. 11
map/ones... 12

map/rand... 13
Basic array information... 14

dmat/size... 14
dmat/ndims ... 14

dmat/display.. 15
map/display... 15

Distributed array information.. 16
dmat/global_block_range .. 16

dmat/global_block_ranges... 17
dmat/global_ind .. 18

dmat/global_inds... 19
dmat/global_range... 20

dmat/global_ranges ... 22
map/inmap .. 24

Introduction

 2

Matrix manipulation.. 25

dmat/find .. 25
Distributed matrix manipulation.. 26

dmat/agg ... 26
dmat/agg_all ... 27

dmat/local ... 27
dmat/put_local .. 28

dmat/synch.. 29
remap.. 29

dmat/subsasgn... 30
dmat/subsref.. 31

map/subsasgn.. 32
map/subsref... 32

Elementary math functions .. 33
dmat/abs.. 33

dmat/complex ... 33
Operators and special characters... 34

dmat/plus .. 34
dmat/mtimes ... 34

dmat/times .. 35
dmat/eq ... 36

map/eq .. 36
dmat/gt.. 37

map/ne .. 37
Sparse matrices... 38

map/sparse .. 38
map/spalloc... 39

dmat/sparse ... 39
Data analysis and Fourier transforms ... 40

dmat/conv2 ... 40
dmat/fft ... 40

Index.. 42

Introduction

 3

Introduction
This document is meant to be a reference for functions that are of use to pMatlab users, i.e.
application developers There are a number of additional functions included in pMatlab, but
those functions are used internally by pMatlab and should not be called by pMatlab applications.
The functions described in this reference are divided into sections that approximately match
Mathwork’s own categorization of MATLAB functions. Most sections describe overloaded
MATLAB functions; some sections contain additional functions that are unique to pMatlab, but
are related to the overloaded MATLAB functions in that section.

• pMatlab describes general pMatlab functions required by all pMatlab applications.

• Distributed matrices and matrix manipulation describes functions related to creating
and obtaining information about distributed matrices. Because this section contains a
large number of overloaded MATLAB functions and a number of new pMatlab
functions, it is further divided into subsections.

o Elementary distributed matrices describes functions related to the creation of
distributed matrices.

o Basic array information and Distributed array information describe functions
that obtain information about a distributed matrix.

o Matrix manipulation and Distributed matrix manipulation describe functions
used to manipulate distributed matrices.

• Elementary math functions, Operators and special characters, Sparse matrices, and
Data analysis and Fourier transforms describe functions and operators that have been
overloaded in pMatlab.

Most functions are class functions. Consequently, the names of these functions have been
prefaced with the name of class they are a part of. For example, the fft function for the dmat
class is listed as dmat/fft. Help for every function can be obtained from the MATLAB
command prompt by running help class/function. For example, to get the help
documentation for the fft function overloaded for dmat, run:

help dmat/fft.
For some overloaded functions, it may be useful to refer to the help documentation for the
original MATLAB function by running help function at the MATLAB command prompt. To
get the help documentation for the original MATLAB fft function, run:

help fft.

pMatlab

 4

pMatlab

pMATLAB
Data structure created by pMatlab_Init. Contains information necessary for communication.
See pMatlab_Init for more details.

pMatlab_Init
Initializes pMatlab environment.

Syntax

pMatlab_Init

Description
Initializes variables required by the pMatlab library, such as number of processors, current
processor’s rank and which processor is the leader. All of the variables necessary for
communication are stored in the pMATLAB structure.

Fields of the pMATLAB structure:
• comm - contains the MatlabMPI communicator

• comm_size - size of communicator, i.e. number of processors
• my_rank - rank of the local processor

• leader - indicates which rank is the leader, by default set to 0
• pList - list of ranks of participating processors

• tag - current message tag
• tag_num - number of messages sent; synchronized across all processors in pList

Fields to be potentially added in the future:
• num_tasks - number of tasks (scopes) created from the beginning of the program

• curr_task - current task (scope)
• scopes - contains a cell array of communication scopes; each entry is a struct with

the current fields of the pMATLAB structure plus the task_num field

pMatlab

 5

pMatlab_Finalize
Terminates pMatlab environment.

Syntax

pMatlab_Finalize

Description
Terminates pMatlab environment, i.e. exits non-leader MATLAB processes. This ensures that
MATLAB processes are not orphaned on remote machines while leaving the leader process
running.

pMatlab_ver
Display version number for pMatlab

Syntax
 v = pMatlab_ver

Description
v = pMatlab_ver returns a string v containing the pMatlab version.

MPI_Abort
Aborts any currently running pMatlab or MatlabMPI program and blocks returning until all
processes have ended.

Syntax

MPI_Abort

Description
Will abort any currently running pMatlab/MatlabMPI program by looking for leftover MATLAB
processes and killing them. Cannot be used after MatMPI_Delete_all. Must be run in the
directory from which the pMatlab/MatlabMPI programs was launched.

pMatlab

 6

MatMPI_Delete_all
Deletes the MatMPI directory and its contents.

