
LNKnet User’s Guide

Linda Kukolich
Richard Lippmann

MIT Lincoln Laboratory
10 February 2004

LNKnet User’s Guide*

Linda Kukolich and Richard Lippmann
Revision 4, February 2004

MIT Lincoln Laboratory

*This work was sponsored by the Department of the Air Force. Opinions, interpre-
tations, conclusions, and recommendations are those of the authors and are not nec-
essarily endorsed by the United States Air Force.

Printed:
June 1993
Revision 1, June 1994
Revision 2, April 1995
Revision 3, May 1999
Revision 4, February 2004

Copyright 2004 by MIT Lincoln Laboratory.

All rights reserved.

Acknowledgments

Support for the development of LNKnet was provided by a number of government
agencies and MIT Lincoln Laboratory. Individuals from many organizations helped
support this work. They include Peter Blankenship, Jim Cupples, Laurie Fenstermacher,
John Hoyt, Barbara Yoon, Tod Luginbuhl, and Roy Streit. The first user interface and
some of the first LNKnet classifiers were written by Dave Nation during a six-month
stay at MIT Lincoln Laboratory. Dave also contributed many ideas that helped structure
LNKnet software. Many classification and feature selection algorithms were first pro-
grammed and tested by Yuchun Lee, Kenney Ng, Eric Chang, William Huang, and
Charles Jankowski before they were rewritten for incorporation into LNKnet. Valuable
feedback concerning the user interface and LNKnet software was provided by Mike
Richard, students at the Air Force Institute of Technology, and by many members of the
Speech Systems and Technology, Information Systems Technology, and Machine Intel-
ligence Groups at MIT Lincoln Laboratory. The selection of algorithms included in
LNKnet was strongly influenced by experiments performed on speech, computer intru-
sion detection, and other data bases at MIT Lincoln Laboratory, by results presented at
the annual “Neural Information Processing Systems - Natural and Synthetic” confer-
ence, and by the results of studies performed as part of the ARPA Neural Network pro-
gram directed by Barbara Yoon.

Public Domain Distribution Requirements

LNKnet software is public domain software made available from MIT Lincoln Labora-
tory (http://www.ll.mit.edu/IST/lnknet). The following describes the notice that must
accompany any redistribution of LNKnet.

(c) Copyright 2004 M.I.T. Lincoln Laboratory

Permission is hereby granted, without written agreement or royalty fee,to use, copy,
modify, and distribute this software and its documentation for any purpose, provided
that the above copyright notice and the following three paragraphs appear in all copies
of this software and/or documentation.

IN NO EVENT SHALL M.I.T. LINCOLN LABORATORY BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF M.I.T. LINCOLN LABORATORY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. M.I.T. LINCOLN LABO-
RATORY SPECIFICALLY DISCLAIMS ANY WARRANTIES INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

THE SOFTWARE IS PROVIDED ON AN “AS IS” BASIS AND M.I.T. LINCOLN
LABORATORY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUP-
PORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

CHAPTER 1 Introducing LNKnet 1
1.1 Overview 1
1.2 Algorithms 3
1.3 Running a Pattern Classification Experiment 4
1.4 Data Normalization and Feature Selection 5
1.5 Embedding LNKnet Classifiers in User Applications 6
1.6 What To Read Next 6
1.7 New LNKnet Features 7

CHAPTER 2 A LNKnet tutorial 9
2.1 UNIX Setup 9
2.2 Starting LNKnet 10
2.3 Selecting a Classification Algorithm 11
2.4 Experiment Setup 12
2.5 Plot Setup 15
2.6 Saving Defaults 19
2.7 Starting an Experiment 21
2.8 MLP Results 22
2.9 Classification with Other Algorithms 29

2.10 K Nearest Neighbor 30
2.11 Continuing Training 33
2.12 Cleaning up Windows and Files 37
2.13 Feature Selection 39
2.14 Feature Reduction using Normalization 44
2.15 Cross Validation 47
2.16 Exiting LNKnet 49

CHAPTER 3 Classifiers 51
3.1 Neural Network Classifiers 51
LNKnet Users Guide (Revision 4, February 2004) v

Table of Contents
3.2 Likelihood Classifiers 56
3.3 Nearest Neighbor Classifiers 61
3.4 Rule Based Classifiers 64
3.5 Committee Classifier 70

CHAPTER 4 Clustering 73
4.1 K-Means 73
4.2 Estimate-Maximize (EM_CLUS) 73
4.3 Leader Clustering (LEAD_CLUS) 75
4.4 Random (RAN_CLUS) 75

CHAPTER 5 General LNKnet Parameters 77
5.1 LNKnet Main Window 77
5.2 Experiment Directory Files 80
5.3 Data Base Selection 80
5.4 Normalization 83
5.5 Feature Selection 85
5.6 A Priori Probabilities 87
5.7 Cross Validation 89

CHAPTER 6 Plots 91
6.1 Decision Region Plots 91
6.2 Profile Plots 93
6.3 Structure Plots 96
6.4 Cost Plot and Percent Error Plot 101
6.5 Posterior Probability Plot 102
6.6 ROC (Detection) Plot 103
6.7 Rejection Plot 104
6.8 Movie Mode 106
6.9 Including Plots in Documents 107

6.10 Manipulating Plot Windows 108

CHAPTER 7 Other LNKnet Programs 109
7.1 Preview and Print Window 109
7.2 Code Generation Using a LNKnet Parameter File 109
7.3 Committee Data Base Generation 111
vi LNKnet Users Guide (Revision 4, February 2004)

Table of Contents
7.4 Batch File Creation from LNKnet Shell Scripts 112
7.5 File Generation with Normalized Data 113
7.6 Multi-Layer Perceptron Initialization from Binary Tree Parameters 113
7.7 Data Exploration with Xgobi 115

CHAPTER 8 Input and Output File Formats 117
8.1 Input Data File Formats 117
8.2 Files Generated by LNKnet 121
8.3 C Code Files 126
8.4 Committee Data Base Files 127

Appendix A Common Questions and Problems 129
UNIX and Shell Scripts 129
Files and User I/O 129
Misc. 131
Known Limitations 132
MLP Training 132
Plots 132

Appendix B Installing LNKnet 135
What you need 135
Read Tar Tape or Download from Web Site 135
LNKnet updates 136
Recompiling LNKnet 136

Appendix C Tutorial Scripts and Outputs 139
MLP 139
KNN 147
GAUSS (Hand Picking Features) 149
RBF with KMEANS (Cross Validation) 152
Experiment Notebook File 158
C Code Generation From a Parameter File 159

Appendix D Data Bases Included in LNKnet 165
LNKnet Users Guide (Revision 4, February 2004) vii

Table of Contents
Appendix E Using OpenWindows 189
The Mouse 189
The Keyboard 191
Windows 191

BIBLIOGRAPHY 193

SUBJECT INDEX 197
viii LNKnet Users Guide (Revision 4, February 2004)

CHAPTER 1 Introducing LNKnet

1.1 Overview

LNKnet software was developed to simplify the application of the most important sta-
tistical, neural network, and machine learning pattern classifiers. The acronym LNK
stands for the first initials of three principal programmers (Richard Lippmann, Dave
Nation, and Linda Kukolich). An introductory article to LNKnet, which is meant to sup-
plement this user’s guide, is available in [27]. This article reviews approaches to pattern
classification and illustrates how LNKnet was applied to three different applications.
LNKnet software was originally developed under Sun Microsystem’s Solaris 2.5.1
(SunOS 5.5.1) UNIX operating system under Sun Open Windows. It was then ported to
Solaris 2.6 (SunOS 5.6) and to Red Hat Linux. It was also recently modified to run
under Microsoft Window’s operating systems using the Cygwin environment. Binary
versions of LNKnet are provided for Red Hat Linux, Solaris 2.6 and higher, and the
Windows Cygwin environment. Source code is also provided and it is relatively easy to
recompile LNKnet under other versions of Linux and Unix because the GNU auto con-
figuration tools are used to control compilation. All illustrations and descriptions in this
guide show windows and plots as they appear under Solaris 2.5.1 using Open Windows
except for Support Vector Machine windows and plots which are as they appear under
Red Hat Linux. Windows and plots appear slightly different under the other operating
systems. LNKnet includes a graphical user interface to over 22 pattern classification,
clustering, and feature selection algorithms. Decision region plots, scatter plots, histo-
grams, structure plots, receiver operating characteristics plots, and other types of visual
outputs are provided. Experiment log files and plots can be reviewed from the LNKnet
graphical user interface. Classifiers can be trained on data bases with thousands of input
features and millions of training patterns.

The three primary approaches to using LNKnet are shown in Figure 1.1. Experimenters
can use the LNKnet point-and-click user interface, manually edit shell scripts that con-
tain LNKnet commands to run batch jobs, or embed generated C versions of trained
LNKnet classifiers in application programs. The point-and-click graphical user inter-
face, listed on the top of Figure 1.1, can be used to rapidly and interactively experiment
with classifiers on new data bases. This makes it relatively easy to explore the effective-
ness of different pattern classification algorithms, to perform feature selection, and to
select algorithm parameters appropriate for different problems. A new data base must
first be put into a simple ASCII format that can be hand-edited using a text editor. Users
then make selections on LNKnet windows using a mouse and keyboard, and run experi-
ments by pushing buttons using the mouse. A complex series of experiments on a new
moderate-sized data base (10,000’s of patterns) can be completed in less than an hour.
LNKnet Users Guide (Revision 4, February 2004) 1

CHAPTER 1: Introducing LNKnet
Use of the point-and-click interface requires no knowledge of UNIX shell scripts, of C
programming, or of how the algorithms are implemented.

Users who want to run long batch jobs can edit the shell scripts produced by the point-
and-click interface and run these customized shell scripts. This simplifies repetitive
application of the same algorithm to many data files and can automate the application of
LNKnet when a batch mode is desirable. It requires understanding of shell scripts and of
arguments to LNKnet programs. Shell scripts are almost always used for large data
bases after initial explorations on smaller data subsets using the point-and-click inter-
face.

In addition to on-line and batch control, C programmers can embed C source code that
implements LNKnet subroutines and libraries in user application programs. This use of
LNKnet has been simplified by providing filter programs which read in LNKnet files
that define trained classifiers and create C source code subroutines to implement those
classifiers. This feature of LNKnet allows classifiers to be run on any computer that has
a C compiler.

This user’s guide demonstrates all three approaches to using LNKnet. It primarily pro-
vides a comprehensive description of the LNKnet graphical user’s interface. It also
shows how shell scripts produced using the graphical user interface can be edited to cre-
ate batch jobs (see Section 7.4). In addition, it describes how filter programs (mlp2c,

THREE METHODS OF USING LNKnet SOFTWARE

FIGURE 1.1 Experimenters can use the LNKnet point-and-click user
interface, manually edit shell scripts that contain LNKnet
commands to run batch jobs, or embed generated C versions
of trained LNKnet classifiers in application programs.

POINT AND
CLICK USER
INTERFACE

BATCH MODE
USING UNIX SHELL

SCRIPTS

EMBED C ROUTINES IN
USER APPLICATION

PROGRAMS

GENERATE
SHELL SCRIPTS

GENERATE C
ROUTINES
2 LNKnet Users Guide (Revision 4, February 2004)

1.2: Algorithms
knn2c, etc.) can be used to generate C source code to implement LNKnet classifiers and
how this source code can be embedded in a user’s program (see Section 7.2).

This guide assumes that the reader is familiar with the basic concepts of pattern classifi-
cation. The article mentioned above [27], provides a brief introduction to LNKnet and
pattern classification. Recent reviews of pattern classification techniques including neu-
ral networks and machine learning approaches are available in [2,7,14,40]. Good older
discussions of pattern classification are available in [1,9,30]. Algorithmic descriptions
of the classifiers included in LNKnet are included in the references listed in Table 1.1.
Many of these algorithms are also described in [5,7,14].

