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CHAPTER 1 Introducing LNKnet

1.1 Overview

LNKnet software was developed to simplify the application of the most important sta-
tistical, neural network, and machine learning pattern classifiers. The acronym LNK 
stands for the first initials of three principal programmers (Richard Lippmann, Dave 
Nation, and Linda Kukolich). An introductory article to LNKnet, which is meant to sup-
plement this user’s guide, is available in [27]. This article reviews approaches to pattern 
classification and illustrates how LNKnet was applied to three different applications. 
LNKnet software was originally developed under Sun Microsystem’s Solaris 2.5.1 
(SunOS 5.5.1) UNIX operating system under Sun Open Windows. It was then ported to 
Solaris 2.6 (SunOS 5.6) and to Red Hat Linux. It was also recently modified to run 
under Microsoft Window’s operating systems using the Cygwin environment. Binary 
versions of LNKnet are provided for Red Hat Linux, Solaris 2.6 and higher, and the 
Windows Cygwin environment. Source code is also provided and it is relatively easy to 
recompile LNKnet under other versions of Linux and Unix because the GNU auto con-
figuration tools are used to control compilation. All illustrations and descriptions in this 
guide show windows and plots as they appear under Solaris 2.5.1 using Open Windows 
except for Support Vector Machine windows and plots which are as they appear under 
Red Hat Linux. Windows and plots appear slightly different under the other operating 
systems. LNKnet includes a graphical user interface to over 22 pattern classification, 
clustering, and feature selection algorithms. Decision region plots, scatter plots, histo-
grams, structure plots, receiver operating characteristics plots, and other types of visual 
outputs are provided. Experiment log files and plots can be reviewed from the LNKnet 
graphical user interface. Classifiers can be trained on data bases with thousands of input 
features and millions of training patterns. 

The three primary approaches to using LNKnet are shown in Figure 1.1. Experimenters 
can use the LNKnet point-and-click user interface, manually edit shell scripts that con-
tain LNKnet commands to run batch jobs, or embed generated C versions of trained 
LNKnet classifiers in application programs. The point-and-click graphical user inter-
face, listed on the top of Figure 1.1, can be used to rapidly and interactively experiment 
with classifiers on new data bases. This makes it relatively easy to explore the effective-
ness of different pattern classification algorithms, to perform feature selection, and to 
select algorithm parameters appropriate for different problems. A new data base must 
first be put into a simple ASCII format that can be hand-edited using a text editor. Users 
then make selections on LNKnet windows using a mouse and keyboard, and run experi-
ments by pushing buttons using the mouse. A complex series of experiments on a new 
moderate-sized data base (10,000’s of patterns) can be completed in less than an hour. 
LNKnet Users Guide (Revision 4, February 2004) 1 



CHAPTER 1: Introducing LNKnet
Use of the point-and-click interface requires no knowledge of UNIX shell scripts, of C 
programming, or of how the algorithms are implemented.

Users who want to run long batch jobs can edit the shell scripts produced by the point-
and-click interface and run these customized shell scripts. This simplifies repetitive 
application of the same algorithm to many data files and can automate the application of 
LNKnet when a batch mode is desirable. It requires understanding of shell scripts and of 
arguments to LNKnet programs. Shell scripts are almost always used for large data 
bases after initial explorations on smaller data subsets using the point-and-click inter-
face.

In addition to on-line and batch control, C programmers can embed C source code that 
implements LNKnet subroutines and libraries in user application programs. This use of 
LNKnet has been simplified by providing filter programs which read in LNKnet files 
that define trained classifiers and create C source code subroutines to implement those 
classifiers. This feature of LNKnet allows classifiers to be run on any computer that has 
a C compiler.

This user’s guide demonstrates all three approaches to using LNKnet. It primarily pro-
vides a comprehensive description of the LNKnet graphical user’s interface. It also 
shows how shell scripts produced using the graphical user interface can be edited to cre-
ate batch jobs (see Section 7.4). In addition, it describes how filter programs (mlp2c, 

THREE METHODS OF USING LNKnet SOFTWARE

FIGURE 1.1 Experimenters can use the LNKnet point-and-click user 
interface, manually edit shell scripts that contain LNKnet 
commands to run batch jobs, or embed generated C versions 
of trained LNKnet classifiers in application programs.

POINT AND 
CLICK USER 
INTERFACE

BATCH MODE 
USING UNIX SHELL 

SCRIPTS

EMBED C ROUTINES IN 
USER APPLICATION 

PROGRAMS

GENERATE 
SHELL SCRIPTS

GENERATE C 
ROUTINES
2 LNKnet Users Guide (Revision 4, February 2004)



1.2: Algorithms
knn2c, etc.) can be used to generate C source code to implement LNKnet classifiers and 
how this source code can be embedded in a user’s program (see Section 7.2).

This guide assumes that the reader is familiar with the basic concepts of pattern classifi-
cation. The article mentioned above [27], provides a brief introduction to LNKnet and 
pattern classification. Recent reviews of pattern classification techniques including neu-
ral networks and machine learning approaches are available in [2,7,14,40]. Good older 
discussions of pattern classification are available in [1,9,30]. Algorithmic descriptions 
of the classifiers included in LNKnet are included in the references listed in Table 1.1. 
Many of these algorithms are also described in [5,7,14].

1.2 Algorithms

Table 1.1 lists the static pattern classification, clustering, and feature selection algo-
rithms that are available in LNKnet. Algorithms include classifiers trained using super-
vised training with labeled training data, clustering algorithms trained without 
supervision using unlabeled training data, and classifiers that use clustering to initialize 
internal parameters and then are trained further with supervised training. Canonical lin-
ear discriminant and principal components analyses are provided to reduce the number 

SUPERVISED 
TRAINING

COMBINED UNSUPERVISED-
SUPERVISED TRAINING

UNSUPERVISED 
TRAINING 

(Clustering)
NEURAL

NETWORK
ALGORITHMS

Back-Propagation(BP) [21,25]

Adaptive Stepsize BP [21]

Cross-Entropy BP [36]

Top-2-Difference BP [10,11]

Hypersphere Classifier [1]

Committee [7]

Radial Basis Function (RBF) [28]

Incremental RBF (IRBF) [28]

Top-2-Diff IRBF [10,11]

Learning Vector Quantizer [21]

Nearest-Cluster Classifier [7,28]

Leader Clustering 
[12,28]

CONVENTIONAL
PATTERN

CLASSIFICATION
ALGORITHMS

Gaussian Linear Discriminant [7]

Quadratic Gaussian [7]

K-Nearest Neighbor (KNN) [7]

Condensed KNN [7,28]

Binary Tree [3, 21]

Parzen Window [7,39]

Histogram [7]

Naive Bayes Classifier [14]

Support Vector Machine [5]

Gaussian Mixture (GMIX) Classi-
fier [28]

Diagonal/Full Covariance GMIX

Tied/Per-Class Centers GMIX

K-Means Clustering [7]

E&M Clustering [28]

FEATURE
 SELECTION

ALGORITHMS

Canonical Linear Discriminant 
Analysis [7,9]

Forward and Backward Search 
using N-fold Cross Validation [6]

Principal Components 
Analysis [7,9]

TABLE 1.1: Current LNKnet Algorithms
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CHAPTER 1: Introducing LNKnet
of input features using new features that are linear combinations of old features. For-
ward and backward searches are provided to select a small number of features from 
among the existing features. These searches can be performed using any LNKnet classi-
fier with N-fold cross validation or using a nearest neighbor classifier and leave-one-out 
cross validation. Bracketed references after algorithm names in Table 1.1 are to refer-
ences in the bibliography that provide detailed descriptions of algorithms. Overall sum-
maries and comparisons of these algorithms are available in [2,11,14,18, 
21,22,24,25,28,29,36,40].

1.3 Running a Pattern Classification Experiment

The LNKnet graphical interface is designed to simplify classification experiments. Fig-
ure 1.2 shows the sequence of operations involved in the most common classification 
experiment. First, a classification algorithm is selected. In addition to choosing an algo-
rithm, parameters that affect the structure or complexity of the resulting classifier are 
selected. These parameters are sometimes called regularization or smoothing parame-
ters. These hand-selected parameters must be modified to match the complexity of a 
classifier to the complexity of each individual classification task. They include the num-
ber of nodes and layers for MLP classifiers and trees, the training time and value of 
weight decay for MLP classifiers, the order of polynomial Support Vector Machines 
(SVMs), the width for Gaussian kernel SVMs, the number of mixture components for 
Gaussian mixture classifiers, the type of covariance matrix used (full or diagonal, grand 
average across or within classes) for Gaussian or Gaussian mixture classifiers, and 
parameters that affect the complexity or structure of other classifiers. 

This figure assumes that a database of patterns has already been created. This database 
contains many labeled feature vectors where the label indicates the class the pattern 
belongs to and numeric feature values will be used to predict class membership in the 
future using generated classifiers. When a sufficient number of patterns are available 
(1000’s of patterns), a database can be split into three separate sets of data designated as 
training data, evaluation data, and test data. This split often assigns 60% of the patterns 
to training data, 20% to evaluation data, and 20% to test data. As shown in Figure 1.2, 
training data is initially used to train the internal weights or trainable parameters in a 
classifier. The error rate of the trained classifier is then evaluated using evaluation data. 
Repeated evaluations followed by retraining with different regularization parameter val-
ues are used to select a classifier structure that provides low error rate on the evaluation 
data. Evaluation data is necessary because it is frequently possible to design a classifier 
that provides a low error rate on training data but that doesn’t provide a low error rate on 
other data sampled from the same source. Adjusting regularization parameters and alter-
ing the classifier structure allows a user to modify the complexity of a classifier to pro-
vide good performance on the evaluation data. This approach uses training data to adjust 
trainable parameters and evaluation data to adjust the classifier size and complexity to 
provide good generalization. After all regularization parameters are adjusted, the classi-
fier generalization error rate on unseen data is estimated using test data. The use of test 
data for anything but a single final estimation of generalization error on unseen data 
makes the error rate estimated using this data suspect. When fewer patterns are available 
(100’s of patterns), a database is often split into only training and test data and 10-fold 
cross-validation is used on the training data to select regularization parameters. In this 
4 LNKnet Users Guide (Revision 4, February 2004)



1.4: Data Normalization and Feature Selection
case, the split often assigns 60% of the patterns to training data and 40% to test data. 
When only tens of patterns are available, only the training data is used with 10-fold 
cross validation. LNKnet automatically performs 10-fold (or more general k-fold) cross 
validation, but it does not partition the initial database into training, evaluation, and test 
sets. This partitioning must be performed prior to using LNKnet. It was not automated 
because the number of partitions depends on the number of patterns, partitioning is 
often predefined, and partitioning often depends on ancillary pattern characteristics that 
are not included as pattern features.

1.4 Data Normalization and Feature Selection

One of the most important features of LNKnet is the ability to normalize input data and 
to use a subset of input features for classification. Input feature normalization algo-
rithms available include simple normalization (normalize each feature separately to zero 
mean, unit variance), Principal Components Analysis (PCA), and Linear Discriminant 
Analysis (LDA) [7,9]. Feature selection algorithms include forward and backward 
searches [9]. These searches select features one at a time based on the increase or 
decrease in the error rate measured using cross validation and any classifier. Once a for-
ward or backward search, a PCA, or a LDA has been completed, a subset of features can 
be selected for use in classification. This subset can be the first, and presumably most 
important features, or a selection of unordered features. 

The order in which normalization and feature selection is applied is significant because 
some normalization methods (PCA and LDA) rotate the input space and change the 
meaning of features and because feature selection can eliminate or reorder input fea-
tures. LNKnet applies feature normalization and selection in the order shown in Figure 
1.3. First, the full input pattern is normalized. Features are then selected, and the result-
ing input pattern is presented to the classifier for training or testing. Either of these steps 

FIGURE 1.2 Components of a classification experiment.
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CHAPTER 1: Introducing LNKnet
can be skipped, allowing the classifier to use any or all features of the raw data or the 
normalized data.

1.5 Embedding LNKnet Classifiers in User 
Applications

All LNKnet classifiers have programs which automatically generate C code subroutine 
versions of the classifier testing algorithm. Parameters for the classifier, number and 
position of nodes, weight values, etc., are taken from a trained classifier parameter file. 
The C classification subroutines are self contained and can easily be included in and 
called from a User’s program. Section 7.2 describes C code subroutine generation more 
fully. This feature has allowed LNKnet classifiers to be used on an extremely wide 
range of computers. The C-code generated only performs classification, it does not 
adaptively train the classifier or allow the classifier to be retrained.

1.6 What To Read Next

At the bare minimum, you should read the short “Getting Started with LNKnet” booklet 
[20] that should have been provided with this User’s Guide. Also scan the “Common 
Questions and Problems” section in Appendix A. This will allow you to perform simple 
experiments and use the most basic LNKnet features.

If you want to use more advanced LNKnet features, read through this user’s guide in the 
order the sections are presented. The Quick Start booklet illustrates how to perform a 
simple experiment. This user’s guide contains a longer tutorial that walks you through a 
set of complex experiments. The user’s guide also contains classifier and clustering 
algorithm descriptions, and descriptions of procedures available across classifiers 
including data base selection, data normalization, feature selection, a priori class proba-
bility adjustment and cross-validation. This is followed by a description of the many 
types of plots, the creation of movie-mode training plots, recommendations concerning 
including LNKnet plots in reports, a description of reviewing and printing log files and 
plots from LNKnet, a summary of code generation programs that generate C source 
code to implement trained LNKnet classifiers, a discussion concerning creating shell 

RAW INPUT 
DATA FROM 

FILE

FIGURE 1.3 Feature Selection and Normalization Available in LNKnet.
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1.7: New LNKnet Features
scripts to run LNKnet experiments in a batch mode, a review of advanced LNKnet fea-
tures, and a description of input and output data formats and files. The Appendix con-
tains a list of common problems and questions, instructions for installing LNKnet, 
listings of the shell scripts created during the tutorial, descriptions of installed data 
bases, and a short tutorial which describes how to use the mouse in Sun OpenWindows. 

Detailed descriptions of LNKnet programs are available in man pages which are 
accessed using the UNIX man(1) command. The page LNKnet(1) lists all LNKnet pro-
grams and classifier(1) lists flags common to all classifier programs. 

1.7 New LNKnet Features

LNKnet source code was converted to use the GNU auto configure tools. This com-
bined with continued improvements in Linux and the Cygwin Linux-like environment 
made it relatively easy to port LNKnet to Red Hat Linux and to the Microsoft Windows 
OS using the Cygwin environment. LNKnet now runs on inexpensive Intel computers 
running Linux or Windows (under Cygwin) as well as on Sun Solaris workstations. 
Executables are provided for Red Hat Linux, for Windows with Cygwin, and Solaris. 
Others have run LNKnet on other versions of Linux and recompiled it for other versions 
of Linux and UNIX. 

Support vector machine classifiers (SVMs) were added including linear SVMs, polyno-
mial SVMs, and Gaussian kernel SVMs. To use SVMs on multiple-class problems 
(more than two classes), LNKnet includes an extension of SVMs to estimate posterior 
probabilities for binary classifiers. These binary classifiers are then used to estimate per-
class posterior probabilities. For multiple-class problems, SVMs can be created for all 
pairwise combinations of classes or for each class versus the other classes. In addition to 
SVMs, a naive Bayes classifier was also added. The graphical user interface for the 
naive Bayes classifier is simplified and does not allow control of usually unimportant 
algorithm parameters. Additional parameters can be adjusted when running the naive 
Bayes classifier from a shell script.

The names of many of the LNKnet executables have been changed to avoid collision 
with tools provided as parts of other statistical and classifier software toolkits by adding 
the suffix “_lnk”. For example the k-nearest neighbor classifier executable is now called 
knn_lnk instead of knn. This has no effect on the GUI and only changes the names in 
automatically generated shell scripts.

Illustrations and descriptions in this guide for SVM and naive Bayes classifiers show 
windows and plots as they appear under Red Hat Linux. Other illustrations and descrip-
tions were captured from Sun Solaris displays. Windows and plots appear slightly dif-
ferent under the other operating systems. 
LNKnet Users Guide (Revision 4, February 2004) 7 
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CHAPTER 2 A LNKnet tutorial

This tutorial introduces some of the general LNKnet classifiers and options. With LNK-
net you will solve a speech classification problem using a Multi-Layer Perceptron and a 
K Nearest Neighbor algorithm. You will generate diagnostic plots. You will continue an 
experiment by restoring LNKnet windows using the experiment’s screen file. You will 
use feature selection and normalization to reduce the number of input features in an 
experiment and you will use cross validation to experiment on a small data base. The 
tutorial assumes you are using the C-shell (csh) and running under the Solaris operating 
system. 

2.1 UNIX Setup

Before you can run LNKnet, you must add the LNKnet bin directory to your $PATH 
environment variable and the LNKnet man path to your $MANPATH environment vari-
able. First, find the LNKnet home directory, which is the directory in which LNKnet 
was installed. Assume this is /home/rpl/lnknet. If you are using the .cshrc shell 
under Solaris, then add the following three lines to the .cshrc file that can be found in 
your home directory.

setenv LNKHOME /home/rpl/lnknet
setenv PATH $LNKHOME/bin:${PATH}
setenv MANPATH $LNKHOME/man:${MANPATH}

The first line defines an environmental variable named $LNKHOME and sets it to the 
directory where LNKnet is installed. The second line uses this variable to add the LNK-
net bin directory to the search path for executables and the third adds the LNKnet man 
directory to the search path for manual pages. If you are running under RedHat Linux 
and using the bash shell, then add the following three lines to the .bash-profile directory 
in your home directory to do the same things.

LNKHOME=/home/rpl/lnknet
PATH=$LNKHOME/bin:$PATH
MANPATH=$LNKHOME/man:$MANPATH

After making these changes, type “source .cshrc” under Solaris or “source 
.bash-profile” under Linux to run the shell where the modifications were made. 
For other shells, such as the Bourne shell, contact your system administrator for help.
LNKnet Users Guide (Revision 4, February 2004) 9 



CHAPTER 2: A LNKnet tutorial
2.2 Starting LNKnet

In your home directory, make an experiment directory named Tutorial. During the 
tutorial, you will generate some files in the data base directory. To insure that you have 
write permission for all these files, copy the data base files listed below from 
$LNKHOME/data/class into your new experiment directory. Finally, in a shell win-
dow go to your experiment directory and start the LNKnet graphical interface in the 
background. The following are the necessary commands for Solaris or Linux (If you are 
using a Bourne shell, replace ~ with $HOME):

> cd ~

> mkdir Tutorial

> cd $LNKHOME/data/class

> cp vowel.defaults ~/Tutorial

> cp vowel.train vowel.eval vowel.test ~/Tutorial

> cp vowel.norm.simple ~/Tutorial

> cp gnoise_var.defaults gnoise_var.train ~/Tutorial

> cp gnoise_var.eval gnoise_var.test ~/Tutorial

> cp gnoise_var.norm.simple ~/Tutorial

> cp iris.defaults iris.train ~/Tutorial

> cp iris.norm.simple ~/Tutorial

> cd ~/Tutorial

> LNKnet &

When LNKnet is started, the main LNKnet window should appear. If this is the first 
time you have used LNKnet, this window should look similar to the window in Figure 
2.1. If you are unfamiliar with OpenWindows and a mouse see Appendix E. If you have 
used LNKnet before and have a .lnknetrc defaults file in your home directory, the 
parameter settings on LNKnet windows may be different than those shown in this tuto-
rial. You can delete your defaults file and start the tutorial again, or you can change your 
windows to match the tutorial as you continue through it. If your .lnknetrc file is from a 
previous version of LNKnet, the LNKnet program may fail to start. In this case, remove 
the old .lnknetrc file and make a new one with the new version of LNKnet.

The left hand side of this main window shown in Figure 2.1 is a control panel used to 
run experiments. The right-hand side is used to select classifiers, plots, data bases, input 
features, and control other experimental conditions. Typically, an experiment is set up 
by first selecting a classifier using the top most ALGORITHM button and then select-
ing each of the buttons on the right hand side listed under Experiment Windows in 
order down to the Plots... button. Each button brings up a window with information to 
fill in or to be left in default settings. A button is highlighted if it is required and must be 
selected to run an experiment. Notes surrounding screen shots shown in Figure 2.1 and 
other figures in this tutorial show important controls that need to be set correctly to run 
this tutorial. Most controls are set correctly by default. When a value or selection needs 
10 LNKnet Users Guide (Revision 4, February 2004)



2.3: Selecting a Classification Algorithm
to be changed from the default value, the note pointing to the control is surrounded by a 
box. For example, the Train and Test button on the left side of Figure 2.1 is not normally 
depressed by default and it must be depressed to run this tutorial.

2.3 Selecting a Classification Algorithm

The classification algorithm for the first experiment is the multi-layer perceptron. This 
should already be selected as the algorithm at the top of the main window. If it is not, 
use the left-most mouse button to display the algorithm menu and the classifier sub-
menu and select MLP from it.

The button below the algorithm menu is the Algorithm Params... button. Select this 
button to bring up the multi-layer perceptron parameter window shown in Figure 2.2.

A Multi-Layer Perceptron trains the weights that connect each node in one layer to each 
node in the next layer. The network is made of an input layer and an output layer. 
Between them are 0, 1, or more hidden layers. For the first hidden layer, the weights can 
be thought of as describing hyperplanes through the input space. Sigmoid functions in 
the first layer of hidden nodes are used to determine whether a pattern is on one side of 

FIGURE 2.1 Main LNKnet Window
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Evaluation data

The full 
experiment name
will be X1mlp

The classifier 
should be MLP

This box should
be checked
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CHAPTER 2: A LNKnet tutorial
the plane or another, dividing the input space in half. These half spaces are combined 
and smoothed in upper layers to assign classes to regions of the input space.

To train network weights, training data is presented to the classifier several times. On 
the parameter popup shown in Figure 2.2, set the number of epochs to 20. An epoch is 
a full pass through the training data, so each pattern will be presented 20 times over the 
course of training. Specify the network to have 2 inputs, 25 hidden nodes, and 10 out-
puts by entering 2,25,10 on the Nodes/Layer field on the second line in the window. Do 
not add spaces before or after the commas in the “2,25,10” or other comma delimited 
lists. The step size, which is the rate at which the weights are changed, must also be set. 
Change the step size to 0.2, remembering to hit carriage return when you have done so. 
Changes to LNKnet text fields do not take effect unless carriage return is hit afterwards.

Other MLP parameters are set on three additional MLP parameter windows which can 
be displayed using three buttons on the main MLP window. There are explanations of 
the parameters on these windows in Section 3.1.1 in this User’s Guide and on the 
mlp(1) manual page.

2.4 Experiment Setup

In a normal experiment, you train a classifier and evaluate it using an evaluation data 
set. The parts of a LNKnet experiment are set on the left side of the main window. You 
need to select Train and Test as the Action and Eval as the Test File, as shown in Fig-
ure 2.1.

Change 
Step size to 
0.2

Number of epochs

FIGURE 2.2 Main MLP Parameter window, set for first experiment

Network topology: 
2 inputs,
25 hidden nodes, 
10 outputs
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2.4: Experiment Setup
2.4.1 File Parameters
Classification programs need files for storing experiment results. These files are listed 
on the Report Files and Verbosities popup window shown in Figure 2.3. To display 
this window, select the Reports and Files... button on the upper right of the main 
screen. For this experiment increase the Error File Verbosity to Summary+Confu-
sions+Flags+Epochs. If it is necessary to change the experiment path, be sure to hit car-
riage return after making the change. Some of the notes which label Figure 2.3 and other 
figures have boxes drawn around them. As noted above, boxed notes show which fea-
tures on a window are the most important or must be changed to run the tutorial.

2.4.2 Data Base Selection
A data base of training and testing data is also required. Display the Data Base Selec-
tion window by selecting the Data Base... button on the main window. Figure 2.4 
shows the data base selection window. The three data bases which you copied into the 
experiment directory should be listed in the Data Base List scroll box. In general, data 
for an experiment can be read from any directory by changing the data path and then hit-
ting carriage return. Select vowel.defaults from this list or type “vowel” as the Data File 
Prefix. The other fields on the window may be left alone. The data base for this experi-
ment has two input features and 10 classes. The classes are the 10 English vowels found 
in the words shown on the Class Labels line in the middle of the data base window. The 
data is a normalized version of the Peterson and Barney [32] vowel data collected in the 

Current Directory will be different
on your machine

FIGURE 2.3 Experiment Storage and Output Verbosity Window

If LNKnet was not started in the
experiment directory, change the

experiment path

Increase log file verbosity
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CHAPTER 2: A LNKnet tutorial
late 50’s from 67 men, women, and children. Each talker said the ten words, spectro-
grams were made from the waveforms, and resonant or formant frequencies for the 
vowels were selected. The features of the vowel data base come from the first two for-
mant frequencies. The LNKnet data base pbvowel has the original data. Do not continue 
unless the bottom of the data base window appears as it does in Figure 2.4.

2.4.3 Normalization
For many classifiers, classification results are improved when the data has been normal-
ized in some way. Although this vowel data has already been normalized to range from 
zero to one, better results are achieved when the data is given zero mean, unit variance 
using simple normalization. Display the normalization window by selecting Feature 
Normalization... on the main window. The normalization window in Figure 2.5 will 
appear. Check that Simple Normalization is selected. If LNKnet cannot find the nor-
malization file it will report an error at the bottom of the normalization window and 
show a small stop sign on the main window. Normalization files are stored in the data 
directory, so check the data path on the data base window. If the file really does not 
exist, Section 2.14 in this tutorial describes how a normalization file can be created 
using LNKnet.

If these fields are 0, modify the
Data Path and the Data File

Prefix. When the Data Path and
Data File Prefix are correct,

these numbers should be
displayed

FIGURE 2.4 Data Base Selection Window

Select the vowel description file
from the list or enter vowel here

If necessary, change
Data Path to fill Data

Base List
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2.5: Plot Setup
2.5 Plot Setup

There are several types of plots available for analyzing LNKnet experiments. To request 
these plots, you must bring up the Plotting Controls parameter window. In the column 
of buttons on the right side of the main LNKnet window is a button labeled Plots.... 
Select this button to bring up the Plotting Controls window. On this window, select the 
check boxes for the plots under Decision Region Plots, Profile Plots, Structure Plots, 
Training Error File Graphs, and Testing Error File Graphs as shown in Figure 2.6. 
If the classifier on the main window is not MLP, some of these plots will not be avail-
able.

2.5.1 Setting Plot Parameters
Each plot has some parameters which should be set. Selecting each of the Parameters... 
buttons will bring up the windows for the available plots.

2.5.1.1 Decision Region Plots

Three two dimensional plots are controlled from the Decision Region Plot parameter 
window. They are the decision region plot, the scatter plot, and the internals plot. Push 
the top most Parameters... button to bring up the Decision Region Plot window shown 
in Figure 2.7. For this experiment, you should change Number of Intervals per 
Dimension from 50 to 100 on the Decision Region Plot window. This will cause the 
plotting program to use a finer grid for generating the decision region plot. It will take 
longer to generate, but the plot will look better. Figure 2.7 shows the Decision Region 
Plot window ready for the experiment.

FIGURE 2.5 Normalization Window

Selecting Simple normalization
will set the Normalization File

name. If there is an error, check
the path on the data base

selection window
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CHAPTER 2: A LNKnet tutorial
2.5.1.2 Profile Plots
Two one-dimensional plots are controlled from the profile plot parameter window. They 
are the profile plot and the histogram plot. Push the second Parameters... button to 
bring up the Profile Plot Parameters window shown in Figure 2.8. The one dimensional 
plots are available for classifiers with continuous outputs including the MLP classifier. 
No profile plot parameters need to be changed from their default settings.

FIGURE 2.6 Plotting Controls window, set for first experiment

Select all these plots

Select to bring up the Profile Plot 
parameter window

Select to bring up the Cost Plot 
parameter window

Select to bring up the Percent 
Error Plot parameter window

Select to bring up the Decision 
Region Plot parameter window

Select to bring up the Structure 
Plot parameter window

Select to bring up the Rejection 
Plot parameter window

Select to bring up the Posterior 
Probability Plot parameter window

Select to bring up the Detection 
(ROC) Plot parameter window
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2.5: Plot Setup
2.5.1.3 Structure Plots
It can be informative to see the node structure of a trained classifier. Each of those LNK-
net classifiers for which it is appropriate has a structure plot. Depending on the classifi-
cation algorithm, the structure plots show the input and output nodes of the classifier 
and the connections between them. If these connections have weights, the weights can 
be displayed. Explanations of the structure plots can be found on the manual pages for 
each one and in Section 6.3 of this User’s Guide. Select the third Parameters... button 
to bring up the structure plot window. Select Autoscale Plot To Fit on Screen, Show 
Weight Magnitudes, and Display Bias Nodes, as shown in Figure 2.9.

FIGURE 2.7 Decision Region Plot Parameters

Use 100 points per dimension for
a smoother decision region plot

Do Color Plots
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CHAPTER 2: A LNKnet tutorial
FIGURE 2.8 Profile Plot Parameters

FIGURE 2.9 Structure Plot Parameters

Show Weight Magnitudes

Display Bias Nodes

Autoscale
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2.6: Saving Defaults
2.5.1.4 Training Error File Plots
While training a classifier by cycling through the data, a classification error file is cre-
ated. The accuracy of the classifier during training can be plotted in two ways, using a 
cost plot or a percent error plot. The cost is the function being minimized by the classi-
fier. These plots are not available for algorithms that train in a single pass through the 
data.

If this is the first time you have run LNKnet, the Cost Plot and Percent Error Plot 
parameter windows should be ready for the experiment. They should appear as in Figure 
2.10.

2.5.1.5 Testing Error File Plots
During the testing portion of the experiment, a testing error file is produced. If the clas-
sification algorithm produces continuous outputs, as the MLP algorithm does, this test 
error file can be used to produce several plots. Some plot parameters need to be set for 
this experiment. On the Posterior Probability plot window, shown in Figure 2.11, set the 
target class to 2 (hod) and select Binned Probability Plot. On the ROC plot window 
shown in Figure 2.12, set the target class to 2 (hod). On the rejection plot window, 
shown in Figure 2.13, set the table step to 10.

2.6 Saving Defaults

It is inconvenient to have to set these general parameters each time LNKnet is started. 
To save the settings, select Save Screens as Default initialization on the lower left of 
main LNKnet window. A file, .lnknetrc, will be created in your home directory. The 
next time you start LNKnet, this file will be read and the settings on all of the LNKnet 
screens will be as they are now.

FIGURE 2.10 Cost Plot and Percent Error Plot Parameters
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CHAPTER 2: A LNKnet tutorial
FIGURE 2.11 Posterior Probability Plot

Set Target Class to 2

Select Binned Probability
Plot

FIGURE 2.13 Rejection Plot Parameters

Set Table Step to 10
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2.7: Starting an Experiment
2.7 Starting an Experiment

You can now start this experiment by selecting START New Exper. on the main win-
dow. LNKnet writes an entry in the notebook file describing this experiment and writes 
a shell script in the experiment directory ~/Tutorial. That shell script is run and the 
results of the experiment are printed to your shell window and to a log file. A one line 
experiment results entry is added to the experiment notebook file by the shell script. The 
notebook, shell script, and the log file are included in Appendix C. The shell script first 
makes a call to the mlp program which trains the classifier. After each training epoch, 
that program prints the current classification error rate and the current average value of 

FIGURE 2.12 ROC (Detection) Plot Parameters

Set Target Class to 2
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CHAPTER 2: A LNKnet tutorial
the function being minimized by the classifier. After the 20 epochs are over, a summary 
of the training errors is printed. The shell script then calls the mlp program to test the 
classifier using the evaluation data. The results of that test are below. Finally, the shell 
script displays the requested plots. Each plot is displayed in its own plotting window. 
Figure 2.14 shows the screen of a workstation after running this experiment.

2.8 MLP Results

Table 2.1 shows the files created during the experiment by LNKnet, the MLP program 
and the plot programs.

TABLE 2.1: Files Created During MLP Experiment

Files created by LNKnet

LNKnet.note Notebook file with results for all experiments

X1mlp.run Shell script

X1mlp.screen Settings for all LNKnet windows

LNKnet.note.screen Backup of screen file for comparisons

Files Created by MLP

X1mlp.param Parameters for trained MLP classifier

X1mlp.log Copy of results printed to screen

X1mlp.err.train Trial-by-trial results during training

FIGURE 2.14 Workstation Screen During MLP Classification Experiment

Results in shell 
window

Decision Region 
Plot

Profile Plot

Main LNKnet 
window

Plot of error rate vs. 
epochs

Structure Plot

MLP parametersDetection (ROC) 
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2.8: MLP Results
2.8.1 MLP Eval Results
These are the classification results on the evaluation data, shown in the log file and on 
the window used to start LNKnet. First there is a confusion matrix which shows the 
classification results for all patterns from each class. Numbers on the diagonal of this 
matrix represent the patterns classified correctly. Other numbers represent the number 
and distribution of errors. Below the confusion matrix is an error summary giving the 
number of errors for patterns in each class. Finally, there is an overall error rate, which 
is 32.53%, ±3.6% for this experiment.
Classification Confusion Matrix - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      14                 3                                         17
   1       5     1                            12                       18
   2                  19     1                                         20
   3       5                11           1           1                 18
   4                   2          14                                   16
   5       1                             9                 1           11
   6                                          18                       18
   7                   6     3     2                 7                 18
   8                                                      15     1     16
   9                                     6           1     3     4     14
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    25     1    27    18    16    16    30     9    19     5    166

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

X1mlp.err.eval Results during testing

Files Created by Plot Programs

X1mlp.region.plot.eval 2-Dimensional plots

X1mlp.profile.plot.eval 1-Dimensional plots

X1mlp.struct.plot Structure plot

X1mlp.cost.plot Cost plot

X1mlp.perr.plot Percent Error plot

X1mlp.prob.plot Posterior Probability plot

X1mlp.detect.plot Detection (ROC) plot

X1mlp.reject.plot Rejection plot

TABLE 2.1: Files Created During MLP Experiment
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CHAPTER 2: A LNKnet tutorial
Error Report - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err Label
  0           17          3        17.65   ( 9.2)     0.173  head
  1           18         17        94.44   ( 5.4)     0.304  hid
  2           20          1         5.00   ( 4.9)     0.127  hod
  3           18          7        38.89   (11.5)     0.197  had
  4           16          2        12.50   ( 8.3)     0.182  hawed
  5           11          2        18.18   (11.6)     0.249  heard
  6           18          0         0.00   ( 0.0)     0.051  heed
  7           18         11        61.11   (11.5)     0.268  hud
  8           16          1         6.25   ( 6.1)     0.121  whod
  9           14         10        71.43   (12.1)     0.289  hood
          --------     --------    ------- -------------

Overall      166         54        32.53   ( 3.6)    0.207

2.8.2 MLP Plots
These are the plots generated during the MLP experiment. They should have been dis-
played in new windows on your screen.

Figure 2.15 shows the set of three overlaid 2D plots. There is a decision region plot (the 
solid regions), a scatter plot of the evaluation data (the small white rimmed squares), 
and an internals plot (the black lines). The decision region plot shows the class that 
would be selected at each point on the plot. The values for the two selected input dimen-

Decision Region for class “heed”

“heed” data pattern, correctly
classified

Line defined by a first layer
hidden node

“hid” data pattern, misclassified

FIGURE 2.15 MLP Decision Region Plot after 20 Epochs
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2.8: MLP Results
sions are as you see them. Any other input dimensions are held constant either to 0 or to 
values specified on the decision region plots window. The scatter plot shows the evalua-
tion data, color coded to show the class. All patterns within a set distance of the decision 
region plot plane are shown. Classification errors can be found by looking for those pat-
terns whose color does not match the background color from the decision region plot. 
The form of the internals plot depends on the type of algorithm being used for classifi-
cation. In this case, the multi-layer perceptron, the lines represent hyperplanes defined 
by the nodes of the first hidden layer. The hidden nodes which generate particular bor-
ders between decision regions can often be identified using this plot.

