
300x Matlab

Jeremy Kepner (kepner@ll.mit.edu)
MIT Lincoln Laboratory, Lexington, MA 02420

May 31, 2002

Abstract

The true costs of high performance computing are currently
dominated by software. Addressing these costs requires shift-
ing to high productivity languages such as Matlab. Mat-
labMPI is a Matlab implementation of the Message Passing
Interface (MPI) standard and allows any Matlab program to
exploit multiple processors. The performance has been tested
on both shared and distributed memory parallel computers
(Sun, SGI, HP, IBM and Linux). A test image filtering ap-
plication using MatlabMPI achieved a speedup of �300 us-
ing 304 CPUs and �15% of the theoretical peak (450 Gi-
gaflops) on an IBM SP2 at the Maui High Performance Com-
puting Center. In addition, this entire parallel benchmark
application was implemented in 70 software-lines-of-code
(SLOC) yielding 0.85 Gigaflop/SLOC or 4.4 CPUs/SLOC.
The MatlabMPI software will be available for download at
hpcmo.hpc.mil.

1 Introduction

Matlab [1] is the dominant programming language for imple-
menting numerical computations and is widely used for al-
gorithm development, simulation, data reduction, testing and
system evaluation. The popularity of Matlab is driven by the
high productivity that is achieved by users because one line
of Matlab code can typically replace ten lines of C or For-
tran code. Many Matlab programs can benefit from faster
execution on a parallel computer and there have been many
previous attempts to provide an efficient mechanism for run-
ning Matlab programs on parallel computers (see [4] for a
complete list of these efforts).

The Message Passing Interface (MPI) [2] is the de facto
standard for implementing programs on multiple processors.
MatlabMPI[5] consists of a set of Matlab scripts that imple-
ments a subset of MPI and allows any Matlab program to
be run on a parallel computer. The key innovation of Mat-
labMPI is that it implements the widely used MPI “look and

This work is sponsored by the High Performance Computing Mod-
ernization Office, under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author
and are not necessarily endorsed by the Department of Defense.

feel” on top of standard Matlab file I/O, resulting in a “pure”
Matlab implementation that is exceedingly small (�250 lines
of code). Thus, MatlabMPI will run on any combination of
computers that Matlab supports.

2 Bandwidth and Scalability Results

MatlabMPI has been run on Sun, HP, IBM, SGI and Linux
platforms. These results indicate that for large messages (�1
MByte) MatlabMPI is able to match the performance of C
MPI [5]. In addition, MatlabMPI performance scales well to
multiple processors (see Figure 1).

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1K 4K 16K 64K 256K 1M 4M 16M

Message Size (Bytes)

B
a
n

d
w

id
th

 (
B

y
te

s
/s

e
c
)

16 Processors

2 Processors

Figure 1: Bandwidth on a Linux Cluster. Send/receive
benchmark run on an eight node (16 cpu) Linux cluster con-
nected with Gigabit ethernet.

To further test the scalability of MatlabMPI a simple im-
age filtering application based on the key computations used
in many DoD sensor processing applications (e.g. wide area
Synthetic Aperture Radar). The image processing application
was run with a constant load per processor (1024 x 1024 im-
age per processor) on a large shared/distributed memory sys-
tem (the IBM SP2 at the Maui High Performance Computing
Center). In this test, the application achieved a speedup of
�300 on 304 CPUs as well achieving �15% of the theoreti-
cal peak (450 Gigaflops) of the system (see Figure 2).

1



0

1

10

100

1 10 100 1000

MatlabMPI

Linear

Number of Processors

G
ig

a
fl

o
p

s

Figure 2: Shared/Distributed Parallel Speedup. Measured
performance on the IBM SP2 of a parallel image filtering ap-
plication.

The ultimate goal of running Matlab on parallel computers
is to increase programmer productivity and decrease the large
software cost of using HPC systems. Figure 3 plots the soft-
ware cost (measured in Software Lines of Code or SLOCs)
as a function of the maximum achieved performance (mea-
sured in units of single processor peak) for the same image
filtering application implemented using several different li-
braries and languages (VSIPL, MPI, OpenMP, using C++, C,
and Matlab [6]). These data show that higher level languages
require fewer lines to implement the same level of function-
ality. Obtaining increased peak performance (i.e. exploiting
more parallelism) requires more lines of code. MatlabMPI
is unique in that it achieves a high peak performance using a
small number of lines of code.

Two useful metrics we have developed for measuring soft-
ware productivity on high performance parallel systems are
Gigaflops/SLOC and CPUs/SLOC. The test application does
extremely well in both of these measures, achieving 0.85 Gi-
gaflops/SLOC and 4.4 CPUs/SLOC.

3 Conclusions and Future Work

MatlabMPI provides the highest productivity parallel com-
puting environment available. However, because it is a point-
to-point messaging library, a significant amount code of must
be added to any application in order to do basic parallel oper-
ations. In the test application presented here, the number of
lines of Matlab code increased from 35 to 70. While a 70 line
parallel program is extremely small, it represents a significant
increase over the single processor case. Our future work will

10

100

1000

0.1 1 10 100 1000

Matlab

VSIPL/MPI

Single
Processor

Shared
Memory

Distributed
Memory

Matlab

C

Peak Performance

Lines
of

Code
C++

VSIPL

Parallel
Matlab*

MatlabMPI

VSIPL/OpenMP

PVL
VSIPL/MPI

Current
Research

Current
Practice

Figure 3: Productivity vs Performance. Lines of code as
a function of maximum achieved performance (measured in
units of single processor theoretical peak) for different imple-
mentations of the same image filtering application.

aim at creating higher level objects (e.g. distributed matri-
ces) that will eliminate this parallel coding overhead. The
resulting “Parallel Matlab Toolbox” will be built on top of
the MatlabMPI communication layer, and will allow a user
to achieve good parallel performance without increasing the
number lines of code.

References

[1] Matlab, The MathWorks, Inc.,
http://www.mathworks.com/products/matlab/

[2] Message Passing Interface (MPI), http://www.mpi-
forum.org/

[3] MATLAB*P, A. Edelman, MIT, http://www-
math.mit.edu/�edelman/

[4] Parallel Matlab Survey, R. Choy, MIT,
http://supertech.lcs.mit.edu/�cly/survey.html

[5] J. Kepner, Parallel Programming with MatlabMPI,
2002, High Performance Embedded Computing
(HPEC) workshop, MIT Lincoln Laboratory, Lexing-
ton, MA http://arXiv.org/abs/astro-ph/0107406

[6] J. Kepner, A Multi-Threaded Fast Convolver for Dy-
namically Parallel Image Filtering, 2002, accepted Jour-
nal of Parallel and Distributed Computing

2