Syntax

MatMPI_Delete_all

MPI_Run
Launches a pMatlab or MatlabMPI program.

Syntax

eval(MPI_Run(mfile, Ncpus, cpus))

Description
mfile is a string that contains the name of the pMatlab/MatlabMPI program to be launched,
without the .m suffix.

Ncpus is an integer that specifies the number of processors to launch mfile onto.
cpus specifies what machines to launch mfile onto:

• cpus = {}; Run all MATLAB processes on the local machine.
• cpus = {'machine1' 'machine2' ...}; Specify names of machines on which to run.

To run interactively, machine1 must be the name of local machine.
• cpus = {'machine1:dir1' 'machine2:dir2' ...}; Specify machines names and

which directory to use for communication on each machine. Directories must be visible
to both machines, i.e. crossmounted. Directories should be located on the local disk of
their respective machines.

• cpus = {'machine1:type' 'machine2:type'}; Specify machine names and the type
of each machine. type can be either 'unix' or 'pc'. Default is 'unix' (can be changed
in MatMPI_Comm_settings.m)

• cpus = {'machine1:type:dir1' 'machine2:type:dir2'}; Specify machine names,
communication directories, and the type of each machine.

Distributed matrices and matrix manipulation

 7

Distributed matrices and matrix manipulation

Elementary distributed matrices

map/map
Map class constructor.

Syntax

p = map(GRID_SPEC, DIST_SPEC, PROC_LIST)

p = map(GRID_SPEC, DIST_SPEC, PROC_LIST, OVERLAP_SPEC)

Description
map(GRID_SPEC, DIST_SPEC, PROC_LIST, OVERLAP_SPEC) constructs a map object to be used
as an input to a dmat constructor.

• GRID_SPEC: Vector of integers specifying how each dimension of a dmat is broken up.
For example, if GRID_SPEC = [2 3], the first dimension is broken up between 2
processors and the second dimension is broken up between 3 processors. The following
figure illustrates how this grid example would break up a dmat given 6 processors using a
block distribution.

The length of GRID_SPEC can be 2, 3, or 4 and must match the number of dimensions in
the dmat.

• DIST_SPEC: Array of structures with two possible fields, dist and b_size, specifying the
dmat distribution.

DIST_SPEC.dist is a string specifying the type of data distribution the dmat should use.
Each entry in the array must have the dist field defined. The dist field can have three
possible values:

Distributed matrices and matrix manipulation

 8

o 'b': block

o 'c': cyclic
o 'bc': block-cyclic

Setting DIST_SPEC to {} uses block distribution for all dimensions.
DIST_SPEC.b_size specifies the block size for block-cyclic distributions. If
DIST_SPEC.dist is set to 'bc', then DIST_SPEC.b_size must also be defined. If
DIST_SPEC.dist is set to 'b' or 'c', then DIST_SPEC.b_size does not have to be
defined.
The following figure shows an example of the same dmat distributed over 4 processors
using each of the three types of data distributions:

• PROC_LIST: Array of processor ranks specifying on which ranks the object should be

distributed. Ranks are assigned column-wise (top-down, then left-right) to grid locations
in sequential order.

• OVERLAP_SPEC: Optional. Vector of integers specifying amount of overlap between

processors for each dimension. The following figure shows an example of a dmat
distributed across four processors with 1 column of overlap between adjacent processors.

The length of OVERLAP_SPEC can be 2, 3, or 4 and must match the number of dimensions
in the dmat. Only block distributions can have overlap.

Distributed matrices and matrix manipulation

 9

map returns a data structure p which contains the following fields:

• DIM: the number of dimensions of the map (must equal the dimension of the dmat)
• PROC_LIST: the list of processor ranks on which the object should be distributed

• DIST_SPEC: the distribution specification for each dimension
• GRID: array of length DIM specifying how the object should be distributed

Examples
2D map, 2x2 grid, block-cyclic along rows and columns, block size 2 along rows, block size 3
along columns:

grid1 = [2 2]; % 2x2 grid
dist1(1).dist = 'bc'; % block-cyclic along dim 1 (rows)
dist1(1).b_size = 2; % block size 2 along dim 1 (rows)
dist1(2).dist = 'bc'; % block-cyclic along dim 2 (columns)
dist1(2).b_size = 3; % block size 3 along dim 2 (columns)
proc1 = [0:3]; % list of ranks 0 through 3
map1 = map(grid1, dist1, proc1);

2D map, 2x3 grid, cyclic along both rows and columns:

grid2 = [2 3]; % 2x3 grid
dist2(1).dist = 'c'; % cyclic along dim 1 (rows)
dist2(2).dist = 'c'; % cyclic along dim 2 (columns)
proc2 = [0:5]; % list of ranks 0 through 5
map2 = map(grid2, dist2, proc2);