Figure 2.16 shows the two 1D plots. There is a profile plot (the black and colored lines 
and the solid bars below them), and a histogram of the evaluation data (the squares at 
the bottom).

For the profile plot, all of the input features but one are held constant while one feature 
is varied. The output levels for each class are plotted. These output level lines are the 
colored lines. The total of these output levels is plotted as a black line. This line should 
be close to 1.0 for a well trained classifier that estimates posterior class probabilities, 
like the MLP classifier. Below the output level lines is something like a one dimensional 
decision region plot. It shows the class which would be chosen for a pattern with the 
given generated inputs. Where the class changes, a dotted vertical line is drawn.

The histogram plot at the bottom of Figure 2.16 is in two parts. The points shown are 
either all the patterns in the evaluation data set, or those which are within some distance 

Total of outputs

Outputs for “heard”

“heard” would be chosen as
the class

Correctly classified “heard”

Misclassified “hoods”

FIGURE 2.16 MLP Profile Plot after 20 Epochs
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CHAPTER 2: A LNKnet tutorial
of the line being sampled for the profile plot. The squares above the line represent those 
patterns which are correctly classified by the current model. The squares below repre-
sent misclassified patterns. These squares are color coded by class, as in the scatter plot.

Figure 2.17 shows a structure plot for the trained multi-layer perceptron. At the bottom 
of the plot there are two small black circles representing input nodes and a small black 
square representing the input bias node. Below each input node is the input label for that 
node. From the bottom to the middle is a set of lines of varying thicknesses. These lines 
represent the weighted connections from the input layer to the hidden layer. The thick-
ness of these and other lines is proportional to the magnitude of the connecting weight. 
Some of the lines are orange, indicating that connecting weights are negative. The large 
white circles represent the hidden nodes where weighted sums of the inputs are calcu-
lated and passed through a sigmoid function. The hidden layer also has a bias node. At 
the top of the plot are large white circles representing the output nodes. Another set of 
lines shows the weighted connections from the hidden layer to the output layer. Above 
the output nodes are the class labels for the output classes.

FIGURE 2.17 MLP Structure Plot after 20 epochs

Large Negative Weight Large Positive Weight
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2.8: MLP Results
During training, each pattern is tested by the MLP classifier. The classification results 
from these tests are stored in the file X1mlp.err.train. The average percent error 
in classification during each epoch of training is shown in Figure 2.18.

The cost of each pattern tested during training is also stored in the file 
X1mlp.err.train. The average of these values for each epoch is shown in Figure 
2.19.

The cost here is the square root of the mean squared error of the outputs normalized by 
the number of classes. A desired output of 1 for the correct class and 0 for the other 
classes is subtracted from the actual outputs for a pattern. These values are then squared, 
averaged over the number of classes, and stored as the cost. This plot, then, averages the 
costs for each epoch and takes the square root to get each point on the plot.

FIGURE 2.18 Percent Error Plot after 20 epochs of MLP training

FIGURE 2.19 Cost Plot after 20 epochs of MLP training
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CHAPTER 2: A LNKnet tutorial
Figure 2.20 shows a posterior probability plot for class 2, hod. To generate the plot, each 
evaluation pattern is binned according to its output for class 2. Five bins were used to 
create this plot. They represent class 2 outputs of 0.0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 
0.8, and 0.8 to 1.0. The average class 2 output values for the patterns in each bin are 
shown as X’s. The actual percentage of class 2 patterns in a bin is drawn as a filled cir-
cle. Lines above and below the circle represent two standard deviations about the actual 
percentages. The total number of patterns and the number of class 2 patterns in each bin 
are displayed above the upper limit mark. For example the numbers “2/6” over the 40-
60 bin mean two patterns in this bin were from class 2 and there were six patterns in this 
bin. If all the X’s are within the ±2 standard deviation limits, the classifier provides 
accurate posterior probability estimates. A table of the values in the plot is printed in the 
log file and a Chi Squared test and significance values are printed in the experiment 
notebook.

Figure 2.21 shows a receiver operating characteristics or ROC curve for class 2, hod. 
This plot shows the detection rate (hod patterns labeled as hod) versus the false alarm 
rate (other patterns labeled as hod) for a varying threshold value on the classifier output 
for the “hod” class. To generate the plot, the evaluation patterns are sorted by their class 
2 output values. For each point on the plot, a threshold value is set. All patterns which 
have a class 2 output greater than the threshold are labeled as belonging to the class and 
all other patterns are labeled as not in the target class. The detection rate and false alarm 
rate that result from this labeling give the position of the plotted point. The plot in Fig-
ure 2.21 shows that the detection accuracy for the “hod” class is higher than 95% correct 
when 10% false alarms are allowed. The quality of the ROC curve can sometimes be 
judged by the area under the curve. In this case it is 98.7%, which is good. A perfect 
area of 100% is achieved if there is a threshold value such that all patterns above the 

FIGURE 2.20 Posterior Probability Plot after 20 epochs of MLP training
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2.9: Classification with Other Algorithms
threshold are in the target class and all patterns below the threshold are not. If the classi-
fier output is random and contains no information, the ROC area is near 50% and the 
ROC is close to the diagonal line “%Detect = %False Alarms”. A table of the values in 
the ROC plot curve is printed in the log file and the area under the curve is printed in the 
experiment notebook.

Figure 2.22 shows a rejection plot. To generate the plot, all evaluation patterns are 
sorted by their highest output value across all classifier outputs. Patterns whose highest 
outputs are below a rejection threshold are rejected and not classified. The error rate of 
the classifier on the non-rejected patterns is plotted versus the percentage of the patterns 
rejected. If all the patterns which cause errors have low maximum output values, the 
percent error will drop until all the incorrectly classified patterns have been rejected. For 
the current experiment, rejecting more than 20% of the patterns substantially reduces 
the error rate on remaining patterns. The curve is erratic above 70% rejection because so 
few patterns remain.

2.9 Classification with Other Algorithms

There are many other classification algorithms available from LNKnet. One of the sim-
plest ones to try on any problem is a K Nearest Neighbor classifier. To select the KNN 
algorithm, first use the Menu mouse button to display the menu attached to the ALGO-
RITHM button on the main window. Move the mouse down and right to show the Clas-
sifier menu. Stop the mouse over KNN (K-Nearest Neighbor) and let go of the mouse 
button to select the KNN algorithm as shown in Figure 2.23.

FIGURE 2.21 Detection (Receiver Operating Characteristic) Plot after 20 epochs of MLP training
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2.10 K Nearest Neighbor

A K-Nearest Neighbor classifier finds the K training patterns which are closest in 
Euclidean distance to a test pattern. It then assigns that test pattern to the most common 
class among the K neighbors. Ties are broken randomly.

The only parameters you should have to set now are those on the KNN Parameter win-
dow shown in Figure 2.24. To display this window, select the Algorithm Params... but-
ton on the main window, as you did with the MLP classifier.

On the KNN parameter window set K to 3. If you type 3, don’t forget to hit carriage 
return to enter the new value. Select START on the main window to start the experi-

FIGURE 2.22 Rejection Plot after 20 epochs of MLP training

FIGURE 2.24 KNN Parameters

Set K to 3
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2.10: K Nearest Neighbor
ment. Once again a shell script is written. The order of the commands is again train, 
evaluate, and plot. The files created during this experiment are shown in Table 2.2.

TABLE  2.2 Files Created During KNN Experiment

Files created by LNKnet

LNKnet.note Added X1knn parameters and results

X1knn.run Shell script

X1knn.screen Setting for all LNKnet windows

LNKnet.note.screen Stored backup copy of new screen file

Files Created by KNN

X1knn.param Parameters for trained KNN classifier

X1knn.log Copy of results printed to screen

X1knn.err.eval Trial-by-trial results from testing

FIGURE 2.23 Selecting the Algorithm KNN

Select KNN from the
Classification menu
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2.10.1 KNN Eval Results
These are the classification results on the evaluation data, taken from the log file. The 
overall error rate is 18.07%, ±3%.
Classification Confusion Matrix - X1knn.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      15     1           1                                         17
   1            15                             3                       18
   2                  17           1                 2                 20
   3       1                15           1           1                 18
   4                   1          14                             1     16
   5       1                             8                       2     11
   6                                          18                       18
   7                         2                      15           1     18
   8                                                      12     4     16
   9                                     4           1     2     7     14
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    17    16    18    18    15    13    21    19    14    15    166
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Error Report - X1knn.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err Label
  0           17          2        11.76   ( 7.8)     0.149  head
  1           18          3        16.67   ( 8.8)     0.136  hid
  2           20          3        15.00   ( 8.0)     0.145  hod
  3           18          3        16.67   ( 8.8)     0.169  had
  4           16          2        12.50   ( 8.3)     0.149  hawed
  5           11          3        27.27   (13.4)     0.234  heard
  6           18          0         0.00   ( 0.0)     0.000  heed
  7           18          3        16.67   ( 8.8)     0.153  hud
  8           16          4        25.00   (10.8)     0.154  whod
  9           14          7        50.00   (13.4)     0.270  hood
          --------     --------    ------- -------------
Overall      166         30        18.07   ( 3.0)    0.163

2.10.2 Plots
Because KNN trains in a single pass, the cost plot and percent error plot are not avail-
able. KNN takes a vote amongst a pattern’s nearest neighbors to determine the class of 
that pattern. This does not produce continuous outputs so there is no profile plot, poste-
rior probability plot, detection plot, or rejection plot. There are no connections between 
the stored KNN parameters, so little information would be gained from a KNN structure 
plot. This leaves us with only the decision region plot displayed in Figure 2.25.

Files created by Plot Programs

X1knn.region.plot.eval 2-Dimensional plots

TABLE  2.2 Files Created During KNN Experiment

Files created by LNKnet

LNKnet.note Added X1knn parameters and results
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2.11: Continuing Training
The KNN decision region plot is generated in the same way as the MLP plot. The clas-
sifier is tested at every point in a 100 by 100 grid. The classification results are shown 
by drawing color coded regions for the class returned for each tested grid point. The 
overlaid scatter plot is identical to that in the MLP plot. Because the classification algo-
rithm is different, the overlaid internals plot is different for the KNN classifier. Small 
black squares are drawn which show the positions of the stored training patterns.

2.11 Continuing Training

Looking at the results of the KNN classifier, the MLP results do not seem to be as good 
as they could be. The MLP classifier misclassified 32.5% of the evaluation data while 
the KNN classifier misclassified only 18%. Perhaps if the MLP classifier is trained 
more, it will perform as well as the KNN classifier.

2.11.1 Restoring Previous Experiment
To continue training the MLP classifier, LNKnet will first be restored to the state it was 
in for the MLP experiment.

Select the MLP classifier from the algorithm menu. Return to the Report Files window 
and select RESTORE Screens from Screen File. All of the windows in LNKnet 
should now be as they were when the MLP was trained.

Position of a Stored
Training Pattern

Correctly Classified “heed”

Decision Region for class
“whod”

Misclassified “hood”

FIGURE 2.25 KNN Decision Region Plot
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CHAPTER 2: A LNKnet tutorial
On the MLP parameter window, the number of epochs was set to 20. Selecting CON-
TINUE Current Exper. will create a shell script that trains the previous MLP model 
for 20 more epochs. A notifier window will appear which says “Shell file exists: OK to 
overwrite?”. LNKnet by default will use the same name for the shell script that contin-
ues the experiment. Either select Overwrite or hit Return to replace the old contents of 
X1mlp.run with the new script. The new shell script differs from the old one on only 
two lines. The create flag is not included in the new training call and the new training 
results are appended to X1mlp.log and X1mlp.err.train. When training is 
complete, the new model parameters will be stored in X1mlp.param, replacing the 
old ones. New versions of the plots will be created which will overwrite the existing 
plot files. An entry with the new experiment results will be added to the experiment 
notebook file, LNKnet.note.

2.11.2 MLP Eval Results
These are the classification results on the evaluation data after a total of 40 epochs of 
training. The MLP classifier now provides an error rate of 19.88%, ±3.1%. With the 
given standard deviation of 3.1% the new error rate is about the same as KNN’s. The 
error rate might be improved with more training, but the amount of improvement for 
each epoch of training becomes increasingly small.
Classification Confusion Matrix - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      13                 3           1                             17
   1            12                             6                       18
   2                  18                             2                 20
   3                        15           1           2                 18
   4                   2          13                             1     16
   5       1                             6           1           3     11
   6                                          18                       18
   7                               3                15                 18
   8                                                      13     3     16
   9                                     2           1     1    10     14
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    14    12    20    18    16    10    24    21    14    17    166

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Error Report - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err Label
  0           17          4        23.53   (10.3)     0.213  head
  1           18          6        33.33   (11.1)     0.227  hid
  2           20          2        10.00   ( 6.7)     0.152  hod
  3           18          3        16.67   ( 8.8)     0.172  had
  4           16          3        18.75   ( 9.8)     0.145  hawed
  5           11          5        45.45   (15.0)     0.231  heard
  6           18          0         0.00   ( 0.0)     0.038  heed
  7           18          3        16.67   ( 8.8)     0.187  hud
  8           16          3        18.75   ( 9.8)     0.171  whod
  9           14          4        28.57   (12.1)     0.224  hood
          --------     --------    ------- -------------

Overall      166         33        19.88   ( 3.1)    0.181
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2.11: Continuing Training
2.11.3 MLP Plots

The plots generated after the second twenty epochs of training are very similar to the 
first set of plots. The decision region plot is shown in Figure 2.26. The decision region 
boundaries and internals plot lines have moved. Naturally, the scatter plot has remained 
the same.

The profile plot is shown in Figure 2.27. The new profile plot shows that the outputs for 
the dominant class in each region of the input space have gotten closer to 1. The outputs 
for the other classes in those regions are closer to 0, making the transitions between 
classes sharper. The total line is less smooth but is still near one.

Because the weight magnitudes have not changed much, the new structure plot is almost 
identical to the old one. The structure plot is in Figure 2.28. Because the pattern by pat-
tern results from the continuation training are appended to X1mlp.err.train, the 
error rate from all training is shown in the new cost plot and the new percent error plot, 
not just the rate from the twenty new epochs. These new plots are in Figure 2.29 and 
Figure 2.30 on page 37. On the probability plot, shown in Figure 2.31, the value in the 
second bin (output values of 0.2 to 0.4) has improved. The bin for values from 0.4 to 0.6 
has been combined with the 0.6 to 0.8 bin. The bins which cover the middle of the range 
have been eliminated because they contain too few patterns. Figure 2.32 shows the new 
ROC plot which has changed very little. The ROC area has increased to 99.0%. Figure 
2.33 shows the new rejection plot. There are more high scoring correctly classified pat-

FIGURE 2.26 MLP Decision Region Plot after 40 Epochs

Region for hid larger
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terns now. This can been seen because there is a downward slope in this curve with few 
rejections.

FIGURE 2.27 MLP Profile Plot after 40 Epochs

FIGURE 2.28 Structure Plot for 40 Epochs of MLP training
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2.12: Cleaning up Windows and Files
2.12 Cleaning up Windows and Files

By now your screen is cluttered with many small LNKnet popup windows and plot win-
dows. The popup windows can be closed by closing the windows using the mechanism 
provided in the window manager you are using. The many plots can be removed by 
moving the mouse into the plotting area of the window and typing ‘q’ or by selecting 
quit from the file menu at the top of each plot window. The experiment directory is also 
cluttered with shell scripts, plot files, and error files. Removing the error files regularly 

FIGURE 2.29 Percent Error Plot for 40 Epochs of MLP training

FIGURE 2.30 Cost Plot for 40 epochs of MLP training
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FIGURE 2.31 Posterior Probability Plot after 40 epochs

FIGURE 2.32 ROC (Detection) Plot after 40 epochs
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2.13: Feature Selection
is important because they can be very large. The command rm X1*.err* will 
remove the error files generated during the previous experiments in this tutorial. These 
files can be recreated by re-running a LNKnet experiment and are only necessary if you 
want to continue training an incrementally trained classifier or if you want to generate 
additional plots that depend on these files such as the error rate versus training time plot.

2.13 Feature Selection

LNKnet allows you to select features and thus reduce the number of input features as an 
approach to improve generalization. There are two ways to do this, feature selection of 
the raw input data, or rotation of the input space using normalization followed by fea-
ture selection. This first series of experiments will use feature selection alone.

You will run several experiments, trying to find the best set of features to use to solve a 
multi-dimensional problem. Because the classification algorithm will not change, you 
will need to change the experiment name to prevent new experiments from overwriting 
the old ones. The first experiment will use all input features so change the Experiment 
Name on the main window to all.

For this series of experiments you must use a data base with more than two features. 
Select the data base gnoise_var from the Data Base List scrolling list on the data base 
window. This data base is provided with LNKnet and should have been copied into the 
experiment directory at the start of this tutorial. There are 8 input features and 10 
classes. The classes are clusters each centered along the line  where 

 is input dimension  . Class 0 is centered on (0,0,0,0,0,0,0,0), class 1 on 

FIGURE 2.33 Rejection Plot after 40 epochs

x0 x1 … x7= = =
xd d 0 d 7≤ ≤( )
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CHAPTER 2: A LNKnet tutorial
(1,...,1), class 2 on (2,...,2), and so on. Gaussian noise is added to the centers to generate 
the patterns for each class. The variance of the noise depends on the input feature num-
ber. It is lowest for feature number 7 and highest for feature number 0. The variance of 
the data in the eighth input dimension is 0.25. The variance in the lower dimensions 
increases by 0.25 every dimension giving a variance of 2 for the first dimension. The 
high numbered features thus provide more information than the lower numbered fea-
tures because they have less variance.

The gnoise_var data base has 8 input dimensions. If the current plot parameter settings 
are used, scatter plots may not show all of the data. Go to the Plot Selection window 
and bring up the Decision Region Plots window. On the decision region plot window, 
make sure that Show All Data Points is selected. For the remainder of this tutorial, only 
the decision region plots will be shown. Select the check boxes for the other plots again 
to remove the checks and deselect the plots.

Because this data base was generated using a Gaussian distribution for each class, a 
Gaussian classifier should be used to solve this problem. On the main window, select 
the classification algorithm Gauss. Go to the algorithm parameter window to check the 
variables for the Gaussian classifier. Each class has the same variance, so make sure that 
Same for All Classes (Grand) is selected. The variance in each direction is indepen-
dent, so make sure that Diagonal Covariance Matrix is selected.

Your first experiment uses all of the input features to obtain a base error rate. Select 
START to run the first feature selection experiment. The classifier should make one 
error classifying the evaluation data. Figure 2.34 shows the decision region plot for the 
first experiment. Because all of the evaluation data is displayed, the decision regions do 

not seem to match the scatter plot data. The internals plot for the Gaussian classifier is 
the set of ellipses shown over the scatter plot. These ellipses represent the Gaussian 
functions that model each class. The length and width of the ellipses are proportional to 
the variances of the Gaussians. More plots could be generated showing the other dimen-
sions by changing the Input Dimensions to Plot on the Decision Region Plot window. 

FIGURE 2.34 Decision Region Plot using all 8 inputs

Decision Regions looking at the first 
two dimensions. The values for 
other dimensions are set to zero.

Scatter plot of all of the data. 
Because there are 8 dimensions, 
whether the color matches no 
longer indicates correct 
classifications.

Internals plot. Because these are
grand variances, all of the ellipses
representing the Gaussians have

the same shape. Because the
covariance matrices are diagonal,

the axes of the ellipses are parallel
to the input dimensions.
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2.13: Feature Selection
Select PLOT ONLY on the main screen to write a shell script that generates the 
requested plots without retraining or retesting the classifier first.

Each feature in this data base is a noisy estimate of the class number. All eight features 
may not be necessary to get the right answers. You can try using only the first feature. 
On the main window, change Experiment Name to N1. Bring up the Feature Selec-
tion window by selecting Feature Selection... on the main window. On the feature 
selection window, select First N and change N to 1. Select START to run the experi-
ment. The error rate using just the first feature should be 78% on the evaluation data. 

Figure 2.35 shows the decision region plot for the classifier using only the first input 
feature. Because there is really only one dimension being plotted there is no variation 
along the Y direction of the decision region plot, the scatter plot data is all shown on the 
line y=0 and the internals plot uses circles to represent the variance of the Gaussians.

For the next experiment, change the experiment name to N2. On the feature selection 
window change N to 2. Now repeat the experiment using the first two inputs. The error 
rate should be 62%. Finally, change the experiment name to N4 and change N to 4 on 
the feature selection window. Repeat the experiment using the first 4 inputs. The error 
rate should be 48%. The 2D plots for these experiments will still be generated, but they 
are not shown.

The variance of the data in the first few features is too high for these features to be use-
ful in discriminating the classes. Perhaps the error rate can be reduced by picking out 
particular features rather than just taking them in order. One approach to feature selec-
tion is to create a list of features in order of presumed importance. Any of the feature 
search algorithms can be used to create such a list. On the Feature Selection window 
select Read Feature List from File. Because the feature list file has not been created 
yet, an error sign should appear on the feature selection window and beside the Feature 
Selection button on the main window. Select the Generate Feature List File... button at 
the bottom of the window. This brings up the Generate Feature List File window 
shown in Figure 2.36. Select Nearest-Neighbor Leave-One-Out CV as the search 

FIGURE 2.35 Decision Region Plots using first input
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algorithm and Forward as the search direction. Select Start Feature Search to start the 
search for the best set of input features to use. 

In this search, the program feat_sel tests each feature to find the one which is most 
effective in classifying the data by itself. The remaining features are then paired with the 
first and the best is selected as the second feature. Features are added this way until 
there are no more left. The feature sets are tested using a nearest neighbor classifier 
using leave-one-out cross validation. They could also have been tested using the current 
Gaussian classifier with ten-fold cross validation. The results of each step of the search 
and the best set of features is printed to the screen and to a log file. The plot in Figure 
2.37 shows the cross validation error rate achieved as each feature is added. We can see 
that most of the features actually increase the error rate and that using features 7, 5, and 
6 achieves a good error rate.

FIGURE 2.36 Feature List File Generation Window

Use nearest neighbor classifier
to test feature lists

Search forward, selecting one
feature to add at a time
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To use a subset of these features in the selected order, change the experiment name on 
the main window to last3. Return to the feature selection window. Set Use to First N 
and N to 3 so that you are using the first 3 features from the list in the new feature list 
file. If the feature list file did not previously exist, there will still be an error message 
saying so. Click the mouse on the error message or select Read Feature List From File 
again to erase the message. An alternate way to use these features is to select Check by 
Hand as the selection method. Then type in the following list: 7,5,6. These comma 
delimited lists are used in many places in LNKnet. The list is made from integers sepa-
rated by commas with no spaces or tabs. See Problem 2.12 on page 131 for more infor-
mation about comma delimited lists. Figure 2.38 shows the feature selection window 
with the last three features selected. This experiment should produce an error rate of 3% 
on the evaluation data. The shell script and log file for this experiment, last3gauss, can 
be found in Appendix C. Table 2.3 shows the results of the feature selection experi-

FIGURE 2.37 Feature Search on gnoise_var data base

Error Rate as features are added

Number of the Nth Feature 
Selected. Note that the feature 
numbers begin at zero
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CHAPTER 2: A LNKnet tutorial
ments. These results can also be found in the notebook file, LNKnet.note. A copy of the 
notebook file is found in Appendix C.

2.14 Feature Reduction using Normalization

Another way to reduce the number of features is to project the input space onto a differ-
ent space that either rotates the original features or reduces the number of input features. 
Two projection algorithms are provided. They are principal components analysis (PCA) 
and linear discriminant analysis (LDA). PCA rotates the space so that the first dimen-
sion is in the direction of greatest variance in the input space. The other dimensions fol-
low in decreasing order of variance. LDA rotates the space so that the lowest numbered 
dimensions are in directions which best discriminate between classes. LDA assumes 
classes and class means have Gaussian distributions. PCA produces as many output fea-
tures as there are original input features and ignores class labels. LDA uses class labels 

TABLE  2.3 Error rate of Gaussian Classifier on evaluation data using different features of gnoise_var 
data

Experiment 
Name

Number of 
features

Eval 
Error 
Rate

all All 8 1%

N1 first 1 78%

N2 first 2 62%

N4 first 4 48%

last3 3 picked 3%

FIGURE 2.38 Hand picking features

Enter list by hand
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in training and produces a smaller number of output features when there are fewer 
classes than input features. The number of output features with LDA is the minimum of 
M-1 or D where M is the number of classes and D is the number of original input fea-
tures. Because PCA and LDA are applied to raw data before the input vectors are 
handed to the classifiers, they are included as normalization methods.

To try PCA and LDA on the gnoise_var problem, display the normalization window by 
selecting Feature Normalization... on the main window. Select Principal Components 
as the normalization. Because the normalization file has not been created yet, an error 
will appear on this window and beside the normalization button on the main window. 
Select Generate Normalization File... to bring up the window which creates normal-
ization files. The Generate Normalization File window is shown in Figure 2.39. Select 
Run on this window to calculate the PCA parameters. Now select Linear Discriminant 
on the normalization window. Select Run again on the normalization file generation 
window to calculate the LDA parameters.

A plot is generated for each normalization method. The plots show the relative sizes of 
the eigen values for each of the features in the rotated space. This can be taken as a mea-
sure of the importance of each feature. The plots in Figure 2.40, show that with both 

FIGURE 2.39 Generate Normalization Window
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PCA and LDA the eight input features can be replaced by one feature that accounts for 
most of the variance.

To continue the feature reduction experiments, change the experiment name to pca. Go 
to the Feature Selection window and use only the first two features by selecting First 
N as the selection method and changing N to 2. Select Principal Components as the 
normalization method on the normalization window. There should be an error rate of 
25% on the evaluation data when you run the experiment with PCA. Change the experi-
ment name to lda, select Linear Discriminant as the normalization method and run the 
experiment one final time. You should get no errors on the evaluation data when nor-
malizing with LDA. Figure 2.41 shows the decision region plots for these two experi-
ments. The dimensions being plotted are the first two input dimensions after 
normalization. It is possible to plot using the original dimensions by selecting Do Not 
Normalize Data for Plot on the Decision Region Plot window.

FIGURE 2.40 Eigenvalue Plots for PCA and LDA
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FIGURE 2.41 Decision Region Plots when First Two Rotated Dimensions are Used (PCA and LDA)
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The gnoise_var data base is unusual in that many features are noisy and contribute little 
to discriminating the classes. Because principal components analysis looks for the great-
est variance, it favored the lower dimensions and rotated the space to accentuate them. 
An interesting exercise is to do a feature search on the gnoise_var data base with PCA 
set. This will find the best set of rotated features. When this search is run, the best set 
achieves an error rate of 21%. Although this is not as good as using the unrotated 
dimensions with smaller variances, it is still better than using the original large variance 
dimensions alone.

LDA assumes that the classes and their means can be modelled by unimodal Gaussian 
distributions. Because this is correct in the case of gnoise_var, normalizing the data with 
LDA produces a good classification result.

2.15 Cross Validation

Sometimes there is not enough data available to divide it into separate training, testing, 
and evaluation partitions. In such a case, N-fold cross validation can be used to estimate 
the future classification error rate on new data. The idea of cross validation is to split the 
data in to N equal-sized folds and test each fold against a classifier trained on the data in 
the other folds. The cross-validation error rate is obtained by summing the errors from 
the tests. The draw-back of cross-validation is the time it takes to run N experiments. It 
is thus primarily used only with a small N (between 4 and 10 folds) and when the num-
ber of patterns is low (e.g. tens to thousands of patterns).

Before starting cross validation experiments, reset the selections made while exploring 
feature selection and normalization. On the main window, set the experiment name to 
all. On the Reports window, select Restore Experiment Screens to bring all of the 
LNKnet and algorithm parameters back to their states at the start of Section 2.13.

Now set some of the general parameters. You will be doing a 5-fold cross validation 
experiment. This is handled automatically by the classification program, so you do not 
need to separately train and evaluate the five classifiers. Select N-Fold Cross-Valida-
tion as the action on the main window and change Folds to 5. Change the experiment 
name to cv. Figure 2.42 shows the section of the main window which holds the cross 
validation parameters.

You need to select a small data base for the cross validation experiment. The iris data 
base has the fewest patterns of any of the “real” data bases provided with LNKnet. 
Select it on the Data Base window. The classes in the iris data base are three kinds of 

FIGURE 2.42 Cross Validation Selection

Change Folds to 5

Select N-Fold Cross Validation
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iris flowers. The inputs are the sepal length and width and the petal length and width. 
This data base was collected by R.A. Fisher [8] in the 1930’s.

For the cross validation experiment, use the Radial Basis Function (RBF) classifier. 
The RBF classifier uses a set of Gaussian basis functions to map the input space into 
data clusters. In assigning a class to a pattern, the output for each class is a weighted 
sum of the basis function outputs for the pattern. The RBF program trains the weights 
connecting the basis functions to the outputs. LNKnet has another RBF program, IRBF 
or incremental RBF, that also trains the means and variances of the basis functions. Both 
programs use clustering algorithms to specify initial basis function locations.

This experiment will use the K-Means algorithm for clustering. The K-Means algorithm 
generates a set of K cluster centers and assigns training patterns to these centers. It uses 
these sets of patterns to iteratively improve the positions of the centers and to calculate 
the final variances of the clusters.

Select RBF as the current classification algorithm. The K-Means program will be run 
automatically before the RBF program, if desired. On the RBF Parameter window, 
shown in Figure 2.43, select Create clusters first and select Kmeans as the clustering 
algorithm.

Now check the K-Means parameters. On the RBF window, select Clustering Parame-
ters... to bring up the Kmeans Parameters window shown in Figure 2.44. On the 

FIGURE 2.43 RBF Parameter Window

Check to create clusters

Select to bring up Kmeans 
parameters window

Select Kmeans
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Kmeans window select Cluster by class, K equal for all classes, and set K to 2 centers 
per class.

Select START to write the cross validation shell script. This script first generates five 
sets of K-means clusters. The training data for these clusters is the same as will be used 
to train the classifier. The clustering program will generate two clusters for each of the 
three classes, for a total of six for each of the five cross validation folds. After the clus-
tering is finished, the RBF program is called to train and test the five classifiers. A con-
fusion matrix and error summary is generated for each of the classifiers. At the end, a 
confusion matrix and error summary is displayed for the results of all of the testing. The 
combined error rate for the cross validation experiment is 4%. This result is also 
appended to the notebook file which is in Appendix C. The shell script and log file from 
the cross validation experiment are also in Appendix C.

2.16 Exiting LNKnet

Congratulations, you have completed the LNKnet tutorial! To quit LNKnet, use the 
mouse menu button to select Quit from the Quit menu button in the top left corner of 
the LNKnet main window as shown in Figure 2.45. Further details on classifiers, plots, 
and other features in LNKnet can be found in the following chapters of this user’s guide 
and on the LNKnet manual pages.

FIGURE 2.44 KMEANS Parameter Window
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Two clusters per 
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K equal for all classes
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FIGURE 2.45 Exiting LNKnet
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CHAPTER 3 Classifiers

3.1 Neural Network Classifiers

Neural network classifiers are motivated by biological nervous systems and use many 
simple processing elements to estimate posterior class probabilities of input patterns. 
That is, they estimate  where A represents a particular class, X represents the 
input pattern, and  is the posterior probability for class A. LNKnet includes 
important types of neural network algorithms that can be applied to classification prob-
lems.

3.1.1 Multi-Layer Perceptron (MLP)
Multi-Layer Perceptron classifiers[21] are the most widely used neural network classifi-
ers. They provide good performance on many problems and create decision regions by 
positioning smooth plateau-like functions produced by sigmoids in the input space. In 
the limits where connections weights are “high” they create hyperplanes which define 
“half-spaces”. These are combined to form class decision regions. The hyperplanes and 
their combinations are specified by weighted connections between the layers of the 
multi-layer perceptron. The weights are trained using a back propagation algorithm to 
perform a gradient descent which minimizes the error of the outputs according to the 
selected cost function. 

This algorithm has the most options of any LNKnet program. MLP classifiers examine 
all the data many times in training. The first option to set is the number of times to 
examine the data. The next is the structure of the network which is contained in a 
comma delimited list with the number of nodes in each layer of the network. The first 
and last entries are the number of inputs and the number of classes. They are set auto-

p A X( )
p A X( )

Number of times to
cycle through all
training patterns

Structure of network. First entry 
is number of inputs, last is 
number of classes. These two 
values are set automatically. 
Other values are the number of 
nodes in each hidden layer. 
The bias node in each layer is 
not included.Step size for gradient

descent training of
weights

FIGURE 3.1 MLP Parameters

Display other MLP 
windows
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matically when a data base is chosen. Any other entries are the number of nodes in each 
hidden layer. There is a constant bias node in each layer of the network. It is not 
included in the list for the network structure. A gradient descent algorithm needs a step 
size, which is a multiplier applied to the gradient when the weights are updated. The 
main MLP parameter window is shown in Figure 3.1. Other LNKnet parameters are set 
on three additional parameter windows. These are displayed by selecting the three but-
tons on the main MLP window. These other options do not normally need to be changed 
and are included primarily for pedagogical purposes.

Parameters associated with training the weights are found on the MLP Weight parame-
ters window shown in Figure 3.2. For most problems, the default settings for these 
parameters are appropriate. In our MLP classifier, there are three options for changing 
the step size during training. The step size for all weights can be held constant through-
out each training run, the step size for all weights can be automatically reduced after a 
set number of training epochs, or the step size of each weight can be adapted automati-
cally. The step size change type selection must be coordinated with the weight update 
mode, as described in the paragraph below. The initial step sizes can be the same for all 
the weights in the network or a different initial step size can be set for each layer. In the 
first case the initial step size is the one on the main MLP window. In the second, step 
sizes for each layer are taken from the step size list on the MLP weight parameter win-
dow. Using this list, you can initialize the input weights of a network and then prevent 
training of those weights by setting their step size to zero. There is a momentum term 

Update weights after 
each trial or at the end 
of each epoch

Momentum of 
change in weights

If error of an output
is less than

tolerance, do not
train its weights

Multiply weights by
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fraction each
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changes change 
direction.

Hold step size
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START only)
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FIGURE 3.2 MLP Weight Parameters
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3.1: Neural Network Classifiers
which often reduces training time by moving weights in the direction of previous 
changes. The weights can be systematically reduced by setting a weight decay parame-
ter. This has the effect of pruning small weights. All weights are multiplied by one 
minus the decay parameter on every trial. This is equivalent to adding a penalty term to 
the cost function that penalizes large weights. There is a tolerance parameter in the 
error, which turns off back-propagation if the output is within the tolerance limit of the 
desired output. Finally, the magnitude of the random initial weights can be set.

Weight updates can be performed after each trial or in batches at the end of each epoch. 
Fastest training typically is obtained by updating weights every trial after each training 
pattern is presented. To automatically reduce the step sizes for all weights after a set 
number of epochs of training, weight updates must be performed after each trial. If a 
batch update is being used, it is possible to automatically set a step size for each net-
work weight using the multiple adaptive step size algorithm. When the total correction 
for a weight in one batch is in the same direction as in the previous batch, the step size 
for that weight is increased. If the direction changes, the step size is reduced by a set 
factor. Another factor in the speed of weight training is the order in which training pat-
terns are presented. Remember to randomize the order of the patterns when using the 
MLP classifier. The random order flag is set on the main LNKnet window.