1.2 Algorithms

Table 1.1 lists the static pattern classification, clustering, and feature selection algo-
rithms that are available in LNKnet. Algorithms include classifiers trained using super-
vised training with labeled training data, clustering algorithms trained without
supervision using unlabeled training data, and classifiers that use clustering to initialize
internal parameters and then are trained further with supervised training. Canonical lin-
ear discriminant and principal components analyses are provided to reduce the number

SUPERVISED
TRAINING

COMBINED UNSUPERVISED-
SUPERVISED TRAINING

UNSUPERVISED
TRAINING

(Clustering)
NEURAL

NETWORK
ALGORITHMS

Back-Propagation(BP) [21,25]

Adaptive Stepsize BP [21]

Cross-Entropy BP [36]

Top-2-Difference BP [10,11]

Hypersphere Classifier [1]

Committee [7]

Radial Basis Function (RBF) [28]

Incremental RBF (IRBF) [28]

Top-2-Diff IRBF [10,11]

Learning Vector Quantizer [21]

Nearest-Cluster Classifier [7,28]

Leader Clustering
[12,28]

CONVENTIONAL
PATTERN

CLASSIFICATION
ALGORITHMS

Gaussian Linear Discriminant [7]

Quadratic Gaussian [7]

K-Nearest Neighbor (KNN) [7]

Condensed KNN [7,28]

Binary Tree [3, 21]

Parzen Window [7,39]

Histogram [7]

Naive Bayes Classifier [14]

Support Vector Machine [5]

Gaussian Mixture (GMIX) Classi-
fier [28]

Diagonal/Full Covariance GMIX

Tied/Per-Class Centers GMIX

K-Means Clustering [7]

E&M Clustering [28]

FEATURE
 SELECTION

ALGORITHMS

Canonical Linear Discriminant
Analysis [7,9]

Forward and Backward Search
using N-fold Cross Validation [6]

Principal Components
Analysis [7,9]

TABLE 1.1: Current LNKnet Algorithms
LNKnet Users Guide (Revision 4, February 2004) 3

CHAPTER 1: Introducing LNKnet
of input features using new features that are linear combinations of old features. For-
ward and backward searches are provided to select a small number of features from
among the existing features. These searches can be performed using any LNKnet classi-
fier with N-fold cross validation or using a nearest neighbor classifier and leave-one-out
cross validation. Bracketed references after algorithm names in Table 1.1 are to refer-
ences in the bibliography that provide detailed descriptions of algorithms. Overall sum-
maries and comparisons of these algorithms are available in [2,11,14,18,
21,22,24,25,28,29,36,40].

1.3 Running a Pattern Classification Experiment

The LNKnet graphical interface is designed to simplify classification experiments. Fig-
ure 1.2 shows the sequence of operations involved in the most common classification
experiment. First, a classification algorithm is selected. In addition to choosing an algo-
rithm, parameters that affect the structure or complexity of the resulting classifier are
selected. These parameters are sometimes called regularization or smoothing parame-
ters. These hand-selected parameters must be modified to match the complexity of a
classifier to the complexity of each individual classification task. They include the num-
ber of nodes and layers for MLP classifiers and trees, the training time and value of
weight decay for MLP classifiers, the order of polynomial Support Vector Machines
(SVMs), the width for Gaussian kernel SVMs, the number of mixture components for
Gaussian mixture classifiers, the type of covariance matrix used (full or diagonal, grand
average across or within classes) for Gaussian or Gaussian mixture classifiers, and
parameters that affect the complexity or structure of other classifiers.

This figure assumes that a database of patterns has already been created. This database
contains many labeled feature vectors where the label indicates the class the pattern
belongs to and numeric feature values will be used to predict class membership in the
future using generated classifiers. When a sufficient number of patterns are available
(1000’s of patterns), a database can be split into three separate sets of data designated as
training data, evaluation data, and test data. This split often assigns 60% of the patterns
to training data, 20% to evaluation data, and 20% to test data. As shown in Figure 1.2,
training data is initially used to train the internal weights or trainable parameters in a
classifier. The error rate of the trained classifier is then evaluated using evaluation data.
Repeated evaluations followed by retraining with different regularization parameter val-
ues are used to select a classifier structure that provides low error rate on the evaluation
data. Evaluation data is necessary because it is frequently possible to design a classifier
that provides a low error rate on training data but that doesn’t provide a low error rate on
other data sampled from the same source. Adjusting regularization parameters and alter-
ing the classifier structure allows a user to modify the complexity of a classifier to pro-
vide good performance on the evaluation data. This approach uses training data to adjust
trainable parameters and evaluation data to adjust the classifier size and complexity to
provide good generalization. After all regularization parameters are adjusted, the classi-
fier generalization error rate on unseen data is estimated using test data. The use of test
data for anything but a single final estimation of generalization error on unseen data
makes the error rate estimated using this data suspect. When fewer patterns are available
(100’s of patterns), a database is often split into only training and test data and 10-fold
cross-validation is used on the training data to select regularization parameters. In this
4 LNKnet Users Guide (Revision 4, February 2004)

1.4: Data Normalization and Feature Selection
case, the split often assigns 60% of the patterns to training data and 40% to test data.
When only tens of patterns are available, only the training data is used with 10-fold
cross validation. LNKnet automatically performs 10-fold (or more general k-fold) cross
validation, but it does not partition the initial database into training, evaluation, and test
sets. This partitioning must be performed prior to using LNKnet. It was not automated
because the number of partitions depends on the number of patterns, partitioning is
often predefined, and partitioning often depends on ancillary pattern characteristics that
are not included as pattern features.

1.4 Data Normalization and Feature Selection

One of the most important features of LNKnet is the ability to normalize input data and
to use a subset of input features for classification. Input feature normalization algo-
rithms available include simple normalization (normalize each feature separately to zero
mean, unit variance), Principal Components Analysis (PCA), and Linear Discriminant
Analysis (LDA) [7,9]. Feature selection algorithms include forward and backward
searches [9]. These searches select features one at a time based on the increase or
decrease in the error rate measured using cross validation and any classifier. Once a for-
ward or backward search, a PCA, or a LDA has been completed, a subset of features can
be selected for use in classification. This subset can be the first, and presumably most
important features, or a selection of unordered features.

The order in which normalization and feature selection is applied is significant because
some normalization methods (PCA and LDA) rotate the input space and change the
meaning of features and because feature selection can eliminate or reorder input fea-
tures. LNKnet applies feature normalization and selection in the order shown in Figure
1.3. First, the full input pattern is normalized. Features are then selected, and the result-
ing input pattern is presented to the classifier for training or testing. Either of these steps

FIGURE 1.2 Components of a classification experiment.

TRAIN USING
TRAINING

DATA

TEST USING
EVALUATION

DATA

CHANGE
CLASSIFIER
STRUCTURE

FINAL TEST USING
TEST DATA

SELECT
CLASSIFIER AND

CLASSIFIER
STRUCTURE
LNKnet Users Guide (Revision 4, February 2004) 5

CHAPTER 1: Introducing LNKnet
can be skipped, allowing the classifier to use any or all features of the raw data or the
normalized data.

1.5 Embedding LNKnet Classifiers in User
Applications

All LNKnet classifiers have programs which automatically generate C code subroutine
versions of the classifier testing algorithm. Parameters for the classifier, number and
position of nodes, weight values, etc., are taken from a trained classifier parameter file.
The C classification subroutines are self contained and can easily be included in and
called from a User’s program. Section 7.2 describes C code subroutine generation more
fully. This feature has allowed LNKnet classifiers to be used on an extremely wide
range of computers. The C-code generated only performs classification, it does not
adaptively train the classifier or allow the classifier to be retrained.

1.6 What To Read Next

At the bare minimum, you should read the short “Getting Started with LNKnet” booklet
[20] that should have been provided with this User’s Guide. Also scan the “Common
Questions and Problems” section in Appendix A. This will allow you to perform simple
experiments and use the most basic LNKnet features.

If you want to use more advanced LNKnet features, read through this user’s guide in the
order the sections are presented. The Quick Start booklet illustrates how to perform a
simple experiment. This user’s guide contains a longer tutorial that walks you through a
set of complex experiments. The user’s guide also contains classifier and clustering
algorithm descriptions, and descriptions of procedures available across classifiers
including data base selection, data normalization, feature selection, a priori class proba-
bility adjustment and cross-validation. This is followed by a description of the many
types of plots, the creation of movie-mode training plots, recommendations concerning
including LNKnet plots in reports, a description of reviewing and printing log files and
plots from LNKnet, a summary of code generation programs that generate C source
code to implement trained LNKnet classifiers, a discussion concerning creating shell

RAW INPUT
DATA FROM

FILE

FIGURE 1.3 Feature Selection and Normalization Available in LNKnet.

SIMPLE
NORMALIZATION,

PCA, OR LDA
SELECT

FEATURES

LNKnet
INTERNAL

CLASSIFIER
INPUTNO

NORMALIZATION
USE ALL

FEATURES
6 LNKnet Users Guide (Revision 4, February 2004)

1.7: New LNKnet Features
scripts to run LNKnet experiments in a batch mode, a review of advanced LNKnet fea-
tures, and a description of input and output data formats and files. The Appendix con-
tains a list of common problems and questions, instructions for installing LNKnet,
listings of the shell scripts created during the tutorial, descriptions of installed data
bases, and a short tutorial which describes how to use the mouse in Sun OpenWindows.

Detailed descriptions of LNKnet programs are available in man pages which are
accessed using the UNIX man(1) command. The page LNKnet(1) lists all LNKnet pro-
grams and classifier(1) lists flags common to all classifier programs.

1.7 New LNKnet Features

LNKnet source code was converted to use the GNU auto configure tools. This com-
bined with continued improvements in Linux and the Cygwin Linux-like environment
made it relatively easy to port LNKnet to Red Hat Linux and to the Microsoft Windows
OS using the Cygwin environment. LNKnet now runs on inexpensive Intel computers
running Linux or Windows (under Cygwin) as well as on Sun Solaris workstations.
Executables are provided for Red Hat Linux, for Windows with Cygwin, and Solaris.
Others have run LNKnet on other versions of Linux and recompiled it for other versions
of Linux and UNIX.

Support vector machine classifiers (SVMs) were added including linear SVMs, polyno-
mial SVMs, and Gaussian kernel SVMs. To use SVMs on multiple-class problems
(more than two classes), LNKnet includes an extension of SVMs to estimate posterior
probabilities for binary classifiers. These binary classifiers are then used to estimate per-
class posterior probabilities. For multiple-class problems, SVMs can be created for all
pairwise combinations of classes or for each class versus the other classes. In addition to
SVMs, a naive Bayes classifier was also added. The graphical user interface for the
naive Bayes classifier is simplified and does not allow control of usually unimportant
algorithm parameters. Additional parameters can be adjusted when running the naive
Bayes classifier from a shell script.

The names of many of the LNKnet executables have been changed to avoid collision
with tools provided as parts of other statistical and classifier software toolkits by adding
the suffix “_lnk”. For example the k-nearest neighbor classifier executable is now called
knn_lnk instead of knn. This has no effect on the GUI and only changes the names in
automatically generated shell scripts.

Illustrations and descriptions in this guide for SVM and naive Bayes classifiers show
windows and plots as they appear under Red Hat Linux. Other illustrations and descrip-
tions were captured from Sun Solaris displays. Windows and plots appear slightly dif-
ferent under the other operating systems.
LNKnet Users Guide (Revision 4, February 2004) 7

CHAPTER 1: Introducing LNKnet
8 LNKnet Users Guide (Revision 4, February 2004)

CHAPTER 2 A LNKnet tutorial

This tutorial introduces some of the general LNKnet classifiers and options. With LNK-
net you will solve a speech classification problem using a Multi-Layer Perceptron and a
K Nearest Neighbor algorithm. You will generate diagnostic plots. You will continue an
experiment by restoring LNKnet windows using the experiment’s screen file. You will
use feature selection and normalization to reduce the number of input features in an
experiment and you will use cross validation to experiment on a small data base. The
tutorial assumes you are using the C-shell (csh) and running under the Solaris operating
system.