2D map, 1x2 grid, block along rows, cyclic along columns:

grid3 = [1 2]; % 1x2 grid
dist3(1).dist = 'b'; % block along dim 1 (rows)
dist3(2).dist = 'c'; % cyclic along dim 2 (columns)
proc3 = [0:1]; % list of ranks 0 and 1
map3 = map(grid3, dist3, proc3);

3D map, 2x3x2 grid, block-cyclic along rows and columns with block size 2, cyclic along third
dimension:

grid4 = [2 3 2]; % 2x3x2 grid
dist4(1).dist = 'bc'; % block-cyclic along dim 1 (rows)
dist4(1).b_size = 2; % block size 2 along dim 1 (rows)
dist4(2).dist = 'bc'; % block-cyclic along dim 2 (columns)
dist4(2).b_size = 2; % block size 2 along dim 2 (columns)
dist4(3).dist = 'c'; % cyclic along dim 3
proc4 = [0:11]; % list of ranks 0 through 12
map4 = map(grid4, dist4, proc4);

Distributed matrices and matrix manipulation

 10

2D map, 1x4 grid, block along rows, cyclic along columns:

grid5 = [1 4]; % 1x4 grid
dist5(1).dist = 'b'; % block along dim 1 (rows)
dist5(2).dist = 'c'; % cyclic along dim 2 (columns)
proc5 = [0:3]; % list of ranks 0 through 3
map5 = map(grid5, dist5, proc5);

2D map, block along both dimensions, overlap in the column dimension of size 1 (1 column
overlap):

grid6 = [2 2]; % 2x2 grid
dist6 = {}; % block along all dimensions
proc6 = [0 1]; % list of ranks 0 and 1
overlap6 = [0 1]; % overlap of 0 along dim 1 (rows)
 % overlap of 1 along dim 2 (columns)
map6 = map(grid6, dist6, proc6, overlap6);

These examples show only how to create map objects. Refer to dmat/ones, dmat/rand, and
dmat/zeros on how to create dmat objects using map objects.

Distributed matrices and matrix manipulation

 11

map/zeros
Create a dmat of zeros.

Syntax
Y = zeros(N, P)

Y = zeros(M, N, P)

Y = zeros(M, N, Q, P)

Y = zeros(M, N, Q, R, P)

Description
zeros(N, P) returns an N-by-N dmat of zeros mapped according to the map specified by P.

zeros(M, N, P) returns an M-by-N dmat of zeros mapped according to the map specified by P.
zeros(M, N, Q, P) returns an M-by-N-by-Q dmat of zeros mapped according to the map
specified by P.
zeros(M, N, Q, R, P) returns an M-by-N-by-Q-by-R dmat of zeros mapped according to the
map specified by P.

Remarks
Dimension of the dmat must be consistent with the dimension of the map’s grid.

Distributed matrices and matrix manipulation

 12

map/ones
Create a dmat of all ones

Syntax

Y = ones(N, P)
Y = ones(M, N, P)

Y = ones(M, N, Q, P)

Y = ones(M, N, Q, R, P)

Description
ones(N, P) returns an N-by-N dmat of ones mapped according to the map specified by P.

ones(M, N, P) returns an M-by-N dmat of ones mapped according to the map specified by P.
ones(M, N, Q, P) returns an M-by-N-by-Q dmat of ones mapped according to the map specified
by P.
ones(M, N, Q, R, P) returns an M-by-N-by-Q-by-R dmat of ones mapped according to the map
specified by P.

Remarks
Dimension of the dmat must be consistent with the dimension of the map’s grid.

Distributed matrices and matrix manipulation

 13

map/rand
Create a dmat of uniformly distributed random numbers.

Syntax
Y = rand(N, P)
Y = rand(M, N, P)

Y = rand(M, N, Q, P)

Y = rand(M, N, Q, R, P)

Description
The rand function generates dmats of random numbers between 0 and 1 distributed uniformly.

rand(N, P) returns N-by-N dmat of random numbers mapped according to the map specified by
P.

rand(M, N, P) returns M-by-N dmat of random numbers mapped according to the map specified
by P.

rand(M, N, Q, P) returns an M-by-N-by-Q dmat of random numbers mapped according to the
map specified by P.

rand(M, N, Q, R, P) returns an M-by-N-by-Q-by-R dmat of random numbers mapped
according to the map specified by P.

Remarks
Dimension of the dmat must be consistent with the dimension of the map’s grid.
Calls the MATLAB rand function to create each local part of the dmat. Thus, the resulting array
will not be the same as a double random array of the same dimensions.

Distributed matrices and matrix manipulation

 14

Basic array information

dmat/size
Size of the dmat.

Syntax

d = size(X)

[m, n] = size(X)

[d1, d2, d3, ..., dn] = size(X)

Description
d = size(X) returns the size of each dimension of dmat X in vector d.
[m,n] = size(X) returns the size of dmat X in separate variables m and n.