Several different versions of back propagation are available in this version of the MLP 
classifier. Most differ in the cost function used to determine the error of the outputs. The 
squared-error, maximum likelihood and cross-entropy cost functions are described in 
[36]. Cross-entropy and maximum likelihood cost functions sometimes provide better 
posterior probability estimates than a squared error cost function. The top-two differ-
ence cost function has been called the classification figure of merit by Hampshire [10]. 
It attempts to minimize the number of errors on training data and can be used with all 
networks. It should normally be used with linear output nodes. A steepness of 1 uses a 
maximally sharp sigmoid with the difference term and a steepness of 0 uses a maxi-
mally smooth sigmoid. The perceptron convergence procedure, which is an implemen-
tation of Rosenblatt’s original single layer perceptron, differs from the other cost 
functions. It trains a single plane for each class which separates that class from all oth-
ers. All of the patterns on one side of the plane for a class are considered to be in one 
class and all patterns on the other side are in the other class. The perceptron conver-
gence procedure can only be used when there are no hidden layers. This procedure is 
normally only defined for two-class problems. In the LNKnet implementation, if there 
are more than two classes, multiple perceptrons are trained simultaneously to discrimi-
nate each class from the others. The classification decision is made by determining the 
perceptron with the highest unclipped output. The MLP Cost Function parameter win-
dow is shown in Figure 3.3.

When a squared error or top two difference cost function is being used, there are three 
choices of output function. This output function is applied to the weighted sum calcu-
lated for the output layer. The output functions are a standard sigmoid, which goes from 
0 to 1 with an output of 0.5 for an input of 0, a symmetric sigmoid which goes from -1 to 
1, and a linear output, which simply gives the weighted sums as the final outputs of the 
network. The hidden node sigmoid functions can be either standard or symmetric. There 
is a steepness parameter for these node functions. This steepness parameter can be the 
same for all nodes in the network or it can be set for each layer. A higher steepness 
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value for the first hidden layer can sharpen the decision region boundaries for an MLP 
classifier that has been initialized using bintree2mlp, which is explained in Chapter 7. 
The MLP node function parameter window is shown in Figure 3.4.

3.1.2 Radial Basis Function (RBF)
Radial Basis Function classifiers[28] calculate discriminant functions using local Gaus-
sian functions instead of sigmoids of hidden node sums. They may perform better than 
MLP classifiers if input features are normalized so a Euclidean distance is meaningful 
and if class distributions exhibit radial symmetries. Network outputs are weighted sums 
of the outputs of Gaussian hidden nodes or basis functions. Hidden node outputs are 
normalized to sum to one. Weights are trained using least-squares matrix inversion to 
minimize the squared error of the output sums given the basis function outputs for the 
training patterns. These basis functions can include a constant bias node. The variances 
given by the clustering algorithm can be increased during training if they are too small 
to provide good coverage of the data. The variances can be further increased during test-
ing. The variances used by RBF hidden nodes are diagonal (one variance per input 
dimension for each basis function). For problems that require a very large number of 
hidden nodes (>200), training time can be reduced using the fast train option. In fast 
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FIGURE 3.3 MLP Cost Parameters
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3.1: Neural Network Classifiers
training, rather than update each of the Nouputs*Nnodes connection weights for each 
pattern, only the weights connecting the hidden nodes with the highest outputs are 
updated. If enough hidden nodes are used training each pattern, the classification results 
are equivalent for RBF classifiers using fast training. Fast training is not normally 
required and should not be used.

3.1.3 Incremental Radial Basis Function (IRBF)
The RBF classifier is limited because hidden node means and variances are fixed during 
training. The Incremental Radial Basis Function classifier (IRBF) [28] can sometimes 
provide better performance by training these parameters. In testing, the IRBF Classifier 
is identical to the RBF Classifier. In training, the means and variances of the Gaussian 
basis functions are trained in addition to the weights. All of the parameters are trained 

Run the clusterer to create new 
clusters. (If not checked, read 
previously stored ones)Select the clustering algorithm

Bring up the cluster parameter 
window

The clustering parameters will be 
stored in this file

Multiply cluster variances before
training and testing

Multiply cluster variances before
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basis functions

Clustering Algorithm choices

Maximum Eigen value ratio during 
inversion of basis node outputs

Minimum cluster variance 
permitted

FIGURE 3.5 RBF Parameters

Use the fast training algorithm
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using gradient descent which tries to minimize the squared error in the final outputs. 
Each of the three variables being trained, the weights, means, and variances, has its own 
step size. There is one other difference between the LNKnet RBF and IRBF classifiers. 
In the IRBF classifier, the variances in each dimension can be averaged, as they are in 
the Gaussian classifier using grand variances.

3.2 Likelihood Classifiers

Likelihood classifiers estimate a scaled probability density function or likelihood for 
each class,  where A again represents a class label, X is the input feature 
vector for a pattern,  is the likelihood of the input data for class A, and  is 
the prior probability for class A. For a given test pattern, the class which has the highest 
likelihood times the class prior probability is selected as the class of the pattern. 
Because the output values are continuous, they can be used for further analysis of 
sequences of input patterns. For example, Gaussian mixtures are widely used in speech 
recognizers as low-level probability estimators in hidden Markov models.
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before testing

Include a constant bias node in
the output sum functions
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FIGURE 3.6 IRBF Parameters
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3.2: Likelihood Classifiers
3.2.1 Gaussian (GAUSS)
Gaussian classifiers [7] and especially linear discriminant classifiers are the most com-
mon and simplest classifiers. They should always be tried first on new problems. A 
Gaussian classifier models each class with a Gaussian distribution centered on the mean 
of that class. There are four choices in the calculation of the variances for these Gauss-
ians. First, the variance of each class can be found or those class variances can be aver-
aged to give a single grand variance used for all classes. Second, the variance calculated 
can be diagonal, one variance for each input dimension, or full covariance matrices can 
be calculated. When there are many input features, full-covariance Gaussian classifiers 
have many more parameters than diagonal-covariance classifiers and may perform 
worse with limited training data. In addition the variance can be limited to be above a 
minimum value to prevent numerical problems when input features are unchanged 
across training patterns. A linear discriminant classifier is a Gaussian classifier with 
grand variances, where variances are the same for all classes. The simplest linear dis-
criminant classifier uses the same diagonal covariance matrix for each class. A qua-
dratic classifier is a Gaussian classifier with separate variances for each class.

3.2.2 Gaussian Mixture (GMIX)
The Gaussian Mixture classifier [28] can perform better than a Gaussian classifier when 
classifier distributions are not unimodal Gaussian. It models each class distribution with 
one or more Gaussian mixture components. The outputs of the classifier are weighted 
sums of the outputs of Gaussian mixture components. In training, the classifier changes 
the Gaussian means and variances and the connection weights for the outputs using the 
Estimate-Maximize algorithm to maximize the likelihood of the training patterns. For 
problems in high dimensions, a savings in the number of classifier parameters can be 
gained by switching from a full covariance Gaussian classifier to a diagonal covariance 
Gaussian mixture classifier with several Gaussians per class.

Many of the options available in the Gaussian Mixture program deal with the type of 
Gaussians to be used. The first choice is whether each class has its own Gaussian mix-

Calculate a covariance matrix
for each class, or have all

classes share one Grand matrix

Minimum value for on diagonal
entries in covariance matrices

FIGURE 3.7 Gaussian Classifier Parameters

Diagonal or full covariance
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ture or if all of the classes share a single set of tied Gaussian mixtures. Figure 3.8 illus-
trates the two types of Gaussian Mixtures. The lower dots in this figure represent the 
Gaussian components and the upper dots represent outputs for each class. As with the 
Gaussian classifier, the Gaussians in a mixture can have either diagonal or full covari-
ance matrices. Similarly, there can be a separate variance for each Gaussian in the clas-
sifier model or the variances can be averaged giving a grand variance. The averaging 
can be done over all of the Gaussians, so only one is estimated, or the Gaussians in each 
mixture can be average separately, giving one variance per class.

FIGURE 3.8 Tied versus Untied Gaussian Mixtures
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Untied MixturesTied Mixtures
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3.2: Likelihood Classifiers
3.2.3 Histogram

A histogram classifier[7] estimates the likelihood of each class by creating a set of his-
tograms for each input feature. Input features are continuous-values and each input fea-
ture is divided into a number of bins. The likelihood assigned to each bin is proportional 
to the number of training patterns that fall in that bin divided by the bin width. In test-
ing, the likelihoods for each input dimension are multiplied to give an overall likelihood 
for each class. An optional per class diagonal Gaussian classifier can be used to deter-
mine the class of all patterns that fall outside histogram bins. Unlike the naive Bayes 
classifier, the histogram classifier is designed for continuous valued inputs and provides 
many alternative approaches to categorize continuous data by forming bins.

The LNKnet histogram classifier provides several options for dividing the input space 
into bins. A fixed set of bins can be defined which evenly divides the space into smaller 
hypercubes (uniformly segmented hypercube). This works best when all the input fea-
tures have been normalized to have the same ranges. The bins can be autoscaled by cal-
culating one set for each input feature (Separate bins for each input feature). This 
allows for more variability across input dimensions. Finally, separate bins can be found 
for each class. This allows the greatest flexibility in the histogram parameters, binning 
each class and input feature. The range covered by the histogram can be multiplied by 
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for all classes
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the histogram range factor to classify test patterns found near the edges of the range 
seen during training. Two methods are used for finding the edges of histogram bins. In 
the first, the bins uniformly segment the covered range. This is usually better for classi-
fication. In the second method, the bins segment the space to give uniform numbers of 
patterns in each bin. Where the data is denser the bins are thinner. This is usually better 
for likelihood estimation.

3.2.4 Naive Bayes Classifier.
Unlike the histogram classifier, the naive Bayes classifier is explicitly designed for cate-
gorical data. It has become a popular classifier for processing large amounts of data typ-
ical of “data mining” applications and is not necessarily naive or simple. A 
straightforward approach is used, but good performance, that rivals that of more com-
plex classifiers, is often provided. The LNKnet graphical interface, shown in Figure 
3.11, makes it possible to change the number of bins or values for each input feature. 
This can be the same for all input features or it can be specified for each feature. Other 
parameters, described below, can be edited by hand in the shell script produced by 
LNKnet.

This classifier is designed for use with only categorical features and the categories must 
be indicated by input features that take on integers ranging from zero to nvalues-1, 
where nvalues is the number of different values for the input feature. Categorical fea-
tures take on values that are not ordered in a meaningful way. An example would be an 
input feature used to classify Internet web servers that was the name of the web server 
host computer operating system. If there are 12 different types of operating systems, 
then this input feature would take on 12 values. For use with LNKnet, the operating sys-
tem input feature values must range from 0 to 11. Note that input features must be pre-
processed to take on these integer values and they should not be further normalized 
within LNKnet. For example, “simple normalization” as assigned in the LNKnet “Fea-
ture Normalization” window should not be used. This will change input feature values 
to be non-integers that do not range from 0 to nvalues-1. Likewise, other forms of nor-
malization should not be used.

Same number of bins
for each input feature

FIGURE 3.11 Naive Bayes Classifier Parameters

Different number of
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Every implementation of naive Bayes classifiers must address three subtle issues. The 
first is how to assign probabilities to bins containing values not seen in any training pat-
terns. For example, if a feature can take values from 0 to 11, but the value 3 is never 
seen during training, a non-zero probability must be assigned to the value 3 seen during 
testing. The Laplace correction is used in this program because it often works well [19]. 
A less common variant can be selected by adding the -unity_laplace flag for the 
nbayes_lnk command in the shell script that LNKnet produces. The second issue is how 
to assign bin probabilities for categorical features when training patterns take on values 
that are outside the expected range. For example if the number of bins for a feature is set 
to 12, then feature values should range from 0 to 11. Other input feature values such 12 
or 21 are outside this range. This program creates an extra “unseen” bin for any feature 
where this occurs. All patterns that fall outside the expected range are counted as falling 
in this bin. These patterns can be ignored by adding the -ignore_unseen flag to the 
nbayes_lnk command in the shell script that LNKnet produces. The third issue is how to 
treat features in testing that take on values that are outside the expected range. This pro-
gram ignores such features. If there are many features, and at least one takes on an 
expected value, but all others take on unexpected values, then classification is still pos-
sible and will be based on the one feature. If all features take on unexpected values, then 
no class will be selected and no classification decision will be made. 

3.2.5 Parzen Window
For a Parzen window classifier [7,39], kernel functions are placed over each training 
pattern. Kernel functions can be Gaussians or rectangular pulse functions. Kernel func-
tions can be uniform, that is circular or square functions, or the length of each side can 
be proportional to the variance of each input feature, that is elliptical or rectangular. All 
kernel functions can have the same shape or there can be separate kernel function 
shapes for each class. The class likelihood of an input pattern is the sum of the likeli-
hoods for each kernel function in the class normalized by the number of training pat-
terns in the class. The Parzen window classifier can map very complicated likelihood 
functions with little training. The variance of all kernel functions is initially set equal to 
the variance of the training data. This variance can be reduced or increased using the 
variance multiplier.

3.3 Nearest Neighbor Classifiers

Nearest Neighbor classifiers work on the principle that a pattern is probably of the same 
class as those patterns nearest to it. The simplest algorithm is to store all the training 
patterns and to find distances to them all for each testing pattern. The computation nec-
essary for testing can be prohibitive for large databases. Most enhancements to the algo-
rithm involve reducing the number of patterns stored and used for testing. Nearest 
neighbor classifiers are simple and easily understood, but do not produce continuous 
outputs for later analysis and do not generalize well where training and test data differ.
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3.3.1 K Nearest Neighbor (KNN)
A K-Nearest Neighbor classifier [7] can be used to obtain a rough estimate of the diffi-
culty of a new problem. It can form complex decision regions but stores all training data 
and must compute distances to all training patterns during testing. A K-Nearest Neigh-
bor classifier trains by storing all training patterns presented to it. During testing, the K 
stored patterns closest to the test pattern are found using a Euclidean distance measure. 
A vote is taken amongst the K neighbors and the class that occurs the most is assigned 
to the test pattern. In leave-one-out cross validation, the stored training patterns are 
tested one at a time against a KNN model containing all but the single test pattern.
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OR rectangular shaped pulse

functions
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FIGURE 3.12 Parzen Window Parameters
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FIGURE 3.13 K Nearest Neighbor Parameters
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3.3: Nearest Neighbor Classifiers
3.3.2 Condensed Nearest Neighbor (CKNN)
The Condensed K Nearest Neighbor classifier (CKNN) [7,28] can sometimes provide 
performance that is similar to that of a K Nearest Neighbor classifier, but with fewer 
stored patterns. In testing, the CKNN classifier is a nearest neighbor classifier. It assigns 
the class of the nearest stored pattern to the test pattern. To train, the Condensed Nearest 
Neighbor classifier examines the training patterns successively and stores any that, 
when tested, are assigned the wrong class.

3.3.3 Nearest Cluster (NC_CLASS)
The Nearest Cluster classifier [7] can sometimes provide error rates similar to a KNN 
classifier but with many fewer stored parameters. It is a nearest neighbor classifier 
which uses the centers of clusters as its stored patterns. During training, a class is 
assigned to each cluster center using a nearest neighbor search over the training data. 
When determining the nearest neighbors in either training or testing, either a Euclidean 
or Mahalanobis distance can be used. That is, a distance based on the squared difference 
in the inputs or one based on the output of the Gaussian represented by the cluster. The 
Mahalanobis distance metric is intended for use when the Estimate-Maximize clustering 
algorithm, em_clus, is used for clustering.

The number of times to cycle 
through the data during training

FIGURE 3.14 Condensed Nearest Neighbor Parameters
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FIGURE 3.15 Nearest Cluster Classifier Parameters
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3.3.4 Learning Vector Quantizer (LVQ)
The learning vector quantizer (LVQ) training algorithm[21] can sometimes improve the 
performance of a nearest cluster classifier by moving cluster centers. This is an imple-
mentation of four of Kohonen’s Learning Vector Quantizer algorithms. In testing, the 
LVQ is a nearest cluster classifier. In training, cluster centers are assigned classes as 
they are in the nearest cluster classifier using Euclidean distances. Training then moves 
centers to improve classification performance on the training data. In LVQ1, the center 
closest to the training pattern is moved towards or away from it, depending on whether 
it is of the same class. OLVQ is an optimized version of LVQ1. Each center has its own 
step size, which is modified when the center is the nearest neighbor. In LVQ2 the two 
closest centers are moved if one is of the correct class and one is of some other class. 
Further, the pattern must fall in a window between the two closest centers. Finally, 
LVQ3 is the same as LVQ2 with one exception. When the two closest centers are both 
of the correct class, they are both moved closer to the training pattern. The step size for 
this “correct” movement is smaller than the normal stepsize by a factor of epsilon.

3.4 Rule Based Classifiers

Rule based classifiers partition the input space into decision regions using threshold 
logic nodes or rules. They can often be easily implemented in hardware applications.

3.4.1 Binary Tree Classifier (BINTREE)
The binary decision tree classifier trains and tests very quickly and is similar to the 
CART algorithm described in [3]. It can also be used to identify the input features which 
are most important for classification because feature selection is part of the tree-build-
ing process. BINTREE is well suited to problems with categorical input features or with 
uncorrelated continuous input features. During training, BINTREE builds trees using 
tests of the form  at each node to divide training patterns for classification. Pat-
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FIGURE 3.16 Learning Vector Quantizer Parameters
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3.4: Rule Based Classifiers
terns which pass the test are assigned to one node and those which fail are assigned to 
another. Tests for the two new nodes are found and training continues until there are no 
nodes that have training patterns from more than one class. Before testing, the tree can 
be pruned to a set number of non-terminal nodes. This reduces the size of the tree and 
can improve classification error rates in testing. To prune, the non-terminal node which 
least affects the error rate on all the training data is found. It is made into a terminal 
node and its children are removed from the tree. Nodes are cut until the desired number 
of non-terminal nodes in the tree is reached. The BINTREE parameter window is shown 
in Figure 3.17. The “Split Using Linear Feature Combinations” option should not be 
used except for pedagogical purposes because the power of the BINTREE classifier 
comes from the simpler single-feature splits performed by default.

3.4.2 Support Vector Machine (SVM)
The support vector machine (SVM) is a modern highly flexible classifier [5]. The LNK-
net implementation classifies two or more classes using one or more linear or nonlinear 
two-class support vector machine classifiers. SVM classifiers are similar to perceptrons. 
They separate patterns in two classes using a hyperplane. SVM’s, however, position the 
separating hyperplane to maximize the margin, where the margin is the minimum dis-
tance from the separating hyperplane to patterns in the two classes. Training involves 
attempting to satisfy Karush-Kuhn-Tucker (KKT) conditions that specify the quadratic 
minimization problem that defines the SVM. A linear SVM performs this minimization 
in the space of the original input features while a nonlinear SVM performs this minimi-
zation in an higher-order space implicitly generated using nonlinear kernels [5]. 

In practice, it is often impossible to satisfy strict KKT conditions and separate all pat-
terns. An upper bound (cbound) is used to set the maximum cost incurred for violation 
of the KKT conditions. This allows the output for support vectors with non-zero 
Lagrange multipliers to deviate from +/- 1.0. Higher cbound values lead to more com-
plex classifiers that try to correctly classify each training pattern. Lower cbound values 
lead to simpler classifiers that allow misclassifications and violations of strict KKT con-

Node tests of the form xi C≤

FIGURE 3.17 Binary Tree Parameters
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ditions. The value of cbound for a particular problem must be selected empirically 
using cross-validation. Figure 3.18 shows the SVM LNKnet window. The value for 
cbound is set using the upper box labeled “Lagrange Multiplier Upper Bound.”

FIGURE 3.18 Support Vector Machine Parameters

The kernel type determines whether an SVM is a simple linear discriminator or whether 
it maps the inputs to a higher-order space. Kernel types are selected in the left middle of 
the SVM window shown in Figure 3.18. It is possible to use linear kernels, Gaussian 
kernels, polynomial kernels (xy)n, and inhomogeneous polynomial kernels (xy + 1)n. 
Some kernels have free parameters these are selected on the right middle of the SVM 
window. The standard deviation has to be selected for the Gaussian kernel and the order 
has to be selected for the polynomial kernels. In addition, the inner terms in the polyno-
mial and inhomogeneous kernels can be divided by a scale factor before being raised to 
power. This improves numerical stability if there are many input features. For example 
you could divide by 256 if there were 256 input features and the data was normalized to 
a mean of zero and standard deviation of one. This scale factor is entered in the bottom 
right box shown in Figure 3.18. Kernel locations are normally not stored for linear SVM 
classifiers because they are not required for classification. To force storage of linear 
SVM kernels to plot them with the “internals” plot check the box in the bottom middle 
of the SVM window. 

SVM classifiers only discriminate between two classes and extensions are required for 
multi-class problems. Two approaches can be selected using check boxes in the upper 
left of the SVM window. The upper check box constructs M component binary classifi-
ers which separate each class from all the remaining classes. During testing, the classifi-
cation decision corresponds to the class of the component classifier with the highest 
output (before the clipping nonlinearity). The lower check box constructs many more 
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simpler binary classifiers that separate all possible combinations of classes taken two at 
a time. This results in M*(M-1)/2 simple classifiers. During testing, the class with the 
most votes across all binary component classifiers is selected. In the case of ties, outputs 
(before the clipping nonlinearity) for each class are scanned across all pairwise classifi-
ers that include that class, and the minimum is found. These minimum values are com-
pared to find the class with the highest minimum value. The final classification decision 
corresponds to that class. The second pairwise approach sometimes provides better per-
formance. Although it requires many more classifiers, they are simpler, and overall 
training time is often similar across both approaches. For reference, the total number of 
classifiers that will be created is printed in the upper middle of the SVM window.

Classical SVM classifiers provide zero/one outputs that indicate only whether the input 
pattern belongs to class A or B. They do not provide posterior probabilities that can be 
used to adjust differences in prior probabilities between training and testing, assign 
costs to different types of errors, reject patterns, and form complete ROC curves. LNK-
net software approximates posterior probabilities using an approach motivated by [4] 
but simplified to use only training data. The output of each component SVM (before the 
clipping nonlinearity) is fed into a sigmoid function with an output ranging from 0 to 
1.0 and constrained to produce an output of 0.5 when the input is at the decision region 
boundary (input = 0.0). This constraint preserves the error rate for component binary 
classifiers when errors have equal costs. The slope of the sigmoid is selected during 
training to minimize the mean squared error between the sigmoid output and desired 
outputs of zero and one for the two classes. Training patterns with unclipped outputs 
near +/- 1 (mainly support vectors) are weighted much less in this minimization because 
internal parameters in the classifier have been tuned to produce outputs of +/- 1 for these 
patterns. For multi-class problems, posterior probabilities are computed from the com-
ponent classifiers. When M classifiers are generated for an M-class problem, posterior 
probabilities are the M outputs for each class from the M component classifiers. When 
M*(M-1)/2 pairwise classifiers are generated, the posterior probability for each class is 
the minimum posterior probability output for that class across all pairwise classifiers. A 
sigmoid is always fit to the output of every component classifier. This fit can be used or 
ignored depending on the -sigmoid_fit flag. This flag should normally be used to pro-
vide an output that approximates posterior probabilities.

This implementation of SVM’s uses an efficient, fast algorithm that scales well to prob-
lems with many features and many training patterns. It uses John Platt’s Sequential Min-
imal Optimization (SMO) algorithm [34] as improved by Keerthi and Shevade [17]. The 
core algorithm examines pairs of patterns (one from each class) and modifies Lagrange 
multipliers using an analytic solution when patterns violate KKT conditions. Training 
involves two-pass sweeps. In the first pass of a sweep, all patterns are examined one at a 
time to find violations of KKT conditions. Lagrange multipliers are adapted when a vio-
lation is found. In the second pass, the subset of patterns found in the first pass that vio-
late KTT conditions are examined repetitively and their Lagrange multipliers are 
adjusted until such patterns satisfy KKT conditions. Adjustments always involve pairs 
of patterns that do not satisfy KKT conditions. Another examination of all patterns to 
find KKT condition violations begins the next sweep. Training stops when all patterns 
satisfy KKT conditions. During training, two bias values (the bias for the hyperplane) 
are maintained and used by the algorithm. These high and low bias values initially dif-
fer, and then converge to be similar after convergence. After the algorithm completes, a 
final independent check is made to make sure the solution satisfies all KKT conditions. 
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A warning is printed along with diagnostics if the solution does not satisfy KKT condi-
tions.

During training, information is printed out during each pass of every sweep when the 
log file verbosity set in the “Report Files and Verbosity” window shown in Figure 2.3 is 
greater than the lowest “Overall Error Rate” setting. The following is an example of a 
table for a component classifier which separates classes 9 and 8 (digits “9” versus “8”) 
for the ocrdigit data base. A linear kernel was used, cbound was 1.0, and there were 120 
training patterns.

TABLE  3.1 Example training sweeps printout for a SVM classifier.

NSweeps Changed TChanged KernelEvals UnBounded AtUpper HiBias LoBias DeltaBias 
1 58 58 3140 53 0 1.73 0.07 1.655375 
1 2 60 3357 50 0 1.77 0.29 1.478128 
2 64 124 9528 53 0 1.45 0.80 0.644528 
2 0 124 9528 53 0 1.45 0.80 0.644528 
3 62 186 16061 47 0 1.45 1.07 0.379679 
3 18 204 17594 37 0 1.36 1.19 0.175545 
4 42 246 20861 40 0 1.36 1.24 0.122306 
4 409 655 50742 33 0 1.27 1.27 0.001997 
5 0 655 50742 33 0 1.27 1.27 0.001997 

The first column indicates the sweep number. As noted above, there are two passes per 
sweep. The first pass examines all training patterns and the second examines only the 
subset of patterns found in the first pass that violates the KKT conditions. The second 
column indicates the number of patterns in a pass that violate KKT conditions. For 
example, on the first pass through all 120 training patterns, 58 patterns violated the 
KKT conditions. Lagrange multipliers for these patterns are all updated or “changed”. 
The third column indicates the cumulative number of patterns where Lagrange multipli-
ers were adapted or the total patterns with “changed” Lagrange multipliers. For exam-
ple, on the first past, 58 adaptations occurred. A total of 655 adaptations were required 
to complete training. The Fourth column shows the cumulative number of kernel evalu-
ations required during training. When the number of input features is large, most of the 
computation in this algorithm involves kernel evaluations. For this problem, more than 
50,000 kernel evaluations were required to complete training. The fifth column shows 
the number of support vectors that have non-zero Lagrange multipliers that are below 
cbound. After training is complete, there are 33 non-zero support vectors below cbound 
and none at the upper bound. All support vectors (unbounded and at the upper bound) 
must be stored and used for classification. Support vectors at the upper bound corre-
spond to patterns where outputs are not +/- 1.0. These patterns may or may not be mis-
classified. The final three columns show the lower bias bound, the upper bias bound, 
and the difference between these bounds. See [17] for a descriptions of these bounds 
and how they are computed. After training is complete, the difference between these 
bias bounds should be small and less than the KKT tolerance. 

Any implementation of SVMs must address numerical precision limitations and the 
desired accuracy of fit to KKT conditions. LNKnet software is designed for input fea-
tures that have been normalized to have zero mean and unit variance. This is achieved in 
LNKnet using simple normalization in the “Feature Normalization” window. In addi-
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tion, the accuracy desired for KKT conditions can be adjusted. KKT conditions specify 
that the unclipped component classifier output for non-zero support vectors below 
cbound must be +/- 1. In practice, exactly producing outputs of +/- 1 may take exces-
sively long and have little effect on classification performance. The tolerance (absolute 
difference between actual and desired outputs) allowed around desired outputs of +/- 1 
can be set on the bottom left of the SVM window. This value defaults to 0.001. It can be 
increased, for example to 0.01, to reduce convergence time. It is also possible to set a 
lower limit on Lagrange multipliers in the lower left of the SVM window. Lagrange 
multipliers below this limit are set to zero. This defaults to 0.001. It can be lowered 
when Lagrange multiplier adjustments are small and below the threshold. Evidence of 
small Lagrange multiplier adjustments below this limit is that the algorithm converges 
rapidly to a bad solution that doesn’t satisfy KKT conditions without changing 
Lagrange multipliers on any training patterns. A warning will be printed with recom-
mended changes if this occurs. This tolerance can also be increased if there are too 
many small Lagrange multipliers. 

This algorithm converges (usually rapidly) to a good solution. Good solutions are found 
for a wide range of parameter values. Extensive error checking is performed to verify 
the final solution and warnings and corrective suggestions are provided if KKT condi-
tions are not satisfied. This only occurs if numerical precision problems occur. Such 
problems usually don’t occur if (1) The data is normalized to zero mean unit variance 
using simple normalization, (2) If the Gaussian kernel standard deviation isn’t too large 
compared to the number of input features, (3) The polynomial kernel divisor is roughly 
equal to the number of input features, and (4) There are no severe outlier data patterns 
that are far away from other patters of the same class but among patterns of some other 
class. When KKT conditions can’t be satisfied, the algorithm will still converge and 
warnings will be printed out stating why KKT conditions weren’t met and how serious 
this is. These warnings can sometimes be ignored because when they occur, classifiers 
are created and they typically work reasonably well. The extent of KKT violation is 
printed out and small violations of KKT conditions don’t affect classification perfor-
mance significantly. If warnings are printed out and KKT violations are substantial, try 
a different kernel (e.g. Gaussian or polynomial instead of linear), try increasing cbound, 
try a different approach to building multi-class classifiers, increase the polynomial divi-
sor scale factor, or decrease the standard deviation of Gaussian kernels. In addition try 
searching for obvious extreme outlier patterns that might be due to mislabeled data. For 
high-order polynomial kernels and Gaussian kernels with large standard deviations, 
lowering the Lagrange multiplier tolerance may help. For multi-class problems, warn-
ings are printed out for each component classifier and the total number of warnings is 
printed out when training is complete. Search for the string “WARNING” in the training 
log file. This software has been successfully applied to large problems with many input 
features and many training patterns. Memory requirements increase roughly linearly in 
the number of input features and number of training patterns. 
LNKnet Users Guide (Revision 4, February 2004) 69 



CHAPTER 3: Classifiers
3.4.3 Hypersphere (HYPER)

The hypersphere classifier [1,21] forms decision regions using hyperspheres and can 
require far fewer hyperspheres than there are training patterns. It covers the input space 
with hyperspheres using a predefined initial radius. A new sphere is added whenever a 
classification error is made on a training pattern. The radii of overlapping spheres are 
reduced when a new sphere is added such that no sphere covers the center of a sphere of 
another class.

At the end of training, spheres can be pruned. During pruning, the spheres are sorted 
either by size or by the number of times each sphere was used in a correct classification 
of a training pattern. Then, the spheres are pruned until a certain number remains.

Classification is performed by first testing to see whether a test pattern falls inside a 
sphere. The “rules” used by this classifier are then distance tests to determine which 
sphere or spheres the pattern falls in. If a pattern falls outside all spheres, the 
“unknown” class is assigned to it. An “unknown” response class can be prevented by 
responding with the class label of the nearest hypersphere center. An answer of 
“unknown” can also be returned if the pattern falls inside two or more spheres of differ-
ing classes. In this case, a nearest neighbor search can be performed over the centers of 
the spheres the pattern falls in.

3.5 Committee Classifier

One single classifier used alone often does not provide the best performance. In many 
cases, better performance is provided by a committee made up of many different classi-
fiers either of different types or trained using different samplings of the same training 
data [14]. A committee classifier combines the outputs of several trained classifiers to 
return a final combined classification decision. LNKnet makes it possible to evaluate 
committee classifiers using a three step process. First all classifiers are trained and 

After sphere creation is done, 
prune spheres until N remain

Maximum radius of a new
hypersphere

Number of times to cycle
through data while adding

spheres

Sort Centers by size or
“usefulness” before pruning

FIGURE 3.19 Hypersphere Classifier Parameters

Mark spheres that do not fall in
spheres of only one class as

Unknown or use class of
nearest neighbor
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tested independently as described above. Second, a committee database is created using 
the “Committee Data Base Generation...” button on the main LNKnet window. This 
takes the outputs from all classifiers trained independently, concatenates them, and cre-
ates a new committee data base where these outputs can be used as inputs to another 
classifier. Finally, the committee classifier or any other classifier can be used to com-
bine the outputs to make a final decision. The committee classifier combines other clas-
sifier outputs by averaging, forming the median output, or taking a majority vote. If 
average or median outputs are used, it is important that all the members of the commit-
tee be of the same type. That is they should all estimate posterior probabilities or they 
should estimate likelihoods. Because the nearest neighbor classifiers do not produce 
continuous outputs, only the third classifier type, voting for the most chosen class, is 
appropriate for them. Note that decision region and profile plots can not be produce with 
committee classifiers because it is not easy to determine the output for all possible 
inputs.

The input data base for a LNKnet committee classifier must be a committee data base 
which contains the outputs for all the classifiers in the committee. Section 7.3 describes 
how committee data bases are created. It is up to users who are testing committee classi-
fiers to make sure the same training data, features, and output classes are used with all 
classifiers that are committee members. These characteristics of committee members 
are not verified when the committee classifier is run.

Select the classifier type

FIGURE 3.20 Committee Classifier Parameters
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CHAPTER 4 Clustering

Several of the LNKnet classifiers initialize hidden nodes or other parameters using 
pre-trained clusters. Each cluster has a mean and a diagonal covariance matrix. The 
clusters can be trained on labeled or unlabeled training data. That is, a separate set of 
clusters can be trained for each class, or a single set of clusters can be trained for all of 
the training data. When clustering labeled data, a different number of clusters can be 
generated for each class.

4.1 K-Means

The K-Means clustering algorithm [7] positions a set of K centers in order to minimize 
the total squared error distance between each training pattern and its nearest center. It is 
trained using multiple passes through all training patterns. During a single training 
epoch each training pattern is assigned to its nearest center. The position of that center is 
then moved to the mean of the patterns assigned to it.

In this implementation, the K centers are initialized using a binary splitting algorithm 
first described in [4]. The program first places a single center at the mean of all of the 
training data. This center is then split in two, with the resulting centers being moved 
slightly away from the original center’s position. These centers are then trained for a set 
number of epochs or until the total error goes below a threshold. The algorithm then 
splits the existing centers and proceeds as before. If, during training, a center ever has 
no patterns assigned to it, that center is moved near the center which accounts for the 
largest amount of the total error and training proceeds as before. When a non-binary 
number of centers is requested, the algorithm finds  centers, the power of 
two above the requested number of centers, K. This set of centers is then pruned to bring 
the number back down to K. Pruning eliminates first those clusters which account for 
the least total variance.

4.2 Estimate-Maximize (EM_CLUS)

EM_CLUS uses the Estimate-Maximize algorithm (EM) [28] to maximize the likeli-
hood of the training patterns while training the means, variances, and mixture weights 
of Gaussian mixture cluster centers. The algorithm is the same one as is used by the 
Gaussian Mixture Classifier, GMIX, except that mixture weights are ignored.

This implementation uses binary splitting to generate the requested number of clusters. 
When finding a non-binary number of centers, this algorithm goes to the power of two 

2 2 K( )log
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above K and then prunes, just as KMEANS does. This program can also use KMEANS 
to initialize the clusters. In this case, the EM algorithm is only used at the end to adjust 
clusters found by kmeans.

Find one set of clusters or an
independent set for each class

Move centers some
small random

amount after a split

When splitting a 
cluster, move the 
two resulting 
centers apart by 
this percentage of 
the variance of the 
cluster

The number of 
centers to find for 
each class. This is 
a comma delimited 
list.

Stop a round of training when the
centers stop moving more than this
amount per epoch, training at most

this number of epochs.

How many clusters to prune when
going from the power of 2 above K

to K before retraining the centers
again

When clustering by class, find a
different number of clusters for

each class OR the same number

The total number of 
centers to find or 
the number of 
centers to find for 
each class

FIGURE 4.1 K Means Parameters

When to stop a round of
training after a split

How many clusters to prune
when going from the power

of 2 above K to K before
retraining again

Stop a round of 
K-Means training 
early if the centers 
stop moving

How to position 
cluster centers 
resulting from a split

Increase variance before
each round of training

adding clusters

Minimum variance of a
cluster during training

Use K-Means to find 
K clusters, then 
adjust using EM 
algorithm

Specify the number 
of clusters to find

FIGURE 4.2 Estimate-Maximize Likelihood Parameters

Find a set of clusters OR an
independent set for each

class
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4.3 Leader Clustering (LEAD_CLUS)

Leader clustering [12] is a simple fast sequential clustering algorithm. Training patterns 
are presented one at a time. The first pattern is the first cluster center. Any other pattern 
that is farther away than delta from an existing cluster center is stored as a new cluster 
center. Larger values of delta result in few clusters while small values of delta result in 
many clusters. When clustering by class, a different delta may be set for each class. 
When these clusters are used by a classification algorithm, delta is used as the cluster 
variance in all directions.