2.1 UNIX Setup

Before you can run LNKnet, you must add the LNKnet bin directory to your $PATH
environment variable and the LNKnet man path to your $MANPATH environment vari-
able. First, find the LNKnet home directory, which is the directory in which LNKnet
was installed. Assume this is /home/rpl/lnknet. If you are using the .cshrc shell
under Solaris, then add the following three lines to the .cshrc file that can be found in
your home directory.

setenv LNKHOME /home/rpl/lnknet
setenv PATH $LNKHOME/bin:${PATH}
setenv MANPATH $LNKHOME/man:${MANPATH}

The first line defines an environmental variable named $LNKHOME and sets it to the
directory where LNKnet is installed. The second line uses this variable to add the LNK-
net bin directory to the search path for executables and the third adds the LNKnet man
directory to the search path for manual pages. If you are running under RedHat Linux
and using the bash shell, then add the following three lines to the .bash-profile directory
in your home directory to do the same things.

LNKHOME=/home/rpl/lnknet
PATH=$LNKHOME/bin:$PATH
MANPATH=$LNKHOME/man:$MANPATH

After making these changes, type “source .cshrc” under Solaris or “source
.bash-profile” under Linux to run the shell where the modifications were made.
For other shells, such as the Bourne shell, contact your system administrator for help.
LNKnet Users Guide (Revision 4, February 2004) 9

CHAPTER 2: A LNKnet tutorial
2.2 Starting LNKnet

In your home directory, make an experiment directory named Tutorial. During the
tutorial, you will generate some files in the data base directory. To insure that you have
write permission for all these files, copy the data base files listed below from
$LNKHOME/data/class into your new experiment directory. Finally, in a shell win-
dow go to your experiment directory and start the LNKnet graphical interface in the
background. The following are the necessary commands for Solaris or Linux (If you are
using a Bourne shell, replace ~ with $HOME):

> cd ~

> mkdir Tutorial

> cd $LNKHOME/data/class

> cp vowel.defaults ~/Tutorial

> cp vowel.train vowel.eval vowel.test ~/Tutorial

> cp vowel.norm.simple ~/Tutorial

> cp gnoise_var.defaults gnoise_var.train ~/Tutorial

> cp gnoise_var.eval gnoise_var.test ~/Tutorial

> cp gnoise_var.norm.simple ~/Tutorial

> cp iris.defaults iris.train ~/Tutorial

> cp iris.norm.simple ~/Tutorial

> cd ~/Tutorial

> LNKnet &

When LNKnet is started, the main LNKnet window should appear. If this is the first
time you have used LNKnet, this window should look similar to the window in Figure
2.1. If you are unfamiliar with OpenWindows and a mouse see Appendix E. If you have
used LNKnet before and have a .lnknetrc defaults file in your home directory, the
parameter settings on LNKnet windows may be different than those shown in this tuto-
rial. You can delete your defaults file and start the tutorial again, or you can change your
windows to match the tutorial as you continue through it. If your .lnknetrc file is from a
previous version of LNKnet, the LNKnet program may fail to start. In this case, remove
the old .lnknetrc file and make a new one with the new version of LNKnet.

The left hand side of this main window shown in Figure 2.1 is a control panel used to
run experiments. The right-hand side is used to select classifiers, plots, data bases, input
features, and control other experimental conditions. Typically, an experiment is set up
by first selecting a classifier using the top most ALGORITHM button and then select-
ing each of the buttons on the right hand side listed under Experiment Windows in
order down to the Plots... button. Each button brings up a window with information to
fill in or to be left in default settings. A button is highlighted if it is required and must be
selected to run an experiment. Notes surrounding screen shots shown in Figure 2.1 and
other figures in this tutorial show important controls that need to be set correctly to run
this tutorial. Most controls are set correctly by default. When a value or selection needs
10 LNKnet Users Guide (Revision 4, February 2004)

2.3: Selecting a Classification Algorithm
to be changed from the default value, the note pointing to the control is surrounded by a
box. For example, the Train and Test button on the left side of Figure 2.1 is not normally
depressed by default and it must be depressed to run this tutorial.

2.3 Selecting a Classification Algorithm

The classification algorithm for the first experiment is the multi-layer perceptron. This
should already be selected as the algorithm at the top of the main window. If it is not,
use the left-most mouse button to display the algorithm menu and the classifier sub-
menu and select MLP from it.

The button below the algorithm menu is the Algorithm Params... button. Select this
button to bring up the multi-layer perceptron parameter window shown in Figure 2.2.

A Multi-Layer Perceptron trains the weights that connect each node in one layer to each
node in the next layer. The network is made of an input layer and an output layer.
Between them are 0, 1, or more hidden layers. For the first hidden layer, the weights can
be thought of as describing hyperplanes through the input space. Sigmoid functions in
the first layer of hidden nodes are used to determine whether a pattern is on one side of

FIGURE 2.1 Main LNKnet Window

Always hit
Carriage Return
or Tab after
changing any
LNKnet Text
Field

Train and Test

Test using
Evaluation data

The full
experiment name
will be X1mlp

The classifier
should be MLP

This box should
be checked
LNKnet Users Guide (Revision 4, February 2004) 11

CHAPTER 2: A LNKnet tutorial
the plane or another, dividing the input space in half. These half spaces are combined
and smoothed in upper layers to assign classes to regions of the input space.

To train network weights, training data is presented to the classifier several times. On
the parameter popup shown in Figure 2.2, set the number of epochs to 20. An epoch is
a full pass through the training data, so each pattern will be presented 20 times over the
course of training. Specify the network to have 2 inputs, 25 hidden nodes, and 10 out-
puts by entering 2,25,10 on the Nodes/Layer field on the second line in the window. Do
not add spaces before or after the commas in the “2,25,10” or other comma delimited
lists. The step size, which is the rate at which the weights are changed, must also be set.
Change the step size to 0.2, remembering to hit carriage return when you have done so.
Changes to LNKnet text fields do not take effect unless carriage return is hit afterwards.

Other MLP parameters are set on three additional MLP parameter windows which can
be displayed using three buttons on the main MLP window. There are explanations of
the parameters on these windows in Section 3.1.1 in this User’s Guide and on the
mlp(1) manual page.

2.4 Experiment Setup

In a normal experiment, you train a classifier and evaluate it using an evaluation data
set. The parts of a LNKnet experiment are set on the left side of the main window. You
need to select Train and Test as the Action and Eval as the Test File, as shown in Fig-
ure 2.1.

Change
Step size to
0.2

Number of epochs

FIGURE 2.2 Main MLP Parameter window, set for first experiment

Network topology:
2 inputs,
25 hidden nodes,
10 outputs
12 LNKnet Users Guide (Revision 4, February 2004)

2.4: Experiment Setup
2.4.1 File Parameters
Classification programs need files for storing experiment results. These files are listed
on the Report Files and Verbosities popup window shown in Figure 2.3. To display
this window, select the Reports and Files... button on the upper right of the main
screen. For this experiment increase the Error File Verbosity to Summary+Confu-
sions+Flags+Epochs. If it is necessary to change the experiment path, be sure to hit car-
riage return after making the change. Some of the notes which label Figure 2.3 and other
figures have boxes drawn around them. As noted above, boxed notes show which fea-
tures on a window are the most important or must be changed to run the tutorial.

2.4.2 Data Base Selection
A data base of training and testing data is also required. Display the Data Base Selec-
tion window by selecting the Data Base... button on the main window. Figure 2.4
shows the data base selection window. The three data bases which you copied into the
experiment directory should be listed in the Data Base List scroll box. In general, data
for an experiment can be read from any directory by changing the data path and then hit-
ting carriage return. Select vowel.defaults from this list or type “vowel” as the Data File
Prefix. The other fields on the window may be left alone. The data base for this experi-
ment has two input features and 10 classes. The classes are the 10 English vowels found
in the words shown on the Class Labels line in the middle of the data base window. The
data is a normalized version of the Peterson and Barney [32] vowel data collected in the

Current Directory will be different
on your machine

FIGURE 2.3 Experiment Storage and Output Verbosity Window

If LNKnet was not started in the
experiment directory, change the

experiment path

Increase log file verbosity
LNKnet Users Guide (Revision 4, February 2004) 13

CHAPTER 2: A LNKnet tutorial
late 50’s from 67 men, women, and children. Each talker said the ten words, spectro-
grams were made from the waveforms, and resonant or formant frequencies for the
vowels were selected. The features of the vowel data base come from the first two for-
mant frequencies. The LNKnet data base pbvowel has the original data. Do not continue
unless the bottom of the data base window appears as it does in Figure 2.4.

2.4.3 Normalization
For many classifiers, classification results are improved when the data has been normal-
ized in some way. Although this vowel data has already been normalized to range from
zero to one, better results are achieved when the data is given zero mean, unit variance
using simple normalization. Display the normalization window by selecting Feature
Normalization... on the main window. The normalization window in Figure 2.5 will
appear. Check that Simple Normalization is selected. If LNKnet cannot find the nor-
malization file it will report an error at the bottom of the normalization window and
show a small stop sign on the main window. Normalization files are stored in the data
directory, so check the data path on the data base window. If the file really does not
exist, Section 2.14 in this tutorial describes how a normalization file can be created
using LNKnet.

If these fields are 0, modify the
Data Path and the Data File

Prefix. When the Data Path and
Data File Prefix are correct,

these numbers should be
displayed

FIGURE 2.4 Data Base Selection Window

Select the vowel description file
from the list or enter vowel here

If necessary, change
Data Path to fill Data

Base List
14 LNKnet Users Guide (Revision 4, February 2004)

2.5: Plot Setup
2.5 Plot Setup

There are several types of plots available for analyzing LNKnet experiments. To request
these plots, you must bring up the Plotting Controls parameter window. In the column
of buttons on the right side of the main LNKnet window is a button labeled Plots....
Select this button to bring up the Plotting Controls window. On this window, select the
check boxes for the plots under Decision Region Plots, Profile Plots, Structure Plots,
Training Error File Graphs, and Testing Error File Graphs as shown in Figure 2.6.
If the classifier on the main window is not MLP, some of these plots will not be avail-
able.

2.5.1 Setting Plot Parameters
Each plot has some parameters which should be set. Selecting each of the Parameters...
buttons will bring up the windows for the available plots.

2.5.1.1 Decision Region Plots

Three two dimensional plots are controlled from the Decision Region Plot parameter
window. They are the decision region plot, the scatter plot, and the internals plot. Push
the top most Parameters... button to bring up the Decision Region Plot window shown
in Figure 2.7. For this experiment, you should change Number of Intervals per
Dimension from 50 to 100 on the Decision Region Plot window. This will cause the
plotting program to use a finer grid for generating the decision region plot. It will take
longer to generate, but the plot will look better. Figure 2.7 shows the Decision Region
Plot window ready for the experiment.

FIGURE 2.5 Normalization Window

Selecting Simple normalization
will set the Normalization File

name. If there is an error, check
the path on the data base

selection window
LNKnet Users Guide (Revision 4, February 2004) 15

CHAPTER 2: A LNKnet tutorial
2.5.1.2 Profile Plots
Two one-dimensional plots are controlled from the profile plot parameter window. They
are the profile plot and the histogram plot. Push the second Parameters... button to
bring up the Profile Plot Parameters window shown in Figure 2.8. The one dimensional
plots are available for classifiers with continuous outputs including the MLP classifier.
No profile plot parameters need to be changed from their default settings.

