
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United
States Government

Profiling pMatlab and MatlabMPI Applications Using the MATLAB 7 Profiler

Hahn Kim, Albert Reuther
{hgk, reuther}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

1 Introduction
The most common reason to write parallel programs is to improve performance. Consequently, the
ability to measure the runtime performance of a parallel program is of primary importance. One of the
most common ways to measure performance of serial programs is to use a profiler. MATLAB contains
a built-in profiler, which can also be used to profile parallel MATLAB programs written with pMatlab
and MatlabMPI. The profiler can be run from the MATLAB command prompt or a GUI launched from
the MATLAB “Start” menu. This paper describes how to use profiler’s command line interface with
pMatlab and MatlabMPI, since the GUI simply interfaces with the command line interface. This
document assumes the user is using MATLAB 7.

We assume that the reader is already familiar with pMatlab or MatlabMPI. For more information about
pMatlab or MatlabMPI, see [1][2][3][4][5]. For more details on the profiler, please refer to the help file
available from MATLAB by running “help profile” at the MATLAB command prompt.

2 Using the Profiler

2.1 Profiler Results
The MATLAB profiler records the following information for each function/script:

• Execution time
• Number of calls
• Parent/child functions
• Code line hit count
• Code line execution time

2.2 Turning the Profiler On/Off
The profiler is controlled using the profile command. To start the profiler, simply insert “profile
on” at the beginning of the section of code you wish to profile:

% Start profiling
profile on;

To stop recording profile information, insert “profile off” at the end of the section of the code you
wish to profile:

% Stop profiling
profile off;

To resume profiling after the profiler has been stopped without clearing previously recorded
information, insert “profile resume” where you wish to resume profiling. This allows you to profile
non-contiguous sections of code:

% Resume profiling
profile resume;

Due to the SPMD nature pMatlab and MatlabMPI, each rank is an independent MATLAB process.
Consequently, the profile commands are run by each rank just as in a regular MATLAB process.
Each rank profiles itself and only itself, independent of all other ranks in the pMatlab or MatlabMPI job.

2.3 Saving Profiler Results
In a serial MATLAB program, profile results can be returned to the user’s workspace so that they can be
viewed. However, extra effort is required to view profile data for a pMatlab and MatlabMPI job since
profile data generated by multiple MATLAB processes. Fortunately, the profiler returns the profile
results as a variable, allowing remote pMatlab and MatlabMPI processes to save their profile data to
disk.

The profiler can generate two data structures that contain the current status of the profiler and the
profiler results using the “profile('status')” and “profile('info')” commands, respectively:

% Get current status of profiler
profile_status = profile('status');

% Get profile results
profile_info = profile('info');

These data structures can be saved to a file, specified by the filename parameter, using MATLAB’s
MAT-file format.

% Save profile_status and profile_info to a .mat file
% so it can be viewed later by loading the file and using
% profsave.
save(filename, 'profile_status', 'profile_info');

The profile information saved in the profile_info variable is used to generate a report, using the
profsave command. The report is saved to disk as a set of HTML files in a directory specified with
the dirname parameter. The report summarizes the profile results described in Section 2.1:

% Generate the HTML report for local rank
profsave(profile_info, dirname);

Since all ranks will save profile_status and profile_info and the HTML report to disk, each
rank must use unique values for filename and dirname. The simplest way to accomplish this is to
use the rank of each MATLAB process in the file and directory names:

% Create a unique filename
profile_profname = ['profile_' num2str(my_rank)];

% Save the profile_status and profile_info to a .mat file
% so it can be viewed later by loading the file and using
% profsave.
save(profile_profname, 'profile_status', 'profile_info');

% Generate HTML report for the local rank
profsave(profile_info, profile_profname);

The code presented in this section will generate the following:

1. profile_<rank>.mat – Contains profile_status and profile_info.
2. profile_<rank> – Directory containing the HTML files for the profile report.
3. profile_<rank>/file0.html, profile_<rank>/file1.html,

profile_<rank>/file2.html, profile_<rank>/file3.html… – Files containing
the profile report. Each file contains profile information for a single function in the program.
file0.html represents the top level function; this is the file the user should open first.

3 Viewing Profile Results
To view these resulting files, open the profile_<rank>/file0.html file in your favorite web
browser for each rank:

• …/profile_0/file0.html
• …/profile_1/file0.html
• …/profile_2/file0.html
• …/profile_3/file0.html
• Etc.

Figure 1 shows the results of profiling the pBlurimage.m example program contained in the examples
directory in pMatlab. Note a separate browser window is opened for the profile report generated by
each rank.

4 Template Code
Figure 2 contains template code that summarizes the code presented in this document. These templates
can be used with to profile any MatlabMPI or pMatlab program.