4.4 Random (RAN_CLUS)

This clusterer selects K training patterns to use as the cluster centers. These centers will 
be the first K patterns presented to this clusterer. To get a random set of centers, the data 
must be presented in a random order by clicking the Present Patterns in Random 
Order box on the main LNKnet window. After centers have been selected, cluster vari-
ances are calculated. As with kmeans, each training pattern is assigned to the cluster 
center closest to it. The cluster is then assigned the variance of its patterns.

FIGURE 4.4 Random Clustering Parameters

Radii for 
clusters in each 
class. This is a 
comma 
delimited list of 
floating point 
numbers

Radius for all 
clusters

FIGURE 4.3 Leader Clustering Parameters

Find one set of clusters or an
independent set for each class

Specify the number of
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This is on the Main Window
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CHAPTER 5 General LNKnet 
Parameters

The design of LNKnet separates those parameters which are algorithm specific from 
those which are general across most classification algorithms. This chapter discusses 
those general LNKnet features which are available to most classification programs.

5.1 LNKnet Main Window

The left side of the main LNKnet window, shown in Figure 5.1, is a control panel which 
runs classification and clustering experiments. The right side, shown in Figure 5.2, sets 
the classification algorithm and experiment name, and displays the other LNKnet 
parameter windows using the many buttons whose names end in “...”.

At the top of the left side of the main window is the QUIT menu. When Quit is selected 
from this menu, LNKnet quits. The experiments started by LNKnet still continue, how-
ever. These experiments are started by selecting the START New Exper. and CON-
TINUE Current Exper. buttons below the CONTROL EXPERIMENT label. Plots 
are usually generated as part of an experiment when START or CONTINUE are 
selected. To generate plots without repeating an experiment, you can select PLOT 
ONLY below the CONTINUE button. The most recently started experiment or plot can 
be stopped by selecting the STOP Exper. button to the right of the START button. 
Below these control buttons is a check box labeled Only Store shell script, do not run. 
As stated, when this box is checked, shell scripts and screen files are stored when 
START, CONTINUE, or PLOT are selected but the scripts are not automatically run by 
LNKnet. When a shell script stored this way is run, the plot files will be generated but 
not displayed and text output will go to the log file but not to any shell window. This 
also affects shell scripts created on other windows such as the Normalization File Gen-
eration window or the Committee Data Base Generation window.

Below the control area is a selection list for choosing the experiment action. The action 
can be training a classifier on a training file, testing a trained classifier on a testing file, 
doing training immediately followed by testing, or performing an N-fold cross valida-
tion experiment on the training file. The data file to use as the testing file is selected 
from the list to the right of the action selection list. The user can test a classifier on train-
ing, evaluation, or test data. The files themselves are specified on the Data Base Selec-
tion window shown in Figure 5.4.
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When the experiment action is N-fold cross validation, cross validation parameters can 
be set below the action list. The user chooses whether to automatically divide the data 
into training and testing folds or to read those fold assignments from a file. The format 
of that file is described in Section 5.7 on page 89. The patterns can be randomized 
before assignment to training and testing folds. Selecting Randomize patterns before 
assigning to folds and changing the random number seed lets the user perform a series 
of cross validation experiments to find an average classification error rate on the data.

Finally, at the bottom of the left side of the main window, the user can request to present 
training patterns to classifiers in a random order. The user can also set the random 

number generation seed. Changing this seed changes the values for random initial 
weights in some classifiers and the presentation order of randomized training patterns 
for all classifiers.

The first button on the right side of the main window has a menu which selects the clas-
sification or clustering algorithm to use in the current experiment. The current algorithm 
is displayed beside the menu button. Below the menu is a button which displays the 
parameter window for the current algorithm. This window sets parameters specific to 
the classification or clustering algorithm. The algorithm parameter windows are 
described in Chapter 3 and Chapter 4.

Select to quit LNKnet

Write and run shell script.
If training, create new

error files and parameter
files

Write and run shell
script. If training,

initialize training using
parameter file

Write and run shell script
which only produces

selected plots

Kill the process of the shell 
script most recently started

•Train only
•Test using the test file only
•Train then test using the test file
•Perform N-fold Cross validation 

on the training fileAutomatically assign patterns
to N folds OR

Read fold assignments from
database.train.cv

Randomize patterns each training epoch

Randomize patterns before
automatic fold assignment

FIGURE 5.1 The LNKnet Main Window (left side)
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Select the data file for testing
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78 LNKnet Users Guide (Revision 4, February 2004)



5.1: LNKnet Main Window
Below the algorithm parameters button is a text field for setting the Experiment name 
prefix. The experiment name is used for naming the files generated during an experi-
ment. These include the shell script, screen file, log file, error files, plot files, and classi-
fier parameter files. The prefix set here is added to the algorithm name to create the full 
experiment name. For the window in Figure 5.2 the full experiment name is X1mlp.

Next on the right side of the main window is a column of buttons which display other 
LNKnet popup windows. These windows are described in this chapter and in following 
chapters. The first six are typically accessed in an experiment in the order they appear 
on this window from top to bottom. The next three buttons display windows for per-
forming further processing after an experiment has finished running. The last two but-
tons are for saving and restoring screen settings in a defaults file. This file, ~/.lnknetrc, 
is read when LNKnet is started. A new set of defaults can be created by selecting Save 
Screens as Default Initialization. The screens can be reinitialized to the settings in the 
current defaults file by selecting Reinitialize screens from defaults.

Algorithm Menu
Current algorithm is MLP

Display parameter window for
current algorithm

Display Report Files and
Verbosities window

Display Normalization window

Prefix used for files is 
<name><algorithm>.
It is now X1mlp

Display Feature Selection
window

Display Adjust A Priori Class
Probabilities window

FIGURE 5.2 The LNKnet Main window (right side)

Write current screen settings 
in $HOME/.lnknetrc

Restore screen settings, 
using those in 
$HOME/.lnknetrc

Display the Plot Selection
window (see Chapter 6)

Display Data Base Selection
window

Display Generate C File from Parameter 
File window (see Section 7.2)

Display Generate Committee Data 
base window (see Section 7.3)

Display Preview and Print 
window (see Section 7.1) 

When there are serious errors on 
these windows, a red stop sign 
appears beside the buttons. Display 
the windows and clear the errors 
before starting an experiment
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5.2 Experiment Directory Files

The Report Files and Verbosities window shown in Figure 5.3 sets the names of files 
created by the classifier during an experiment. The first field is the current working 
directory. This is the directory the user was in when LNKnet was started. It cannot be 
changed by the user. The next field is the experiment path. This is the path to the direc-
tory where all shell scripts, experiment files, and plot files will be written. This path can 
be an absolute path which starts from the root directory / or it can be a relative path 
which starts from the current working directory. In this example, the experiment path is 
a relative path, making the full path /u/kukolich/lnknet/Tutorial. An optional Experi-
ment notebook is kept in the current working directory. When each experiment is 
started, a line is added to the notebook file with the experiment name, data base name, 
normalization parameters, feature selection parameters, and parameters for the classifi-
cation algorithm. The experiment shell script writes training and testing results to the 
notebook as well as results from some plots. Below the experiment path are the names 
of files created by LNKnet or the classifier during an experiment. These names are auto-
matically generated based on the experiment name and classifier and cannot be edited. 
The first file is the shell script created by LNKnet when START, CONTINUE or PLOT 
ONLY are selected on the main window. This shell script contains requested calls to the 
classifier for training or testing and calls to any requested plot programs. 

When an experiment shell script is run, certain training and testing status information 
and results are stored in a log file. The type of information stored is controlled by the 
log file verbosity flag. The verbosity levels are described in Section 8.2.4. The log file 
can be viewed or printed from the Preview and Print window which is described in 
Section 7.1. When training is complete, a classifier parameter file is stored. This file 
contains all the information needed by a LNKnet program to recreate the trained classi-
fier. Finally, when a classifier, in training or testing, finds the class of an input pattern, 
the results can be written to an error file. The amount of information in the error file is 
controlled by the error file verbosity flag. The error file verbosity levels are described 
in Section 8.2.6. Because the training error files can be very long, the user can select No 
Training Error Files to write test error files but not training files. The full name of the 
error file depends on the data file type used for input data (train, eval, test) and the 
action being performed (training, testing, or cross validation). These parameters are set 
on the main screen. The specifications of these names are found in Table 8.9 on 
page 125. Whenever this shell script is stored, LNKnet also creates a screen file. This 
screen file saves all the parameters set on all LNKnet windows. To restore a LNKnet 
experiment, set the experiment name and classifier on the main window, set the experi-
ment path to the directory of the desired screen file, and select Restore Exp. Screens.

5.3 Data Base Selection

The data base selection window shown in Figure 5.4 selects the data files to be used for 
training and testing a classifier. The first field on the window is the data path, the direc-
tory where all the data base files, normalization files, and feature selection files for an 
experiment are stored. This can be an absolute path starting from the root directory or a 
relative path starting from the current working directory on the Reports window shown 
in Figure 5.3. All the data base description files in the data base directory are included in 
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the Data Base List scroll list. These description files all have the suffix .defaults in 
their names. A new data base which does not yet have a description file will not be 
listed in the Data Base list. Use the description file generation window to create the 
missing description file. A data base can be selected from the scroll list or its name can 
be typed (without the .defaults suffix) in the data file prefix field below the scroll list. 
When a data base is selected, information about the data base is read from the descrip-
tion file. If LNKnet cannot find the description file, an error appears at the bottom of the 
screen and a stop sign will appear beside the Data Base... button on the main window. 
The description file can be created using the Description File Generation window 
shown in Figure 5.5. When a data base is selected, LNKnet also finds the data files 
included in the data base. The file name extensions for training, evaluation, and test 
files are specified at the bottom of the data base window. The actual file names are got-
ten by appending the extension to the data base name. If LNKnet finds these files it 
counts the total number of patterns and the number of patterns assigned to each class 
in the file. To use fewer patterns than are present in a file, change the number of patterns 
field. To reset the field, cause LNKnet to reread the file by reselecting the data base or 
by putting the cursor on the file name extension and hitting return.

The description file generation window shown in Figure 5.5 allows the user to create or 
modify a description file for a LNKnet data base. The user specifies the number of 
input features, number of output classes, and labels for the input features and classes. 
Selecting Generate writes the description file and adds it to the data base list on the data 
base selection window. The user can select Cancel to leave the description file genera-
tion window without creating a description file. It is important to get this right. An error 
in the data base description file can cause serious problems when an experiment is run.

FIGURE 5.3 Report Files and Verbosities Window
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Extensions added to the
data base name for training,

evaluation and test files
Files are vowel.train,

vowel.eval, and
vowel.test

FIGURE 5.4 Data Base Selection window

List of all data bases in the
data directory

Current data base

Information read from the
data base description file

vowel.defaults

Number of patterns and
number of patterns per

class for the training
data file vowel.test

Directory with data files,
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feature selection files

Button which displays
the description file

generation window

FIGURE 5.5 Description File Generation window
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5.4 Normalization

When a data file is read by a classifier, it is possible to perform preprocessing for nor-
malization. The preprocessing methods available in LNKnet either scale or rotate the 
input space. The normalization parameters for a data base are calculated using only 
training data.

Simple normalization rescales each input feature independently to have a mean of 0 
and a variance of 1. This compensates for the differences in the means and variances of 
the input dimensions. This should always be used for MLP and SVM classifiers.

Principal components analysis (PCA) rotates the input space to make the direction of 
greatest variance the first dimension. The remaining orthogonal dimensions correspond 
to directions of decreasing variance in the original input space. PCA can be used to 
reduce the number of input dimensions by first performing PCA and then selecting only 
the top N most important PCA features.

Linear discriminant analysis (LDA) assumes that classes and class means can be 
modeled using Gaussian distributions. It rotates the input space to make the first dimen-
sion the direction along which the classes can be most easily discriminated. The remain-
ing dimensions are ordered by decreasing ability to be used to discriminate the classes. 
The number of features after LDA normalization is the minimum of D and M-1 where D 
is the original number of input features and M is the number of classes in the data base.

The normalization method used in a LNKnet experiment is selected on the normaliza-
tion window shown in Figure 5.6. Selecting a normalization method sets the normal-
ization file name. This file is stored in the data base directory which is set on the data 
base window. If this file does not exist an error will appear at the bottom of the window 
and beside the “Feature Normalization...” button on the main window. The normaliza-
tion file can be created on the Normalization File Generation window shown in Figure 
5.7.

FIGURE 5.6 Normalization Algorithm Selection

Select normalization
method

Select to Generate 
a normalization file

Normalization file in data
directory

If LNKnet cannot find the
normalization file, check
the data directory, data

base name, and
normalization file type
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5.4.1 Generating Normalization Files
The normalization file generation window writes and runs shell scripts that calculate 
and plot normalization parameters. The normalization method and the parameter file to 
be written are listed at the top of the window. When the user selects Run on this window 
a shell script calls a normalization program which calculates normalization parameters 
based on the training data file and stores them to a parameter file in the data base direc-
tory. The data directory is specified on the data base window. If Only store shell script, 
do not run is selected on the main window, the shell script will be written but not run. 
When the shell script is run some status information is printed to a log file in the experi-
ment directory and to the text window from which LNKnet was originally started. 
Because this is not an experiment, no information is printed to the experiment notebook 
file. Selecting Cancel stops the normalization shell script and removes the Normaliza-
tion File Generation window. If the Generate Plot box is checked, a plot is generated 
and displayed after the normalization file has been created. This plot can also be gener-
ated without recalculating the normalization parameters by selecting the Plot Only but-
ton. The plot shows the relative importance of the features created when the input space 
is rotated using either the PCA or LDA normalization algorithms. X and Y limits of the 
plot can be chosen by the user or the plot program can choose them using the autoscale 
flag. The X dimension of this plot is the number of normalized input features. The Y 
value for each feature is the percentage of the total of the rotation matrix eigenvalues 
accounted for by that feature. An example of a normalization plot is found in 
Figure 2.40 on page 46.

FIGURE 5.7 Normalization File Generation window
Normalization method

and file name from
normalization window.

The file will be stored in
the data directory

Log file created when
shell script is run

Generate a plot for PCA 
or LDA

Plot file name stored in 
experiment directory

Write and run 
normalization shell 
script

Write and run shell 
script to just create plot 
file

Stop shell script and 
exit generation window

Shell script created
when Run or Plot Only
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Label for plot

Controls for the X and Y 
plot axes
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5.5 Feature Selection

Sometimes you do not want to use all of the input features available in a data base. 
LNKnet algorithms can select a subset of them. This subset can be the first N features, 
a hand picked set, or a set of features read from a file. When using PCA or LDA as the 
normalization algorithm, the first N features are usually chosen, which occurs after nor-
malization has been applied to the input data. When hand picking a set of features, the 
original features are numbered from 0 to ninputs-1. The selected features are given in a 
comma delimited list with integers, commas, and no spaces. The labels which match the 
selected input features are listed in the middle of the window. If there is a problem with 
the input features or labels, an error or warning message appears. Feature list files are 
stored in the data directory which is set on the data base selection window shown in 
Figure 5.4 on page 82. LNKnet opens the specified file and reads a feature list from it. 
The user may choose the number of features to use from this list or the best set in the 
file can be used. If LNKnet cannot open the feature list file, an error message appears at 
the bottom of the window and a stop sign appears on the main window. Feature list files 
can be created using the Feature List Generation window shown in Figure 5.9.

The feature list file generation window writes and runs shell scripts that create and plot 
feature lists. When Run is selected on this window a shell script is written to the exper-
iment directory and run. If Only store shell script, do not run is selected on the main 
window, the shell script is not run. When the shell script is run, status information from 
the feature search is printed to a log file and to the window LNKnet was originally 
started in. The shell script creates a feature list file. The features in this file are plotted if 
Generate Plot is checked in the lower half of the window. This plot can also be gener-
ated without repeating the feature search by selecting the Plot Only button. Selecting 
Cancel stops the feature selection shell script and removes the generation window. The 
shell script, log file, and plot file names are automatically generated based on the feature 
list file name which is set on the feature selection window.

Use all Input Features

Use First N Input Features

Hand Select Features

Select the First N or Best
set of features from the

Feature Search

Use features in the order of
the feature list file

FIGURE 5.8 Feature Selection Parameters

If LNKnet cannot find the list
file, check the data directory,

data base name, normalization
method, search direction, and

list file name

Choose Feature Selection
Method
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To run a feature search, the program generates a series of feature lists and for each list 
performs a cross validation test on a classifier. The classification algorithm used in the 
tests can be a nearest neighbor algorithm with leave-one-out cross validation or any 
LNKnet classification algorithm with N-fold cross validation. The classifier used in the 
second case is the one selected on the main LNKnet window. If the classification algo-
rithm uses a clustering algorithm for initialization, the clustering algorithm for feature 
searches is Kmeans, not the algorithm selected on the classifier’s parameter window.

There are three directions for the selection of features for inclusion in the feature lists 
tested by the classifier. The search can go forward, backward, or forward and back. In a 
forward search, each feature is tried singly and the feature which gets the best classifica-
tion rate is selected as the first feature. The remaining features are tested in combination 
with the first feature and the best of them is added as the second feature. Features are 
added this way until none are left to add.

Complete the search OR stop
early when there are N features

FIGURE 5.9 Feature Search Parameters
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Write and run shell script for
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Stop shell script and exit 
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In a backward search, the program starts with all of the features selected and tries leav-
ing each one out. The feature which the classifier did best without is selected as the last 
feature. The program goes on taking features away until none are left. The idea of a 
backward search is that there may be some set of features which do well when they are 
together but which do poorly individually. This set of features would not be found by a 
forward search.

A forward and backward search combines the two search methods above. The program 
starts searching forward with no features selected. When it has added two features, it 
searches for one to take away. It continues then, adding two and taking away one, until it 
has added all of the available features. This forward and backward search can find some 
interdependencies in the input features which are not found using the other two 
searches.

It is possible to stop a feature search early, when there are N features on the list. In the 
case of a forward search this is when N have been selected. For a backward search this 
is when there are N features left.

The feature selection plot shows the error rate for sets of features found during a feature 
search. The X and Y limits of the plot can be chosen by the user or the plot program can 
choose them using the autoscale flag. The X dimension is the feature added to the fea-
ture list to generate the classification error rate given in the Y direction. An example of 
a feature selection plot is in Figure 2.37 on page 43.

5.6 A Priori Probabilities

Normally the frequency of occurrence of different classes is equal in training, evalua-
tion, and test data and no special actions are necessary to train and test classifiers. In 
some classification problems, however, the class prior probabilities in the training data 
do not match the probabilities in the test data. For instance, in a heart monitoring system 
there may be as many training examples of normal as there are of abnormal heart beats 
even though during testing there are ten times as many normal as abnormal patterns. 
This imbalance in class probabilities can be compensated for by sampling during 
training or by scaling class outputs during testing. Those LNKnet classifiers which 
have continuous outputs support both of these kinds of class probability adjustment. The 
nearest neighbor style classifiers only support priors adjustment during training.

There is a set of data bases which illustrates use of priors adjustment. They are 
uniform_1_1, uniform_2_1, and uniform_10_1. In all of these, there are two classes 
which have uniform Gaussian distributions. The centers of these classes are one stan-
dard deviation apart. In uniform_1_1, there are 500 patterns from each class. In 
uniform_2_1 there are 666 patterns from one class and 333 from the other, giving a ratio 
of 2 to 1 in their class probabilities. In uniform_10_1 there are 1000 patterns from one 
class and 100 from the other, giving a ratio of 10 to 1 in the class probabilities. Below is 
a table giving overall error rates on testing data for various training and test situations 
generated using these data bases and the classifier gauss with separate diagonal vari-
ances for each class.
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Table 5.1 shows that the testing error rates can be greatly reduced by priors adjustment 
when testing and training priors differ substantially. With two evenly sampled Gaussian 
classes, an error rate of 16.7% is expected with decision boundaries equidistant from the 
means of the classes as shown in the first row of Table 5.1 in the column labeled “1:1”. 
When there are considerably fewer patterns from one class, the overall error rate can be 

TABLE  5.1 Percent Error Rates with two sets of data from the same Two Class Problem

Training
Test Error Rate with given Ratio of 
Class A to Class B during Testing

Training File Ratio 
of Class A to 
Class B

Priors Adjustment to 
Training data 1:1 10:1

1:1 No Adjustment 16.7 15.05

Sample during Training to 
give 10:1

6.5

Scale Outputs to Simulate 
10:1

6.55

10:1 No Adjustment 28.7 6.5

Sample to give 1:1 16.9

Scale to Simulate 1:1 16.6

Select whether to scale outputs
to simulate modified class

priors

Scale outputs for equal class
priors

 The number of patterns to show
to the classifier per epoch of

training

FIGURE 5.10 Priors Adjustment Parameters

Select whether to sample to
adjust priors during training

Sample all classes equally
during training

Sample so that training priors are
those listed below. (values do not

need to sum to 1)

Scale outputs for class priors
listed below (values do not need

to sum to 1)
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improved to 6.5% by moving the boundary closer to the undersampled class’s center. 
This greatly reduces the error rate for the more common class and increases the error 
rate for the undersampled class. When evenly sampled data is used for training and 10 to 
1 unevenly sampled data is used for testing, the error rate is near 15%, as shown in the 
10:1 column, unless some adjustment is made. Either method of priors adjustment can 
be used to bring the overall error rate down to 6.5% on the unevenly sampled data as 
shown in the second and third row of Table 5.1 under the column labeled “10:1”. Con-
versely, when 10 to 1 unevenly sampled data is used in training and evenly sampled 
classes are used for testing the error rate is above 28%, as shown in the fourth row of 
Table 5.1 under the column labeled “1:1”. Priors adjustment by sampling the training 
data uniformly or scaling the outputs brings the class error rates back to roughly 16.7% 
on evenly sampled data as shown in the bottom two rows of Table 5.1.

5.7 Cross Validation

Sometimes there is not enough data available to split it into three partitions, one for 
training, one for evaluation, and one for testing. In such a case, N-fold cross validation 
can be used to estimate the classification error rate on new data. The idea of cross vali-
dation is to split the data into several folds and test each fold against a classifier trained 
on the data in the other folds. Cross validation is primarily used where there are few pat-
terns (< 1000) and with a small number of folds (between 4 and 10).

FIGURE 5.11 Cross Validation Parameters (on Main Window)

The most significant task in cross validation is the assignment of patterns to their train-
ing and testing folds. This can be performed automatically or by hand. The algorithm 
which does the automatic fold assignments attempts to preserve class prior probabili-
ties while keeping the size of test folds constant. If Randomize Patterns Before 
Assignment is selected, the fold assignments depend on the random number seed. The 
user can test a classifier several times by rerunning an experiment with different seeds.

If the training data is collected from different places or at different times, it can be 
important that the data from different collection conditions is split up evenly during 
cross validation. In such a situation, the training data can be split into folds by hand. 
Because the specifications for these divisions are complicated, they are stored in a cross 
validation file. Patterns are divided into partitions called splits and then the splits are 
assigned to cross validation folds for training and for testing. The name of the cross val-
idation file is set by appending the cross validation file extension, .cv, to the training 
data file name, which is set on the data base window shown in Figure 5.4.

Automatically assign data to
cross validation folds OR

read assignments of patterns
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file, vowel.train.cv Randomize patterns before 
automatically assigning them 
to folds

Do cross validation

Number of automatic cross 
validation folds
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In the example below, there is a speaker independent speech recognizer which is being 
trained on twenty-one patterns taken from four speakers. To complicate matters, speaker 
1 and speaker 3 sound very similar, so speaker 3 should not give training data for 
speaker 1’s test and vice versa. Also, there is some data for three of the speakers which I 
don’t want to include in the tests. To make the testing folds easier to understand, I have 
added an empty split to the middle of the fourth speaker’s data.

Figure 5.12 shows the speakers for each data pattern. Figure 5.13 is a list which is used 
to split the data up by speaker while identifying the patterns which will not be tested. 
Finally, Figures 5.14 and 5.15 are bit vectors for the train and test folds which identify 
the splits to use for each. Figure 5.16 shows the cross validation file 4SPEAK.train.cv 
which specifies the fold assignments for this cross validation experiment. There are 
backslashes at the end of the first three lines to indicate that there are more flags on the 
following line. The backslashes are immediately followed by a carriage return. When 
using the backslashes, you must be careful to remember to put spaces after the comma 
delimited lists. The backslash character and carriage return do not count as spaces.

FIGURE 5.12 Pattern numbers and speaker for each pattern for 4SPEAK.train

0 1 |2 |3 4 |5 |6 |7 8 |9 10 11 |12 |13 14 |15 16 17 |18 19 20
Sp1 Sp1|Sp1 |Sp1 Sp1|Sp2|Sp2|Sp2 Sp2|Sp3 Sp3 Sp3|Sp3|Sp3 Sp3|Sp4 Sp4 Sp4|Sp4 Sp4 Sp4

FIGURE 5.13 Splits: (first and last pattern in each split, -1:-1 is an empty split)

0:1,2:2,3:4,5:5,6:6,7:8,9:11,12:12,13:14,15:17,-1:-1,18:20

FIGURE 5.14 Testing folds: (do not test on middle split for each speaker)

101000000000,000101000000,000000101000,000000000101

FIGURE 5.15 Training folds: (do not train on Sp1 for Sp3 test)

000111000111,111000111111,000111000111,111111111000

FIGURE 5.16 Cross Validation File: (4SPEAK.train.cv)

cross_valid -nfolds 4 -nsplits 12 \
-cv_splits 0:1,2:2,3:4,5:5,6:6,6:8,9:11,12:12,13:14,15:17,-1:-1,18:20 \
-cv_train_mask 000111000111,111000111111,000111000111,111111111000 \
-cv_test_mask 101000000000,000101000000,000000101000,000000000101
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Some of the most visible and useful features of LNKnet are the many types of plots pro-
duced. All of the classifiers and clusterers can produce decision region plots that can be 
overlaid with a scatter plot of the data and an internals plot of classifier parameters. 
Those classifiers which have continuous outputs can produce a profile plot and a histo-
gram plot of the data. Error files from these classifiers can be used to produce posterior 
probability plots, receiver operating characteristics (ROC) curve or detection plots, and 
rejection plots. Incrementally trained classifiers, those which go over the training data 
multiple times, can use the cost plot or percent error plot. Many classifiers have a struc-
ture plot which shows connections between classifier nodes. Figure 6.1 shows the LNK-
net window used to select these plots. Once a plot file has been generated, it can be 
redisplayed or printed from the Preview and Print window described in Section 7.1. 
There are also plots for showing the results from a normalization run or from a feature 
search. These plots are generated on the Normalization File Generation window and the 
Feature List File Generation window respectively. The normalization plot and feature 
list plot are explained in Chapter 5.

6.1 Decision Region Plots

The decision region plot parameters window, shown in Figure 6.2, is displayed by 
selecting the top most Parameters... button on the plotting controls window. It sets 
parameters for three 2-dimensional plots. When these plots are displayed, all three plots 
are combined in one plot window. An example of these plots is in the tutorial in Figure 
2.15.

The decision region plot shows what class would be returned for each point in the plot-
ted area, given the current classifier model. If the current algorithm is a clusterer, bor-
ders are displayed which show the area assigned to each cluster. When color is used, 
decision regions for different classes are in different colors. When color is not used, 
only decision region boundaries are plotted.

Decision regions are created by sampling the plotted area uniformly and filling in each 
square cell in the plotting area with the color of the class at the cell’s center. A quick 
rough plot can be made using a coarse grid with 50 intervals per dimension. More 
refined decision region plots can be obtained after a longer time if more points (100 to 
500) are used per dimension. This approach to forming decision regions was selected 
because it can produce accurate plots and can be used with any type of classifier.

A color coded scatter plot can be overlaid on a decision region plot. Each pattern is rep-
resented by a white bordered square. If color is not used, various plot symbols are used 
LNKnet Users Guide (Revision 4, February 2004) 91 



CHAPTER 6: Plots
to identify the classes of the patterns. Increasing the Level of Detail to 2 changes the 
plot symbols to capital letters for each class. If color is used, and there are two input fea-
tures, squares with the same color as the background region are classified correctly and 
those with differing colors are classified incorrectly. If there are more than two input 
features, it may be necessary to limit the number of patterns displayed in the scatter plot 
to get this same result. By NOT selecting Show All Data and setting the distance limit, 
it is possible to plot only those patterns that fall close to the decision region plane. When 
highlight misclassified data points is selected, these misclassified points are shown as 
grey and correct patterns are shown colored. In a black and white plot, misclassified 
points are shown normally and correct patterns are shown as tiny dots.

Finally, an internals plot can be overlaid on the scatter plot and decision region plot. 
The form of the internals plot depends on the algorithm. There are three basic types. 
Three classifiers use lines to show the internals. The multi-layer perceptron shows the 
planes defined by the first hidden layer. The binary tree classifier shows the node tests 

Select Plots based on
Incremental Training Results

Select Decision Region Plots

Generate Decision Region
and Profile plots only for the

testing data or also generate
them for the training data

When training, generate a
shell script that trains in small

sets of epochs. Plots for
training data must be

selected to see movie mode
plots.

Select to bring up windows 
used to set parameters for 
plots.

Select Profile Plots

Select the structure Plot for
the current classifier

FIGURE 6.1 Plot Selection Window

Select Plots based on Testing
Results
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for each non-terminal node. The histogram classifier shows the edges of the histogram 
bins. The second type of internals plot uses ovals, circles, or rectangles to show the size 
and position of Gaussians, spheres, or hyper-rectangles used in classification or cluster-
ing. RBF, GAUSS, and HYPER, are examples of algorithms which have this type of 
internals plot. The global scale factor can be used to alter the size of these figures. 
Finally, the nearest neighbor algorithms which use only the positions of centers to deter-
mine the class show small squares for each stored center. KNN and LVQ are examples 
of this type of algorithm. When the level of detail is raised to 3, the internals plot ele-
ments are labeled by class or by node number.

There are two other features that are related to plotting with many-dimensional data 
bases. First, two plotting dimensions can be selected. The dimension numbers are 
counted from zero. The plot axes limits can be specified by the user or they can be set 
automatically based on the range of the scatter plot data. Second, the values for the 
non-plotted dimensions can be set using a comma delimited list. The list must have 
values for all dimensions, including X and Y. The X and Y settings will be ignored. For 
example, if there are five input features and dimensions 0 and 4 are plotted, then the list 
“0,1,-75,0.5,0” sets the second, third and fourth dimensions to 1, -75, and 0.5 when 
decision regions are plotted for dimensions 0 and 4. If no settings are provided, all of the 
other features are set to 0 when the decision region plot is generated. Combining these 
two features, selection of the plotted features and setting values for non-plotted features, 
it is possible to gain some understanding of the shapes of multi-dimensional decision 
regions.

There is one final feature that relates to the plotting dimensions. The plots can be gener-
ated for data before or after normalization. In the case of simple normalization, this 
will change the values on the axes. When PCA or LDA normalization is being used, this 
means that the decision regions can be generated using the original input dimensions or 
using the rotated dimensions generated by the normalization. When the plots are being 
generated for un-normalized data, there will be no internals plot. The internals plots are 
derived from classifier parameters that were trained in the normalized data space and 
they cannot easily be translated back into the un-normalized space.

6.2 Profile Plots

The profile plot parameters window shown in Figure 6.3 is displayed by selecting the 
second Parameters... button on the plotting controls window. It sets parameters for two 
1-dimensional plots. When these plots are displayed, both plots are combined in one 
plot window. An example of these plots is in the tutorial in Figure 2.16 on page 25. The 
profile plot is only available for classifiers with continuous outputs.

The profile plot shows the outputs for each classifier output node for each point along a 
selected dimension given the current classifier model. The dimension plotted is the 
first field on the plot window. Dimension numbers are counted from zero. The curve for 
each output node is color coded for the class of the node. The sum of the outputs for 
each point is plotted as a black line above the colored output lines. A bar below the zero 
line on the plot shows the class returned for each point sampled to create the profile 
plot. 
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A color coded histogram plot is displayed in the lower half of the plot window. The 
line being sampled for the profile plot is divided into a number of bins. The number of 
bins is the Number of Intervals per Dimension. Each pattern is tested for its distance 
from the plotted line. If Show All data Points is selected, all patterns are included in the 
histogram. If Show all data is NOT set, only those patterns closer to the profile plot line 
than the distance limit are plotted. Each included pattern is assigned to a bin based on 
its X value. A colored square is drawn for it in that bin. If the profile plot has been 
selected, the patterns are also tested using the current classifier. If the pattern is classi-
fied correctly, its square is drawn above the histogram baseline. If the pattern is misclas-
sified the square is drawn below the baseline.

FIGURE 6.2 Parameter window for the Decision Region Plot
File name prefix for the 
decision region plot. The 
full plot name adds the data 
file suffix (e.g. 
X1mlp.region.plot.eval)

Set plot scales based on
scatter plot data

Input features for decision
region plot. First feature is 0

Comma delimited list of 
input values. Include the 
values for the X and Y 
dimensions.

Show misclassified patterns
as gray squares

Plot using un-normalized
data. Patterns are still

normalized before
classification

Axes limits when autoscale is
not used

For scatter plot, only show 
patterns that are within this 
distance of the plane of the 
decision region plot.

If this box is not checked, 
decision region plots will be 
in black and white.

Number of samples for each 
dimension in decision 
region plot

Show all scatter plot data

Verbosity level for internals plots
and black & white scatter plots

1: Use symbols for B&W scatter
2: Label B&W scatter with letters

3: Label internals with class or
node number

Scaling factor used for some 
internals plots (scales 
ellipses and circles)

Label for decision region plot

Labels for selected features
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When the autoscale flag is set, the horizontal or X axis limits are set according to the 
range of the input data in the dimension being plotted. The two vertical or Y axes are 
scaled by the range of the profile plot outputs and histogram bin heights. The user has 
the option of specifying the horizontal axis limits and the profile plot vertical axis lim-
its.

As in the decision region plot, the values for the non-plotted dimensions can be set 
using a comma delimited list. The list must have values for all dimensions, including the 
plotted dimension X. The X setting will be ignored. For example, if there are five input 
features and dimension 0 is plotted, then the list “0,1,-75,0.5,0” sets the second, third, 
fourth, and fifth dimensions to 1, -75, 0.5, and 0 when a profile is plotted for dimension 
0. If no settings are provided, all of the other features are set to 0 when the profile plot is 
generated.

Also as in the decision region plot, the profile and histogram plots can be generated for 
data before or after normalization. In the case of simple normalization, this will 
change the values on the X axis. When PCA or LDA normalization is being used, this 
means that the output profiles can be generated using the original input dimensions or 
using the rotated dimensions generated by the normalization.

FIGURE 6.3 Parameter window for the Profile Plot
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6.3 Structure Plots

Structure plots show the number of nodes in a classifier and the connections between 
them. In combination with internals plots they can be very helpful in understanding the 
parameters of a trained classifier. The following LNKnet classifiers have structure plots: 
BINTREE, MLP, GAUSS, GMIX, RBF, and IRBF. For the other classifiers and cluster-
ers, the internals plot generated with the decision region plot is more informative than a 
structure plot would be. The appearance of the each structure plot depends on the type 
of classifier being plotted. Because of these differences, some of the flags on the Struc-
ture Plot Parameter window shown in Figure 6.4 are not available for certain plots.

All the structure plots can be automatically scaled to fit in the plot window or they can 
be plotted using a default scale. Another feature available for all plots is that the node 
labels can be left off, displaying just the structure of the classifier.