FIGURE 2.6 Plotting Controls window, set for first experiment

Select all these plots

Select to bring up the Profile Plot
parameter window

Select to bring up the Cost Plot
parameter window

Select to bring up the Percent
Error Plot parameter window

Select to bring up the Decision
Region Plot parameter window

Select to bring up the Structure
Plot parameter window

Select to bring up the Rejection
Plot parameter window

Select to bring up the Posterior
Probability Plot parameter window

Select to bring up the Detection
(ROC) Plot parameter window
16 LNKnet Users Guide (Revision 4, February 2004)

2.5: Plot Setup
2.5.1.3 Structure Plots
It can be informative to see the node structure of a trained classifier. Each of those LNK-
net classifiers for which it is appropriate has a structure plot. Depending on the classifi-
cation algorithm, the structure plots show the input and output nodes of the classifier
and the connections between them. If these connections have weights, the weights can
be displayed. Explanations of the structure plots can be found on the manual pages for
each one and in Section 6.3 of this User’s Guide. Select the third Parameters... button
to bring up the structure plot window. Select Autoscale Plot To Fit on Screen, Show
Weight Magnitudes, and Display Bias Nodes, as shown in Figure 2.9.

FIGURE 2.7 Decision Region Plot Parameters

Use 100 points per dimension for
a smoother decision region plot

Do Color Plots
LNKnet Users Guide (Revision 4, February 2004) 17

CHAPTER 2: A LNKnet tutorial
FIGURE 2.8 Profile Plot Parameters

FIGURE 2.9 Structure Plot Parameters

Show Weight Magnitudes

Display Bias Nodes

Autoscale
18 LNKnet Users Guide (Revision 4, February 2004)

2.6: Saving Defaults
2.5.1.4 Training Error File Plots
While training a classifier by cycling through the data, a classification error file is cre-
ated. The accuracy of the classifier during training can be plotted in two ways, using a
cost plot or a percent error plot. The cost is the function being minimized by the classi-
fier. These plots are not available for algorithms that train in a single pass through the
data.

If this is the first time you have run LNKnet, the Cost Plot and Percent Error Plot
parameter windows should be ready for the experiment. They should appear as in Figure
2.10.

2.5.1.5 Testing Error File Plots
During the testing portion of the experiment, a testing error file is produced. If the clas-
sification algorithm produces continuous outputs, as the MLP algorithm does, this test
error file can be used to produce several plots. Some plot parameters need to be set for
this experiment. On the Posterior Probability plot window, shown in Figure 2.11, set the
target class to 2 (hod) and select Binned Probability Plot. On the ROC plot window
shown in Figure 2.12, set the target class to 2 (hod). On the rejection plot window,
shown in Figure 2.13, set the table step to 10.

2.6 Saving Defaults

It is inconvenient to have to set these general parameters each time LNKnet is started.
To save the settings, select Save Screens as Default initialization on the lower left of
main LNKnet window. A file, .lnknetrc, will be created in your home directory. The
next time you start LNKnet, this file will be read and the settings on all of the LNKnet
screens will be as they are now.

FIGURE 2.10 Cost Plot and Percent Error Plot Parameters
LNKnet Users Guide (Revision 4, February 2004) 19

CHAPTER 2: A LNKnet tutorial
FIGURE 2.11 Posterior Probability Plot

Set Target Class to 2

Select Binned Probability
Plot

FIGURE 2.13 Rejection Plot Parameters

Set Table Step to 10
20 LNKnet Users Guide (Revision 4, February 2004)

2.7: Starting an Experiment
2.7 Starting an Experiment

You can now start this experiment by selecting START New Exper. on the main win-
dow. LNKnet writes an entry in the notebook file describing this experiment and writes
a shell script in the experiment directory ~/Tutorial. That shell script is run and the
results of the experiment are printed to your shell window and to a log file. A one line
experiment results entry is added to the experiment notebook file by the shell script. The
notebook, shell script, and the log file are included in Appendix C. The shell script first
makes a call to the mlp program which trains the classifier. After each training epoch,
that program prints the current classification error rate and the current average value of

FIGURE 2.12 ROC (Detection) Plot Parameters

Set Target Class to 2
LNKnet Users Guide (Revision 4, February 2004) 21

CHAPTER 2: A LNKnet tutorial
the function being minimized by the classifier. After the 20 epochs are over, a summary
of the training errors is printed. The shell script then calls the mlp program to test the
classifier using the evaluation data. The results of that test are below. Finally, the shell
script displays the requested plots. Each plot is displayed in its own plotting window.
Figure 2.14 shows the screen of a workstation after running this experiment.

2.8 MLP Results

Table 2.1 shows the files created during the experiment by LNKnet, the MLP program
and the plot programs.

TABLE 2.1: Files Created During MLP Experiment

Files created by LNKnet

LNKnet.note Notebook file with results for all experiments

X1mlp.run Shell script

X1mlp.screen Settings for all LNKnet windows

LNKnet.note.screen Backup of screen file for comparisons

Files Created by MLP

X1mlp.param Parameters for trained MLP classifier

X1mlp.log Copy of results printed to screen

X1mlp.err.train Trial-by-trial results during training

FIGURE 2.14 Workstation Screen During MLP Classification Experiment

Results in shell
window

Decision Region
Plot

Profile Plot

Main LNKnet
window

Plot of error rate vs.
epochs

Structure Plot

MLP parametersDetection (ROC)
Plot
22 LNKnet Users Guide (Revision 4, February 2004)

2.8: MLP Results
2.8.1 MLP Eval Results
These are the classification results on the evaluation data, shown in the log file and on
the window used to start LNKnet. First there is a confusion matrix which shows the
classification results for all patterns from each class. Numbers on the diagonal of this
matrix represent the patterns classified correctly. Other numbers represent the number
and distribution of errors. Below the confusion matrix is an error summary giving the
number of errors for patterns in each class. Finally, there is an overall error rate, which
is 32.53%, ±3.6% for this experiment.
Classification Confusion Matrix - X1mlp.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 14 3 17
 1 5 1 12 18
 2 19 1 20
 3 5 11 1 1 18
 4 2 14 16
 5 1 9 1 11
 6 18 18
 7 6 3 2 7 18
 8 15 1 16
 9 6 1 3 4 14
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 25 1 27 18 16 16 30 9 19 5 166

X1mlp.err.eval Results during testing

Files Created by Plot Programs

X1mlp.region.plot.eval 2-Dimensional plots

X1mlp.profile.plot.eval 1-Dimensional plots

X1mlp.struct.plot Structure plot

X1mlp.cost.plot Cost plot

X1mlp.perr.plot Percent Error plot

X1mlp.prob.plot Posterior Probability plot

X1mlp.detect.plot Detection (ROC) plot

X1mlp.reject.plot Rejection plot

TABLE 2.1: Files Created During MLP Experiment
LNKnet Users Guide (Revision 4, February 2004) 23

CHAPTER 2: A LNKnet tutorial
Error Report - X1mlp.err.eval

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 17 3 17.65 (9.2) 0.173 head
 1 18 17 94.44 (5.4) 0.304 hid
 2 20 1 5.00 (4.9) 0.127 hod
 3 18 7 38.89 (11.5) 0.197 had
 4 16 2 12.50 (8.3) 0.182 hawed
 5 11 2 18.18 (11.6) 0.249 heard
 6 18 0 0.00 (0.0) 0.051 heed
 7 18 11 61.11 (11.5) 0.268 hud
 8 16 1 6.25 (6.1) 0.121 whod
 9 14 10 71.43 (12.1) 0.289 hood
 -------- -------- ------- -------------

Overall 166 54 32.53 (3.6) 0.207

2.8.2 MLP Plots
These are the plots generated during the MLP experiment. They should have been dis-
played in new windows on your screen.

Figure 2.15 shows the set of three overlaid 2D plots. There is a decision region plot (the
solid regions), a scatter plot of the evaluation data (the small white rimmed squares),
and an internals plot (the black lines). The decision region plot shows the class that
would be selected at each point on the plot. The values for the two selected input dimen-

Decision Region for class “heed”

“heed” data pattern, correctly
classified

Line defined by a first layer
hidden node

“hid” data pattern, misclassified

FIGURE 2.15 MLP Decision Region Plot after 20 Epochs
24 LNKnet Users Guide (Revision 4, February 2004)

2.8: MLP Results
sions are as you see them. Any other input dimensions are held constant either to 0 or to
values specified on the decision region plots window. The scatter plot shows the evalua-
tion data, color coded to show the class. All patterns within a set distance of the decision
region plot plane are shown. Classification errors can be found by looking for those pat-
terns whose color does not match the background color from the decision region plot.
The form of the internals plot depends on the type of algorithm being used for classifi-
cation. In this case, the multi-layer perceptron, the lines represent hyperplanes defined
by the nodes of the first hidden layer. The hidden nodes which generate particular bor-
ders between decision regions can often be identified using this plot.

Figure 2.16 shows the two 1D plots. There is a profile plot (the black and colored lines
and the solid bars below them), and a histogram of the evaluation data (the squares at
the bottom).

For the profile plot, all of the input features but one are held constant while one feature
is varied. The output levels for each class are plotted. These output level lines are the
colored lines. The total of these output levels is plotted as a black line. This line should
be close to 1.0 for a well trained classifier that estimates posterior class probabilities,
like the MLP classifier. Below the output level lines is something like a one dimensional
decision region plot. It shows the class which would be chosen for a pattern with the
given generated inputs. Where the class changes, a dotted vertical line is drawn.

The histogram plot at the bottom of Figure 2.16 is in two parts. The points shown are
either all the patterns in the evaluation data set, or those which are within some distance

Total of outputs

Outputs for “heard”

“heard” would be chosen as
the class

Correctly classified “heard”

Misclassified “hoods”

FIGURE 2.16 MLP Profile Plot after 20 Epochs
LNKnet Users Guide (Revision 4, February 2004) 25

CHAPTER 2: A LNKnet tutorial
of the line being sampled for the profile plot. The squares above the line represent those
patterns which are correctly classified by the current model. The squares below repre-
sent misclassified patterns. These squares are color coded by class, as in the scatter plot.

Figure 2.17 shows a structure plot for the trained multi-layer perceptron. At the bottom
of the plot there are two small black circles representing input nodes and a small black
square representing the input bias node. Below each input node is the input label for that
node. From the bottom to the middle is a set of lines of varying thicknesses. These lines
represent the weighted connections from the input layer to the hidden layer. The thick-
ness of these and other lines is proportional to the magnitude of the connecting weight.
Some of the lines are orange, indicating that connecting weights are negative. The large
white circles represent the hidden nodes where weighted sums of the inputs are calcu-
lated and passed through a sigmoid function. The hidden layer also has a bias node. At
the top of the plot are large white circles representing the output nodes. Another set of
lines shows the weighted connections from the hidden layer to the output layer. Above
the output nodes are the class labels for the output classes.

FIGURE 2.17 MLP Structure Plot after 20 epochs

Large Negative Weight Large Positive Weight
26 LNKnet Users Guide (Revision 4, February 2004)

2.8: MLP Results
During training, each pattern is tested by the MLP classifier. The classification results
from these tests are stored in the file X1mlp.err.train. The average percent error
in classification during each epoch of training is shown in Figure 2.18.

The cost of each pattern tested during training is also stored in the file
X1mlp.err.train. The average of these values for each epoch is shown in Figure
2.19.

The cost here is the square root of the mean squared error of the outputs normalized by
the number of classes. A desired output of 1 for the correct class and 0 for the other
classes is subtracted from the actual outputs for a pattern. These values are then squared,
averaged over the number of classes, and stored as the cost. This plot, then, averages the
costs for each epoch and takes the square root to get each point on the plot.