5 Determining MPI_Recv Wait Times
Profiling the amount of time that a pMatlab or MatlabMPI process spends waiting to receive messages
can expose inefficiencies in the program; time spent waiting for messages could potentially be better
spent on computation. In the profile_<rank>/file0.html file, select the link for the MPI_Recv
function and see how much time has been spent in the receive wait loop, including the MatMPI_Sleep
function.

6 MATLAB Settings
The MATLAB profiler requires Java, which means every process in a pMatlab or MatlabMPI job must
have Java enabled. Consequently, MATLAB can not be launched using the -nojvm flag on either the
user’s computer or on remote machines. In fact, Mathworks no longer support MATLAB running in
nojvm mode. When launching MATLAB on your computer, do not use the -nojvm flag; unless you

launch directly from your operating system’s command prompt, it is unlikely that this will happen. To
ensure that remote MATLAB processes launch with Java enabled, make sure that the
machine_db_settings.matlab_command setting in MatMPI_Comm_settings.m does not contain
–nojvm; it is okay to ignore the DON’T CHANGE comment.

Note that the profsave command automatically attempts to launch a web browser to display the
HTML report. If MATLAB is configured correctly on the user’s desktop machine, then profsave will
launch a web browser. However, remote MATLAB processes will not be able to launch a web browser
since they are not running the MATLAB GUI. Instead, the following warning message will be
displayed in the MatMPI/*.out files for each remote rank:

which: no netscape in (/usr/local/bin:/bin:/usr/bin)

To learn how to configure your Web browser type 'help docopt'

This is not an error but, unfortunately, there is no way to disable launching the web browser in the
profsave command. Simply ignore this message.

7 Conclusion
Using the MATLAB profile suite in MatlabMPI applications will make performance improvements
easier to determine, implement, and test.

Figure 1 – Profile reports generated by each pMatlab or MatlabMPI rank should be opened in a separate web

browser window.

MatlabMPI pMatlab
% Initialize MatlabMPI
MPI_Init;

% Get local rank
my_rank = MPI_Comm_rank;

% Start the profiler
profile on;

% ...
% CODE TO PROFILE
% ...

% Stop the profiler
profile off;

% ...
% CODE NOT TO PROFILE
% ...

% Resume profiling
profile resume;

% ...
% MORE CODE TO PROFILE
% ...

profile off;

% Get current status of profiler
profile_status = profile('status');

% Get profile results
profile_info = profile('info');

% Create a unique filename
profile_profname = ['profile_' ...
 num2str(my_rank)];

% Save profile_status and profile_info to
% a .mat file so it can be viewed later
% by loading the file and using
% profsave.
save(profile_profname, ...
 'profile_status', ...
 'profile_info');

% Generate HTML report for the local rank
profsave(profile_info, ...
 profile_profname);

% Finalize MatlabMPI
MPI_Finalize;

% Initialize pMatlab
pMatlab_Init;

% Get local rank
my_rank = pMATLAB.my_rank;

% Start the profiler
profile on;

% ...
% CODE TO PROFILE
% ...

% Stop the profiler
profile off;

% ...
% CODE NOT TO PROFILE
% ...

% Resume profiling
profile resume;

% ...
% MORE CODE TO PROFILE
% ...

profile off;

% Get current status of profiler
profile_status = profile('status');

% Get profile results
profile_info = profile('info');

% Create a unique filename
profile_profname = ['profile_' ...
 num2str(my_rank)];

% Save profile_status and profile_info to
% a .mat file so it can be viewed later
% by loading the file and using
% profsave.
save(profile_profname, ...
 'profile_status', ...
 'profile_info');

% Generate HTML report for the local rank
profsave(profile_info, ...
 profile_profname);

% Finalize pMatlab
pMatlab_Finalize;

Figure 2 – Templates for adding profiler code to MatlabMPI and pMatlab programs.

8 References
[1] J. Kepner. “Parallel Programing with MatlabMPI.” 5th High Performance Embedded Computing

workshop (HPEC 2001), September 25-27, 2001, MIT Lincoln Laboratory, Lexington, MA
[2] J. Kepner and N. Travinin. “Parallel Matlab: The Next Generation.” 7th High Performance

Embedded Computing workshop (HPEC 2003), September 23-25, 2003, MIT Lincoln Laboratory,
Lexington, MA.

[3] J. Kepner, A. Reuther, H. Kim. “Parallel Programming in Matlab Tutorial.” MIT Lincoln
Laboratory.

[4] H. Kim, J. Mullen. “Introduction to Parallel Programming and pMatlab.” MIT Lincoln
Laboratory.

[5] H. Kim, N. Travinin. “pMatlab v0.7 Function Reference.” MIT Lincoln Laboratory.