6.3.1 Binary Tree Structure Plot

A binary tree classifier has terminal and non-terminal nodes. On a BINTREE structure 
plot, the non-terminal nodes are represented by large circles. Each non-terminal node 
has a test of the form . The input dimension being tested, , is printed below the 
circle for a node. The constant  is printed inside the circle. If the node tests use linear 
combinations of features, that is if the node has a test of the form , no test 
information is printed with the node. Each non-terminal node has two children. Those 
training patterns which pass the node test are assigned to the left child of the node. 
Those patterns that fail are assigned to the right child. The number of training patterns 
assigned to each child is printed above the line connecting the non-terminal node with 
that child. The terminal nodes are represented by large squares. Each terminal node is 
assigned a class. The class label is printed below the square. The percentage of patterns 
assigned to the terminal node that belong to other classes is printed inside the square. 

FIGURE 6.4 Structure Plot Parameters
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Figure 6.5 shows a decision region plot and a structure plot for a binary tree classifier 
trained on the XOR problem.

6.3.2 Gaussian Structure Plot

For a Gaussian classifier, a set of input nodes is drawn as small black circles at the bot-
tom of the plot. The label for each input feature is printed below each node. A set of out-
put nodes is drawn as large white circles at the top of the plot with the class label for 
each output printed above each node. The input and output nodes are shown as lines 
between the nodes in each layer. The type of covariance matrices used in the classifier is 
printed below the plot. Figure 6.6 shows a structure plot and decision region plot for a 
Gaussian classifier trained on the XOR problem.

6.3.3 Support Vector Machine Structure and Internals Plots
The support vector machine classifier includes a structure plot that shows how binary 
classifiers are combined to form a decision for multi-class problems and an internals 
plot that shows the location of support vectors. Examples of structure plots for the 10-
class vowel problem are shown in Figure 6.7. The left side shows the structure plot for 
the “each class versus other” mode of making multi-class decisions. It shows the ten 
binary classifiers this creates (middle nodes), each connected to input features and to the 
output representing the primary class for that binary classifier. The number in each clas-
sifier node representes the number of support vectors in that binary classifier. The right 
side of this figure shows the structure plot for the “all two-class combinations” mode of 
making multi-class decisions. In this plot there are 45 binary classifiers each connected 
to the input features and the two output classes the classifier is designed to discriminate. 
Numbers in the binary classifiers again represent the number of support vectors in each 
binary classifier. 

FIGURE 6.5 Bintree Structure Plot and Internals Plot
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FIGURE 6.7 Support vector machine structure plots for the 10-class vowel problem using the “each 
class versus others” multi-class mode on the left and the “all two-class combinations” 
multi-class mode the right.

FIGURE 6.6 Gauss Structure Plot and Internals Plot
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Support vector machine internals plots show the location of support vectors. An exam-
ple for the vowel problem is shown in Figure 6.8. Support vectors that are at the 
Lagrange multiplier upper bound (cbound) are shown as circles and support vectors that 
are below this bound are shown as circles around an “x”. Internals plots with a linear 
kernal will show support vector locations only if the “Store linear support vectors” 
check box is filled in in the “SVM parameters” window shown in Figure 3.18.

FIGURE 6.8 Decision regions for a support vector machine classifier for the vowel problem where the 
internals shows the locations of support vectors.

6.3.4 Gaussian Mixture and Radial Basis Function Structure Plots

The Gaussian mixture, radial basis function and incremental radial basis function classi-
fiers use Gaussian functions to provide information about the positions of input patterns. 
Weighted sums of the Gaussian outputs are then used to make classification decisions. 
For all three classifiers, input nodes are represented as small black circles at the bottom 
of the plot. The input feature labels are printed below the input nodes. Lines connect 
each input to each Gaussian hidden node represented by a large white circle in the mid-
dle of the plot. The hidden nodes are connected by lines to the output nodes, represented 
by large white circles at the top of the plot. The class labels are printed above the output 
nodes. The connections from the hidden nodes to the output nodes are weighted. The 
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magnitude of the weights can be shown by increasing the thickness of the lines for large 
weights. The maximum thickness of these lines can be set by the user. This can reveal 
the importance of particular hidden nodes. Negative weights are drawn as hollow tubes 
or are colored orange when weight magnitudes are shown. The plot can also only dis-
play those connections with weight magnitudes above a certain value. This can help 
clarify plots for classifiers with many hidden nodes.

For the Gaussian mixture classifier, the hidden nodes can be combined into one tied 
mixture shared by all the class output nodes or each class can have its own mixture of 
Gaussian nodes. In the first case all the hidden nodes will be connected to all the output 
nodes. In the second case the nodes assigned to each class mixture will be connected 
only to the output node for that class. Figure 6.9 shows a structure plot and decision 
region plot for a Gaussian mixture classifier trained on the XOR problem.

For the two radial basis function classifiers, all hidden nodes are connected to all output 
nodes. The RBF classifiers can also have a constant bias hidden node. If so, it is repre-
sented as a small square beside the other hidden nodes. Figure 6.10 shows a structure 
plot and decision region plot for a Radial Basis Function classifier trained on the XOR 
data base.

6.3.5 Multi-Layer Perceptron Structure Plot

For the multi-layer perceptron, there can be up to 10 layers of nodes with an input layer 
at the bottom of the plot, as before, and an output layer at the top. All the connections 
between all the layers are weighted. The weight magnitudes can be shown and connec-
tions with very small weights can be made invisible. Negative weights can be shown as 
hollow lines or they can be colored orange. Each MLP layer has a constant bias node 
which can be displayed as a small black square beside the weights for that layer. Figure 

FIGURE 6.9 GMIX Structure Plot and Internals Plot
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6.11 shows a structure plot and decision region plot for a Multi-Layer Perceptron classi-
fier trained for 300 epochs on the XOR problem.

6.4 Cost Plot and Percent Error Plot

Those classifiers that train incrementally using multiple passes through the data gener-
ate training error or results files. These error files can be used to plot the cost and per-

FIGURE 6.10 RBF Structure Plot and Internals Plot

FIGURE 6.11 Multi-Layer Perceptron Structure Plot and Internals Plot
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cent error over training. Examples of these plots are in Figure 2.18 and Figure 2.19 on 
page 27 in the tutorial. For a percent error plot, the classification error rates for each 
successive group of N patterns is calculated and plotted. A cost plot does the same with 
the cost information stored in the training error file. The default value for N is the num-
ber of patterns in each training epoch. These plots can be scaled automatically based on 
the range of the data and the number of patterns represented or the user can manually set 
the axes limits.

6.5 Posterior Probability Plot

A posterior probability plot shows how closely continuous classifier outputs approxi-
mate the observed posterior probabilities for patterns in a given class. There are two for-

FIGURE 6.12 Cost Plot Parameters
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FIGURE 6.13  Percent Error Plot Parameters
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mats for the plot. There is a scatter plot, which plots the observed posterior probabilities 
in each bin against the average output value for the patterns in the bin. A line is drawn 
along the diagonal (posterior=output) to indicate where perfect posterior probability 
outputs should lie. The second form of the plot displays a pair of values for each bin. 
The observed posterior probabilities are drawn as blue circles with lines indicating plus 
and minus two standard deviations. The average bin output value is indicated with an X. 
For both versions of the plot, if the observed probabilities are within two standard devi-
ation of the average bin output, indicated by the line or the X’s, then the classifier is ade-
quately modeling the posterior class probabilities.

To generate the plot, test patterns are assigned to bins according to their output values 
for the given class. These bins can be uniformly placed from zero to 100 or the ends of 
the bins can be specified using a list of floating point numbers. When specifying the bin 
ends, remember that there is one more end than there are bins. The quality of the poste-
rior probability fit is determined using a chi squared fit. To insure that there are enough 
patterns in each bin to make that number valid, a minimum number of patterns per bin 
(typically 5) is enforced. Bins with too few patterns are combined with neighboring bins 
until the minimums are met in all the remaining bins.

The plotted values can be printed to a table in the log file. A small table showing the chi 
square value for the bins and the quality or significance of the fit can be added. For this 
plot, higher significance values indicate better fits. Significance values of less than 0.05 
are labeled poor. These chi and significance values are also printed to the experiment 
notebook file. The axes limits of the plot can be changed to examine smaller sections of 
the plot area. The default setting are for 0-100% probability on both axes. 

The actual number of patterns and the number of patterns in the target class for each bin 
are printed above the upper two standard deviation indicator. This label text can be left 
off by selecting No Text on Plot. To use the posterior probability plot with likelihood 
classifiers, it is necessary to normalize the outputs to sum to one. Figure 6.14 shows 
the LNKnet parameter window for the posterior probability plot. Figure 2.20 shows an 
example of a posterior probability plot.

6.6 ROC (Detection) Plot

Receiver Operating Characteristic (ROC) or detection plots can be generated using the 
test error files from classifiers that produce continuous outputs. To generate the plot, 
each test pattern is sorted by its output value for the target class. A threshold is moved 
over the outputs with patterns below the threshold being rejected and patterns above the 
threshold being labeled as belonging to the target class. The curve which is plotted 
shows the percentage of the target patterns versus the percentage of non-target patterns 
that are accepted for each threshold value. When the threshold is at its maximum, the 
curve is at (0,0) because no patterns are accepted. When the threshold is at its minimum, 
the curve is at (100,100) because all the patterns are accepted. The area under the ROC 
curve is a measure of the quality of a classifier for detection problems. An area of 100% 
corresponds to a perfect ROC curve. In this case, there exists some threshold such that 
all the patterns in the target class produce an output above the threshold and all the non-
target patterns produce an output below the threshold. An area of 50% corresponds to an 
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ROC curve for a random classifier, equally likely to return a given output value for any 
class. Because an ROC curve depends on only one output value, the ROC area does not 
necessarily indicate the quality of the classifier in classification, where all outputs are 
compared and the class of the maximum output is chosen.

A table of ROC plot data can be printed to the experiment log file. This table can 
include interpolated values or it can include the values of all the points in the plot. The 
ROC area is also printed to the log file and to the experiment notebook file. A fraction 
of the patterns can be rejected, eliminating from the plot those patterns with the lowest 
output values. The plot axes limits can be altered to more closely examine a certain sec-
tion of the ROC curve. Figure 6.15 shows the LNKnet parameter window for the ROC 
plot. Figure 2.21 shows an example ROC plot generated during the tutorial.

6.7 Rejection Plot

A rejection plot shows the classification error rate on the remaining test patterns as pat-
terns with low maximum output values are rejected. To generate the plot, all evaluation 
patterns are sorted by their highest output value across all classifier outputs. Patterns 
whose highest output is below a rejection threshold are rejected and not classified. If all 

FIGURE 6.14 Posterior Probability Plot Parameters
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the patterns which cause errors have low maximum output values, the error rate on the 
remaining patterns can be reduced by setting the threshold to reject those low scoring 
patterns. As with the ROC plot, the rejection plot can print a table of plot values to the 
log file. The outputs for each pattern can be normalized to sum to one, which is impor-
tant if a likelihood classifier is being used. The scale of the plot can be changed to focus 
on a particular section of the curve. Figure 6.16 shows the parameter window for a 
rejection plot. An example rejection plot can be found in Figure 2.22.

FIGURE 6.15 ROC (Detection) Plot Parameters
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6.8 Movie Mode

Looking at a series of plots after training as in a flip book movie illustrates changes that 
occur during training. Such series are often as informative as a slow motion movie to 
understand what happens during training. LNKnet has a feature which lets you do epoch 
training but which periodically stores classifier parameters and generates plots every N 
epochs of training. The plots which are generated are shown together in one olxplot 
window at the end of training. Olxplot allows you to page forward or backward by typ-
ing ‘f’ or ‘p’, as described in Section 6.10 on page 108, showing the plots as frames of a 
movie. Olxplot also lets you to create an overlay of the training plots and to save that 
overlay to a plot file.

To generate a movie mode plot select Use Movie Mode for Training Plots on the Plot 
Selection window shown in Figure 6.1 on page 92. Set the Epochs per Plot field. Also 
select Create Plots for Training and Test Data. When START or CONTINUE is 
selected on the Main window, a shell script will be written which trains a classifier in 
batches of epochs and stores decision region and profile training plots in numbered files 
for each batch. These plots are not displayed until all the training is complete. Because 
the movie mode plots are generated as training progresses, movie mode plots cannot be 
generated using the PLOT ONLY button on the Main window.

Below is an overlay of the training plots for an MLP classifier training on the Gap data 
base. There are two classes containing patterns uniformly sampled from rectangles of 
equal height. The rectangle for the first class is one tenth as wide as the one for the sec-
ond class. The MLP had one hidden node and trained for a total of 10 epochs on 200 
patterns per epoch. The training was done in batches of one epoch and thus plots were 
produced every epoch. The lines on the plot show the position of the decision region 
boundary defined by the hidden node. It starts at the right and gradually moves to the 
left to a position between the classes.

The movie mode feature can also be used to train for a large, unknown number of 
epochs. Training is done in batches even when there are no training plots selected. 
Select Movie Mode on the plot selection window but do not select Create Plots for 
Training and Test Data. Set the number of epochs per plot on the plot window and the 
maximum number of epochs to train on the algorithm parameter window. When you 
feel that training has gone on long enough, you can select STOP on the main window. 
This will terminate the shell script that was controlling the training. Provided you did 
not stop the training while a parameter file was being written, the stored parameters will 
reflect the training as of the end of the last batch. Because the training shell script will 
have stopped, tests of the trained classifier and plots must be run using a new shell 
script.
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6.9 Including Plots in Documents

Four approaches can be used to include LNKnet graphs in reports and to make hard-
copies of plots. First, a bit map of a plot can be obtained by producing plots in a plot 
window and using standard tools that capture the screen image to produces a file from 
this image. It is possible to capture screen images on almost all computers, but this 
approach does not lead to the highest resolution plots. A second approach is to translate 
plot files to another format. Plot files can be translated to FrameMaker .mif files (Maker 
Interchange Format) using the filter provided named plot2mif. The mif versions of a 
.plot file can then be imported into a FrameMaker document. The plot shown in Figure 

FIGURE 6.17 Internals Plots and Scatter Plot for MLP training on Gap.train,1 epoch per batch, 10 
epochs total
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6.17 was imported using a MIF file. Alternatively, the plot2ps tool can be used to con-
vert a .plot file to a PostScript file which can be imported into other document prepara-
tion programs or printed on a postscript printer. Postscript files can also be converted to 
many other graphics formats using standard plotting utilities. MIF and PostScript files 
can be created on the Preview and Print window described in Section 7.1.

A final approach to including plots in reports is to edit the shell script written by LNK-
net, adding the -mac and other flags beginning with -mac to all plotting commands. This 
produces new files containing x,y coordinates of all points in plots suitable for import-
ing into a spreadsheet on a Macintosh or IBM PC. These points can be used by pro-
grams such as Delta Graph or Excel to create carefully formatted and annotated plots. 

6.10 Manipulating Plot Windows

LNKnet plots are created in separate windows using a program named olxplot. Olxplot 
uses several menu buttons to manipulate the plot. There are also keyboard short cuts 
which control the window, as shown in Table 6.1.

When a list of several plots is given to olxplot, as happens in movie mode, the user can 
use the next and previous commands to examine the plots in the list. Enabling overlay 
mode allows the user to examine multiple plots simultaneously. Use next or previous to 
display the first plot in the overlay, turn overlay mode on and select next or previous 
until all the desired plots are shown. The print and save commands can be used to gener-
ate a plot file or hardcopy of the displayed overlay plot.

TABLE  6.1 Olxplot Commands

Menu Item
Keyboard 
Command Function

File->Print->(printer name) h Print current plot to default printer

File->Print->Printer... P Change default printer name

File->Save s Save current plot

File->Quit q Quit olxplot

Clear c Clear plot window

Next n Show the next plot or add it to an 
overlay plot

Prev p Show previous plot or add it to an 
overlay plot

Overlay->Enable o Toggle the overlay mode

Overlay->Disable

Help ? Display the Help window
108 LNKnet Users Guide (Revision 4, February 2004)



7.1: Preview and Print Window
CHAPTER 7 Other LNKnet Programs

This chapter describes additional features and tools that are available with the LNKnet 
package. Some of these tools (the Preview and Print window, C code generation from a 
parameter file, and committee data base creation) are available from the LNKnet graph-
ical user interface. The others (batch file creation from LNKnet shell scripts, multi-layer 
perceptron initialization using binary tree parameters, data file creation with normalized 
patterns, and data exploration with xgobi) must be run from a shell or in a shell script.

7.1 Preview and Print Window

Experiment log files and plot files can be viewed and printed from the Preview and Print 
File window shown in Figure 7.1. The available functions are at the top of the window. 
The user can display the current log file or experiment plot files, or print them to a Post-
Script printer. The user can also translate plot files to PostScript or Maker Interchange 
Format (MIF) using the plot2ps and plot2mif programs. The files to be acted on are 
selected using the check boxes on the left side of the window. The file names are listed 
beside the check boxes. To the right of the names is a table listing which log and plot 
files actually exist, as well as which plots have already been translated to PostScript or 
MIF format. Use the Update file status button to update this table after an experiment 
is run. An optional PostScript printer name is specified at the bottom of the window. 
When this field is filled, the command lpr -P<name> is used to print log or plot 
files.

7.2 Code Generation Using a LNKnet Parameter File

Many LNKnet users need to include a trained classifier as part of a larger system. 
Although the LNKnet classifier programs have subroutines that perform classification 
given a set of classifier parameters, a short stand-alone C subroutine would be much 
easier to integrate into most systems. LNKnet has a filter program for each classification 
algorithm that generates C subroutines for pattern classification. Each filter program 
takes as an argument an algorithm parameter file. The program prints a subroutine, clas-
sify(), to the UNIX standard output stream. This subroutine can be called from a C pro-
gram to classify patterns. The outputs generated by classify() for an input pattern will be 
the same as those that the algorithm testing program would generate on the same pat-
tern. The difference is that the testing program reads classifier parameters from a file 
which can be used to continue training. The parameters in the subroutine classify() can-
not be changed.
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Classify() takes a raw input pattern and a pointer to an output vector. It normalizes the 
inputs and performs any feature selection that was used with LNKnet to train the classi-
fier. For this, the classify routine uses the function normalize() which is included in the 
generated C file. The routine then calculates classifier outputs using the classifier 
parameters taken from the algorithm parameter file. These outputs are copied into the 
output vector and the index of the output with the largest output value is returned as the 
class of the input pattern.

FIGURE 7.1 Preview and Print Window
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7.3: Committee Data Base Generation
To create a C subroutine file, first train a classifier as described in the tutorial. Bring up 
the C File generation window, shown in Figure 7.2, by selecting C Code Generation... 
on the main LNKnet window. The subroutine name suffix field sets an extension for the 
classify routine name. For the window in Figure 7.2 the subroutine would be 
classify_XORgauss(). To have no subroutine suffix, make the field blank. Select Gen-
erate C Code File to write and run a shell script that creates the C subroutine file. An 
example parameter file for a Gaussian classifier trained on the XOR problem, the C sub-
routine classify_XORgauss() produced from it, and a short program that uses the sub-
routine to generate a decision region plot are included in Appendix C.6 on page 159.

7.3 Committee Data Base Generation

Because not all classifiers are the same, classification results can differ across classifi-
ers. One way to improve overall classification error rates is to use several classifiers and 
combine the results. The LNKnet package has a program, committee, which takes a list 
of classification error files and combines them to create an input data file which can be 
used for this type of processing. The LNKnet graphical user interface has a window, 
shown in Figure 7.3, that helps the user use this program.

Because committee uses error files as its inputs, the first step in generating a committee 
data base is generating these error files. Train a set of classifiers and enter the experi-
ment name for each classifier in the experiment list on the committee data base genera-
tion window. For each classifier, generate a testing error file for each data file (training, 
evaluation, and test). The error file verbosity on the Reports window must be set to 
Results+Outputs. Note that the training error file is generated by doing a test on the 
training data. It is not the error file generated while training the classifier. On the com-
mittee data base generation window there is a set of check boxes that specify which 
error files to generate committee data bases for. Beside each choice is a list which shows 
the current status of those error files. The lists should be all ones for any file to be gen-
erated. A zero (0) indicates a missing file. A star (*) indicates that the file was generated 
using the wrong error file verbosity. A one (1) indicates the file exists and was created 
with an error file verbosity that was high enough. If the lists seem to be incorrect, try 
clicking on them to bring them up to date. On the window in Figure 7.3, the test files are 
ready, the evaluation files were generated with the wrong verbosity and must be redone, 

FIGURE 7.2 C code window
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and no training files have been created yet. Selecting Generate Committee Data Files 
writes and runs a shell script that generates a committee data file for each of the 
requested file types. If any files are missing or the wrong size, the shell script is not run 
and an error appears. A description file for the data base is also created. The number of 
classes in the data base is taken from the number of output classes field near the bottom 
of the committee data base generation window. The class labels are copied from the cur-
rent data base selected on the data base selection window. The number of input features 
in the data base is the number of classes times the number of classifiers in the commit-
tee. The input labels are generated from the experiment names and output numbers. The 
input labels are more fully described in Section 8.4 on page 127. The data files and data 
base description file are stored in the experiment directory. 

7.4 Batch File Creation from LNKnet Shell Scripts

The LNKnet system has many classification and plotting programs. To provide flexibil-
ity to the users of these programs, they have many command line arguments which must 
be set each time the programs are called. The LNKnet graphical user interface was writ-
ten to simplify the creation of shell scripts which call these classification and plotting 
programs. These shell scripts can be run by LNKnet, as was done in the tutorial. The 
shell scripts can also be run from a shell window or be called from another script. This 
allows the user to include LNKnet classifiers in larger experiments.

To run a LNKnet experiment from the shell, first set up the experiment in the LNKnet 
graphical user interface. On the main window, select Only store shell script, do not 
run. Then select START, as you would normally. LNKnet will write a shell script for 
the experiment. This script can then be edited and started from a shell window or called 

FIGURE 7.3 Committee Data Base Window
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from another script, just like any other C-shell script. Note that this script is different 
from normal LNKnet shell scripts because outputs are stored in the log file but are not 
printed to the shell window and plot files are created but the plots are not displayed on 
your workstation screen.

An example of using a script in a batch mode would be an experiment which tests dif-
ferent weight step sizes for a Multi-Layer Perceptron. This can be done interactively 
from the LNKnet interface, but it might be faster to make a single script. The user could 
then edit the script to make the step size parameter a variable and put the classifier train-
ing and testing commands in a loop. The new script would cycle through a list of step 
size values, training and testing a classifier for each value.

7.5 File Generation with Normalized Data

In many applications, normalization and feature selection are performed as an external 
preprocessing step. This has the advantage of allowing many functions to be applied to 
the data before it is written to a file and given to the analysis software. A disadvantage 
of this method is that each normalization and feature selection method creates a new 
copy of the data base which can use prohibitive amounts of memory. In LNKnet we 
have chosen to precalculate and store certain normalization parameters which are then 
applied on the fly as training or test data is read into a classifier. This slightly increases 
calculation times but decreases the amount of file storage required to run an experiment. 
Unfortunately this restricts the preprocessing that can be performed as part of that 
experiment.

LNKnet has a program, norm_apply, which takes a normalization parameter file, feature 
selection specification, and a data file. The program applies the normalization and fea-
ture selection to each data pattern and then writes the modified pattern to a new data 
file. The UNIX manual page for norm_apply describes all the flags used by the pro-
gram.

7.6 Multi-Layer Perceptron Initialization from Binary 
Tree Parameters

The multi-layer perceptron is a flexible algorithm suitable for solving classification 
problems, detection problems, and input-output mapping problems. In testing, the MLP 
classifier can produce outputs for an input pattern quickly and those outputs can be use-
ful in determining a confidence measure for the network’s response. Unfortunately, the 
MLP classifier trains slowly. One way to avoid this problem is to initialize the MLP 
using parameters from another algorithm. The program bintree2mlp initializes the first 
layer weights of a Multi-Layer Perceptron using the non-terminal node tests of a Binary 
Tree classifier. On some problems, this method greatly reduces the training time for the 
MLP classifier.

Take as an example the LNKnet disjoint data base. In this two class data base, the data 
in class 1 is found in two squares surrounded by the data in class 0. While most classifi-
ers can correctly classify most of the data, the class 0 patterns which lie between the two 
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class 1 squares are often misclassified. A binary tree classifier with 6 non-terminal 
nodes can achieve an error rate of 1.2% on the disjoint testing data. The structure and 
decision region plots for this classifier are shown in Figure 7.4. A multi-layer percep-

tron classifier with 6 hidden nodes requires 1000 epochs of training to achieve a similar 
error rate of 1.6%. This training time can be cut to 10 epochs by initializing the multi-
layer perceptron using the binary tree parameters. The structure plot and decision region 
plot for this classifier are shown in Figure 7.5.

FIGURE 7.4 Binary Tree Structure plot and Internals Plot

FIGURE 7.5 Initialized MLP Structure Plot and Internals Plot
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To perform this experiment, first select the LNKnet disjoint data base on the data base 
selection window. The LNKnet data base directory is $LNKHOME/data/class. Next, 
change the experiment name prefix to disjoint and select the binary tree classifier. On 
the BINTREE parameter window, select Maximum Number of Nodes during Testing 
and set the number to 6. Train and test the binary tree classifier.

Next select the multi-layer perceptron classifier. On the MLP parameter window set the 
number of epochs to 1000 and the node structure to 2,6,2. Train and test the multi-layer 
perceptron classifier by selecting START. It may be interesting to display training plots 
using movie mode. A plot every 50 or 100 epochs should be sufficient. 

Now, initialize a multi-layer perceptron classifier using the binary tree classifier. First, 
run the following command in your shell window:

bintree2mlp -bin_fparam disjointbintree.param \
-prune_tree -max_nodes 6 \
-mlp_fparam disjointmlp.param -nodes 2,6,2

The parameter file disjointmlp.param now holds a multi-layer perceptron with first layer 
weights that match the binary tree decision node lines. The other weights in the network 
are set to random values and need to be trained. On the MLP parameter window, set the 
number of epochs to 10. Display the MLP weight parameter window and select Use 
Step size list for weights in each layer. Set the Step size list to 0,.1. This freezes the 
first layer weights to the initialized values while allowing the other weights to be 
trained. Display the MLP node parameter window and select Specify sigmoid steep-
ness for each layer. Set the Sigmoid Steepness List to 50,1. This makes the sigmoid 
functions for the hidden layer act like the non-terminal node tests used in the binary tree 
classifier. Now train the initialized multi-layer perceptron by selecting CONTINUE on 
the main window. The pre-initialized MLP classifier achieves the same error rate as the 
randomly initialized MLP classifier using 1/100 the epochs of training.

7.7 Data Exploration with Xgobi

Xgobi is a public domain plotting package which permits exploration of multi-dimen-
sional data bases. It displays one, two, and three dimensional scatter plots of ASCII data 
files of a format similar to that used by LNKnet. The source code and documentation for 
xgobi can be found in the LNKnet software release under $LNKHOME/src/xgobi. The 
software can also be obtained using an anonymous ftp to lib.stat.cmu.edu. Compressed 
tar files of the current xgobi release are found in general/XGobi at that site.

LNK2gobi creates several Xgobi label files to facilitate exploration of LNKnet classifi-
cation data files. To use LNK2gobi, first create a LNKnet data file and data base 
description file, as described in Section 8.1. The data base description files can be cre-
ated using the LNKnet graphical user interface, as described in Section 5.3. Then run 
LNK2gobi to generate xgobi label files. Finally, run xgobi on the data file. For example, 
use these commands to run xgobi on the normalized vowel data used in the tutorial:

> cd ~/Tutorial

> LNK2gobi -fdata vowel.train -fdesc vowel.defaults
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> xgobi vowel.train

The data file and the data base description file are unaltered by LNK2gobi. The follow-
ing files are created:

TABLE  7.1 Files created by LNK2gobi

vowel.train.col Labels for each input feature

vowel.train.colors Colors for each pattern based on the class

vowel.train.row Class labels for each pattern

vowel.train.glyphs Plotting shapes for each pattern based on the class
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CHAPTER 8 Input and Output File 
Formats

The LNKnet system uses many files to store classification data, normalization and fea-
ture selection parameters, experiment commands and results, classification algorithm 
parameters, plots, generated C subroutines and committee data bases. This chapter 
describes the default names and the formats of the files created and used by LNKnet 
programs.

8.1 Input Data File Formats

Before running an experiment it is necessary to create a data base of classification pat-
terns. A LNKnet data base has a data base description file and one or more data files. A 
data base usually also has normalization files and feature selection files. When cross 
validation experiments are run there can also be a cross validation file, although this is 
usually not necessary. See Section 5.7 for a discussion of cross validation files.

FIGURE 8.1 File format for train, eval, and test data files

0 0.1 0
1 1.1 0
1 0 1.1
0 1 1.1

Integer Class Index C
0 ≤ C ≤ Μ−1
M=Number of classes Input Features

First Pattern

Last Pattern
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8.1.1 Train/Eval/Test Data Files
A LNKnet data base usually has three data files. There is a training file, an evaluation 
file, and a testing file. The training file is for training the classifier. The evaluation file is 
usually used for evaluating the classifier each time it is trained to select the classifier 
size and tune classifier regularization parameters such as K for a K nearest neighbor 
classifier and network structure for a multi-layer perceptron classifier. The test file is 
saved for generating the final generalization error rate that should be reported using data 
never used during training.

The format of these three files is identical and is shown in Figure 8.1. The files are 
ASCII. There is one pattern per line. On each line, the first number is an integer for the 
class. The class numbers go from zero to the number of classes minus one. The remain-
ing numbers are floating point values of input features of the pattern. The numbers on 
each line must be separated by at least one space or tab. Every line, including the last, 
should have a carriage return at its end.

A data base is selected on the LNKnet data base window which is described in 
Section 5.3. The names of the data files are generated by adding extensions to the data 
base name. The default extensions and the resulting file names for the pbvowel data 
base are given in Table 8.1. Figure 8.1 shows five patterns taken from the pbvowel 

training data file.

FIGURE 8.2 Five Patterns taken from pbvowel.train

0 228. 460. 3300. 3950. 3

1 205. 600. 2550. 4000. 3

3 220. 820. 2180. 2850. 2

6 228. 460. 900. 2830. 2

0 150. 300. 2240. 3200. 1

8.1.2 Description Files
When a data base is selected in LNKnet, the program displays the number of inputs, the 
number of classes, the labels for the input features, and the labels for the classes. This 
information is obtained from the description file for each data base. These files have the 
suffix “.defaults”. The recommended approach to generating description files is to use 
the Generate Description File popup window which is described in Section 5.3.

TABLE  8.1 Data Files for pbvowel data base

File Type Suffix File Name

Training .train pbvowel.train

Evaluation .eval pbvowel.eval

Testing .test pbvowel.test
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FIGURE 8.3 File format for a description file

A description file has the same general format as the .lnknetrc file. There is a dummy 
command name followed by a list of flags and their values. The flags in the description 
file must match those in the example below. The flag -ninputs is followed by the num-
ber of input features. The flag -noutputs is followed by the number of classes. The flag 
-labels is followed by a comma delimited list containing the names of all classes begin-
ning with class zero. The flag -input_labels is followed by a similar comma delimited 
list of labels for the input features starting from feature zero. The delimiter for the label 
lists can be comma(,), colon(:), or dash(-). A label list ends at the first space encoun-
tered. None of these characters can be used in class labels or input feature labels. 
Table 8.2 gives examples of acceptable and unacceptable labels. A data base description 

file can also have a flag for the type of data base. The data base type flags are -class for 
static pattern classification data bases, -map for input/output mapping data bases, and 
-seq for sequence classification data bases. Only static pattern classification data bases 
can be used with the programs described in this User’s Guide. Description files are read 
using the command line argument parsing routines used by all LNKnet programs. Like a 
UNIX command, the description file flag list must either be one line long or every line 
but the last must end with a backslash (\) immediately followed by a carriage return. 
When using backslashes, it is important to remember to put spaces at the end of each 
comma delimited list. The backslash and carriage return are not interpreted as spaces

For LNKnet to find the description of a particular data base, the name must be 
<data_base>.defaults. For example, the description file for pbvowel is 
pbvowel.defaults.

TABLE  8.2 Acceptable and Unacceptable labels for string lists

Acceptable Unacceptable
Reason for 
Unacceptability

10/jan/94 10:jan:94 colons (:)

1cepstra 1 cepstra space

delta_cepstra delta-cepstra dash (-)

July_4_95 July 4, 1995 spaces and commas

describe -class \
-ninputs 2 -input_labels X0,X1 \
-noutputs 2 -labels EVEN,ODD

Dummy command 
name for parser

Number of input 
features

Data Base Type.
One of -class, 
-map, or -seq

Optional input 
feature labels

Number of 
output classes

Optional class 
labels

Backslash to show 
“command” continues 
on next line
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FIGURE 8.4 The description file for pbvowel, pbvowel.defaults

describe -class -ninputs 5 -noutputs 10 \
-labels heed,hid,head,had,hud,hod,hawed,hood,whod,heard \
-input_labels pitch,1formant,2formant,3formant,MFC

8.1.3 Normalization Files
Normalization files contain normalization parameters calculated based on training data. 
These parameters are applied to training and test patterns during classification experi-
ments and for plot generation. A copy of the normalization parameter file is stored in 
each classification and clustering parameter file to insure that the same normalization is 
used throughout an experiment. The parameters stored in the file include the number of 
inputs and outputs for the data base, the number of patterns in the training file, the type 
of normalization, and those parameters necessary to perform the normalization. Nor-
malization parameter files can be created from the normalization file generation win-
dow as described in Section 5.4. Normalization file names start with the data base name 
followed by .norm. There is an extension for the type of normalization, as shown in 
Table 8.3.

8.1.4 Feature List Files
A feature list file contains an ordered list of input feature numbers. The order is based 
on a feature search of the type described in Section 5.5. The file contains the number of 
input features, the number of features in the best feature list found during the search, the 
list of features, and the classification error rates of the feature sets on the list. Feature list 
file names start with the data base name followed by an extension for the search direc-
tion, a character for the normalization file type, and .param. Table 8.4 shows some fea-
ture list file names for the pbvowel data base.

TABLE  8.3 Normalization File Names for vowel data base

Normalization Type File name extension
file name
(pbvowel data base)

simple .simple pbvowel.norm.simple

principal components analysis .pca pbvowel.norm.pca

linear discriminant analysis .lda pbvowel.norm.lda

TABLE  8.4 Feature List file names for pbvowel data base

Search 
Direction

Direction
Extension

Normalization
Type

Normalization
Character File Name

forward .for none .N pbvowel.for.N.param

forward .for simple .S pbvowel.for.S.param
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8.2 Files Generated by LNKnet

LNKnet programs generate several types of files during an experiment. There are shell 
scripts, screen files, a notebook file, log files, parameter files, error files, and plot files. 
Shell scripts and screen files are produced by LNKnet itself. A notebook file is created 
by LNKnet and added to by the shell scripts. Log files, parameter files and error files are 
generated by the classifiers. Plot files are generated by the plot programs associated 
with the classifiers.

The files generated during a classification experiment are shown in Figure 8.5 using 
shaded ellipses. Data base files in this figure are shown using unshaded rounded edged 
rectangles, and LNKnet programs are shown as rectangles. LNKnet creates a screen file 
which stores the settings for all LNKnet windows at the time of the experiment for pos-
sible restoration and continuation of the experiment. LNKnet writes a shell script which 
includes calls to all of the programs needed in an experiment. Finally, LNKnet appends 
an entry to the notebook file briefly describing the experiment. In a normal experiment, 
a classifier model is created, trained, and stored. Pattern by pattern classification results 
may be stored in an error file. A summary of the training is printed to the terminal win-
dow in which the LNKnet program was started. The summary is also printed to a log 
file and a one line training entry may be added to the notebook file. After training, the 
stored classifier is tested on a new data file. The pattern by pattern results are stored in 
an error file and a summary is written to the terminal window and appended to the log 
file. A one line test entry is added to the notebook file. Finally, decision region and pro-
file plots are generated based on the classifier parameter file and the test data file. Struc-
ture plots are generated based on the classifier parameter file. Percent error and cost 
plots can be generated based on the training error file. Posterior probability, ROC, and 
rejection plots can be generated based on the test error file. The posterior probability 
and ROC plots each add one line to the notebook file.