[d1,d2,d3,...,dn] = size(X) returns the sizes of each dimension of X in separate variables.

Remarks
If A = zeros(m, n, q, p1) and B = zeros(m, n, q, p2), where p1 and p2 are different
maps, size(A) and size(B) return the same results.

dmat/ndims
Number of dimension of the dmat.

Syntax
 n = ndims(A)

Description
n = ndims(A) returns the number of dimensions in the dmat A. The number of dimensions in a
dmat is always greater than or equal to 2.

Remarks
ndims(A) is length(size(A)).

Distributed matrices and matrix manipulation

 15

dmat/display
Display dmat.

Syntax

display(D)

Description
display(D) aggregates the D onto the leader process and displays the entire contents of D on the
leader process. On remote processes, display(D) displays only the local portion of D.
display(D) is also called for D when a semicolon is not used to terminate a statement.

Remarks
Note that display incurs communication overhead to aggregate D onto the leader processor.

map/display
Display map object.

Syntax

display(M)

Description
display(M) displays the contents of the map object.

Remarks
display(M) is also called for M when a semicolon is not used to terminate a statement.

Distributed matrices and matrix manipulation

 16

Distributed array information

dmat/global_block_range
Returns the ranges of global indices local to the current processor for a given dmat.

Syntax

I = global_block_range(D, DIM)

[I1, I2, ..., IN] = global_block_range(D)

Description
I = global_block_range(D, DIM) Returns the global index range of the dmat D local to the
current processor in the specified dimension, DIM.

[I1, I2, ..., IN] = global_block_range(D) Returns the global index range of the dmat D
local to the current processor for all N dimensions of D.

The global index range for each dimension is returned as a 2-element vector. The first element
in the vector represents the starting global index and the second element represents the ending
index.

Examples
Let Ncpus be 4:

P = map([1 Ncpus], {}, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_block_range(D);

For each rank, I1 contains:
Rank I1(1) I1(2)

0 1 50

1 51 100

2 1 50

3 51 100

For each rank, I2 contains:
Rank I2(1) I2(2)

0 1 50

1 1 50

2 51 100

3 51 100

Distributed matrices and matrix manipulation

 17

dmat/global_block_ranges
Returns the ranges of global indices for all processors in the map of dmat D.

Syntax
I = global_block_ranges(D, DIM)

[I1, I2, ..., IN] = global_block_ranges(D)

Description
I = global_block_ranges(D, DIM) Returns the global index ranges of the dmat D for all
processors in the specified dimension, DIM.
[I1, I2, ..., IN] = global_block_ranges(D) Returns the global index range of the dmat
D for all processors in all dimensions of D.
For each dimension, the indices are returned as a matrix I of size NUM_PROCS_IN_GRIDx3. Each
line of the returned matrix, I(i,:) contains the following information:

[PROCESSOR_RANK START_INDEX END_INDEX]

Examples
Let Ncpus be 4:

P = map([1 Ncpus], {}, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_block_ranges(D);

On every rank, I1 contains:
I1(1) I1(2) I1(3)

0 1 50

2 1 50

1 51 100

3 51 100

On every rank, I2 contains:
I2(1) I2(2) I2(3)

0 1 50

2 51 100

1 1 51

3 51 100

Remarks
The difference between global_block_range and global_block_ranges is subtle, but
important. global_block_range returns a single vector containing the index range for only that
particular processor. global_block_ranges returns a matrix that contains the index ranges for
every processor.

Distributed matrices and matrix manipulation

 18

dmat/global_ind
Returns the global indices local to the current processor.

Syntax
I = global_ind(D, DIM)

[I1, I2, ..., IN] = global_ind(D)

Description
I = global_ind(D, DIM) Returns the global indices of the dmat D local to the current
processor in the specified dimension, DIM.
[I1, I2, ..., IN] = global_ind(D) Returns the global indices of the dmat D local to the
current processor in all dimensions of D.
The global indices for each dimension are returned as a vector.

Examples
Let Ncpus be 4:

P = map([1 Ncpus], {}, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_ind(D);

For each rank, I1 contains:
Rank I1(:)

0 1 2 3 … 49 50

1 51 52 53 … 99 100

2 1 2 3 … 49 50

3 51 52 53 … 99 100

For each rank, I2 contains:
Rank I2(:)

0 1 2 3 … 49 50

1 1 2 3 … 49 50

2 51 52 53 … 99 100

3 51 52 53 … 99 100

Distributed matrices and matrix manipulation

 19

dmat/global_inds
Returns the global indices for all processors in the map of dmat D.

Syntax
I = global_inds(D, DIM)

[I1, I2, ..., IN] = global_inds(D)

Description
global_inds(D, DIM) Returns global indices of the dmat D for all processors in the specified
dimension, DIM.
global_inds(D) Returns global indices of the dmat D for all processors in all dimensions of D.