FIGURE 2.18 Percent Error Plot after 20 epochs of MLP training

FIGURE 2.19 Cost Plot after 20 epochs of MLP training
LNKnet Users Guide (Revision 4, February 2004) 27

CHAPTER 2: A LNKnet tutorial
Figure 2.20 shows a posterior probability plot for class 2, hod. To generate the plot, each
evaluation pattern is binned according to its output for class 2. Five bins were used to
create this plot. They represent class 2 outputs of 0.0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to
0.8, and 0.8 to 1.0. The average class 2 output values for the patterns in each bin are
shown as X’s. The actual percentage of class 2 patterns in a bin is drawn as a filled cir-
cle. Lines above and below the circle represent two standard deviations about the actual
percentages. The total number of patterns and the number of class 2 patterns in each bin
are displayed above the upper limit mark. For example the numbers “2/6” over the 40-
60 bin mean two patterns in this bin were from class 2 and there were six patterns in this
bin. If all the X’s are within the ±2 standard deviation limits, the classifier provides
accurate posterior probability estimates. A table of the values in the plot is printed in the
log file and a Chi Squared test and significance values are printed in the experiment
notebook.

Figure 2.21 shows a receiver operating characteristics or ROC curve for class 2, hod.
This plot shows the detection rate (hod patterns labeled as hod) versus the false alarm
rate (other patterns labeled as hod) for a varying threshold value on the classifier output
for the “hod” class. To generate the plot, the evaluation patterns are sorted by their class
2 output values. For each point on the plot, a threshold value is set. All patterns which
have a class 2 output greater than the threshold are labeled as belonging to the class and
all other patterns are labeled as not in the target class. The detection rate and false alarm
rate that result from this labeling give the position of the plotted point. The plot in Fig-
ure 2.21 shows that the detection accuracy for the “hod” class is higher than 95% correct
when 10% false alarms are allowed. The quality of the ROC curve can sometimes be
judged by the area under the curve. In this case it is 98.7%, which is good. A perfect
area of 100% is achieved if there is a threshold value such that all patterns above the

FIGURE 2.20 Posterior Probability Plot after 20 epochs of MLP training
28 LNKnet Users Guide (Revision 4, February 2004)

2.9: Classification with Other Algorithms
threshold are in the target class and all patterns below the threshold are not. If the classi-
fier output is random and contains no information, the ROC area is near 50% and the
ROC is close to the diagonal line “%Detect = %False Alarms”. A table of the values in
the ROC plot curve is printed in the log file and the area under the curve is printed in the
experiment notebook.

Figure 2.22 shows a rejection plot. To generate the plot, all evaluation patterns are
sorted by their highest output value across all classifier outputs. Patterns whose highest
outputs are below a rejection threshold are rejected and not classified. The error rate of
the classifier on the non-rejected patterns is plotted versus the percentage of the patterns
rejected. If all the patterns which cause errors have low maximum output values, the
percent error will drop until all the incorrectly classified patterns have been rejected. For
the current experiment, rejecting more than 20% of the patterns substantially reduces
the error rate on remaining patterns. The curve is erratic above 70% rejection because so
few patterns remain.

2.9 Classification with Other Algorithms

There are many other classification algorithms available from LNKnet. One of the sim-
plest ones to try on any problem is a K Nearest Neighbor classifier. To select the KNN
algorithm, first use the Menu mouse button to display the menu attached to the ALGO-
RITHM button on the main window. Move the mouse down and right to show the Clas-
sifier menu. Stop the mouse over KNN (K-Nearest Neighbor) and let go of the mouse
button to select the KNN algorithm as shown in Figure 2.23.

FIGURE 2.21 Detection (Receiver Operating Characteristic) Plot after 20 epochs of MLP training
LNKnet Users Guide (Revision 4, February 2004) 29

CHAPTER 2: A LNKnet tutorial
2.10 K Nearest Neighbor

A K-Nearest Neighbor classifier finds the K training patterns which are closest in
Euclidean distance to a test pattern. It then assigns that test pattern to the most common
class among the K neighbors. Ties are broken randomly.

The only parameters you should have to set now are those on the KNN Parameter win-
dow shown in Figure 2.24. To display this window, select the Algorithm Params... but-
ton on the main window, as you did with the MLP classifier.

On the KNN parameter window set K to 3. If you type 3, don’t forget to hit carriage
return to enter the new value. Select START on the main window to start the experi-

FIGURE 2.22 Rejection Plot after 20 epochs of MLP training

FIGURE 2.24 KNN Parameters

Set K to 3
30 LNKnet Users Guide (Revision 4, February 2004)

2.10: K Nearest Neighbor
ment. Once again a shell script is written. The order of the commands is again train,
evaluate, and plot. The files created during this experiment are shown in Table 2.2.

TABLE 2.2 Files Created During KNN Experiment

Files created by LNKnet

LNKnet.note Added X1knn parameters and results

X1knn.run Shell script

X1knn.screen Setting for all LNKnet windows

LNKnet.note.screen Stored backup copy of new screen file

Files Created by KNN

X1knn.param Parameters for trained KNN classifier

X1knn.log Copy of results printed to screen

X1knn.err.eval Trial-by-trial results from testing

FIGURE 2.23 Selecting the Algorithm KNN

Select KNN from the
Classification menu
LNKnet Users Guide (Revision 4, February 2004) 31

CHAPTER 2: A LNKnet tutorial
2.10.1 KNN Eval Results
These are the classification results on the evaluation data, taken from the log file. The
overall error rate is 18.07%, ±3%.
Classification Confusion Matrix - X1knn.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 15 1 1 17
 1 15 3 18
 2 17 1 2 20
 3 1 15 1 1 18
 4 1 14 1 16
 5 1 8 2 11
 6 18 18
 7 2 15 1 18
 8 12 4 16
 9 4 1 2 7 14
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 17 16 18 18 15 13 21 19 14 15 166

Error Report - X1knn.err.eval

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 17 2 11.76 (7.8) 0.149 head
 1 18 3 16.67 (8.8) 0.136 hid
 2 20 3 15.00 (8.0) 0.145 hod
 3 18 3 16.67 (8.8) 0.169 had
 4 16 2 12.50 (8.3) 0.149 hawed
 5 11 3 27.27 (13.4) 0.234 heard
 6 18 0 0.00 (0.0) 0.000 heed
 7 18 3 16.67 (8.8) 0.153 hud
 8 16 4 25.00 (10.8) 0.154 whod
 9 14 7 50.00 (13.4) 0.270 hood
 -------- -------- ------- -------------
Overall 166 30 18.07 (3.0) 0.163

2.10.2 Plots
Because KNN trains in a single pass, the cost plot and percent error plot are not avail-
able. KNN takes a vote amongst a pattern’s nearest neighbors to determine the class of
that pattern. This does not produce continuous outputs so there is no profile plot, poste-
rior probability plot, detection plot, or rejection plot. There are no connections between
the stored KNN parameters, so little information would be gained from a KNN structure
plot. This leaves us with only the decision region plot displayed in Figure 2.25.

Files created by Plot Programs

X1knn.region.plot.eval 2-Dimensional plots

TABLE 2.2 Files Created During KNN Experiment

Files created by LNKnet

LNKnet.note Added X1knn parameters and results
32 LNKnet Users Guide (Revision 4, February 2004)

2.11: Continuing Training
The KNN decision region plot is generated in the same way as the MLP plot. The clas-
sifier is tested at every point in a 100 by 100 grid. The classification results are shown
by drawing color coded regions for the class returned for each tested grid point. The
overlaid scatter plot is identical to that in the MLP plot. Because the classification algo-
rithm is different, the overlaid internals plot is different for the KNN classifier. Small
black squares are drawn which show the positions of the stored training patterns.

2.11 Continuing Training

Looking at the results of the KNN classifier, the MLP results do not seem to be as good
as they could be. The MLP classifier misclassified 32.5% of the evaluation data while
the KNN classifier misclassified only 18%. Perhaps if the MLP classifier is trained
more, it will perform as well as the KNN classifier.

2.11.1 Restoring Previous Experiment
To continue training the MLP classifier, LNKnet will first be restored to the state it was
in for the MLP experiment.

Select the MLP classifier from the algorithm menu. Return to the Report Files window
and select RESTORE Screens from Screen File. All of the windows in LNKnet
should now be as they were when the MLP was trained.

Position of a Stored
Training Pattern

Correctly Classified “heed”

Decision Region for class
“whod”

Misclassified “hood”

FIGURE 2.25 KNN Decision Region Plot
LNKnet Users Guide (Revision 4, February 2004) 33

CHAPTER 2: A LNKnet tutorial
On the MLP parameter window, the number of epochs was set to 20. Selecting CON-
TINUE Current Exper. will create a shell script that trains the previous MLP model
for 20 more epochs. A notifier window will appear which says “Shell file exists: OK to
overwrite?”. LNKnet by default will use the same name for the shell script that contin-
ues the experiment. Either select Overwrite or hit Return to replace the old contents of
X1mlp.run with the new script. The new shell script differs from the old one on only
two lines. The create flag is not included in the new training call and the new training
results are appended to X1mlp.log and X1mlp.err.train. When training is
complete, the new model parameters will be stored in X1mlp.param, replacing the
old ones. New versions of the plots will be created which will overwrite the existing
plot files. An entry with the new experiment results will be added to the experiment
notebook file, LNKnet.note.

2.11.2 MLP Eval Results
These are the classification results on the evaluation data after a total of 40 epochs of
training. The MLP classifier now provides an error rate of 19.88%, ±3.1%. With the
given standard deviation of 3.1% the new error rate is about the same as KNN’s. The
error rate might be improved with more training, but the amount of improvement for
each epoch of training becomes increasingly small.
Classification Confusion Matrix - X1mlp.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 13 3 1 17
 1 12 6 18
 2 18 2 20
 3 15 1 2 18
 4 2 13 1 16
 5 1 6 1 3 11
 6 18 18
 7 3 15 18
 8 13 3 16
 9 2 1 1 10 14
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 14 12 20 18 16 10 24 21 14 17 166

Error Report - X1mlp.err.eval

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 17 4 23.53 (10.3) 0.213 head
 1 18 6 33.33 (11.1) 0.227 hid
 2 20 2 10.00 (6.7) 0.152 hod
 3 18 3 16.67 (8.8) 0.172 had
 4 16 3 18.75 (9.8) 0.145 hawed
 5 11 5 45.45 (15.0) 0.231 heard
 6 18 0 0.00 (0.0) 0.038 heed
 7 18 3 16.67 (8.8) 0.187 hud
 8 16 3 18.75 (9.8) 0.171 whod
 9 14 4 28.57 (12.1) 0.224 hood
 -------- -------- ------- -------------

Overall 166 33 19.88 (3.1) 0.181
34 LNKnet Users Guide (Revision 4, February 2004)

2.11: Continuing Training
2.11.3 MLP Plots

The plots generated after the second twenty epochs of training are very similar to the
first set of plots. The decision region plot is shown in Figure 2.26. The decision region
boundaries and internals plot lines have moved. Naturally, the scatter plot has remained
the same.

The profile plot is shown in Figure 2.27. The new profile plot shows that the outputs for
the dominant class in each region of the input space have gotten closer to 1. The outputs
for the other classes in those regions are closer to 0, making the transitions between
classes sharper. The total line is less smooth but is still near one.

Because the weight magnitudes have not changed much, the new structure plot is almost
identical to the old one. The structure plot is in Figure 2.28. Because the pattern by pat-
tern results from the continuation training are appended to X1mlp.err.train, the
error rate from all training is shown in the new cost plot and the new percent error plot,
not just the rate from the twenty new epochs. These new plots are in Figure 2.29 and
Figure 2.30 on page 37. On the probability plot, shown in Figure 2.31, the value in the
second bin (output values of 0.2 to 0.4) has improved. The bin for values from 0.4 to 0.6
has been combined with the 0.6 to 0.8 bin. The bins which cover the middle of the range
have been eliminated because they contain too few patterns. Figure 2.32 shows the new
ROC plot which has changed very little. The ROC area has increased to 99.0%. Figure
2.33 shows the new rejection plot. There are more high scoring correctly classified pat-

FIGURE 2.26 MLP Decision Region Plot after 40 Epochs

Region for hid larger
LNKnet Users Guide (Revision 4, February 2004) 35

CHAPTER 2: A LNKnet tutorial
terns now. This can been seen because there is a downward slope in this curve with few
rejections.