The file names are generated by LNKnet using a few simple rules. The file names for an 
experiment all start with the same experiment name. The name is the experiment name 
prefix followed by the classifier name. If the experiment name prefix is Test3, and the 
classifier is a Multi-Layer Perceptron classifier, the experiment name is Test3mlp. Each 
file type has its own default extension as described below and shown in Figure 8.5. The 
notebook file is not part of a particular experiment. It is usually called LNKnet.note but 
the name can be changed by the user. It is stored in the directory in which LNKnet was 
started.

backward .back PCA .P pbvowel.back.P.param

forward and

back

for_bk LDA .D pbvowel.for_bk.D.param

TABLE  8.4 Feature List file names for pbvowel data base

Search 
Direction

Direction
Extension

Normalization
Type

Normalization
Character File Name
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8.2.1 Shell scripts
When START, CONTINUE or PLOT ONLY is selected on the main LNKnet screen, a 
shell script is written and an entry is added to the notebook file. The shell script contains 
calls to all of the programs requested by the user. In general, the classifier will be 
trained, training plots will be generated, the classifier will be tested and testing plots 
will be generated. If movie mode was selected on the plot window, there will be a loop 
for the training. In the loop, the classifier is trained for a few epochs, then any training 
plots are generated, but not displayed. When the total number of requested epochs of 
training have been completed, all of the training plots are displayed together in one olx-
plot window. Testing the classifier and generating testing plots proceed as before.

The file name extension for shell scripts is .run. Thus the full file name for the example 
experiment is Test3mlp.run. An example shell script is found in Section C.1.1.

Testing ResultsTraining ResultsParameter File
Test3mlp.err.train Test3mlp.err.testTest3mlp.param

Log File
Test3mlp.log

Decision Region Plot File
Test3mlp.region.plot.test

Percent Error Plot File
Test3mlp.perr.plot

LNKnet

Testing Data

Profile Plot

TestTrain

Shell Script

Training Data

FIGURE 8.5 Files used and created in a LNKnet experiment

XOR.test

Test3mlp.run

XOR.train

mlp mlp

mlp_plot_bound
Percent Error Plot

plot_perr

Screen File
Test3mlp.screen

Normalization Data
XOR.norm.pca

Description File
XOR.defaults

Decision Region Plot
mlp_plot_bound

Structure Plot
plot_mlp

Cost Plot
plot_cost

Profile Plot File
Test3mlp.region.plot.test

Cost Plot File
Test3mlp.cost.plot

Structure Plot File
Test3mlp.struct.plot

Posterior Probability Plot File
Test3mlp.prob.plot

ROC (Detection) Plot File
Test3mlp.detect.plot

Rejection Plot File
Test3mlp.reject.plot

Notebook File
LNKnet.note

Posterior Probability Plot
plot_prob

ROC (Detection) Plot
plot_detect

Rejection Plot
plot_reject
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8.2.2 Screen files
Whenever LNKnet writes a shell script, it also saves the settings of all screens in a 
screen file. The entries of a screen file look like calls to the LNKnet classifiers and plot-
ting programs. There are settings for all LNKnet classification, clustering, plotting, and 
general parameters.

The file name extension for screen files is .screen. Thus the full screen file name for the 
example experiment is Test3mlp.screen.

8.2.3 Notebook File
Each experiment adds one or more lines to the LNKnet notebook file. Each line starts 
with the name of the shell script file. The first line describes the experiment. If this is the 
first time the experiment has been run, the data base, normalization, feature selection, 
and priors adjustment are described. Parameters to the classification algorithm are also 
included. If the current experiment is being rerun, only the changes to the experiment 
parameters are recorded. In this case, after the shell script name is a list of the flags that 
have been added or changed. Flags that have been removed are also listed in square 
brackets. To create this file, LNKnet compares the current experiment screen file with a 
copy stored when the previous experiment was written. This backup copy is stored in 
LNKnet.note.screen. If this is a classification algorithm which uses several passes 
through the data to train, the next entry in the experiment notebook gives the number of 
training epochs, the classification error rate and cost for the last epoch of training, and 
the number of seconds the training took. The next line gives the data file used in testing 
the classifier, the average classification error rate and cost on that data, and the number 
of required seconds to test the data. This information is also printed out for cross valida-
tion experiments, along with the number of automatic cross validation folds. If a poste-
rior probability plot was requested, there is a line with the target class, the chi value, 
degrees of freedom, and significance of the fit of the binned output values to the actual 
posterior class probabilities in the bins. For an ROC plot, a line is included with the tar-
get class and the area under the ROC curve. The notebook file generated during the 
LNKnet tutorial is found in Section C.5.

8.2.4 Log Files
When a classifier or clusterer is run, it prints certain information to the screen and also 
stores that information in a log file. The contents of that log file depends on the Report 
Verbosity, as shown in Table 8.5. The log file verbosity is set on the LNKnet Report 
Files and Verbosities window. In a shell script, this parameter is -verbosity.

TABLE  8.5 Log file verbosity levels and Contents

Log file contents Verbosity Level Notes

=========<classifier> Begin All Levels

Settings for all command line variables Verbosity 3 or over

Average error or cost for each epoch of 
training

Verbosity 3 or over Incrementally Trained 
classifiers only

Confusion Matrix Verbosity 2 or over
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The file name extension for log files is .log. Thus the full log file name for the example 
experiment is Test3mlp.log. Section C.1.2 gives an example log file from the LNKnet 
tutorial.

8.2.5 Algorithm Parameter Files
After a classifier has been trained, it is saved in a parameter file. The first items in the 
parameter file are all program flags and their settings and the date and time that training 
was started. Following this is information on any normalization performed on the train-
ing data before it was presented to the classifier. Any data presented to this classifier for 
testing will use these same normalization parameters. Finally, the classifier parameters 
are stored. If this parameter file was generated during N-fold cross validation, it will 
have several sets of classifier parameters.

The file name extension for parameter files is .param. Thus the full parameter file name 
for the example experiment is Test3mlp.param. A parameter file for the Gaussian classi-
fier is found in Section C.6.1.

FIGURE 8.6 Format of an error file

8.2.6 Error Files
When a classifier is tested, the classification results for each pattern can be stored in an 
error file. An annotated example of an error file is shown in Figure 8.6. Whether to cre-
ate an error file and how much information to store in it is controlled by the Error File 
Verbosity on the LNKnet Report Files and Verbosities window. In a shell script, this 
parameter is the -verror flag. If Error File Verbosity is set to None (-verror 0), no error 

Error Summary Verbosity 1 or over

Overall Error Rate All Levels

Summary for entry into Notebook All Levels

========<classifier> End All Levels

TABLE  8.5 Log file verbosity levels and Contents

Log file contents Verbosity Level Notes

0 0 1 1 0.287 0.463 0.535 0.1 0.1
1 1 1 0 0.056 0.241 0.765 1.1 0.1
2 0 0 0 0.029 0.827 0.171 1.1 1.1
3 1 1 0 0.147 0.380 0.612 0.1 1.1

Pattern 
Number

True Class Class Selected 
by Classifier

Whether this was an 
Incorrect Classification

Cost of Outputs Classifier Outputs Input Pattern
124 LNKnet Users Guide (Revision 4, February 2004)



8.2: Files Generated by LNKnet
file is written. If Error File Verbosity is set to Classification Results (-verror 1), for each 
pattern which is tested, the entries shown in Table 8.6 are written to the error file. Each 

tested pattern generates a line in this file. If the Error File Verbosity is Results+Outputs 
(-verror 2), after the results entries, the classifier outputs are written to the file, as shown 

in Table 8.7. Finally, if the Error File Verbosity is Results+Outputs+Inputs (-verror 3), 
the normalized input pattern is written to the file after the outputs as shown in Table 8.8. 

The file name extension for error files is .err. The data base file extension is also used to 
tell which data base file these are the results for. Thus, if the example multi-layer per-
ceptron classifier stores pattern by pattern classification results during training, they go 
into Test3mlp.err.train. Table 8.9 shows the default extensions for data file types and the 
resulting default error file names. The .test_on_train extension cannot be changed from 
the LNKnet graphical user interface.

8.2.7 Plot Files
When a plot is generated, it is stored in a file which is formatted as described on the 
plot(5) UNIX manual page. The format has been extended to allow the use of colors in 
plots. The file name extension depends on the plot type. Because scatter and histogram 
plots can be generated for any data base file, the decision region and profile plots names 
also include a data base file extension. These file name extensions are the same as those 
used for error files and are given in Table 8.9. The file names for normalization and fea-

TABLE  8.6 Fields in a Results Error File (-verror 1)

Pattern Number Correct Class Classifier’s 
Class

Classification 
Error

Cost

TABLE  8.7 Fields in a Results+Outputs Error File (-verror 2)

Five Results Fields Classifier Outputs for this pattern (nclasses fields)

TABLE  8.8 Fields in a Results+Outputs+Inputs Error File (-verror 3)

Five Results Fields Nclasses Outputs Fields Normalized Inputs (ninputs fields)

TABLE  8.9 Error File Names for Experiment Test3mlp

File Type
File Type 
Extension Error File Name

Train on train .train Test3mlp.err.train

Test on train .test_on_train Test3mlp.err.test_on_train

Test on eval .eval Test3mlp.err.eval

Test on test .test Test3mlp.err.test

Cross valid on train .cv Test3mlp.err.cv
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ture selection plots depend on the name of the parameter file on which the plot is based. 
For normalization plots, add .plot to the parameter file name. For feature selection plots, 
replace the extension .param with .plot. Table 8.10 shows the extensions and plot names 
for the example classification experiment. The decision region and profile plot names 
are for plots using the evaluation data file.

These files can be displayed using olxplot under OpenWindows or xplot under MIT X. 
One way to print plot files is to first convert them to PostScript using plot2ps. Plots can 
be added to FrameMaker documents if they are first translated into Maker Interchange 
Format using plot2mif. Both of these programs are available on the Print window 
described in Section 7.1.

8.3 C Code Files

Each LNKnet classifier has a filter program which generates a C classification subrou-
tine based on a classifier parameter file. The actual contents of such a file depend on the 
classification algorithm being implemented. In general, the file contains the original 
parameter file name, a description of the normalization and feature selection parame-
ters, a description of those classifier parameters that affect the classification subroutine, 
necessary #include statements, declarations of the classify() and normalize() subrou-
tines created in the file, and finally the classify() and normalize() routines themselves. 
The routines declare most classifier parameters in the form of structures or arrays. The 
routine classify() takes two float arrays as input, the raw input pattern and an array for 
the resulting classifier outputs. The routine returns an integer representing the class of 
the input pattern. The classification routine calls the normalize() routine for normaliza-
tion and feature selection. The classification routine itself then uses the classifier param-
eter structures or arrays for its calculation of the classifier outputs given the now 
normalized inputs. Finally, the normalization routine takes a float array for the input 
vector. The input vector is normalized and copied back into the array. The integer num-
ber of inputs after normalization and feature selection is then returned. C code files and 
how to generate them from LNKnet are described in Section 7.2. The file name exten-
sion for C code files is .c. Thus the full C code file name for the example experiment is 
Test3mlp.c. An example of a C code file for a Gaussian classifier is found in 
Section C.6.3.

TABLE  8.10 Plot file names for Experiment Test3mlp and Evaluation data file

Plot Type File name Extension Plot File name 

Decision region .region.plot<file type> Test3mlp.region.plot.eval

Profile .profile.plot<file type> Test3mlp.profile.plot.eval

Structure .struct.plot Test3mlp.struct.plot

Cost .cost.plot Test3mlp.cost.plot

Percent error .perr.plot Test3mlp.perr.plot

Posterior probability .prob.plot Test3mlp.prob.plot

ROC (detection) .detect.plot Test3mlp.detect.plot

Rejection .reject.plot Test3mlp.reject.plot
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8.4 Committee Data Base Files

Committee data bases are generated from the class and outputs fields of testing error 
files, as described in Section 7.3. The format of a committee data base file is the same as 
for any other classification data file. The first field of each line holds the integer class of 
a data pattern. The next  fields on the line are the  floating point class outputs 
for each of the  classifiers in the committee for the original input pattern. Each line 
ends with a newline character. The input fields for the committee data base are illus-
trated in the description file shown in Figure 8.7. This is the description file for the com-
mittee data base being generated in Figure 7.3 on page 112. The class labels for the 
committee data base are the same as the class labels of the original classification data 
base. The input labels are generated from the experiment labels for the committee mem-
bers and the output numbers. The total number of input features here is 30 because there 
are 10 classes and 3 committee members. The default name for a committee data base 
starts with the original data base name followed by _comm.

FIGURE 8.7 Description file for gnoise_var committee data base (gnoise_var_comm.defaults)
describe -labels 0,1,2,3,4,5,6,7,8,9  \

-input_labels N1gauss0,N1gauss1,N1gauss2,N1gauss3,N1gauss4,N1gaus

s5,N1gauss6,N1gauss7,N1gauss8,N1gauss9,N2gauss0,N2gauss1,N2gauss2

,N2gauss3,N2gauss4,N2gauss5,N2gauss6,N2gauss7,N2gauss8,N2gauss9,N

4gauss0,N4gauss1,N4gauss2,N4gauss3,N4gauss4,N4gauss5,N4gauss6,N4g

auss7,N4gauss8,N4gauss9 \

-class  -ninputs 30  -noutputs 10

N M× M
N
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APPENDIX A Common Questions and 
Problems

1. UNIX and Shell Scripts

1.1. Problem: The command “lnknet” cannot be found when I type it at the command line. 
Solution: Add the LNKnet bin directory to your environment variable PATH. (Contact 
your system administrator for help)

1.2. Problem: The LNKnet manual pages cannot be found.
Solution: Add the LNKnet man directory to your environment variable MANPATH. (Con-
tact your system administrator for help).

1.3. Problem: A LNKnet experiment starts but doesn’t finish.
Solution: There was an error in the one of the programs called by the shell script. The shell 
script stops whenever a program returns a non-zero value. Look in the log file to find the 
error message. Check the flags of the program that generated the error to determine how to 
fix the error.

1.4. Problem: How do I create shell scripts to run background batch jobs?
Solution: Create a shell script with the suffix .run with LNKnet, edit the shell script if nec-
essary, and then run this shell script in the background as you would a user-generated shell 
script. You may want to eliminate some plotting by adding the -no_graphics flag to plotting 
programs and replace the string “|& nn_tee -h -a” with “>>” to send output to the log file 
without sending it to the screen. These modifications are automatically made if you check 
the Only Store Shell Scripts, do not Run box on the main LNKnet window.

2. Files and User I/O

2.1. Problem: LNKnet won’t start: Error message is “bad flag”.
Solution: The current copy of LNKnet uses a different set of flags than those in your cur-
rent .lnknetrc file. Delete your .lnknetrc file or change its name to start LNKnet without the 
default settings.
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2.2. Problem: There are no files in the data base scroll list on the data base window or the 
desired data base is not on the list. 
Solution: There are several possibilities here:

1.The path to the data base directory is wrong. Change the data base directory path.
2.There are no data base description files for the data bases in this directory. Enter the data base 

names in the data file prefix field and generate description files for the data bases on the Descrip-
tion File Generation window.

3.The description files use the wrong suffix. Data base description files must be named <data-
base>.defaults. Only file names which include the string “.defaults” are displayed in the data base 
scrolling list.

2.3. Problem: On the data base window, under patterns per class it says “Not classification 
data”
Solution: Check that the data base selected is a static pattern classification data base, not an 
input/output mapping or sequence classification data base.

2.4. Problem: When I select a data base I get a warning on my shell window, “Noutputs from 
defaults file doesn’t match data file”
Solution: There are two possible problems here:

1.The training, testing, or evaluation file being read is not a LNKnet classification data file.
2.There is a pattern in the data file with a class label which is out of range. The class numbers at the 

start of every LNKnet pattern are numbered from 0 to Noutputs-1. 
2.5. Problem: There are red stop signs beside some of the buttons on the main window.

Solution: There are important errors on these windows. Unless these errors are cleared, an 
experiment started now will not run correctly. Select the buttons and clear the errors before 
starting the experiment.

2.6. Problem: File names and parameters entered in LNKnet windows are not updated during 
an experiment. 
Solution: A carriage return or a tab must be entered after typing anything in a LNKnet win-
dow before the new entry is read in. Play it safe and hit carriage return after typing anything.

2.7. Problem: The number of patterns in a data base file is not set when the data base is 
selected.
Solution: If the data base directory is correct, check the data file extension.

2.8. Problem: There is an error on the normalization window, “Normalization file does not 
exist.”
Solution: If the normalization file DOES exist, check the data base directory, data base 
selection, and the normalization selection. Otherwise, create the normalization file on the 
normalization file generation window.

2.9. Problem: There is an error on the feature selection window, bad feature list or not enough 
labels.
Solution: There are two possibilities here:

1.Check the feature selection parameters.
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2.Check that the number of input features on the data base window is the same as the number of 
inputs. Change the input feature list on the description file generation window.

2.10. Problem: There is an “File does not exist” error on one of the windows after the missing 
file has been created.
Solution: Click the mouse on the error Stop sign to erase the message.

2.11. Problem: Options are grayed out on a parameter window and cannot be selected.
Solution: Options that are inconsistent with previous selections are grayed out and cannot 
be selected. For example, the perceptron convergence procedure cost function of the multi-
layer perceptron classifier is only available if there are no hidden layers. When it is selected, 
the field for specifying network topology is grayed out. Select a parameter value that is con-
sistent with the desired option.

2.12. Problem: A comma delimited list is not read correctly.
Solution: There are two possibilities here:

1.Do not leave spaces between the commas. If this is a list of strings, there are three delimiter char-
acters that can be used: comma (,), colon (:), and dash (-). Check that these characters are not 
included inside any of your desired list strings. For example first_formant is a valid label because 
an underscore is used to indicate the space between the words, but first-formant is not valid 
because a dash is used within the label.

2.Always put a space after a comma delimited list. Because dash is used to mark flags and is also a 
list delimiter, forgetting the space after a list can cause LNKnet to add the name of the next flag 
to the list. That flag will not be set, since it has already been parsed as being a part of a list. This 
is most often a problem when flags are put on multiple lines in a file with backslashes (\) at the 
ends of lines. When the file is read, the first character of the second line is placed directly after 
the last character of the first line. No extra spaces are inserted.

2.13. Problem: Per-epoch error information is not printed out when training an MLP classifier.
Solution: Set the log file verbosity flag on the Report Files and Verbosities window to print 
out Summary+Confusion+Flags+Epochs.

3. Misc.

3.1. Problem: It is annoying when I keep the same experiment name to keep having to move 
my mouse after starting another experiment and clicking on the button that says it’s ok to 
overwrite the old experiment
Solution: Experts move the small window that queries you about overwriting to be located 
over the button used to start a new experiment. You can then dismiss the second small veri-
fication window with a second mouse click in the same location.

3.2. Problem: It is difficult to select features using a comma separted list of feature numbers 
because I keep forgetting which numbers correspond to which feature names.
Solution: Most of us get around this by keeping a listing of the feature names along with 
their numbers. This list is provided at the bottom of the feature selection window if you 
select all features. Once you guess at the feature numbers and hit carriage return, the feature 
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names are displayed at the bottom of the feature-selection window. Also remember that fea-
ture numbers start at zero and not at one. 

3.3. Problem: When I have many input features, the feature selection window extends way off 
the screen and I can’t see the whole window at once.
Solution: Either use smaller feature names, or drag the window to left or right using the 
mouse. You can also resize this window, after performing feature selection.

4. Known Limitations 

4.1. Problem: I think I found a problem or want a new feature. 
Solution: Send questions, requests, and bug reports to Linda Kukolich 
(kukolich@sst.ll.mit.edu) or Richard Lippmann (rpl@sst.ll.mit.edu).

4.2. Problem: LNKnet windows come up all black or with black writing on black buttons.
Solution: LNKnet was developed on a color Sparc station. It has not been debugged on 
black and white terminals and may not work on them. The problem may be solved in newer 
versions of OpenWindows.

4.3. Problem: When specifying a large number of cross validation folds in a file, the following 
error occurs: “Number of labels has exceeded 255. The list has been truncated.”
Solution: The maximum number of entries in the -cv_splits, -cv_train_mask, and 
-cv_test_mask arguments of a cross validation file is 255. Because a split is defined by pairs 
of entries, the maximum number of splits is 127. The maximum number of cross validation 
folds is 255. This may be changed in a future version of LNKnet.

5. MLP Training

5.1. Problem: MLP training is slow
Solution: There are several things that can be tried to speed up MLP training:

1.Make sure that random presentation order is selected on the main window.
2.Make sure that the weights are being updated after every trial.
3. Increase the step size.

5.2. Problem: MLP cost is not decreasing.
Solution: Decrease step size.

6. Plots

6.1. Problem: Decision region plots are not in color.
Solution: Check that color plots are selected on the Decision Region Plot window.
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6.2. Problem: Decision region plots are too jagged and blocky.
Solution: Increase the number of points per dimension on the Decision Region Plot win-
dow.

6.3. Problem: Scatter plot or Histogram plot does not show patterns.
Solution: Turn on autoscale, adjust the setting for Xmin, Xmax, Ymin, and Ymax, turn on 
show all patterns, or increase the distance limit for pattern display.

6.4. Problem: I have problems looking at plots while running MIT X.
Solution: Change the name of the binary file xplot to olxplot, after saving olxplot. Xplot is 
designed to run under MIT X. Olxplot is designed to run under SUN OpenLook.

6.5. Problem: The screen rapidly gets cluttered with plots.
Solution: Turn plots off and eliminate existing plots rapidly by typing ‘q’ when the mouse 
is over a plot window.

6.6. Problem: How do I make hard copies of plots?
Solution: See Section 7.1 on page 109 or Section 6.9 on page 107.

6.7. Problem: Plots do not run and generate the error:
ld.so: Undefined symbol: _XtQString

Solution: The program which displays plots, olxplot, was written using the OpenLook 
Intrinsics library, olit. Olit uses X11R4, as does the rest of the OpenWindows environment. 
If your environment variable $LD_LIBRARY_PATH includes the X11R5 libraries, olxplot 
will not run because of incompatibilities between X11R4 and X11R5. Remove the X11R5 
libraries from the LD_LIBRARY_PATH environment variable in your terminal window 
shell before starting LNKnet. The following commands can be used to display and correct 
the LD_LIBRARY_PATH variable:

> echo $LD_LIBRARY_PATH

/usr/local/X11R5/lib:/src/openwin3.o/lib:/usr/local/lib:/usr/
local/lib/X11:/usr/lib

> setenv LD_LIBRARY_PATH /src/openwin3.0/lib:/usr/local/lib:/
usr/local/lib/X11:/usr/lib

6.8. Problem: Plots generate a warning:
Warning: XtRemoveInput: Input handler not found

Solution: This is a known bug in olxplot. It has no effect on the plots and can be ignored.
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B.1 What you need

• 120 Mbytes disc space (90 Mbytes without the source)
• Sun Solaris 2.5, 2.6 or later with OpenWindows
• RedHat or other versions of Linux
• Microsoft windows with a current version of the Cygwin environment

B.2 Read Tar Tape or Download from Web Site

Make a directory to install LNKnet and change to it. This is usually in your home direc-
tory

> mkdir lnknet

> cd lnknet

Load the tape in the appropriate device and read it using

> tar xvf /dev/rst0

or download, unzip and untar the gzipped LNKnet tar file from the LNKnet web site 
that is currently hhttp://www.ll.mit.edu/IST/lnknet/index.html. Under RedHat linux the 
command to perform these actions would be

> tar zxvf lnknet.linux.tgz

Alist of all the files will be displayed as they are read.

Files in the lnknet directory:

Makefile changes/ lib/

RCS/ data/ loading_instructions

README demo/ src/

bin/ man/

At an absolute minimum, you need the bin/ and man/ directories. In order to do the tuto-
rial, you will also need the data/ directory. If space is tight, the other directories may be 
deleted. This would save 34 Mbytes of space.
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Add lnknet/man to the MANPATH environment variable.

Add lnknet/bin to the PATH environment variable. See the README and INSTALL 
files for other information.

B.3 LNKnet updates

If this is an update, the old copy of LNKnet can be overwritten with this one. The files 
in the directory “changes” document new features, bug fixes, and changes that will be 
necessary to get old shell scripts to run in the new version. In addition, delete any .lnkn-
etrc files in users’ home directories.

B.4 Recompiling LNKnet

LNKnet users have ported LNKnet to other platforms or have modified LNKnet pro-
grams by enhancing them or by entering small bug fixes themselves. This requires that 
the affected programs be recompiled. To recompile LNKnet programs you must first 
define an environment variable, LNKHOME, as the path to the directory in which 
LNKnet was installed. For example, on my system I define LNKnet home using this 
command:

>setenv LNKHOME /home/kukolich/lnknet

LNKHOME is used by the Makefiles to determine the paths to the LNKnet source, 
include, library, and binary directories. To recompile the graphical user interface it is 
also necessary that you have the OpenWindows XVIEW 3.0 library. The plotting pro-
grams require the OpenLook Intrinsics library, olit.

The LNKnet binaries can be recompiled in part or as a whole by changing the directory 
in which the make command is issued. Table B.1 shows the directories and the type of 
binaries created.

TABLE B.1: LNKnet directories, and results

directory result of make

$LNKHOME all binaries

$LNKHOME/src all binaries

$LNKHOME/src/lib library nnlib.a†

$LNKHOME/src/algorithm all classifiers 
and clusterers

$LNKHOME/src/algorithm/mlp multi-layer 
perceptron 
program, mlp†

$LNKHOME/src/plot plot programs†

$LNKHOME/src/gclass LNKnet GUI†
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If there are any problems with compilation, call or e-mail Linda Kukolich 
(KUKOLICH@LL.MIT.EDU) for help.

†The command make creates the binary. The com-
mand make copy creates the binary and copies it into 
the bin directory, $LNKHOME/bin.
LNKnet Users Guide (Revision 4, February 2004) 137 



APPENDIX B: Installing LNKnet
138 LNKnet Users Guide (Revision 4, February 2004)



APPENDIX C Tutorial Scripts and 
Outputs

The experiments shown here were performed as part of the LNKnet tutorial in Chapter 2 
and as examples in Chapter 6.

C.1 MLP

This experiment was run in two parts. During the first part, the MLP classifier was 
trained for 20 epochs on 338 samples from the vowel data base. When evaluated, the 
resulting classifier obtained an error rate of 30%. The training was then continued for 
another 20 epochs which brought the evaluation error rate down to 20%. The shell script 
shows the calls for the first half of the training. It differs from the script for the second 
half only in that the calls to MLP use the -create flag. The log file shown below has the 
results from both halves of the experiment. Because this classifier looks at the same 
training patterns multiple times, there are classification results for the training as well as 
for the evaluation portions of the experiment.

C.1.1 MLP Shell Script
#!/bin/csh -ef
# ./X1mlp.run
set loc=`pwd`

#train
(time mlp\
 -train  -create  -pathexp $loc  -ferror X1mlp.err.train  -fparam X1mlp.param\
 -pathdata /u/kukolich/Tutorial  -finput vowel.train\
 -fdescribe vowel.defaults  -npatterns 338  -ninputs 2  -normalize\
 -fnorm vowel.norm.simple  -cross_valid 0  -fcross_valid vowel.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 338  -debug 0  -verbose 3\
 -verror 2 \
-nodes 2,25,10  -alpha 0.6  -etta 0.2  -etta_change_type 0  -epsilon 0.1\
 -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 0.01  -hfunction 0\
 -ofunction 0  -sigmoid_param 1  -cost_func 0  -cost_param 1  -epochs 20\
 -batch 1,1,0  -init_mag 0.1 \
)|& nn_tee -h X1mlp.log
echo -n “X1mlp.run        “ >> /u/kukolich/Tutorial/LNKnet.note
grep “LAST TRAIN EPOCH” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#test
(time mlp\
 -create  -pathexp $loc  -ferror X1mlp.err.eval  -fparam X1mlp.param\
 -pathdata /u/kukolich/Tutorial  -finput vowel.eval\
 -fdescribe vowel.defaults  -npatterns 166  -ninputs 2  -normalize\
 -fnorm vowel.norm.simple  -cross_valid 0  -fcross_valid vowel.train.cv\

Train MLP model (first 20 epochs)
The second 20 epochs are the 
same except that the create flag is 
not set

Put training result in the experiment 
notebook

Evaluate MLP model
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 -random_cv  -random  -seed 0  -priors_npatterns 338  -debug 0  -verbose 3\
 -verror 2 \
-nodes 2,25,10  -alpha 0.6  -etta 0.2  -etta_change_type 0  -epsilon 0.1\
 -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 0.01  -hfunction 0\
 -ofunction 0  -sigmoid_param 1  -cost_func 0  -cost_param 1  -epochs 20\
 -batch 1,1,0  -init_mag 0.1 \
)|& nn_tee -h -a X1mlp.log
echo -n “X1mlp.run        “ >> /u/kukolich/Tutorial/LNKnet.note
grep “TEST” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#decision region plot
mlp_plot_bound\
 -autoscale  -pathexp $loc  -fparam X1mlp.param\
 -fregion X1mlp.region.plot.eval  -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac  -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac  -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac  -xmin -3  -xmax 3  -ymin -3  -ymax 3\
 -xstep 1  -ystep 1  -pymin 0  -pymax 1.5  -pystep 0.25  -ninputs 2\
 -noutputs 10  -tregion “Norm:Simple Net:2,25,10 Step:0.2”  -first_dim 0\
 -second_dim 1  -npatterns 166  -npoints 100  -region  -scatter  -internals\
 -internals_scale 1  -internals_level 1  -color  -all  -distance 0.5\
 -fdata /u/kukolich/Tutorial/vowel.eval\
 -fdesc /u/kukolich/Tutorial/vowel.defaults 

#profile plot
mlp_plot_bound\
 -autoscale  -pathexp $loc  -fparam X1mlp.param  -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac  -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac  -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac  -fprofile X1mlp.profile.plot.eval  -xmin -3\
 -xmax 3  -ymin -3  -ymax 3  -xstep 1  -ystep 1  -pymin 0  -pymax 1.5\
 -pystep 0.25  -ninputs 2  -noutputs 10\
 -tprofile “Norm:Simple Net:2,25,10 Step:0.2”  -first_dim 0  -second_dim 1\
 -npatterns 166  -npoints 50  -internals_scale 1  -internals_level 1  -profile\
 -histogram  -color  -all  -distance 0.5\
 -fdata /u/kukolich/Tutorial/vowel.eval\
 -fdesc /u/kukolich/Tutorial/vowel.defaults 

#cost plot
plot_cost -pathexp $loc  -ferror X1mlp.err.train  -fplot X1mlp.cost.plot  -
autoscale\
 -xmin 0  -xmax 10000  -ymin 0  -ymax 5  -xstep 1000  -ystep 1  -trials 338\
 -title “Norm:Simple Net:2,25,10 Step:0.2”  -cost_func 0  -fmaclines cost.mac\
 -class 

#percent error plot
plot_perr -pathexp $loc  -ferror X1mlp.err.train  -fplot X1mlp.perr.plot  -
autoscale\
 -xmin 0  -xmax 10000  -ymin 0  -ymax 100  -xstep 1000  -ystep 10  -trials 338\
 -title “Norm:Simple Net:2,25,10 Step:0.2”  -fmaclines perr.mac  -class 

#structure plot
plot_mlp -fparam X1mlp.param  -fplot X1mlp.struct.plot\
 -fdescribe /u/kukolich/Tutorial/vowel.defaults  -autoscale  \
 -threshold 0.000000  -show_weight_magnitude -max_line_width 10  -show_bias 

#prob plot
plot_prob -bin_plot  -target 2  -nbins 5  -min_bin_count 5  -chi_square  -pathexp 
$loc\
 -ferror X1mlp.err.eval  -fplot X1mlp.prob.plot  -no_graphics  -noutputs 10\
 -npatterns 166  -xmin 0  -xmax 100  -ymin 0  -ymax 100  -xstep 10  -ystep 10\
 -verbose 1  -title “Norm:Simple Net:2,25,10 Step:0.2”  -fmaclines prob.mac \
 |& nn_tee -h -a X1mlp.log
olxplot -geometry 500x480 -title prob_plot X1mlp.prob.plot&
echo -n “X1mlp.run        “ >> /u/kukolich/Tutorial/LNKnet.note
grep “CHI” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

Put testing result in the experiment 
notebook

Decision region plots

Profile plots

Cost plot

Percent error plot

Structure plot

Posterior probability plot

Put chi square results in the 
experiment notebook
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#detect plot
plot_detect -target 2  -pathexp $loc  -ferror X1mlp.err.eval  -fplot 
X1mlp.detect.plot\
 -noutputs 10  -reject 0  -xmin 0  -xmax 100  -ymin 0  -ymax 100  -xstep 10\
 -ystep 10  -title “Norm:Simple Net:2,25,10 Step:0.2”  -table_begin 0\
 -table_end 100  -table_step 2  -verbose 2  -fmaclines detect.mac\
 -no_graphics \
 |& nn_tee -h -a X1mlp.log
olxplot -geometry 500x480 -title detect_plot X1mlp.detect.plot&
echo -n “X1mlp.run        “ >> /u/kukolich/Tutorial/LNKnet.note
grep “ROC AREA” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#reject plot
plot_reject -pathexp $loc  -ferror X1mlp.err.eval  -fplot X1mlp.reject.plot  -nout-
puts 10\
 -npatterns 0  -xmin 0  -xmax 100  -ymin 0  -ymax 100  -xstep 10  -ystep 10\
 -title “Norm:Simple Net:2,25,10 Step:0.2”  -table_begin 0  -table_end 100\
 -table_step 10 -verbose 1  -fmaclines reject.mac  -no_graphics \
 |& nn_tee -h -a X1mlp.log
olxplot -geometry 500x480 -title reject_plot X1mlp.reject.plot&
echo “current directory:” >> X1mlp.log
echo $loc >> X1mlp.log

C.1.2 MLP Log File (Initial training Plus Continuation)

================================================================ mlp BEGIN
mlp
-train  -create  -pathexp /u/kukolich/Tutorial\
 -ferror X1mlp.err.train  -fparam X1mlp.param\
 -pathdata /u/kukolich/Tutorial  -finput vowel.train\
 -fdescribe vowel.defaults  -npatterns 338  -ninputs 2  -normalize\
 -fnorm vowel.norm.simple  -cross_valid 0  -fcross_valid vowel.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 338  -debug 0  -verbose 3\
 -verror 2  -nodes 2,25,10  -alpha 0.6  -etta 0.2  -etta_list 0.2,0.2\
 -etta_change_type 0  -epsilon 0.1  -kappa 0.01  -etta_nepochs 0  -decay 0\
 -tolerance 0.01  -hfunction 0  -ofunction 0  -sigmoid_param 1\
 -sig_param_list 1,1  -cost_func 0  -cost_param 1  -epochs 20  -batch 1,1,0\
 -init_mag 0.1
Wed Apr  5 11:10:24 1995

Reading /u/kukolich/Tutorial/vowel.train

 EPOCH  %error    RMS Err(338 patterns/epoch)
   1      92.0    0.3051
   2      81.4    0.2977
   3      63.6    0.2781
   4      58.0    0.2628
   5      51.2    0.2565
   6      46.7    0.2508
   7      47.0    0.2479
   8      42.9    0.2436
   9      43.5    0.2396
  10      43.2    0.2388
  11      43.5    0.2359
  12      39.3    0.2335
  13      39.3    0.2306
  14      42.0    0.2305
  15      37.3    0.2248
  16      36.4     0.225
  17      34.6    0.2231
  18      36.1    0.2216
  19      32.8    0.2187