For each dimension, the indices are returned as a matrix I of size
NUM_PROCS_IN_GRIDxMAX_LOCAL_INDS. Each line of the returned matrix I, I(i,:), contains
the following information:

[PROCESSOR_RANK IND1 IND2 ... INDn]

To ensure that all rows in the return index are the same, the indices matrix is appended with extra
zeros where there are not enough indices.

Examples
Let Ncpus be 4:

P = map([1 Ncpus], {}, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_ind(D);

On every rank, I1 contains:
I1(1) I1(2:end)

0 1 2 3 … 49 50

2 1 2 3 … 49 50

1 51 52 53 … 99 100

3 51 52 53 … 99 100

On every rank, I2 contains:
I2(1) I2(2:end)

0 1 2 3 … 49 50

2 51 52 53 … 99 100

1 1 2 3 … 49 50

3 51 52 53 … 99 100

Remarks
The difference between global_ind and global_inds is subtle, but important. global_ind
returns a single vector containing the indices for only that particular processor. global_ind
returns a matrix that contains the indices for every processor.

Distributed matrices and matrix manipulation

 20

dmat/global_range
Returns the ranges of global indices dmat D of local to the current processor. Returns the same
range as global_block_range if D is block distributed, returns subranges for block-cyclic and
cyclic distributions.

Syntax
I = global_range(D, DIM)

[I1, I2, ..., IN] = global_range(D)

Description
I = global_range(D, DIM) Returns the global index range of the dmat D local to the current
processor in the specified dimension, DIM.
[I1, I2, ..., IN] = global_range(D) Returns the global index range of the dmat D local to
the current processor in all dimensions of D.
For each dimension, the indices are returned as a matrix I. Each line of the returned matrix,
I(i,:), contains the following information:
[START_INDEX_1 END_INDEX_1 START_INDEX_2 END_INDEX_2 ...]

Examples
Let Ncpus be 4:

dist(1).dist = 'b';
dist(2).dist = 'b';
P = map([Ncpus/2 Ncpus/2], dist, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_range(D);

For each rank, I1 contains:
Rank I1

0 [1 50]

1 [51 100]

2 [1 50]

3 [51 100]

For each rank, I2 contains:
Rank I2

0 [1 50]

1 [1 50]

2 [51 100]

3 [51 100]

Distributed matrices and matrix manipulation

 21

Let Ncpus be 4:

dist(1).dist = 'c';
dist(2).dist = 'b';
P = map([Ncpus/2 Ncpus/2], dist, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_range(D);

For each rank, I1 contains:
Rank I1

0 [1 1 3 3 5 5 … 97 97 99 99]

1 [2 2 4 4 6 6 … 98 98 100 100]

2 [1 1 3 3 5 5 … 97 97 99 99]

3 [2 2 4 4 6 6 … 98 98 100 100]

For each rank, I2 contains:
Rank I2

0 [1 50]

1 [1 50]

2 [51 100]

3 [51 100]

Let Ncpus be 4:

dist(1).dist = 'bc';
dist(1).b_size = 4;
dist(2).dist = 'b';
P = map([Ncpus/2 Ncpus/2], dist, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_range(D);

For each rank, I1 contains:
Rank I1

0 [1 4 9 12 … 89 92 97 100]

1 [5 8 13 16 … 93 96]

2 [1 4 9 12 … 89 92 97 100]

3 [5 8 13 16 … 93 96]

For each rank, I2 contains:
Rank I2

0 [1 50]

1 [1 50]

2 [51 100]

3 [51 100]

Distributed matrices and matrix manipulation

 22

dmat/global_ranges
Returns the ranges of global indices for all processors in the map of dmat D. Returns the same
range as global_block_ranges if D is block distributed, returns subranges for block-cyclic and
cyclic distributions.

Syntax
I = global_ranges(D, DIM)

[I1, I2, ..., IN] = global_ranges(D)

Description
I = global_ranges(D, DIM) Returns the global index ranges of the dmat D for all processors
in the specified dimension, DIM.
[I1, I2, ..., IN] = global_ranges(D) Returns the global index range of the dmat D for all
processors in all dimensions of D.
For each dimension, the indices are returned as a matrix I of size

NUM_PROCS_IN_GRIDxNUM_BLOCK_BOUNDARIES. Each line of the returned matrix, I(i,:),
contains the following information:
[PROCESSOR_RANK START_INDEX_1 END_INDEX_1 START_INDEX_2 END_INDEX_2 ...]