FIGURE 2.27 MLP Profile Plot after 40 Epochs

FIGURE 2.28 Structure Plot for 40 Epochs of MLP training
36 LNKnet Users Guide (Revision 4, February 2004)

2.12: Cleaning up Windows and Files
2.12 Cleaning up Windows and Files

By now your screen is cluttered with many small LNKnet popup windows and plot win-
dows. The popup windows can be closed by closing the windows using the mechanism
provided in the window manager you are using. The many plots can be removed by
moving the mouse into the plotting area of the window and typing ‘q’ or by selecting
quit from the file menu at the top of each plot window. The experiment directory is also
cluttered with shell scripts, plot files, and error files. Removing the error files regularly

FIGURE 2.29 Percent Error Plot for 40 Epochs of MLP training

FIGURE 2.30 Cost Plot for 40 epochs of MLP training
LNKnet Users Guide (Revision 4, February 2004) 37

CHAPTER 2: A LNKnet tutorial
FIGURE 2.31 Posterior Probability Plot after 40 epochs

FIGURE 2.32 ROC (Detection) Plot after 40 epochs
38 LNKnet Users Guide (Revision 4, February 2004)

2.13: Feature Selection
is important because they can be very large. The command rm X1*.err* will
remove the error files generated during the previous experiments in this tutorial. These
files can be recreated by re-running a LNKnet experiment and are only necessary if you
want to continue training an incrementally trained classifier or if you want to generate
additional plots that depend on these files such as the error rate versus training time plot.

2.13 Feature Selection

LNKnet allows you to select features and thus reduce the number of input features as an
approach to improve generalization. There are two ways to do this, feature selection of
the raw input data, or rotation of the input space using normalization followed by fea-
ture selection. This first series of experiments will use feature selection alone.

You will run several experiments, trying to find the best set of features to use to solve a
multi-dimensional problem. Because the classification algorithm will not change, you
will need to change the experiment name to prevent new experiments from overwriting
the old ones. The first experiment will use all input features so change the Experiment
Name on the main window to all.

For this series of experiments you must use a data base with more than two features.
Select the data base gnoise_var from the Data Base List scrolling list on the data base
window. This data base is provided with LNKnet and should have been copied into the
experiment directory at the start of this tutorial. There are 8 input features and 10
classes. The classes are clusters each centered along the line where

 is input dimension . Class 0 is centered on (0,0,0,0,0,0,0,0), class 1 on

FIGURE 2.33 Rejection Plot after 40 epochs

x0 x1 … x7= = =
xd d 0 d 7≤ ≤()
LNKnet Users Guide (Revision 4, February 2004) 39

CHAPTER 2: A LNKnet tutorial
(1,...,1), class 2 on (2,...,2), and so on. Gaussian noise is added to the centers to generate
the patterns for each class. The variance of the noise depends on the input feature num-
ber. It is lowest for feature number 7 and highest for feature number 0. The variance of
the data in the eighth input dimension is 0.25. The variance in the lower dimensions
increases by 0.25 every dimension giving a variance of 2 for the first dimension. The
high numbered features thus provide more information than the lower numbered fea-
tures because they have less variance.

The gnoise_var data base has 8 input dimensions. If the current plot parameter settings
are used, scatter plots may not show all of the data. Go to the Plot Selection window
and bring up the Decision Region Plots window. On the decision region plot window,
make sure that Show All Data Points is selected. For the remainder of this tutorial, only
the decision region plots will be shown. Select the check boxes for the other plots again
to remove the checks and deselect the plots.

Because this data base was generated using a Gaussian distribution for each class, a
Gaussian classifier should be used to solve this problem. On the main window, select
the classification algorithm Gauss. Go to the algorithm parameter window to check the
variables for the Gaussian classifier. Each class has the same variance, so make sure that
Same for All Classes (Grand) is selected. The variance in each direction is indepen-
dent, so make sure that Diagonal Covariance Matrix is selected.

Your first experiment uses all of the input features to obtain a base error rate. Select
START to run the first feature selection experiment. The classifier should make one
error classifying the evaluation data. Figure 2.34 shows the decision region plot for the
first experiment. Because all of the evaluation data is displayed, the decision regions do

not seem to match the scatter plot data. The internals plot for the Gaussian classifier is
the set of ellipses shown over the scatter plot. These ellipses represent the Gaussian
functions that model each class. The length and width of the ellipses are proportional to
the variances of the Gaussians. More plots could be generated showing the other dimen-
sions by changing the Input Dimensions to Plot on the Decision Region Plot window.

FIGURE 2.34 Decision Region Plot using all 8 inputs

Decision Regions looking at the first
two dimensions. The values for
other dimensions are set to zero.

Scatter plot of all of the data.
Because there are 8 dimensions,
whether the color matches no
longer indicates correct
classifications.

Internals plot. Because these are
grand variances, all of the ellipses
representing the Gaussians have

the same shape. Because the
covariance matrices are diagonal,

the axes of the ellipses are parallel
to the input dimensions.
40 LNKnet Users Guide (Revision 4, February 2004)

2.13: Feature Selection
Select PLOT ONLY on the main screen to write a shell script that generates the
requested plots without retraining or retesting the classifier first.

Each feature in this data base is a noisy estimate of the class number. All eight features
may not be necessary to get the right answers. You can try using only the first feature.
On the main window, change Experiment Name to N1. Bring up the Feature Selec-
tion window by selecting Feature Selection... on the main window. On the feature
selection window, select First N and change N to 1. Select START to run the experi-
ment. The error rate using just the first feature should be 78% on the evaluation data.

Figure 2.35 shows the decision region plot for the classifier using only the first input
feature. Because there is really only one dimension being plotted there is no variation
along the Y direction of the decision region plot, the scatter plot data is all shown on the
line y=0 and the internals plot uses circles to represent the variance of the Gaussians.

For the next experiment, change the experiment name to N2. On the feature selection
window change N to 2. Now repeat the experiment using the first two inputs. The error
rate should be 62%. Finally, change the experiment name to N4 and change N to 4 on
the feature selection window. Repeat the experiment using the first 4 inputs. The error
rate should be 48%. The 2D plots for these experiments will still be generated, but they
are not shown.

The variance of the data in the first few features is too high for these features to be use-
ful in discriminating the classes. Perhaps the error rate can be reduced by picking out
particular features rather than just taking them in order. One approach to feature selec-
tion is to create a list of features in order of presumed importance. Any of the feature
search algorithms can be used to create such a list. On the Feature Selection window
select Read Feature List from File. Because the feature list file has not been created
yet, an error sign should appear on the feature selection window and beside the Feature
Selection button on the main window. Select the Generate Feature List File... button at
the bottom of the window. This brings up the Generate Feature List File window
shown in Figure 2.36. Select Nearest-Neighbor Leave-One-Out CV as the search

FIGURE 2.35 Decision Region Plots using first input
LNKnet Users Guide (Revision 4, February 2004) 41

CHAPTER 2: A LNKnet tutorial
algorithm and Forward as the search direction. Select Start Feature Search to start the
search for the best set of input features to use.

In this search, the program feat_sel tests each feature to find the one which is most
effective in classifying the data by itself. The remaining features are then paired with the
first and the best is selected as the second feature. Features are added this way until
there are no more left. The feature sets are tested using a nearest neighbor classifier
using leave-one-out cross validation. They could also have been tested using the current
Gaussian classifier with ten-fold cross validation. The results of each step of the search
and the best set of features is printed to the screen and to a log file. The plot in Figure
2.37 shows the cross validation error rate achieved as each feature is added. We can see
that most of the features actually increase the error rate and that using features 7, 5, and
6 achieves a good error rate.

FIGURE 2.36 Feature List File Generation Window

Use nearest neighbor classifier
to test feature lists

Search forward, selecting one
feature to add at a time
42 LNKnet Users Guide (Revision 4, February 2004)

2.13: Feature Selection
To use a subset of these features in the selected order, change the experiment name on
the main window to last3. Return to the feature selection window. Set Use to First N
and N to 3 so that you are using the first 3 features from the list in the new feature list
file. If the feature list file did not previously exist, there will still be an error message
saying so. Click the mouse on the error message or select Read Feature List From File
again to erase the message. An alternate way to use these features is to select Check by
Hand as the selection method. Then type in the following list: 7,5,6. These comma
delimited lists are used in many places in LNKnet. The list is made from integers sepa-
rated by commas with no spaces or tabs. See Problem 2.12 on page 131 for more infor-
mation about comma delimited lists. Figure 2.38 shows the feature selection window
with the last three features selected. This experiment should produce an error rate of 3%
on the evaluation data. The shell script and log file for this experiment, last3gauss, can
be found in Appendix C. Table 2.3 shows the results of the feature selection experi-

FIGURE 2.37 Feature Search on gnoise_var data base

Error Rate as features are added

Number of the Nth Feature
Selected. Note that the feature
numbers begin at zero
LNKnet Users Guide (Revision 4, February 2004) 43

CHAPTER 2: A LNKnet tutorial
ments. These results can also be found in the notebook file, LNKnet.note. A copy of the
notebook file is found in Appendix C.

2.14 Feature Reduction using Normalization

Another way to reduce the number of features is to project the input space onto a differ-
ent space that either rotates the original features or reduces the number of input features.
Two projection algorithms are provided. They are principal components analysis (PCA)
and linear discriminant analysis (LDA). PCA rotates the space so that the first dimen-
sion is in the direction of greatest variance in the input space. The other dimensions fol-
low in decreasing order of variance. LDA rotates the space so that the lowest numbered
dimensions are in directions which best discriminate between classes. LDA assumes
classes and class means have Gaussian distributions. PCA produces as many output fea-
tures as there are original input features and ignores class labels. LDA uses class labels

TABLE 2.3 Error rate of Gaussian Classifier on evaluation data using different features of gnoise_var
data

Experiment
Name

Number of
features

Eval
Error
Rate

all All 8 1%

N1 first 1 78%

N2 first 2 62%

N4 first 4 48%

last3 3 picked 3%

FIGURE 2.38 Hand picking features

Enter list by hand
44 LNKnet Users Guide (Revision 4, February 2004)

2.14: Feature Reduction using Normalization
in training and produces a smaller number of output features when there are fewer
classes than input features. The number of output features with LDA is the minimum of
M-1 or D where M is the number of classes and D is the number of original input fea-
tures. Because PCA and LDA are applied to raw data before the input vectors are
handed to the classifiers, they are included as normalization methods.

To try PCA and LDA on the gnoise_var problem, display the normalization window by
selecting Feature Normalization... on the main window. Select Principal Components
as the normalization. Because the normalization file has not been created yet, an error
will appear on this window and beside the normalization button on the main window.
Select Generate Normalization File... to bring up the window which creates normal-
ization files. The Generate Normalization File window is shown in Figure 2.39. Select
Run on this window to calculate the PCA parameters. Now select Linear Discriminant
on the normalization window. Select Run again on the normalization file generation
window to calculate the LDA parameters.

A plot is generated for each normalization method. The plots show the relative sizes of
the eigen values for each of the features in the rotated space. This can be taken as a mea-
sure of the importance of each feature. The plots in Figure 2.40, show that with both

FIGURE 2.39 Generate Normalization Window
LNKnet Users Guide (Revision 4, February 2004) 45

CHAPTER 2: A LNKnet tutorial
PCA and LDA the eight input features can be replaced by one feature that accounts for
most of the variance.