ROC (Detection) plot

Put ROC area in the experiment 
notebook

Rejection plot

Initial training of MLP

Percent error and average cost per 
epoch
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  20      33.7    0.2175
 LAST TRAIN EPOCH:  20 33.73 % Err  0.217 RMS Err  18.01 secs

Finished -- model saved in “/u/kukolich/Tutorial/X1mlp.param”

Classification Confusion Matrix - X1mlp.err.train
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0     308   157    12   151     6     3    49    10     2     2    700
   1     148   236    15    24     6     4   288     9     8     2    740
   2      11     6   588    19    99     1     5    60     8     3    800
   3     119    14    37   502     5     2    15    22     3     1    720
   4       5     8   152     4   397     2     4    34    41    13    660
   5      51    93     8    19    12   101    17    19    72    68    460
   6      33    56     5     7     6         614     9    10          740
   7      21     5   288   102    80     2    10   162     7    23    700
   8       2     7    15     8    28     6    11     3   552    28    660
   9      14    11    24    11   104    50     5    66   188   107    580
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total   712   593  1144   847   743   171  1018   394   891   247   6760

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - X1mlp.err.train
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err Label
  0          700        392        56.00   ( 1.9)     0.264  head
  1          740        504        68.11   ( 1.7)     0.272  hid
  2          800        212        26.50   ( 1.6)     0.214  hod
  3          720        218        30.28   ( 1.7)     0.217  had
  4          660        263        39.85   ( 1.9)     0.237  hawed
  5          460        359        78.04   ( 1.9)     0.292  heard
  6          740        126        17.03   ( 1.4)     0.190  heed
  7          700        538        76.86   ( 1.6)     0.289  hud
  8          660        108        16.36   ( 1.4)     0.180  whod
  9          580        473        81.55   ( 1.6)     0.293  hood
          --------     --------    ------- -------------

Overall     6760       3193        47.23   ( 0.6)    0.245

================================================================ mlp   END
17.9u 0.2s 0:23 78% 0+440k 5+111io 50pf+0w

================================================================ mlp BEGIN
mlp
-create  -pathexp /u/kukolich/Tutorial  -ferror X1mlp.err.eval\
 -fparam X1mlp.param  -pathdata /u/kukolich/Tutorial\
 -finput vowel.eval  -fdescribe vowel.defaults  -npatterns 166  -ninputs 2\
 -normalize  -fnorm vowel.norm.simple  -cross_valid 0\
 -fcross_valid vowel.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 338  -debug 0  -verbose 3  -verror 2  -nodes 2,25,10\
 -alpha 0.6  -etta 0.2  -etta_list 0.2,0.2  -etta_change_type 0  -epsilon 0.1\
 -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 0.01  -hfunction 0\
 -ofunction 0  -sigmoid_param 1  -sig_param_list 1,1  -cost_func 0\
 -cost_param 1  -epochs 20  -batch 1,1,0  -init_mag 0.1
Wed Apr  5 11:10:45 1995

Confusion matrix for first 20 epochs

Error summary for first 20 epochs

Evaluate model based on initial 
training
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C.1: MLP
Reading /u/kukolich/Tutorial/vowel.eval

Classification Confusion Matrix - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      14                 3                                         17
   1       5     1                            12                       18
   2                  19     1                                         20
   3       5                11           1           1                 18
   4                   2          14                                   16
   5       1                             9                 1           11
   6                                          18                       18
   7                   6     3     2                 7                 18
   8                                                      15     1     16
   9                                     6           1     3     4     14
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    25     1    27    18    16    16    30     9    19     5    166

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err  Label
  0           17          3        17.65   ( 9.2)     0.173  head
  1           18         17        94.44   ( 5.4)     0.304  hid
  2           20          1         5.00   ( 4.9)     0.127  hod
  3           18          7        38.89   (11.5)     0.197  had
  4           16          2        12.50   ( 8.3)     0.182  hawed
  5           11          2        18.18   (11.6)     0.249  heard
  6           18          0         0.00   ( 0.0)     0.051  heed
  7           18         11        61.11   (11.5)     0.268  hud
  8           16          1         6.25   ( 6.1)     0.121  whod
  9           14         10        71.43   (12.1)     0.289  hood
          --------     --------    ------- -------------

Overall      166         54        32.53   ( 3.6)    0.207

 TEST:      vowel.eval 32.53 % Err  0.207 RMS Err   0.54 secs
================================================================ mlp   END
0.5u 0.0s 0:00 91% 0+376k 1+3io 1pf+0w

 ------------------------------------------------------------------------------

 target class =  2
   total number of patterns =  166
 ------------------------------------------------------------------------------
     BIN #     # PATTERNS  PREDICTED %     ACTUAL %      RANGE   
 -----------  -----------  -----------  -----------  ----------- 
         0         131        1.84        0.76    -0.76 -   2.28
         1          11       28.08        9.09    -8.24 -  26.43
         2           6       52.66       33.33    -5.16 -  71.82
         3           7       69.71       71.43    37.28 - 105.58
         4          11       87.98      100.00   100.00 - 100.00

Chi Square Fit:

Evaluation confusion matrix

Evaluation error summary

Posterior probability plot table
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Chi                =   2.446746
Degrees of Freedom =   2
Significance       =   0.294236
 TARGET 2 CHI 2.446746 DOF 2 SIGNIFICANCE 0.294236 
Created file /u/kukolich/Tutorial/X1mlp.prob.plot
ROC-x      ROC-y
----------------------------------------------------------------
target class = 2          reject = 0.00%
number of patterns from target class = 20
----------------------------------------------------------------
# PATTERNS  # CORRECT     % CORRECT  # FALSE  % FALSE_ALARM  THRESHOLD
 ----------  ----------  ----------  ----------  ----------  ---------- 
    0           0         0.000            0       0.000       1.000
   20          16        82.500            4       2.000       0.564
   25          18        92.500            7       4.000       0.350
   35          19        97.500           16       6.000       0.199
  166          20       100.000          146      12.000       0.000
 TARGET 2 ROC AREA = 98.732872
Created file X1mlp.detect.plot

 ------------------------------------------------------------------------------
 # PATTERNS # REJECTIONS  % REJECTED  # ERRORS     % ERROR    THRESHOLD  
 ----------  ----------  ----------  ----------  ----------  ---------- 
       166           0    0.000000          54   32.530121       0.000  
       149          16   10.000000          49   32.798210       0.264  
       132          33   20.000000          43   32.380184       0.347  
       116          49   30.000000          29   24.957266       0.416  
        99          66   40.000000          19   19.076767       0.513  
        83          83   50.000000          11   13.253012       0.604  
        66          99   60.000000           6    9.633648       0.684  
        49         116   70.000000           1    2.008163       0.757  
        33         132   80.000000           1    3.012477       0.862  
        16         149   90.000000           0    0.000000       0.926  
Created file /u/kukolich/Tutorial/X1mlp.reject.plot
current directory:
/u/kukolich/Tutorial

================================================================ mlp BEGIN
mlp
-train  -pathexp /u/kukolich/Tutorial  -ferror X1mlp.err.train\
 -fparam X1mlp.param  -pathdata /u/kukolich/Tutorial\
 -finput vowel.train  -fdescribe vowel.defaults  -npatterns 338  -ninputs 2\
 -normalize  -fnorm vowel.norm.simple  -cross_valid 0\
 -fcross_valid vowel.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 338  -debug 0  -verbose 3  -verror 2  -nodes 2,25,10\
 -alpha 0.6  -etta 0.2  -etta_list 0.2,0.2  -etta_change_type 0  -epsilon 0.1\
 -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 0.01  -hfunction 0\
 -ofunction 0  -sigmoid_param 1  -sig_param_list 1,1  -cost_func 0\
 -cost_param 1  -epochs 20  -batch 1,1,0  -init_mag 0.1
Wed Apr  5 15:35:39 1995

Reading /u/kukolich/Tutorial/vowel.train

 EPOCH  %error    RMS Err(338 patterns/epoch)
   1      34.6    0.2161
   2      35.2     0.214
   3      31.4    0.2129
   4      32.0    0.2105
   5      30.5    0.2081
   6      29.0    0.2074
   7      29.6    0.2047
   8      27.8    0.2044
   9      28.4    0.2022
  10      29.9    0.2044
  11      27.2    0.2013
  12      28.7    0.2009

ROC (detection) plot table

Rejection plot table

Continue training model stored in 
X1mlp.param for 20 more epochs

Percent error and cost for continued 
training
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C.1: MLP
  13      27.2    0.1973
  14      25.4    0.1964
  15      26.3    0.1959
  16      28.7    0.1973
  17      24.6    0.1935
  18      24.3    0.1932
  19      25.1    0.1933
  20      25.4    0.1935
 LAST TRAIN EPOCH:  20 25.44 % Err  0.194 RMS Err  17.80 secs

Finished -- model saved in “/u/kukolich/Tutorial/X1mlp.param”

Classification Confusion Matrix - X1mlp.err.train
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0     416   156         113          15                            700
   1     119   478                      17   126                      740
   2                 660          85                55                800
   3     123               571                      26                720
   4                 128         471                12    20    29    660
   5      43    39          20         268                24    66    460
   6      12    54                           674                      740
   7                 121    54    51               437          37    700
   8                              22    18               568    52    660
   9                              56    85          82    71   286    580
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total   713   727   909   758   685   403   800   612   683   470   6760

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - X1mlp.err.train
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err Label
  0          700        284        40.57   ( 1.9)     0.236  head
  1          740        262        35.41   ( 1.8)     0.220  hid
  2          800        140        17.50   ( 1.3)     0.177  hod
  3          720        149        20.69   ( 1.5)     0.171  had
  4          660        189        28.64   ( 1.8)     0.203  hawed
  5          460        192        41.74   ( 2.3)     0.236  heard
  6          740         66         8.92   ( 1.0)     0.142  heed
  7          700        263        37.57   ( 1.8)     0.229  hud
  8          660         92        13.94   ( 1.3)     0.145  whod
  9          580        294        50.69   ( 2.1)     0.256  hood
          --------     --------    ------- -------------

Overall     6760       1931        28.57   ( 0.5)    0.202

================================================================ mlp   END
17.7u 0.1s 0:23 77% 0+440k 4+112io 49pf+0w

================================================================ mlp BEGIN
mlp
-create  -pathexp /u/kukolich/Tutorial  -ferror X1mlp.err.eval\
 -fparam X1mlp.param  -pathdata /u/kukolich/Tutorial\
 -finput vowel.eval  -fdescribe vowel.defaults  -npatterns 166  -ninputs 2\
 -normalize  -fnorm vowel.norm.simple  -cross_valid 0\

Confusion matrix for new epochs

Error summary for new epochs

Re-evaluate model after new 
training
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 -fcross_valid vowel.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 338  -debug 0  -verbose 3  -verror 2  -nodes 2,25,10\
 -alpha 0.6  -etta 0.2  -etta_list 0.2,0.2  -etta_change_type 0  -epsilon 0.1\
 -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 0.01  -hfunction 0\
 -ofunction 0  -sigmoid_param 1  -sig_param_list 1,1  -cost_func 0\
 -cost_param 1  -epochs 20  -batch 1,1,0  -init_mag 0.1
Wed Apr  5 15:36:02 1995

Reading /u/kukolich/Tutorial/vowel.eval

Classification Confusion Matrix - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      13                 3           1                             17
   1            12                             6                       18
   2                  18                             2                 20
   3                        15           1           2                 18
   4                   2          13                             1     16
   5       1                             6           1           3     11
   6                                          18                       18
   7                               3                15                 18
   8                                                      13     3     16
   9                                     2           1     1    10     14
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    14    12    20    18    16    10    24    21    14    17    166

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - X1mlp.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err Label
  0           17          4        23.53   (10.3)     0.213  head
  1           18          6        33.33   (11.1)     0.227  hid
  2           20          2        10.00   ( 6.7)     0.152  hod
  3           18          3        16.67   ( 8.8)     0.172  had
  4           16          3        18.75   ( 9.8)     0.145  hawed
  5           11          5        45.45   (15.0)     0.231  heard
  6           18          0         0.00   ( 0.0)     0.038  heed
  7           18          3        16.67   ( 8.8)     0.187  hud
  8           16          3        18.75   ( 9.8)     0.171  whod
  9           14          4        28.57   (12.1)     0.224  hood
          --------     --------    ------- -------------

Overall      166         33        19.88   ( 3.1)    0.181

 TEST:      vowel.eval 19.88 % Err  0.181 RMS Err   0.48 secs
================================================================ mlp   END
0.4u 0.0s 0:00 92% 0+376k 0+3io 0pf+0w

 ------------------------------------------------------------------------------

 target class =  2
   total number of patterns =  166
 ------------------------------------------------------------------------------
     BIN #     # PATTERNS  PREDICTED %     ACTUAL %      RANGE   
 -----------  -----------  -----------  -----------  ----------- 

Confusion matrix for re-evaluation

Error summary for re-evaluation

Posterior probability plot table for 
new model
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C.2: KNN
         0         142        1.36        1.41    -0.57 -   3.39
         1           5       30.01       20.00   -15.78 -  55.78
         2           9       63.01       77.78    50.06 - 105.49
         3          10       88.56      100.00   100.00 - 100.00

Chi Square Fit:
Chi                =   0.211159
Degrees of Freedom =   2
Significance       =   0.899803
 TARGET 2 CHI 0.211159 DOF 2 SIGNIFICANCE 0.899803 
Created file /u/kukolich/Tutorial/X1mlp.prob.plot
ROC-x      ROC-y
----------------------------------------------------------------
target class = 2          reject = 0.00%
number of patterns from target class = 20
----------------------------------------------------------------
# PATTERNS  # CORRECT     % CORRECT  # FALSE  % FALSE_ALARM  THRESHOLD
 ----------  ----------  ----------  ----------  ----------  ---------- 
    0           0         0.000            0       0.000       1.000
   25          18        92.500            7       2.000       0.191
   33          19        97.500           14       6.000       0.081
  166          20       100.000          146      10.000       0.000
 TARGET 2 ROC AREA = 99.006859
Created file X1mlp.detect.plot

 ------------------------------------------------------------------------------
 # PATTERNS # REJECTIONS  % REJECTED  # ERRORS     % ERROR    THRESHOLD  
 ----------  ----------  ----------  ----------  ----------  ---------- 
       166           0    0.000000          33   19.879519       0.000  
       149          16   10.000000          25   17.000448       0.426  
       132          33   20.000000          21   16.112619       0.520  
       116          49   30.000000          17   14.630121       0.583  
        99          66   40.000000          15   15.660607       0.642  
        83          83   50.000000           9   10.843373       0.693  
        66          99   60.000000           5    7.530529       0.746  
        49         116   70.000000           3    6.024490       0.813  
        33         132   80.000000           0    0.000000       0.903  
        16         149   90.000000           0    0.000000       0.949  
Created file /u/kukolich/Tutorial/X1mlp.reject.plot
current directory:
/u/kukolich/Tutorial

C.2 KNN

This experiment was on the same training and evaluation data as the MLP experiment 
above. The KNN classifier obtained an 18% error rate on the evaluation data. Because 
this is a single pass classifier, there are no classification results from the training. 
Because this classifier does not produce continuous outputs, there are no tables from the 
posterior probability plot, ROC plot, or rejection plot.

C.2.1 KNN Shell Script
#!/bin/csh -ef
# ./X1knn.run
set loc=`pwd`

#train
(time knn\
 -train  -create  -pathexp $loc  -ferror X1knn.err.train  -fparam X1knn.param\
 -pathdata /u/kukolich/Tutorial  -finput vowel.train\

ROC (detection) plot table for new 
model

Rejection plot table for new model

Train KNN
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 -fdescribe vowel.defaults  -npatterns 338  -ninputs 2  -normalize\
 -fnorm vowel.norm.simple  -cross_valid 0  -fcross_valid vowel.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 338  -debug 0  -verbose 3\
 -verror 2 \
-k 3 \
)|& nn_tee -h X1knn.log

#test
(time knn\
 -create  -pathexp $loc  -ferror X1knn.err.eval  -fparam X1knn.param\
 -pathdata /u/kukolich/Tutorial  -finput vowel.eval\
 -fdescribe vowel.defaults  -npatterns 166  -ninputs 2  -normalize\
 -fnorm vowel.norm.simple  -cross_valid 0  -fcross_valid vowel.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 338  -debug 0  -verbose 3\
 -verror 2 \
-k 3 \
)|& nn_tee -h -a X1knn.log
echo -n “X1knn.run        “ >> /u/kukolich/Tutorial/LNKnet.note
grep “TEST” X1knn.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#decision region plot
knn_plot_bound\
 -autoscale  -pathexp $loc  -fparam X1knn.param\
 -fregion X1knn.region.plot.eval  -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac  -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac  -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac  -xmin -3  -xmax 3  -ymin -3  -ymax 3\
 -xstep 1  -ystep 1  -pymin 0  -pymax 1.5  -pystep 0.25  -ninputs 2\
 -noutputs 10  -tregion “Norm:Simple K:3”  -first_dim 0  -second_dim 1\
 -npatterns 166  -npoints 100  -region  -scatter  -internals\
 -internals_scale 1  -internals_level 1  -color  -all  -distance 0.5\
 -fdata /u/kukolich/Tutorial/vowel.eval\
 -fdesc /u/kukolich/Tutorial/vowel.defaults \
 -k 3
echo “current directory:” >> X1knn.log
echo $loc >> X1knn.log

C.2.2 KNN Log File

================================================================ knn BEGIN
knn
-train  -create  -pathexp /u/kukolich/Tutorial\
 -ferror X1knn.err.train  -fparam X1knn.param\
 -pathdata /u/kukolich/Tutorial  -finput vowel.train\
 -fdescribe vowel.defaults  -npatterns 338  -ninputs 2  -normalize\
 -fnorm vowel.norm.simple  -cross_valid 0  -fcross_valid vowel.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 338  -debug 0  -verbose 3\
 -verror 2  -k 3
Wed Apr  5 14:15:56 1995

Reading /u/kukolich/Tutorial/vowel.train

Finished -- knn model saved in “/u/kukolich/Tutorial/X1knn.param”
================================================================ knn   END
0.2u 0.0s 0:07 4% 0+352k 5+2io 48pf+0w

================================================================ knn BEGIN
knn
-create  -pathexp /u/kukolich/Tutorial  -ferror X1knn.err.eval\
 -fparam X1knn.param  -pathdata /u/kukolich/Tutorial\
 -finput vowel.eval  -fdescribe vowel.defaults  -npatterns 166  -ninputs 2\
 -normalize  -fnorm vowel.norm.simple  -cross_valid 0\
 -fcross_valid vowel.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 338  -debug 0  -verbose 3  -verror 2  -k 3

Evaluate KNN model

Decision region plots

Train KNN model

Evaluate KNN model
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C.3: GAUSS (Hand Picking Features)
Wed Apr  5 14:15:57 1995

Reading /u/kukolich/Tutorial/vowel.eval

Classification Confusion Matrix - X1knn.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      15     1           1                                         17
   1            15                             3                       18
   2                  17           1                 2                 20
   3       1                15           1           1                 18
   4                   1          14                             1     16
   5       1                             8                       2     11
   6                                          18                       18
   7                         2                      15           1     18
   8                                                      12     4     16
   9                                     4           1     2     7     14
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    17    16    18    18    15    13    21    19    14    15    166

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - X1knn.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err  Label
  0           17          2        11.76   ( 7.8)     0.149  head
  1           18          3        16.67   ( 8.8)     0.136  hid
  2           20          3        15.00   ( 8.0)     0.145  hod
  3           18          3        16.67   ( 8.8)     0.169  had
  4           16          2        12.50   ( 8.3)     0.149  hawed
  5           11          3        27.27   (13.4)     0.234  heard
  6           18          0         0.00   ( 0.0)     0.000  heed
  7           18          3        16.67   ( 8.8)     0.153  hud
  8           16          4        25.00   (10.8)     0.154  whod
  9           14          7        50.00   (13.4)     0.270  hood
          --------     --------    ------- -------------

Overall      166         30        18.07   ( 3.0)    0.163

 TEST:      vowel.eval 18.07 % Err  0.163 RMS Err   0.42 secs
================================================================ knn   END
0.3u 0.0s 0:01 35% 0+392k 1+3io 1pf+0w
current directory:
/u/kukolich/Tutorial

C.3 GAUSS (Hand Picking Features)

This experiment was performed during the feature selection section of the tutorial. In 
this particular experiment a set of three features was typed in for use. The features are 
selected from a data base with eight features. The set of features was chosen by a for-
ward feature search.

Confusion matrix

Error summary
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C.3.1 Gauss Shell Script
#!/bin/csh -ef
# ./last3gauss.run
set loc=`pwd`

#train
(time gauss\
 -train  -create  -pathexp $loc  -ferror last3gauss.err.train\
 -fparam last3gauss.param  -pathdata /u/kukolich/Tutorial\
 -finput gnoise_var.train  -fdescribe gnoise_var.defaults  -npatterns 200\
 -ninputs 3  -features 7,5,6  -normalize  -fnorm gnoise_var.norm.simple\
 -cross_valid 0  -fcross_valid gnoise_var.train.cv  -random_cv  -random\
 -seed 0  -priors_npatterns 200  -debug 0  -verbose 3  -verror 2 \
-minvar 1e-05  -max_ratio 1e+06 \
)|& nn_tee -h last3gauss.log

#test
(time gauss\
 -create  -pathexp $loc  -ferror last3gauss.err.eval  -fparam last3gauss.param\
 -pathdata /u/kukolich/Tutorial  -finput gnoise_var.eval\
 -fdescribe gnoise_var.defaults  -npatterns 100  -ninputs 3  -features 7,5,6\
 -normalize  -fnorm gnoise_var.norm.simple  -cross_valid 0\
 -fcross_valid gnoise_var.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 200  -debug 0  -verbose 3  -verror 2 \
-minvar 1e-05  -max_ratio 1e+06 \
)|& nn_tee -h -a last3gauss.log
echo -n “last3gauss.run   “ >> /u/kukolich/Tutorial/LNKnet.note
grep “TEST” last3gauss.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#decision region plot
gauss_plot_bound\
 -autoscale  -pathexp $loc  -fparam last3gauss.param\
 -fregion last3gauss.region.plot.eval  -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac  -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac  -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac  -xmin -3  -xmax 3  -ymin -3  -ymax 3\
 -xstep 1  -ystep 1  -pymin 0  -pymax 1.5  -pystep 0.25  -ninputs 8\
 -noutputs 10  -tregion “Norm:Simple Diagonal Grand”  -first_dim 0\
 -second_dim 1  -npatterns 100  -npoints 100  -region  -scatter  -internals\
 -internals_scale 1  -internals_level 1  -color  -all  -distance 0.5\
 -fdata /u/kukolich/Tutorial/gnoise_var.eval\
 -fdesc /u/kukolich/Tutorial/gnoise_var.defaults 
echo “current directory:” >> last3gauss.log
echo $loc >> last3gauss.log

C.3.2 Gauss Log File

================================================================ gauss BEGIN
gauss
-train  -create  -pathexp /u/kukolich/Tutorial\
 -ferror last3gauss.err.train  -fparam last3gauss.param\
 -pathdata /u/kukolich/Tutorial  -finput gnoise_var.train\
 -fdescribe gnoise_var.defaults  -npatterns 200  -ninputs 3  -features 7,5,6\
 -normalize  -fnorm gnoise_var.norm.simple  -cross_valid 0\
 -fcross_valid gnoise_var.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 200  -debug 0  -verbose 3  -verror 2  -minvar 1e-05\
 -max_ratio 1e+06
Wed Apr  5 17:04:10 1995

Reading /u/kukolich/Tutorial/gnoise_var.train

Finished -- gauss model saved in “/u/kukolich/Tutorial/last3gauss.param”
================================================================ gauss   END
0.3u 0.0s 0:07 4% 0+368k 6+1io 51pf+0w

Train Gaussian classifier

Hand-picked feature list is 7,5,6

Evaluate classifier

Decision region plot

Train Gaussian classifier
150 LNKnet Users Guide (Revision 4, February 2004)



C.3: GAUSS (Hand Picking Features)
================================================================ gauss BEGIN
gauss
-create  -pathexp /u/kukolich/Tutorial\
 -ferror last3gauss.err.eval  -fparam last3gauss.param\
 -pathdata /u/kukolich/Tutorial  -finput gnoise_var.eval\
 -fdescribe gnoise_var.defaults  -npatterns 100  -ninputs 3  -features 7,5,6\
 -normalize  -fnorm gnoise_var.norm.simple  -cross_valid 0\
 -fcross_valid gnoise_var.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 200  -debug 0  -verbose 3  -verror 2  -minvar 1e-05\
 -max_ratio 1e+06
Wed Apr  5 17:04:15 1995

Reading /u/kukolich/Tutorial/gnoise_var.eval

Classification Confusion Matrix - last3gauss.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2     3     4     5     6     7     8     9   Total
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
   0      10                                                           10
   1       1     9                                                     10
   2                   9     1                                         10
   3                        10                                         10
   4                              10                                   10
   5                                    10                             10
   6                                          10                       10
   7                                                10                 10
   8                                                       9     1     10
   9                                                            10     10
 -----   ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  -----
 Total    11     9     9    11    10    10    10    10     9    11    100

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - last3gauss.err.eval
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev Avg LogL  Label
  0           10          0         0.00   ( 0.0)    -0.466  0
  1           10          1        10.00   ( 9.5)    -0.610  1
  2           10          1        10.00   ( 9.5)    -0.542  2
  3           10          0         0.00   ( 0.0)    -0.259  3
  4           10          0         0.00   ( 0.0)    -0.548  4
  5           10          0         0.00   ( 0.0)    -0.363  5
  6           10          0         0.00   ( 0.0)    -0.074  6
  7           10          0         0.00   ( 0.0)    -0.449  7
  8           10          1        10.00   ( 9.5)    -0.663  8
  9           10          0         0.00   ( 0.0)    -0.810  9
          --------     --------    ------- -------------

Overall      100          3         3.00   ( 1.7)   -0.478

 TEST: gnoise_var.eval 3.00 % Err -0.478 Avg LogL   0.31 secs
================================================================ gauss   END
0.2u 0.0s 0:02 12% 0+404k 1+2io 1pf+0w
current directory:
/u/kukolich/Tutorial

Evaluate classifier

Confusion matrix

Error summary
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C.4 RBF with KMEANS (Cross Validation)

In this experiment, a series of radial basis function classifiers were trained on data taken 
from different kinds of iris flowers. The basis functions used in each classifier were gen-
erated in a separate call to LNKnet’s K-means algorithm. Because there is not much 
data for the iris problem, the experiment used cross validation to get a good estimate of 
the classification error rate. Cross validation is explained in Section 5.7 on page 89.

C.4.1 RBF Cross Validation Shell Script
#!/bin/csh -ef
# ./cvrbf.run
set loc=`pwd`

#cross validation
(time kmeans\
 -create  -pathexp $loc  -ferror cvrbf.err.cv  -fparam cvkmeans.param\
 -pathdata /u/kukolich/Tutorial  -finput iris.train\
 -fdescribe iris.defaults  -npatterns 150  -ninputs 4  -normalize\
 -fnorm iris.norm.simple  -cross_valid 5  -fcross_valid iris.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 150  -debug 0  -verbose 3\
 -verror 2 \
-cluster_by_class  -ncenters 2  -split_percentage 1  -add_random_offset\
 -max_iteration 10  -stop_percentage 1  -reduce_step 1 \
)|& nn_tee -h cvrbf.log
(time rbf\
 -create  -pathexp $loc  -ferror cvrbf.err.cv  -fparam cvrbf.param\
 -pathdata /u/kukolich/Tutorial  -finput iris.train\
 -fdescribe iris.defaults  -npatterns 150  -ninputs 4  -normalize\
 -fnorm iris.norm.simple  -cross_valid 5  -fcross_valid iris.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 150  -debug 0  -verbose 3\
 -verror 2 \
-fclparam cvkmeans.param  -hspread 1  -exhspread 1  -max_ratio 1e+06\
 -minvar 1e-06  -fast_nhidden 0 \
)|& nn_tee -h -a cvrbf.log
echo -n “cvrbf.run        “ >> /u/kukolich/Tutorial/LNKnet.note
grep “CV” cvrbf.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note
echo “current directory:” >> cvrbf.log
echo $loc >> cvrbf.log

C.4.2 RBF Cross Validation Log File

================================================================ kmeans BEGIN
kmeans
-create  -pathexp /u/kukolich/Tutorial  -ferror cvrbf.err.cv\
 -fparam cvkmeans.param  -pathdata /u/kukolich/Tutorial\
 -finput iris.train  -fdescribe iris.defaults  -npatterns 150  -ninputs 4\
 -normalize  -fnorm iris.norm.simple  -cross_valid 5\
 -fcross_valid iris.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 150  -debug 0  -verbose 3  -verror 2  -cluster_by_class\
 -ncenters 2  -ncenters_list 2,2,2  -split_percentage 1  -add_random_offset\
 -max_iteration 10  -stop_percentage 1  -reduce_step 1
Thu Apr 13 14:04:11 1995

Reading /u/kukolich/Tutorial/iris.train
>>>>>> FOLD 0 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.068          2
   3      0.469          2

Cluster using Kmeans

Do RBF 5 fold cross validation

Put cross validation results in the 
notebook file

Kmeans clustering

Finding clusters for fold 0

Finding clusters for class 0 fold 0
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C.4: RBF with KMEANS (Cross Validation)
   4      0.469          2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.006          2
   3      0.520          2
   4      0.511          2
   5      0.511          2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.441          2
   3      0.789          2
   4      0.785          2
>>>>>> FOLD 1 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.031          2
   3      0.499          2
   4      0.499          2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      0.971          2
   3      0.470          2
   4      0.466          2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.195          2
   3      0.696          2
   4      0.692          2
>>>>>> FOLD 2 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      0.894          2
   3      0.432          2
   4      0.432          2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.090          2
   3      0.546          2
   4      0.545          2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.431          2
   3      0.795          2
   4      0.795          2
>>>>>> FOLD 3 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      0.891          2
   3      0.390          2
   4      0.384          2
   5      0.363          2
   6      0.356          2
   7      0.356          2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.053          2

Finding clusters for class 1 fold 0

Finding clusters for class 2 fold 0

Finding clusters for fold 1

Finding clusters for class 0 fold 1

Finding clusters for class 1 fold 1

Finding clusters for class 2 fold 1

Finding clusters for fold 2

Finding clusters for fold 3
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   3      0.510          2
   4      0.510          2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.250          2
   3      0.725          2
   4      0.724          2
>>>>>> FOLD 4 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      0.778          2
   3      0.358          2
   4      0.358          2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      0.942          2
   3      0.510          2
   4      0.510          2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
   1      0.000          1
   2      1.291          2
   3      0.730          2
   4      0.725          2

Finished -- model saved in “/u/kukolich/Tutorial/cvkmeans.param”
================================================================ kmeans   END
0.2u 0.0s 0:02 11% 0+368k 3+1io 47pf+0w

================================================================ rbf BEGIN
rbf
-create  -pathexp /u/kukolich/Tutorial  -ferror cvrbf.err.cv\
 -fparam cvrbf.param  -pathdata /u/kukolich/Tutorial\
 -finput iris.train  -fdescribe iris.defaults  -npatterns 150  -ninputs 4\
 -normalize  -fnorm iris.norm.simple  -cross_valid 5\
 -fcross_valid iris.train.cv  -random_cv  -random  -seed 0\
 -priors_npatterns 150  -debug 0  -verbose 3  -verror 2\
 -fclparam cvkmeans.param  -hspread 1  -exhspread 1  -max_ratio 1e+06\
 -minvar 1e-06  -fast_nhidden 0
Thu Apr 13 14:04:15 1995

Reading cluster parameters from “/u/kukolich/Tutorial/cvkmeans.param”

Building rbf model

Reading /u/kukolich/Tutorial/iris.train
>>>>>> FOLD 0 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2   Total
 -----   ----  ----  ----  -----
   0      10                 10
   1            10           10
   2                  10     10
 -----   ----  ----  ----  -----
 Total    10    10    10     30

Finding clusters for fold 4

Running RBF cross validation 
experiment

Confusion matrix for fold 0
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C.4: RBF with KMEANS (Cross Validation)
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err
   Label
  0           10          0         0.00   ( 0.0)     0.000  Setosa
  1           10          0         0.00   ( 0.0)     0.010  Versicolour
  2           10          0         0.00   ( 0.0)     0.098  Virginica
          --------     --------    ------- -------------

Overall       30          0         0.00   ( 0.0)    0.057

>>>>>> FOLD 1 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2   Total
 -----   ----  ----  ----  -----
   0      10                 10
   1             9     1     10
   2                  10     10
 -----   ----  ----  ----  -----
 Total    10     9    11     30

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err
   Label
  0           10          0         0.00   ( 0.0)    39.669  Setosa
  1           10          1        10.00   ( 9.5)    39.669  Versicolour
  2           10          0         0.00   ( 0.0)    39.669  Virginica
          --------     --------    ------- -------------

Overall       30          1         3.33   ( 3.3)   39.669

>>>>>> FOLD 2 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2   Total

Error summary for fold 0

Results for fold 1

Results for fold 2
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 -----   ----  ----  ----  -----
   0      10                 10
   1            10           10
   2                  10     10
 -----   ----  ----  ----  -----
 Total    10    10    10     30

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err
   Label
  0           10          0         0.00   ( 0.0)    39.669  Setosa
  1           10          0         0.00   ( 0.0)    39.669  Versicolour
  2           10          0         0.00   ( 0.0)    39.669  Virginica
          --------     --------    ------- -------------

Overall       30          0         0.00   ( 0.0)   39.669

>>>>>> FOLD 3 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2   Total
 -----   ----  ----  ----  -----
   0      10                 10
   1             8     2     10
   2             2     8     10
 -----   ----  ----  ----  -----
 Total    10    10    10     30

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err
   Label
  0           10          0         0.00   ( 0.0)     0.577  Setosa
  1           10          2        20.00   (12.6)     0.577  Versicolour
  2           10          2        20.00   (12.6)     0.577  Virginica
          --------     --------    ------- -------------

Overall       30          4        13.33   ( 6.2)    0.577

>>>>>> FOLD 4 <<<<<<

Inverting rbf matrix

Results for fold 3
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Classification Confusion Matrix - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2   Total
 -----   ----  ----  ----  -----
   0      10                 10
   1             9     1     10
   2                  10     10
 -----   ----  ----  ----  -----
 Total    10     9    11     30

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err
   Label
  0           10          0         0.00   ( 0.0)     0.577  Setosa
  1           10          1        10.00   ( 9.5)     0.577  Versicolour
  2           10          0         0.00   ( 0.0)     0.577  Virginica
          --------     --------    ------- -------------

Overall       30          1         3.33   ( 3.3)    0.577

Finished -- rbf model saved in “/u/kukolich/Tutorial/cvrbf.param”
>>>>>> OVERALL <<<<<<

Classification Confusion Matrix - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Desired                          Computed Class
 Class     0     1     2   Total
 -----   ----  ----  ----  -----
   0      50                 50
   1            46     4     50
   2             2    48     50
 -----   ----  ----  ----  -----
 Total    50    48    52    150

-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

Error Report - cvrbf.err.cv
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Class     Patterns   # Errors     % Errors StdDev RMS Err
   Label
  0           50          0         0.00   ( 0.0)    25.092  Setosa
  1           50          4         8.00   ( 3.8)    25.092  Versicolour
  2           50          2         4.00   ( 2.8)    25.092  Virginica
          --------     --------    ------- -------------

Overall      150          6         4.00   ( 1.6)   25.092

Results for fold 4

Overall confusion matrix

Overall error summary
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 CV 5:      iris.train 4.00 % Err   25.1 RMS Err   0.41 secs
================================================================ rbf   END
0.3u 0.0s 0:04 8% 0+396k 2+3io 48pf+0w
current directory:
/u/kukolich/Tutorial

C.5 Experiment Notebook File

The experiment notebook holds a short description of each experiment run during a 
LNKnet session. A notebook entry includes a short list of experiment parameters, train-
ing results, testing results, and information from the posterior probability plot and the 
ROC (detection) plot. Each line starts with the experiment shell script name, which 
allows the user to find lines pertinent to a particular experiment using the UNIX grep 
and awk programs.