Examples
Let Ncpus be 4:

dist(1).dist = 'b';
dist(2).dist = 'b';
P = map([Ncpus/2 Ncpus/2], dist, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_ranges(D);

On every rank, I1 contains:
I1(1) I1(2:end)

0 1 50

2 1 50

1 51 100

3 51 100

On every rank, I2 contains:
I2(1) I2(2:end)

0 1 50

2 51 100

1 1 50

3 51 100

Distributed matrices and matrix manipulation

 23

Let Ncpus be 4:

dist(1).dist = 'c';
dist(2).dist = 'b';
P = map([Ncpus/2 Ncpus/2], dist, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_ranges(D);

On every rank, I1 contains:
I1(1) I1(2:end)

0 1 1 3 3 5 5 … 97 97 99 99

2 1 1 3 3 5 5 … 97 97 99 99

1 2 2 4 4 6 6 … 98 98 100 100

3 2 2 4 4 6 6 … 98 98 100 100

On every rank, I2 contains:
I2(1) I2(2:end)

0 1 50

2 51 100

1 1 50

3 51 100

Let Ncpus be 4:

dist(1).dist = 'bc';
dist(1).b_size = 4;
dist(2).dist = 'b';
P = map([Ncpus/2 Ncpus/2], dist, 0:Ncpus-1);
D = zeros(100, 100, P);
[I1, I2] = global_ranges(D);

On every rank, I1 contains:
I1(1) I1(2:end)

0 1 4 9 12 … 89 92 97 100

2 1 4 9 12 … 89 92 97 100

1 5 8 13 16 … 93 96 0 0

3 5 8 13 16 … 93 96 0 0

On every rank, I2 contains:
I2(1) I2(2:end)

0 1 50

2 51 100

1 1 50

3 51 100

Remarks
If processors in the same dimension have different number of blocks, the block boundaries are
padded with zeros for the processors that have fewer blocks.

Distributed matrices and matrix manipulation

 24

map/inmap
Checks if a processor is in the map.

Syntax
b = inmap(m, r)

Description
b = inmap(m, r) checks if processor rank r is in map m. Returns TRUE for Boolean if rank r
is in the map, FALSE otherwise.

Distributed matrices and matrix manipulation

 25

Matrix manipulation

dmat/find
Find indices of nonzero elements in a dmat.

Syntax

[I, J] = find(X)

Description
[I, J] = find(X) returns the row and column indices of nonzero elements of the dmat X.

Remarks
Currently supports only [I, J] = find(X) calling convention. Only works on 2D dmats.

find requires every processor to send its results to every other processor, thus can incur a
significant amount of communication overhead.

Distributed matrices and matrix manipulation

 26

Distributed matrix manipulation

dmat/agg
Aggregates the parts of a dmat on the leader processor.

Syntax

A = agg(D)

Description
A = agg(D) aggregates the parts of a dmat D into a whole and returns it as a regular double
matrix, A. If the current processor is the leader, returns the aggregated matrix. Otherwise,
returns the local part of D.

Remarks
Currently, it doesn’t matter if the leader is in the map – the global matrix is returned on the
leader, regardless.
Note that agg incurs communication overhead to aggregate D onto the leader processor.

Since A on the leader processor contains the entire contents of D but on all other processors
contains only the local portion of D, A will have different values and sizes on each processor.
Thus, agg should be used with caution.

Distributed matrices and matrix manipulation

 27

dmat/agg_all
Aggregates the parts of a dmat onto all processors.

Syntax

A = agg_all(D)

Description
A = agg_all(D) aggregates the parts of a dmat D onto all processors in the map of D and returns
a regular double matrix A.

Remarks
Unlike agg, agg_all creates a result that is consistent in size and values across all processors .
However, because agg_all causes all processors to communicate with all processors, agg_all
can incur a significant amount of communication and should be used with caution.

dmat/local
Returns the local part of the dmat.

Syntax
D_local = local(D)

Description
D_local = local(D) Returns the local part of the dmat D on the current processor.

Examples
The following diagram shows four processors obtaining their respective local parts of the dmat,
D, and copying the contents into a local variable, D_local. Note that D_local exists on each
processor but contains different data.

Distributed matrices and matrix manipulation

 28

dmat/put_local
Assigns new data to the local part of the dmat.

Syntax

D = put_local(D, D_LOCAL)

Description
D = put_local(D, D_LOCAL) assigns D_LOCAL to the local part of the dmat D.

Examples
The following diagram shows four processors each writing a local matrix, D_local, into their
respective parts of a dmat, D. Note that D_local on each processor must be the same size as the
local portion of their respective parts of D.

Distributed matrices and matrix manipulation

 29

dmat/synch
Synchronize the overlapped data in a dmat.

Syntax
 D = synch(D)

Description
D = synch(D) If overlap is present, the owner processor of the overlapping data sends its data
to the processor that has a copy of the overlapping data. No-op if there is no overlap.

Remarks
The owner is the processor with the higher index in the grid in the corresponding dimension. For
example, if the overlap is in the second dimension the owner is the processor in the column of
the grid with the higher index.

remap
Remaps a dmat with a new map.

Syntax
 remap(X, NEW_MAP)

Description
remap(X, NEW_MAP) takes a dmat X and redistributes it according to the specified map NEW_MAP.

Distributed matrices and matrix manipulation

 30

dmat/subsasgn
Subscripted assignment to a distributed object. Overloaded method for A(I)=B. Should not be
called directly.