To continue the feature reduction experiments, change the experiment name to pca. Go
to the Feature Selection window and use only the first two features by selecting First
N as the selection method and changing N to 2. Select Principal Components as the
normalization method on the normalization window. There should be an error rate of
25% on the evaluation data when you run the experiment with PCA. Change the experi-
ment name to lda, select Linear Discriminant as the normalization method and run the
experiment one final time. You should get no errors on the evaluation data when nor-
malizing with LDA. Figure 2.41 shows the decision region plots for these two experi-
ments. The dimensions being plotted are the first two input dimensions after
normalization. It is possible to plot using the original dimensions by selecting Do Not
Normalize Data for Plot on the Decision Region Plot window.

FIGURE 2.40 Eigenvalue Plots for PCA and LDA

2 3 4 5 6 7

10
20
30
40
50
60
70
80
90

Norm:LDA

1 Feature number 80

EV % 100

2 3 4 5 6 7

9
18
27
36
45
54
63
72
81

Norm:PCA

1 Feature number 80

EV % 87

FIGURE 2.41 Decision Region Plots when First Two Rotated Dimensions are Used (PCA and LDA)

Note that the
scatter plot
data, which

was
scattered

along the line
X1=X0

before, is
found along

the line X1=0.
46 LNKnet Users Guide (Revision 4, February 2004)

2.15: Cross Validation
The gnoise_var data base is unusual in that many features are noisy and contribute little
to discriminating the classes. Because principal components analysis looks for the great-
est variance, it favored the lower dimensions and rotated the space to accentuate them.
An interesting exercise is to do a feature search on the gnoise_var data base with PCA
set. This will find the best set of rotated features. When this search is run, the best set
achieves an error rate of 21%. Although this is not as good as using the unrotated
dimensions with smaller variances, it is still better than using the original large variance
dimensions alone.

LDA assumes that the classes and their means can be modelled by unimodal Gaussian
distributions. Because this is correct in the case of gnoise_var, normalizing the data with
LDA produces a good classification result.

2.15 Cross Validation

Sometimes there is not enough data available to divide it into separate training, testing,
and evaluation partitions. In such a case, N-fold cross validation can be used to estimate
the future classification error rate on new data. The idea of cross validation is to split the
data in to N equal-sized folds and test each fold against a classifier trained on the data in
the other folds. The cross-validation error rate is obtained by summing the errors from
the tests. The draw-back of cross-validation is the time it takes to run N experiments. It
is thus primarily used only with a small N (between 4 and 10 folds) and when the num-
ber of patterns is low (e.g. tens to thousands of patterns).

Before starting cross validation experiments, reset the selections made while exploring
feature selection and normalization. On the main window, set the experiment name to
all. On the Reports window, select Restore Experiment Screens to bring all of the
LNKnet and algorithm parameters back to their states at the start of Section 2.13.

Now set some of the general parameters. You will be doing a 5-fold cross validation
experiment. This is handled automatically by the classification program, so you do not
need to separately train and evaluate the five classifiers. Select N-Fold Cross-Valida-
tion as the action on the main window and change Folds to 5. Change the experiment
name to cv. Figure 2.42 shows the section of the main window which holds the cross
validation parameters.

You need to select a small data base for the cross validation experiment. The iris data
base has the fewest patterns of any of the “real” data bases provided with LNKnet.
Select it on the Data Base window. The classes in the iris data base are three kinds of

FIGURE 2.42 Cross Validation Selection

Change Folds to 5

Select N-Fold Cross Validation
LNKnet Users Guide (Revision 4, February 2004) 47

CHAPTER 2: A LNKnet tutorial
iris flowers. The inputs are the sepal length and width and the petal length and width.
This data base was collected by R.A. Fisher [8] in the 1930’s.

For the cross validation experiment, use the Radial Basis Function (RBF) classifier.
The RBF classifier uses a set of Gaussian basis functions to map the input space into
data clusters. In assigning a class to a pattern, the output for each class is a weighted
sum of the basis function outputs for the pattern. The RBF program trains the weights
connecting the basis functions to the outputs. LNKnet has another RBF program, IRBF
or incremental RBF, that also trains the means and variances of the basis functions. Both
programs use clustering algorithms to specify initial basis function locations.

This experiment will use the K-Means algorithm for clustering. The K-Means algorithm
generates a set of K cluster centers and assigns training patterns to these centers. It uses
these sets of patterns to iteratively improve the positions of the centers and to calculate
the final variances of the clusters.

Select RBF as the current classification algorithm. The K-Means program will be run
automatically before the RBF program, if desired. On the RBF Parameter window,
shown in Figure 2.43, select Create clusters first and select Kmeans as the clustering
algorithm.

Now check the K-Means parameters. On the RBF window, select Clustering Parame-
ters... to bring up the Kmeans Parameters window shown in Figure 2.44. On the

FIGURE 2.43 RBF Parameter Window

Check to create clusters

Select to bring up Kmeans
parameters window

Select Kmeans
48 LNKnet Users Guide (Revision 4, February 2004)

2.16: Exiting LNKnet
Kmeans window select Cluster by class, K equal for all classes, and set K to 2 centers
per class.

Select START to write the cross validation shell script. This script first generates five
sets of K-means clusters. The training data for these clusters is the same as will be used
to train the classifier. The clustering program will generate two clusters for each of the
three classes, for a total of six for each of the five cross validation folds. After the clus-
tering is finished, the RBF program is called to train and test the five classifiers. A con-
fusion matrix and error summary is generated for each of the classifiers. At the end, a
confusion matrix and error summary is displayed for the results of all of the testing. The
combined error rate for the cross validation experiment is 4%. This result is also
appended to the notebook file which is in Appendix C. The shell script and log file from
the cross validation experiment are also in Appendix C.

2.16 Exiting LNKnet

Congratulations, you have completed the LNKnet tutorial! To quit LNKnet, use the
mouse menu button to select Quit from the Quit menu button in the top left corner of
the LNKnet main window as shown in Figure 2.45. Further details on classifiers, plots,
and other features in LNKnet can be found in the following chapters of this user’s guide
and on the LNKnet manual pages.

FIGURE 2.44 KMEANS Parameter Window

Cluster by class

Two clusters per
class

K equal for all classes
LNKnet Users Guide (Revision 4, February 2004) 49

CHAPTER 2: A LNKnet tutorial
FIGURE 2.45 Exiting LNKnet
50 LNKnet Users Guide (Revision 4, February 2004)

CHAPTER 3 Classifiers

3.1 Neural Network Classifiers

Neural network classifiers are motivated by biological nervous systems and use many
simple processing elements to estimate posterior class probabilities of input patterns.
That is, they estimate where A represents a particular class, X represents the
input pattern, and is the posterior probability for class A. LNKnet includes
important types of neural network algorithms that can be applied to classification prob-
lems.

3.1.1 Multi-Layer Perceptron (MLP)
Multi-Layer Perceptron classifiers[21] are the most widely used neural network classifi-
ers. They provide good performance on many problems and create decision regions by
positioning smooth plateau-like functions produced by sigmoids in the input space. In
the limits where connections weights are “high” they create hyperplanes which define
“half-spaces”. These are combined to form class decision regions. The hyperplanes and
their combinations are specified by weighted connections between the layers of the
multi-layer perceptron. The weights are trained using a back propagation algorithm to
perform a gradient descent which minimizes the error of the outputs according to the
selected cost function.

This algorithm has the most options of any LNKnet program. MLP classifiers examine
all the data many times in training. The first option to set is the number of times to
examine the data. The next is the structure of the network which is contained in a
comma delimited list with the number of nodes in each layer of the network. The first
and last entries are the number of inputs and the number of classes. They are set auto-

p A X()
p A X()

Number of times to
cycle through all
training patterns

Structure of network. First entry
is number of inputs, last is
number of classes. These two
values are set automatically.
Other values are the number of
nodes in each hidden layer.
The bias node in each layer is
not included.Step size for gradient

descent training of
weights

FIGURE 3.1 MLP Parameters

Display other MLP
windows
LNKnet Users Guide (Revision 4, February 2004) 51

CHAPTER 3: Classifiers
matically when a data base is chosen. Any other entries are the number of nodes in each
hidden layer. There is a constant bias node in each layer of the network. It is not
included in the list for the network structure. A gradient descent algorithm needs a step
size, which is a multiplier applied to the gradient when the weights are updated. The
main MLP parameter window is shown in Figure 3.1. Other LNKnet parameters are set
on three additional parameter windows. These are displayed by selecting the three but-
tons on the main MLP window. These other options do not normally need to be changed
and are included primarily for pedagogical purposes.

Parameters associated with training the weights are found on the MLP Weight parame-
ters window shown in Figure 3.2. For most problems, the default settings for these
parameters are appropriate. In our MLP classifier, there are three options for changing
the step size during training. The step size for all weights can be held constant through-
out each training run, the step size for all weights can be automatically reduced after a
set number of training epochs, or the step size of each weight can be adapted automati-
cally. The step size change type selection must be coordinated with the weight update
mode, as described in the paragraph below. The initial step sizes can be the same for all
the weights in the network or a different initial step size can be set for each layer. In the
first case the initial step size is the one on the main MLP window. In the second, step
sizes for each layer are taken from the step size list on the MLP weight parameter win-
dow. Using this list, you can initialize the input weights of a network and then prevent
training of those weights by setting their step size to zero. There is a momentum term

Update weights after
each trial or at the end
of each epoch

Momentum of
change in weights

If error of an output
is less than

tolerance, do not
train its weights

Multiply weights by
one minus this

fraction each
update

Subtract a fraction
of the step size for
a weight if batch
changes change
direction.

Hold step size
constant then

reduce after N
epochs (set on

START only)

Add to step size
for a weight if
batch changes
are in the same
direction

FIGURE 3.2 MLP Weight Parameters

Set random initial
weights to ± maximum
magnitude

Reduce step size
after N epochs

Hold step size
constant throughout

training (set on
START or

CONTINUE)

If batch weight
update, adapt step

size for each weight
(set on START

only)
Set all initial step
sizes alike or
specify one step
size per layer.
52 LNKnet Users Guide (Revision 4, February 2004)

3.1: Neural Network Classifiers
which often reduces training time by moving weights in the direction of previous
changes. The weights can be systematically reduced by setting a weight decay parame-
ter. This has the effect of pruning small weights. All weights are multiplied by one
minus the decay parameter on every trial. This is equivalent to adding a penalty term to
the cost function that penalizes large weights. There is a tolerance parameter in the
error, which turns off back-propagation if the output is within the tolerance limit of the
desired output. Finally, the magnitude of the random initial weights can be set.

Weight updates can be performed after each trial or in batches at the end of each epoch.
Fastest training typically is obtained by updating weights every trial after each training
pattern is presented. To automatically reduce the step sizes for all weights after a set
number of epochs of training, weight updates must be performed after each trial. If a
batch update is being used, it is possible to automatically set a step size for each net-
work weight using the multiple adaptive step size algorithm. When the total correction
for a weight in one batch is in the same direction as in the previous batch, the step size
for that weight is increased. If the direction changes, the step size is reduced by a set
factor. Another factor in the speed of weight training is the order in which training pat-
terns are presented. Remember to randomize the order of the patterns when using the
MLP classifier. The random order flag is set on the main LNKnet window.