X1mlp.run vowel simple   mlp -nodes 2,25,10  -alpha 0.6  -etta 0.2  -etta_change_type 
0  -epsilon 0.1  -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 0.01  -hfunction 
0  -ofunction 0  -sigmoid_param 1  -cost_func 0  -cost_param 1  -epochs 20  -batch 
1,1,0  -init_mag 0.1
X1mlp.run         LAST TRAIN EPOCH:  20 33.73 % Err  0.217 RMS Err  18.01 secs
X1mlp.run         TEST:      vowel.eval 32.53 % Err  0.207 RMS Err   0.54 secs
X1mlp.run         TARGET 2 CHI 2.446746 DOF 2 SIGNIFICANCE 0.294236 
X1mlp.run         TARGET 2 ROC AREA = 98.732872

X1knn.run vowel simple   knn -k 3
X1knn.run         TEST:      vowel.eval 18.07 % Err  0.163 RMS Err   0.42 secs

X1mlp.run vowel simple  -continue  mlp -nodes 2,25,10  -alpha 0.6  -etta 0.2  -
etta_change_type 0  -epsilon 0.1  -kappa 0.01  -etta_nepochs 0  -decay 0  -tolerance 
0.01  -hfunction 0  -ofunction 0  -sigmoid_param 1  -cost_func 0  -cost_param 1  -
epochs 20  -batch 1,1,0  -init_mag 0.1
X1mlp.run         LAST TRAIN EPOCH:  20 25.44 % Err  0.194 RMS Err  17.80 secs
X1mlp.run         TEST:      vowel.eval 19.88 % Err  0.181 RMS Err   0.48 secs
X1mlp.run         TARGET 2 CHI 0.211159 DOF 2 SIGNIFICANCE 0.899803 
X1mlp.run         TARGET 2 ROC AREA = 99.006859

allgauss.run gnoise_var simple   gauss -minvar 1e-05  -max_ratio 1e+06
allgauss.run      TEST: gnoise_var.eval 1.00 % Err  -1.87 Avg LogL   0.38 secs

N1gauss.run gnoise_var simple  -ninputs 1  gauss -minvar 1e-05  -max_ratio 1e+06
N1gauss.run       TEST: gnoise_var.eval 78.00 % Err  -1.41 Avg LogL   0.36 secs

N2gauss.run gnoise_var simple  -ninputs 2  gauss -minvar 1e-05  -max_ratio 1e+06
N2gauss.run       TEST: gnoise_var.eval 62.00 % Err  -1.71 Avg LogL   0.36 secs

N4gauss.run gnoise_var simple  -ninputs 4  gauss -minvar 1e-05  -max_ratio 1e+06
N4gauss.run       TEST: gnoise_var.eval 48.00 % Err  -2.22 Avg LogL   0.35 secs

last3gauss.run gnoise_var simple -features 7,5,6 -ninputs 3  gauss -minvar 1e-05  -
max_ratio 1e+06
last3gauss.run    TEST: gnoise_var.eval 3.00 % Err -0.478 Avg LogL   0.31 secs

pcagauss.run gnoise_var pca  -ninputs 2  gauss -minvar 1e-05  -max_ratio 1e+06
pcagauss.run      TEST: gnoise_var.eval 25.00 % Err  -2.67 Avg LogL   0.36 secs

ldagauss.run gnoise_var lda  -ninputs 2  gauss -minvar 1e-05  -max_ratio 1e+06
ldagauss.run      TEST: gnoise_var.eval 0.00 % Err  -1.71 Avg LogL   0.33 secs

First 20 epochs of MLP training

KNN experiment

Second 20 epochs of MLP training

Feature selection and normalization 
experiments
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cvrbf.run iris simple  -cross_valid 5  kmeans -cluster_by_class  -ncenters 2  -
split_percentage 1  -add_random_offset  -max_iteration 10  -stop_percentage 1  -
reduce_step 1 rbf -fclparam cvkmeans.param  -hspread 1  -exhspread 1  -max_ratio 
1e+06  -minvar 1e-06  -fast_nhidden 0
cvrbf.run         CV 5:      iris.train 4.00 % Err   25.1 RMS Err   0.41 secs

cvrbf.run {kmeans -ncenters 4 } {rbf -fast_train -fast_nhidden 2 } 
cvrbf.run         CV 5:      iris.train 4.67 % Err   17.7 RMS Err   0.51 secs

cvrbf.run {rbf [-fast_train ] } 
cvrbf.run         CV 5:      iris.train 4.67 % Err   25.1 RMS Err   0.51 secs

C.6 C Code Generation From a Parameter File

In this example a Gaussian classifier was trained on the XOR data base shown on 
page 188. The Gaussian classifier has a full covariance matrix for each class, as 
described in Section 6.3.2 on page 97. The input data was normalized using simple nor-
malization. The decision regions produced by this Gaussian classifier are shown in 
Figure 7.5 on page 114. A C subroutine file was generated from the parameter file as 
described in Section 7.2. The shell script that produced the routine is shown in Figure 
C.6.2. The subroutine file is shown in Figure C.6.3. Finally, a small program was writ-
ten that uses the generated classification subroutine to draw the decision region plot in 
Section C.6.4.

C.6.1 Gauss Parameter File
This parameter file was created by the program gauss which was called in the shell 
script XORgauss.run.

FIGURE C.1 Gauss Parameter file (XORgauss.param)
gauss
-train  -create  -pathexp /u/kukolich/Tutorial\
 -ferror XORgauss.err.train  -fparam XORgauss.param\
 -pathdata /u/kukolich/lnknet/data/class  -finput XOR.train\
 -fdescribe XOR.defaults  -npatterns 16  -ninputs 2  -normalize\
 -fnorm XOR.norm.simple  -cross_valid 0  -fcross_valid XOR.train.cv\
 -random_cv  -random  -seed 0  -priors_npatterns 16  -debug 0  -verbose 3\
 -verror 2  -full  -per_class  -minvar 1e-05  -max_ratio 1e+06
Fri Apr  7 09:49:19 1995

normalization data
<BEGIN_PARAM>
normalization  1
ninputs        2
nclasses       2
total_trials   16
max_features   2
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
means 2
0    0.5
1    0.5
END_VECTOR}
{BEGIN_VECTOR
sdevs 2
0    0.504975

Cross validation experiment

Repeat of cvrbf with more kmeans 
clusters and fast training

Second repeat with fast training off

Settings for all GAUSS command 
line arguments

Normalization parameters from 
XOR.norm.simple
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1    0.504975
END_VECTOR}
<END_PARAM>
gauss model
<BEGIN_PARAM>
ninputs        2
noutputs       2
total_trials   16
full_covar     1
per_class      1
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
features 1
0    0
END_VECTOR}
{BEGIN_VECTOR
class_trials 2
0    8
1    8
END_VECTOR}
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
mean 2
0    -1.49012e-08
1    -7.45058e-09
END_VECTOR}
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
mean 2
0    0
1    -7.45058e-09
END_VECTOR}
<END_PARAM>
<BEGIN_PARAM>
log_det        -1.41082
{BEGIN_MATRIX
inv_covar 2 2
0 0    25.7526
0 1    -25.2477
1 0    -25.2477
1 1    25.7526
END_MATRIX}
<END_PARAM>
<BEGIN_PARAM>
log_det        -1.41082
{BEGIN_MATRIX
inv_covar 2 2
0 0    25.7524
0 1    25.2475
1 0    25.2475
1 1    25.7524
END_MATRIX}
<END_PARAM>

C.6.2 C code generation shell script
This shell script, XORgauss.c.run, was created from LNKnet’s C Code generation win-
dow. The program gauss2c will produce two subroutines, classify_XORgauss() and 
normalize_XORgauss(), shown in Section C.6.3.

Gauss parameters

Gauss constants

No feature selection

Npatterns seen per class over all 
training

Means for first class

Means for second class

Determinant and inverse 
covariance matrix for first class

Determinant and inverse 
covariance matrix for second class
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FIGURE C.2 GAUSS2C script (XORgauss.c.run)
#!/bin/csh -ef
# ./XORgauss.c.run
gauss2c -model_file XORgauss.param  -suffix XORgauss  >! XORgauss.c

C.6.3 Sample gauss2c Output

The filter gauss2c to produces two C subroutines, by default named classify() and 
normalize(). The routine classify() takes a vector of raw inputs and a pointer to a vector 
of outputs. It calls normalize() and then calculates the outputs of the Gaussian classifier 
for the normalized inputs. The outputs are copied into the output vector sent by the 
calling routine. The number of the highest output is returned as the class of the input 
vector. The routine normalize() takes a raw input pattern and performs normalization 
and feature selection. The normalized inputs are stored in the vector that held the 
original pattern. Normalize() returns the number of input features used by the classifier. 
gauss2c has a flag, -suffix, which adds a suffix to the subroutine names produced. This 
allows easy inclusion of multiple classification routines in one user program. For 
example, in Figure C.2 the suffix flag was set to XORgauss. The classify and normalize 
subroutine names are thus classify_XORgauss() and normalize_XORgauss().

For the parameter file in Figure C.1, simple normalization is used. There are two input 
features and two classes. Each class has its own covariance matrix and that is a full 
covariance matrix.

An example of the use of these routines in a program has been added after the routine 
normalize_XORgauss(), in Figure C.4. This example generates a list of patterns and 
their output classes for a decision region plot.

FIGURE C.3 Output of gauss2c (XORgauss.c)
/* XORgauss.param */
/* Per Class, Full */
/* norm: SIMPLE */
/* 2 (all) features */

#include <math.h>

 /* macro definitions */
#ifndef SQR(x)
#define SQR(x) ((x) * (x))
#endif

#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif

#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif

#ifndef LOG_2PI
#define LOG_2PI 0.798179868358
#endif

Comments describing Gaussians 
and normalization

Macros for functions and constants
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 /* function declarations */
extern int classify_XORgauss(/* float *,float * */);
extern int normalize_XORgauss(/* float * */);

#define NRAW_XORgauss 2
#define NINPUTS_XORgauss 2
#define NCLASSES_XORgauss 2

int classify_XORgauss (inputs, outputs)
   float *inputs,*outputs;
{
  int n, best;
  int j,k;
  float y[NCLASSES_XORgauss],p;
 static float means[NCLASSES_XORgauss][NINPUTS_XORgauss] = {

{ -1.490120e-08,  -7.450580e-09, },
{  0.000000e+00,  -7.450580e-09, },

};
 static float inv_var[NCLASSES_XORgauss][NINPUTS_XORgauss][NINPUTS_XORgauss] = {

/* class 0 */{
  {  2.575260e+01,  -2.524770e+01, },
  { -2.524770e+01,   2.575260e+01, },

},
/* class 1 */{
  {  2.575240e+01,   2.524750e+01, },
  {  2.524750e+01,   2.575240e+01, },

},
};
 static float log_determinant[NCLASSES_XORgauss] = {
 -1.410820e+00,  -1.410820e+00, };

static float log_class_priors[NCLASSES_XORgauss] = {
 -3.010300e-01,  -3.010300e-01, };

  float x[NRAW_XORgauss];
  int i;

 /* load inputs */
  for(i = 0; i < NRAW_XORgauss; i++)
    x[i] = inputs[i];

  /* normalize loaded data */
  normalize_XORgauss(x);
/* calculate outputs for each class */
  for(n = 0; n < NCLASSES_XORgauss; n++){
    y[n] = 0;
    for(j = 0; j < NINPUTS_XORgauss; j++){
      p = 0.;
      for(k = 0; k < NINPUTS_XORgauss; k++){
        p += (x[k]-means[n][k])*inv_var[n][j][k];
      }
      y[n] += (x[j] - means[n][j])*p;
    }
    y[n] *= 0.5 * M_LOG10E;
    y[n] += log_determinant[n] * 0.5 + NINPUTS_XORgauss*0.5*LOG_2PI;
    y[n] = -y[n];
    y[n] += log_class_priors[n];
  }

 /* copy outputs and make linear */
  for(n = 0; n < NCLASSES_XORgauss; n++)
    outputs[n] = exp(M_LN10 * (double)y[n]);

 /* find highest output */
  for(best = n = 0; n < NCLASSES_XORgauss; n++)

classify_XORgauss

Means for Gaussians

Inverse covariance matrices for 
each class

Log determinants of covariance 
matrices

Log a priori class probabilities

Copy inputs into input array, x, then 
do normalization and feature 
selection

Calculate outputs for each class

Copy outputs into user supplied 
array, making them linear

Find highest output and return its 
class
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C.6: C Code Generation From a Parameter File
    if(y[best] < y[n]) best = n;
  return(best);
}

int normalize_XORgauss(inputs)
   float *inputs;
{
  int n;
  float new_inputs[NRAW_XORgauss];

static float means[NINPUTS_XORgauss] = {
  5.000000e-01,   5.000000e-01, };

static float sdevs[NINPUTS_XORgauss] = {
  5.049750e-01,   5.049750e-01, };

 for(n = 0; n < NINPUTS_XORgauss; n++){
    new_inputs[n] = (inputs[n]- means[n]) / sdevs[n];
  }

 for(n = 0; n < NINPUTS_XORgauss; n++){
    inputs[n] = new_inputs[n];
  }
  return((int) NINPUTS_XORgauss);
}
#undef NRAW_XORgauss
#undef NINPUTS_XORgauss
#undef NCLASSES_XORgauss

FIGURE C.4 Main driver program that uses LNKnet classifier code.

/* program for generating decision regions */
main()
{
  float x,y, xstep, ystep;
  float inputs[2], outputs[2];
  int class;

float xlow = -1, xhigh = 2, ylow = -1, yhigh = 2;

  /* sample a 50 by 50 grid of patterns between (-1,-1) and (2,2) */
  xstep = (xhigh - xlow)/50.;

ystep = (yhigh - ylow)/50.;
  for(x = xlow; x < xhigh; x += xstep){
    inputs[0] = x;
    for(y = ylow; y < yhigh; y += ystep){
      inputs[1] = y;
      /* find the class for the current pattern */
      class = classify_XORgauss(inputs, outputs);
      /* print out the results */
      printf(“%f %f %d\n”, x, y, class);
    }
  }
}

normalize_XORgauss

Means and variances for simple 
normalization

Normalize inputs and copy result to 
new_inputs

Do features selection on 
new_inputs, copying selected 
features back into inputs. Return 
the number of normalized selected 
features

Main routine for generating 
decision region patterns and 
classes.
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C.6.4 XOR Decision Region and Scatter Plot
The decision region plot in Figure C.5 was produced using the program in Figure C.3 
and Figure C.4. The outputs of the program were fed to a plotting package. Small 
squares represent points in the input space where class A is chosen by the classifier in 
Figure C.1. Small triangles represent points where class B is chosen. The large filled 
squares are the patterns from class A in the training file XOR.train. The large filled tri-
angles are the patterns from class B.

FIGURE C.5 XOR.train Scatter Plot and Decision Region Plot generated by XORgauss.c
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1

XORgauss.c results and XOR scatter plot
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164 LNKnet Users Guide (Revision 4, February 2004)



APPENDIX D Data Bases Included in 
LNKnet

FIGURE D.1 angle

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 200 100 100

LEGEND

0

1

Norm:Simple Diagonal Grand
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1
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X1 
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Angle is a generated data base with two classes. Each class is made of points uniformly 
sampled from a pair of ovals which are identical except for the positions of their centers. 
After the points were generated the data was rotated 60 degrees to put the classes at an 
angle to the origin.

FIGURE D.2 bulls

This is bull’s-eye data. There are two classes. One contains patterns uniformly distrib-
uted in a disk of radius 1.0 and the other class contains patterns uniformly distributed in 
an annulus with an inner radius of 1.0 and an outer radius of 5.0.
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FIGURE D.3 cross

Class zero contains patterns from a 2-D Gaussian distribution with positively correlated 
features. Class one contains patterns from a similar 2-D Gaussian distribution with neg-
atively correlated features. These distributions overlap and form a cross as shown.The 
data base was intended for use in testing the Gaussian classifier with full covariance 
matrices.
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FIGURE D.4 daisy

This data base has 12 classes. The points in each class are in Gaussian clusters which 
radiate out from the origin. There are one, two, or three Gaussians per class. This data 
base was generated to test the Gaussian Mixture Classifier.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 12 1200 1200 1200

LEGEND
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FIGURE D.5 digit1

The classes in this speech data base are the first seven monosyllabic digits from the TI 
digit data base. A version of the TI data base was sampled at 12kHz and processed to 
extract 15 mel cepstra from 10 msec frames. Eleven of the low cepstral values were 
used from two frames of each word. One frame was taken where the energy was highest 
and the other frame is from 30 msec before the highest energy frame. This data base was 
generated by Richard Lippmann of MIT Lincoln Laboratory [28].
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FIGURE D.6 disjoint

Class 0 contains patterns uniformly sampled from a 6 by 3 unit rectangle. There are two 
square regions where there are no patterns from class 0. The first square lies between 
(0,0) and (1,1). The second square lies between (2,0) to (3,1). Class 1 contains patterns 
uniformly sampled within these squares.
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FIGURE D.7 disjoint_tail

Class A contains patterns with a bimodal distribution. Most of the patterns are found in 
a uniform distribution covering the range (-0.5,0.5). An additional 10% of the class A 
patterns are found in a second uniform distribution covering the range (99.5,100.5). The 
class B patterns have a Gaussian distribution with a mean at 2 and standard deviation of 
1.0
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FIGURE D.8 Disk

This data base has two uniformly sampled ellipses which have been rotated to put them 
at a 45 degree angle to the input features.
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FIGURE D.9 DiskOut

This data base has two uniformly sampled ellipses which have been rotated to put them 
at a 45 degree angle to the input features. Class 1 has an additional set of patterns sepa-
rated from the main ellipse by 10 units.
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FIGURE D.10 Gap

The data for each class is uniformly sampled from a rectangle with height 1. The width 
of the rectangle for class 0 is 1, the width for class 1 is 10. Each class has the same num-
ber of patterns. This data base was generated while testing the Perceptron Convergence 
Procedure cost function of the MLP classifier.
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FIGURE D.11 gmix

The patterns for each class are taken from Gaussian mixture distributions. Each Gauss-
ian mixture distribution has three clusters, as shown, with one half of the patterns in the 
central cluster and one quarter of the patterns in each of the other two clusters. This data 
base was generated to test the Gaussian mixture classifier using diagonal covariance 
matrices.
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FIGURE D.12 gmix_close

The patterns for each class are taken from Gaussian mixture distributions. Each Gauss-
ian mixture distribution has three clusters as shown with one half of the patterns in the 
central cluster and one quarter of the patterns in each of the other two clusters. This data 
base is very similar to the gmix data base. The class distributions are considerably closer 
together, however and overlap.
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FIGURE D.13 gnoise

Each pattern was generated by adding Gaussian noise to the center of each class in all 
eight input dimensions. The standard deviation of the noise is 0.5. The class means are 
found along the line  where  is the value of the dth fea-
ture and j is the class.
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FIGURE D.14 gnoise_var

This is a modified version of gnoise where the variance is smaller for the higher input 
features. Each pattern was generated by adding Gaussian noise to the center of each 
class in all eight input dimensions. The standard deviation decreases as the dimensions 
increase. The standard deviation is  where d is the number of the 
dimension . The class means are found along the line , , 

. The plot shows the first, noisiest, dimension plotted against the last, most 
clean, dimension.
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FIGURE D.15 HalfDisk

The patterns in this data base were all uniformly sampled from an ellipse which is ten 
times longer in the first direction than in the second. All the sampled patterns with 

 were assigned to class 0. All other patterns were assigned to class 1.
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FIGURE D.16 high_tail

The first class was generated using a single Gaussian distribution with a mean of 5 and a 
variance of 1. The second class was generated by sampling two overlapping uniform 
distributions of differing length. The probability of a pattern in the second class being in 
the first segment is 0.9. The first segment covers the range (-0.5, 0.5). The second seg-
ment covers the range (-50,50).
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FIGURE D.17 iris

This is R.A. Fisher’s iris data [8]. The data set contains three classes with 50 patterns for 
each class. Each class is a type of iris plant. The inputs are the sepal length and width in 
centimeters and the petal length and width in centimeters.
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FIGURE D.18 ocrdigit

This is the little 1200 data base which was collected at AT&T Bell Laboratories by Isa-
belle Guyon[35] among her collaborators. Twelve people wrote the 10 digits several 
times each. The data was mapped to a 64 by 64 grid and then smoothed and fit into a 8 
by 8 grid. This smoothed data was provided by John Hampshire.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
64 10 600 600
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FIGURE D.19 pbvowel

This is most of the original Peterson and Barney[32] vowel data which was collected in 
the 1950’s. The original data was collected from 67 speakers, each of whom said the 10 
words given in the legend. The inputs are the pitch and first three formant frequencies of 
the vowel in each word and whether the speaker was a man, woman, or child.
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FIGURE D.20 uniform_1_1

The three data bases, uniform_1_1, uniform_2_1, and uniform_10_1, were all generated 
by sampling the same pair of Gaussian distributions. The means of the Gaussians are 
one standard deviation apart along the line x=y. The differences among the three data 
bases are in the number of patterns sampled for each class. There ar 500 patterns in each 
class in uniform_1_1. Uniform_2_1 has 666 patterns from class 0 and 333 patterns from 
class 1, giving a 2 to 1 ratio in the a priori probabilities of the classes. Uniform_10_1 
has 1000 patterns from class 0 and 100 from class 1, giving a 10 to 1 ratio in the class 
probabilities. These data bases were generated to test the a priori probability adjustment 
features of the LNKnet classifiers.
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APPENDIX D: Data Bases Included in LNKnet
FIGURE D.21 uniform_2_1

Data taken from two identical Gaussian distributions with means one standard deviation 
apart. There are twice as many patterns from class 0 as from class 1.
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APPENDIX D: Data Bases Included in LNKnet
FIGURE D.22 uniform_10_1

Data taken from two identical Gaussian distributions with means one standard deviation 
apart. There are 10 times as many patterns from class 0 as from class 1.
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APPENDIX D: Data Bases Included in LNKnet
FIGURE D.23 vowel

This data is a normalized version of some of the Peterson and Barney[32] vowel data. 
The inputs are the first and second formant frequencies of the vowel in the 10 words 
given in the legend. The frequency data is normalized to be between 0 and 1.
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APPENDIX D: Data Bases Included in LNKnet
FIGURE D.24 XOR

This data base has hand generated patterns from the XOR problem. It is intended for 
testing algorithms by hand to verify the outputs of calculations.
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APPENDIX E Using OpenWindows

SUN has an excellent tutorial describing the use of the OpenLook window manager. 
The tutorial can be found in $OPENWINHOME/bin/helpopen. SUN also publishes an 
OpenWindows User Guide which provides information on the use of OpenLook style 
applications. If these sources of information are unavailable, this appendix covers those 
parts of OpenWindows that affect the use of LNKnet. This appendix assumes that you 
can already start a window manager. For more information on how to do this, contact 
your system administrator.

E.1 The Mouse

Most graphical window interfaces are built around a mouse. OpenWindows assumes 
that the mouse has three buttons. The settings of these buttons can be changed, but the 
default settings are as follows: The left button is the Select Button; The middle button is 
the Adjust Button; The right button is the Menu Button. In LNKnet, the select button is 
used for setting check boxes, selecting items from a scrolling list, and “pushing” but-
tons. The menu button is used for making selections from a pull down menu. The adjust 
button is not used. A SUN mouse is shown in Figure E.1. A SUN mouse comes with a 
metal mouse pad. The mouse must be on that pad to work.

The mouse controls a pointer, also shown in Figure E.1. When the mouse is moved on 
its pad, the pointer moves on the screen. To select a button on a LNKnet window, you 
must first use the mouse to move the pointer over the button. It may also be necessary to 
“click” the mouse on the bar at the top of the window to bring the LNKnet window to 
the attention of the window manager. To do this, move the pointer to the bar at the top of 
the window. Press and release the select button on the mouse.

FIGURE E.1 A SUN three button mouse and pointer

sun

Select Adjust

Menu

Mouse Pointer
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APPENDIX E: Using OpenWindows
E.1.1 Menus
In OpenWindows, a menu is indicated by a small triangle on a button or a small box. To 
select something from a menu you must first move the mouse pointer to the triangle. 
Press and hold the menu button on the mouse. The menu attached to the triangle should 
now appear. Still holding down the mouse menu button, drag the pointer down the menu 
to the item you want to select, then let go. It is possible that the item you want also has a 
triangle next to it, indicating that there is another menu that must be selected from. If so, 
do not let go of the menu button. Drag the mouse pointer in the direction the triangle 
points to bring up the second menu and proceed as before. 

E.1.2 Scrolling Lists
On the LNKnet file window, there is a scrolling list with the names of the standard data 
bases available in LNKnet. To make a selection from this list you must first move scroll 
the list up or down to show the item you want. Beside the list is a scroll bar. This bar has 
a anchors at the top and bottom and an “elevator” in the middle. The list scrolls up when 
the select button is pressed over the elevator. The list scrolls down when the select but-
ton is pressed under the elevator. The square in the middle lets you move the mouse 
while holding the select button to scroll the list up or down. Once the item you want is 
showing, select it with the select button on the mouse. Figure E.3 shows the scrolling 
list on the LNKnet file window. The gnoise_var data base has been selected.

E.1.3 Buttons, Setters, and Check Boxes
Several other graphical controls are used by clicking on them with the select mouse but-
ton. LNKnet uses buttons, setting objects, and check boxes. The buttons do a variety of 
things. Some of them have menus attached to them. The others run experiments, bring 

FIGURE E.2 Making a Menu Selection
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FIGURE E.3 Scrolling LIst
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E.2: The Keyboard
up windows, or perform some function inside LNKnet. The setting objects set some 
LNKnet or algorithm variable to some setting from a short list. The check boxes are 
graphical binary flags. They turn on or off LNKnet features. Figure E.4 shows a set of 
LNKnet selection objects.

E.2 The Keyboard

At least half the fields on most LNKnet windows are text fields. They are set by first 
selecting them with the mouse and then typing on the keyboard. When a text field is 
selected, a cursor, a small triangle, will appear on the line. Some text fields are associ-
ated with numbers. These numbers can be set by typing or by selecting the up and down 
arrows beside the text field. When you are finished typing a new setting for a text field, 
you must hit carriage return or tab. The change you have made will not take affect if you 
do not. Figure E.5 shows some text fields from the LNKnet file window.

E.3 Windows

LNKnet is built around many windows. There is a main window and many popup win-
dows. When olwm is your window manager, these windows come up automatically. 
With some other window managers, each window must be placed when it is displayed. 
In olwm, the main difference between the main window and the popup windows is that 
the popup windows are displayed with a push pin in the upper left corner of the window. 
If you select the push pin, the popup window will disappear. It can be redisplayed by 
reselecting the button which brought up the window before. If you select the small 

FIGURE E.4 LNKnet Objects that are Set using the Select Mouse Button
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FIGURE E.5 LNKnet Text Fields
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LNKnet Users Guide (Revision 4, February 2004) 191 



APPENDIX E: Using OpenWindows
square in the upper left of the main window, LNKnet will be iconified. That is, the 
LNKnet main window and all of its popup windows will disappear and a square icon 
will appear somewhere on your screen. Double clicking on the LNKnet icon will redis-
play the main LNKnet window and its popups. Figure E.6 shows the bar at the top of the 
LNKnet main window and two popup windows as well as the LNKnet icon.

FIGURE E.6 LNKnet windows and icon
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SUBJECT INDEX

A
a priori probabilities window 87
adaptive stepsize back propagation 53
algorithm selection 31
algorithms 3, 51–75
angle data base 165

B
back propagation 51
backward feature search 86
bad flags 129
batch files 112
binary splitting clustering 73
binary tree classifier (BINTREE) 64

initializing MLP 113
internals plot 97
structure plot 96

BINTREE 64
bugs 129
bullseye data base 166

C
c code file 126

generation 109, 159
check features by hand 43, 85
CKNN 63
class labels 13, 81, 119
class probabilities 82, 87
classification figure of merit 53
classifiers 51–73
clearing screen 37
clustering 48, 73–75

by class 49
color plots 132
comma delimited list 119, 131
committee

classifier 70
data base 111, 127

condensed nearest neighbor classifier (CKNN) 63
confusion matrix 23, 143
continue experiment 34, 77, 141
cost function

cross-entropy 53
maximum likelihood 53
squared error 53, 56
top two difference 53

cost plot 19, 27, 102
covariance matrix 40, 57, 58
create clusters first 48
cross data base 167
LNKnet Users Guide (Revision 4, February 2004) 197 



Subject Index
cross validation 42, 47, 86, 89, 152
file 90

cross-entropy 53

D
daisy data base 168
data base 13

description 118
list 13, 81, 130
selection window 14, 80

data bases
angle 165
bulls 166
cross 167
daisy 168
digit 169
disjoint 113, 170
disjoint_tail 171
Disk 172
DiskOut 173
Gap 107, 174
gmix 175
gmix_close 176
gnoise 177
gnoise_var 39, 178
HalfDisk 179
high_tail 180
iris 47, 181
ocrdigit 182
pbvowel 183
uniform_1_1 87, 184
uniform_10_1 87, 186
uniform_2_1 87, 185
vowel 13, 187
XOR 159, 164, 188

data file 118
decision region plot 17, 24, 40, 91, 132
defaults file. See description file
defaults for LNKnet start 19
DeltaGraph 108
description file 118
detection plot 29, 103

window 21
digit data base 169
disjoint data base 113, 170
disjoint_tail data base 171
Disk data base 172
DiskOut data base 173
distance limit 92, 94, 133

E
EM_CLUS 73
environment variable

LD_LIBRARY_PATH 133
LNKHOME 136
MANPATH 129, 136
PATH 129, 136

error file 80, 125
format 125
verbosity 13

error summary 24, 143
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Subject Index
estimate-maximize clustering (EM_CLUS) 73
evaluation data 4, 118
Excel 108
exit LNKnet 77
experiment flow 4
experiment notebook 123, 158

F
feature labels 119
feature list file 120
feature selection 5, 39, 149

plot 87
window 85

file does not exist 131
files

.lnknetrc 19
c subroutine 126
clustering parameters 48
committee data base 127
data 118
data base description 118
error 125
experiment notebook 123, 158
feature list 120
log 123, 141
MIF 107, 109
normalization 120, 159
output 125
parameter 124, 159
plot 107, 109, 126
PostScript 107, 109
screen 123
shell script 122, 139

First N features 41
folds, cross validation 47, 89
format

cross validation file 90
data base description file 118
error file 125
input data file 118

forward and back feature search 86
forward feature search 86
FrameMaker 109

G
Gap data base 107, 174
gauss2c 160, 161
Gaussian (GAUSS) 159
Gaussian classifier (GAUSS) 40, 57, 149

internals plot 98
structure plot 97

Gaussian mixture classifier (GMIX) 57
internals plot 100
structure plot 99

GMIX 57
gmix data base 175
gmix_close data base 176
gnoise data base 177
gnoise_var data base 39, 178
gradient descent 51, 56
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H
HalfDisk data base 179
high_tail data base 180
histogram classifier (HISTOGRAM) 59
histogram plot 25, 94, 133
hypershpere classifier (HYPER) 70

I
incremental radial basis function classifier (IRBF) 55

structure plot 99
input labels 81, 119
inputs in error file 125
installing LNKnet 135
internals plot 24, 40, 92

bintree 97
gauss 98
gmix 100
knn 33
mlp 24, 101
rbf 101

intervals per plot dimension 91, 94
IRBF 55
iris data base 47, 181

K
K nearest neighbor classifier (KNN) 30, 62, 147
kernel functions 61
K-means clustering (KMEANS) 48, 73, 152
KNN 62

L
LD_LIBRARY_PATH 133
LDA 83
leader clustering (LEAD_CLUS) 75
learning vector quantizer (LVQ) 64
leave-one-out cross validation 62, 86
likelihood classifiers 56
linear classifier, gauss 57
linear discriminant analysis (LDA) 44, 83
LNK2gobi 115
LNKHOME 136
LNKnet defaults file (.lnknetrc) 19, 79
log file 21, 80, 123, 141

verbosity 80
lpr 109
LVQ 64

M
main window 77
maker interchange format 109
MANPATH 129, 136
manual pages 129
maximum likelihood 53
MIF 107, 109
missing file 131
MLP 51
movie mode 106
multi-layer perceptron classifier (MLP) 11, 51, 139

cost window 54
initialization by bintree 113
internals plot 101
main window 51
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Subject Index
node window 54
output sigmoid 53
parameters 12
slow training 132
structure plot 100
weight window 52

N
naive Bayes classifier 3, 7, 60
NC_CLASS 63
nearest cluster classifier (NC_CLASS) 63
nearest neighbor classifiers 61
neural network classifiers 51
N-fold cross validation 47, 86
norm_apply 113
normalization 5, 14, 44, 83

file 120
file generation 84
LDA 83
PCA 83
plot 46, 84
simple 83
turn off for plot 46

normalization file 159
normalized files 113
notebook file 123, 158
number of patterns 130

O
ocrdigit data base 182
olxplot 106, 108, 126, 133
OpenLook 189
outputs 87

in error file 125

P
parameter file 109, 124, 159
parzen window classifier (PARZEN) 61
PATH 129, 136
pbvowel data base 183
PCA 83
percent error plot 19, 27, 102
perceptron convergence procedure 53
plot 91

BINTREE structure 96
cost 102
decision region 91
detection 103
feature selection 87
GAUSS structure 97
GMIX structure 99
histogram 94
internals 92
IRBF structure 99
MLP structure 100
normalization 84
percent error 102
posterior probability 102
profile 93
RBF structure 99
rejection 104
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ROC 103
scatter 91
structure 96

plot file 107, 126
plot only 41, 77
plot selection 15, 92
plot un-normalized data 46, 93
plot2mif 107
plot2ps 108
plotting dimensions 40, 93
posterior class probabilities 51
posterior probability plot 28, 102

window 20
PostScript 107, 108, 109
preview 109
principal components analysis (PCA) 44, 83
printing 107, 109
prior class probabilities 87
priors window 87
profile plot 25, 93

window 18

Q
quadratic classifier, gauss 57
quit LNKnet 77

R
radial basis function classifier (RBF) 48, 54, 152

internals plot 101
structure plot 99

random clustering (RAN_CLUS) 75
RBF 54
receiver operating characteristic (ROC) plot 103
recompiling LNKnet 136
regularization parameters 4
rejection plot 30, 104

window 20
report files and verbosities window 13, 80
restore experiment screens 47
ROC plot 29, 103

window 21
rule based classifiers 64

S
sampling to adjust priors 87
save defaults 19, 79
scaling outputs to adjust priors 87
scatter plot 24, 40, 91, 133
screen file 80, 123
search, for features 86
select algorithm 78
shell script 21, 80, 122, 139
show all data 92
simple normalization 83
spreadsheet 108
squared error 53, 56
start experiment 21, 77
stop experiment 77
stop sign 79, 82, 83, 85
stop training early 106
structure plot 26, 96

bintree 96
gaussian 97
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gmix 99
irbf 99
mlp 100
rbf 99
window 18

support vector machine 3, 7, 65
SVM 7, 65

T
test data 4, 118
tied gaussian mixtures 58
top two difference 53
training data 4, 118

U
uniform_1_1 data base 87, 184
uniform_10_1 data base 87, 186
uniform_2_1 data base 87, 185

V
variance 56, 57, 58

grand 40
verbosity

error file (verror) 80, 125
log file 80

vowel data base 13, 187

W
warning 79, 82, 83, 85

X
xgobi 115
XOR data base 159, 164, 188
xplot 106, 126, 133
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