Syntax

A = subsasgn(A, S, B)

Description
A = subsasgn(A, S, B) Subscripted assignment of B (right hand side) to A (left hand side). A
is of type dmat. B can be of type dmat or double. S is a structure array with the fields:

• type: String containing '()', '{}', or '.' specifying the subscript type. Currently only
supports '()' .

• subs: Cell array or string containing the actual subscripts.

Remarks
In cases where A(I) and/or B are distributed across multiple processors, subsasgn will
automatically transfer the appropriate data between processors.

Distributed matrices and matrix manipulation

 31

dmat/subsref
Subscripted reference. Overloaded method for A(I). Should not be called directly.

Syntax
 B = subsref(A, S)

Description
B = subsref(A, S) Subscripted reference on a dmat A. S is a structure array with the fields:

• type: String containing '()', '{}', or '.' specifying the subscript type.
• subs: Cell array or string containing the actual subscripts.

Remarks:

Currently, subsref will only return a standalone dmat in the following cases:
• A(:,:) – Refers to the entire contents of the dmat A

• A(i,j) – Refers to a single element in the dmat A. Returns a new dmat containing the
value at (i,j) stored on the processor which contained that element in A.

In all other cases, subsref will not produce a “standalone” dmat, i.e. the resulting dmat can not
be directly used as an input to any pMatlab function, with the exception of local.

Distributed matrices and matrix manipulation

 32

map/subsasgn
Subscripted assignment. Should not be called directly.

Syntax
A = subsasgn(A, S, B)

Description
A = subsasgn(A, S, B) Subscripted assignment of B (right hand side) to A (left hand side).

A.FIELD = B allows the fields of a map object A to be assigned using the '.' notation (complies
with structure behavior).

Remarks
This functionality might be deprecated from the final API, to limit control the user has of private
members of the MAP object.

map/subsref
Subscripted reference. Should not be called directly.

Syntax
 B = subsref(A, S)

Description
A = subsref (A, S, B) Subscripted assignment of A (right hand side) to B (left hand side).

B = A.FIELD allows the fields of a map object A to be referenced using the '.' notation
(complies with structure behavior).

Remarks
This functionality might be deprecated from the final API, to limit control the user has of private
members of the MAP object. subsref might be replaced by get functions.

Elementary math functions

 33

Elementary math functions

dmat/abs
Absolute value.

Syntax
 Y = abs(X)

Description
abs(X) returns a dmat Y that contains the absolute values of X. Y has the same mapping as X.

dmat/complex
Construct complex dmat from real dmat.

Syntax

C = complex(A)

C = complex(A, B)

Description
C = complex(A) for real A returns the complex dmat C with real part A and all zero imaginary
part.

C = complex(A, B) returns the complex dmat A + Bi. A and B must have the same mapping.

Operators and special characters

 34

Operators and special characters

dmat/plus
+ Plus.

Syntax
R = P + Q

Description
R = P + Q adds two matrices together. P and/or Q can be a distributed matrix with any type of
distribution. If both P and Q are of type dmat, then R will have P’s map. Otherwise, R will have
the map of the dmat input.

dmat/mtimes
* Matrix multiply.

Syntax
C = A * B

Description
C = A * B multiples two matrices together. A and/or B may be a dmat with any type of
distribution. If both A and B are of type dmat, then C will have A’s map. Otherwise C will have
the map of the dmat input.

Remarks
Overlaps have not been tested.

Operators and special characters

 35

dmat/times
.* Element times

Syntax
 A .* B

Description
A .* B element-wise multiplies the local part of the dmat A by a non-dmat B. ALWAYS returns
a dmat. A and B must have the same dimensions unless one is a scalar. The scalar may be either
distributed or non-distributed.

Remarks
times currently only supports the following (reverse orders of operands are also supported):

• scalar double .* scalar dmat

• scalar double .* non-scalar dmat
• scalar dmat .* scalar dmat

• scalar dmat .* non-scalar dmat
• scalar dmat .* non-scalar double

• non-scalar dmat .* non-scalar dmat (if maps are equal)

If multiplying a non-scalar dmat by a scalar (double or dmat), the product's map is equal to the
non-scalar dmat's.

If multiplying a non-scalar double by a scalar dmat, the product uses a single-processor map
with block distribution on the same processor as the scalar dmat.

Operators and special characters

 36

dmat/eq
== Equal.

Syntax
 A == B

Description
A == B compares the dimensions, maps, sizes and data of A and B.

If A and B’s maps, dimensions, and sizes agree then the output is a dmat with 0 where elements
are not equal and 1 where elements are equal (similar to serial MATLAB).

If the maps are not equal, then a 0 is returned regardless of any other properties.
If the maps agree but the dimensions and/or sizes are not equal, then an error is thrown
(analogous to serial MATLAB behavior).

map/eq
== Equal.

Syntax

A == B

Description
A == B compares member variables of maps A and B. If all are the same then TRUE is
returned, otherwise FALSE is returned.

Operators and special characters

 37

dmat/gt
> Greater than.

Syntax
A > B

Description
A > B compares each element of dmat A to scalar B. Returns a dmat with each entry equal to 0 if
original entry was < B, and 1 otherwise. Calls the MATLAB gt on the local part of A.

map/ne
~= Not equal.

Syntax

A ~= B

Description
A ~= B Returns FALSE if two maps are equal, TRUE otherwise. Two maps are equal if their
grids are equal.

Sparse matrices

 38

Sparse matrices

map/sparse
Create a sparse dmat.

Syntax

S = sparse([],[],[],M,N,NZMAX,P)

S = sparse([],[],[],M,N,P)

S = sparse([],[],[],P)

S = sparse(M,N,P)

Description
S = sparse(I,J,S,M,N,NZMAX,P) generates an M-by-N sparse dmat distributed according to
map P with space allocated for NZMAX nonzeros (note that NZMAX applies to the overall dmat, not
to individual processors. NZMAX will be distributed as evenly as possible over all processors).
The rows of [I,J,S] are intended to be used to initialize the non-zero values of the matrix.
However, sparse currently does not support the use of I,J, and S in pMatlab; they are kept to
remain consistent with the sparse function built into MATLAB.

There are four ways that sparse can be called:
• S = sparse([],[],[],M,N,NZMAX,P)
• S = sparse([],[],[],M,N,P) uses NZMAX = 0.
• S = sparse([],[],[],P) uses M = 0 and N = 0. This generates the ultimate sparse

matrix, an M-by-N all zero matrix.
• S = sparse(M,N,P) abbreviates sparse([],[],[],M,N,0,P). This also generates an

M-by-N all zero matrix.

Remarks
The recommended method of creating a sparse dmat is with spalloc.

Sparse matrices

 39

map/spalloc
Allocate space for a sparse dmat.

Syntax
S = spalloc(M, N, NZMAX, P)

Description
S = spalloc(M, N, NZMAX, P) creates an M-by-N all zero sparse dmat with room to eventually
hold NZMAX nonzeros.

Remarks
NZMAX applies to the overall dmat, not individual processors. NZMAX is evenly distributed across
processors

dmat/sparse
Converts a dmat to a sparse dmat

Syntax

S = sparse(X)

Description
S = sparse(X) converts a full dmat to sparse form by squeezing out any zero elements. If X is
already a sparse dmat, sparse(X) returns X.

Data analysis and Fourier transforms

 40

Data analysis and Fourier transforms

dmat/conv2
Two dimensional convolution.

Syntax
C = conv2(A, B, 'shape')

Description
C = conv2(A, B, 'shape') performs the 2D convolution of dmat A and double B. Returns a
subsection of the 2D convolution with size specified by 'shape'.

Remarks
Only 'shape' == 'same' is supported, which returns the central part of the convolution of the
same size as A.

dmat/fft
Discrete Fourier transform on a dmat.

Syntax

Y = fft(X)

Y = fft(X, [], DIM)

Y = fft(X, N, DIM)

Description
fft(X) is the discrete Fourier transform (DFT) of matrix X. The FFT operation is applied to each
column. If the matrix X is row distributed, fft displays a warning and remaps X. Calls
MATLAB fft on the local part.
fft(X, [], DIM) or fft(X, N, DIM) applies FFT across dimension DIM. fft(X, N, DIM)
returns the N -point DFT. If X is distributed along a dimension other than dimension DIM,
displays a warning and remaps X along the dimension DIM. Calls the MATLAB fft on the local
part.
For example, suppose that X is distributed row-wise. Calling Y = fft(X, [], 1), which will
perform a FFT on each column, will perform the following remapping:

Data analysis and Fourier transforms

 41

Remarks
fft supports 2D and 3D dmats.

If fft remaps X, Y has the new map (different from the original map passed in with X).

Index

 42

Index
dmat

abs, 33

agg, 26
agg_all, 27

complex, 33
conv2, 40

display, 15
eq, 36

fft, 40
find, 25

global_block_range, 16
global_block_ranges, 17

global_ind, 18
global_inds, 19

global_range, 20
global_ranges, 22

gt, 37
local, 27

mtimes, 34
ndims, 14

plus, 34
put_local, 28

size, 14
sparse, 39

subsasgn, 30

subsref, 31
synch, 29

times, 35
map

display, 15
eq, 36

inmap, 24
map, 7

ne, 37
ones, 12

rand, 13
spalloc, 39

sparse, 38
subsasgn, 32

subsref, 32
zeros, 11

MatMPI_Delete_all, 6
MPI_Abort, 5

MPI_Run, 6
pMATLAB, 4

pMatlab_Finalize, 5
pMatlab_Init, 4

pMatlab_ver, 5
remap, 29