Several different versions of back propagation are available in this version of the MLP
classifier. Most differ in the cost function used to determine the error of the outputs. The
squared-error, maximum likelihood and cross-entropy cost functions are described in
[36]. Cross-entropy and maximum likelihood cost functions sometimes provide better
posterior probability estimates than a squared error cost function. The top-two differ-
ence cost function has been called the classification figure of merit by Hampshire [10].
It attempts to minimize the number of errors on training data and can be used with all
networks. It should normally be used with linear output nodes. A steepness of 1 uses a
maximally sharp sigmoid with the difference term and a steepness of 0 uses a maxi-
mally smooth sigmoid. The perceptron convergence procedure, which is an implemen-
tation of Rosenblatt’s original single layer perceptron, differs from the other cost
functions. It trains a single plane for each class which separates that class from all oth-
ers. All of the patterns on one side of the plane for a class are considered to be in one
class and all patterns on the other side are in the other class. The perceptron conver-
gence procedure can only be used when there are no hidden layers. This procedure is
normally only defined for two-class problems. In the LNKnet implementation, if there
are more than two classes, multiple perceptrons are trained simultaneously to discrimi-
nate each class from the others. The classification decision is made by determining the
perceptron with the highest unclipped output. The MLP Cost Function parameter win-
dow is shown in Figure 3.3.

When a squared error or top two difference cost function is being used, there are three
choices of output function. This output function is applied to the weighted sum calcu-
lated for the output layer. The output functions are a standard sigmoid, which goes from
0 to 1 with an output of 0.5 for an input of 0, a symmetric sigmoid which goes from -1 to
1, and a linear output, which simply gives the weighted sums as the final outputs of the
network. The hidden node sigmoid functions can be either standard or symmetric. There
is a steepness parameter for these node functions. This steepness parameter can be the
same for all nodes in the network or it can be set for each layer. A higher steepness
LNKnet Users Guide (Revision 4, February 2004) 53

CHAPTER 3: Classifiers
value for the first hidden layer can sharpen the decision region boundaries for an MLP
classifier that has been initialized using bintree2mlp, which is explained in Chapter 7.
The MLP node function parameter window is shown in Figure 3.4.

3.1.2 Radial Basis Function (RBF)
Radial Basis Function classifiers[28] calculate discriminant functions using local Gaus-
sian functions instead of sigmoids of hidden node sums. They may perform better than
MLP classifiers if input features are normalized so a Euclidean distance is meaningful
and if class distributions exhibit radial symmetries. Network outputs are weighted sums
of the outputs of Gaussian hidden nodes or basis functions. Hidden node outputs are
normalized to sum to one. Weights are trained using least-squares matrix inversion to
minimize the squared error of the output sums given the basis function outputs for the
training patterns. These basis functions can include a constant bias node. The variances
given by the clustering algorithm can be increased during training if they are too small
to provide good coverage of the data. The variances can be further increased during test-
ing. The variances used by RBF hidden nodes are diagonal (one variance per input
dimension for each basis function). For problems that require a very large number of
hidden nodes (>200), training time can be reduced using the fast train option. In fast

Output cost function

Steepness parameter
for Differential cost

FIGURE 3.3 MLP Cost Parameters

Sigmoid function applied to
output layer sums

FIGURE 3.4 MLP Node Parameters

Specify sigmoid steepness
for each layer

Steepness of sigmoids or
slope of linear function

Sigmoid function
applied to hidden
layer sums
54 LNKnet Users Guide (Revision 4, February 2004)

3.1: Neural Network Classifiers
training, rather than update each of the Nouputs*Nnodes connection weights for each
pattern, only the weights connecting the hidden nodes with the highest outputs are
updated. If enough hidden nodes are used training each pattern, the classification results
are equivalent for RBF classifiers using fast training. Fast training is not normally
required and should not be used.

3.1.3 Incremental Radial Basis Function (IRBF)
The RBF classifier is limited because hidden node means and variances are fixed during
training. The Incremental Radial Basis Function classifier (IRBF) [28] can sometimes
provide better performance by training these parameters. In testing, the IRBF Classifier
is identical to the RBF Classifier. In training, the means and variances of the Gaussian
basis functions are trained in addition to the weights. All of the parameters are trained

Run the clusterer to create new
clusters. (If not checked, read
previously stored ones)Select the clustering algorithm

Bring up the cluster parameter
window

The clustering parameters will be
stored in this file

Multiply cluster variances before
training and testing

Multiply cluster variances before
testing

Include a constant bias node in the
basis functions

Clustering Algorithm choices

Maximum Eigen value ratio during
inversion of basis node outputs

Minimum cluster variance
permitted

FIGURE 3.5 RBF Parameters

Use the fast training algorithm
LNKnet Users Guide (Revision 4, February 2004) 55

CHAPTER 3: Classifiers
using gradient descent which tries to minimize the squared error in the final outputs.
Each of the three variables being trained, the weights, means, and variances, has its own
step size. There is one other difference between the LNKnet RBF and IRBF classifiers.
In the IRBF classifier, the variances in each dimension can be averaged, as they are in
the Gaussian classifier using grand variances.

3.2 Likelihood Classifiers

Likelihood classifiers estimate a scaled probability density function or likelihood for
each class, where A again represents a class label, X is the input feature
vector for a pattern, is the likelihood of the input data for class A, and is
the prior probability for class A. For a given test pattern, the class which has the highest
likelihood times the class prior probability is selected as the class of the pattern.
Because the output values are continuous, they can be used for further analysis of
sequences of input patterns. For example, Gaussian mixtures are widely used in speech
recognizers as low-level probability estimators in hidden Markov models.

Multiply cluster variances before
training and testing

Multiply cluster variances
before testing

Include a constant bias node in
the output sum functions

Cost function used for
error in gradient descent

Steepness parameter for
Top Two Difference cost

Minimum basis function
variance permitted

Train one variance used by all
basis functions

FIGURE 3.6 IRBF Parameters

Maximum initial weights
for weighted output sums

Select the clustering
algorithm

Bring up the cluster
parameter window

Run the clusterer to
create new clusters or
read previously stored

clusters
Cycle through all
training patterns N times

Step sizes for each of
the trained parameters

p X A()P A()
p X A() P A()
56 LNKnet Users Guide (Revision 4, February 2004)

3.2: Likelihood Classifiers
3.2.1 Gaussian (GAUSS)
Gaussian classifiers [7] and especially linear discriminant classifiers are the most com-
mon and simplest classifiers. They should always be tried first on new problems. A
Gaussian classifier models each class with a Gaussian distribution centered on the mean
of that class. There are four choices in the calculation of the variances for these Gauss-
ians. First, the variance of each class can be found or those class variances can be aver-
aged to give a single grand variance used for all classes. Second, the variance calculated
can be diagonal, one variance for each input dimension, or full covariance matrices can
be calculated. When there are many input features, full-covariance Gaussian classifiers
have many more parameters than diagonal-covariance classifiers and may perform
worse with limited training data. In addition the variance can be limited to be above a
minimum value to prevent numerical problems when input features are unchanged
across training patterns. A linear discriminant classifier is a Gaussian classifier with
grand variances, where variances are the same for all classes. The simplest linear dis-
criminant classifier uses the same diagonal covariance matrix for each class. A qua-
dratic classifier is a Gaussian classifier with separate variances for each class.

3.2.2 Gaussian Mixture (GMIX)
The Gaussian Mixture classifier [28] can perform better than a Gaussian classifier when
classifier distributions are not unimodal Gaussian. It models each class distribution with
one or more Gaussian mixture components. The outputs of the classifier are weighted
sums of the outputs of Gaussian mixture components. In training, the classifier changes
the Gaussian means and variances and the connection weights for the outputs using the
Estimate-Maximize algorithm to maximize the likelihood of the training patterns. For
problems in high dimensions, a savings in the number of classifier parameters can be
gained by switching from a full covariance Gaussian classifier to a diagonal covariance
Gaussian mixture classifier with several Gaussians per class.

Many of the options available in the Gaussian Mixture program deal with the type of
Gaussians to be used. The first choice is whether each class has its own Gaussian mix-

Calculate a covariance matrix
for each class, or have all

classes share one Grand matrix

Minimum value for on diagonal
entries in covariance matrices

FIGURE 3.7 Gaussian Classifier Parameters

Diagonal or full covariance
matrices
LNKnet Users Guide (Revision 4, February 2004) 57

CHAPTER 3: Classifiers
ture or if all of the classes share a single set of tied Gaussian mixtures. Figure 3.8 illus-
trates the two types of Gaussian Mixtures. The lower dots in this figure represent the
Gaussian components and the upper dots represent outputs for each class. As with the
Gaussian classifier, the Gaussians in a mixture can have either diagonal or full covari-
ance matrices. Similarly, there can be a separate variance for each Gaussian in the clas-
sifier model or the variances can be averaged giving a grand variance. The averaging
can be done over all of the Gaussians, so only one is estimated, or the Gaussians in each
mixture can be average separately, giving one variance per class.

FIGURE 3.8 Tied versus Untied Gaussian Mixtures

A B CA B C
Untied MixturesTied Mixtures

Standard Clustering Parameters

Expand cluster variances before
the first iteration of training.

Used while inverting full
covariance matrices after an

epoch of training.

Minimum variance of clusters
and of on diagonal entries of

Gaussians during training.

GMIX stops training
early if the Gaussians
stop changing before all
epochs are complete

Independent Mixtures
for each class, or one
tied set shared by all

Per mixture
covariances, OR
average over each
class, OR average over
all Gaussians

Diagonal or Full
Covariances

FIGURE 3.9 Gaussian Mixture Parameters

Number of times to
present all training
patterns
58 LNKnet Users Guide (Revision 4, February 2004)

3.2: Likelihood Classifiers
3.2.3 Histogram

A histogram classifier[7] estimates the likelihood of each class by creating a set of his-
tograms for each input feature. Input features are continuous-values and each input fea-
ture is divided into a number of bins. The likelihood assigned to each bin is proportional
to the number of training patterns that fall in that bin divided by the bin width. In test-
ing, the likelihoods for each input dimension are multiplied to give an overall likelihood
for each class. An optional per class diagonal Gaussian classifier can be used to deter-
mine the class of all patterns that fall outside histogram bins. Unlike the naive Bayes
classifier, the histogram classifier is designed for continuous valued inputs and provides
many alternative approaches to categorize continuous data by forming bins.

The LNKnet histogram classifier provides several options for dividing the input space
into bins. A fixed set of bins can be defined which evenly divides the space into smaller
hypercubes (uniformly segmented hypercube). This works best when all the input fea-
tures have been normalized to have the same ranges. The bins can be autoscaled by cal-
culating one set for each input feature (Separate bins for each input feature). This
allows for more variability across input dimensions. Finally, separate bins can be found
for each class. This allows the greatest flexibility in the histogram parameters, binning
each class and input feature. The range covered by the histogram can be multiplied by

Divide each input feature
separately for each class,

OR all classes share a common
set of histogram bins,

OR the user provides bin max
and min for all input features and

for all classes

Increase the
range of the
histograms by
multiplying by this
factor

Specify the
number of bins to
assign for each
class

Return “Unknown class” if a
pattern is outside all the

histograms OR use a Gaussian
classifier to find the class

Space bins equally over the
range of the data OR set bin

limits to give an equal number of
patterns per bin

Assign N bins per
input feature. If
different bins for
each class, assign
N bins per class

FIGURE 3.10 Histogram Parameters

Start of first bin
and end of last bin
for all inputs for
uniform
hypercube

Minimum variance for Gaussian
classifier used outside the bins
LNKnet Users Guide (Revision 4, February 2004) 59

CHAPTER 3: Classifiers
the histogram range factor to classify test patterns found near the edges of the range
seen during training. Two methods are used for finding the edges of histogram bins. In
the first, the bins uniformly segment the covered range. This is usually better for classi-
fication. In the second method, the bins segment the space to give uniform numbers of
patterns in each bin. Where the data is denser the bins are thinner. This is usually better
for likelihood estimation.

3.2.4 Naive Bayes Classifier.
Unlike the histogram classifier, the naive Bayes classifier is explicitly designed for cate-
gorical data. It has become a popular classifier for processing large amounts of data typ-
ical of “data mining” applications and is not necessarily naive or simple. A
straightforward approach is used, but good performance, that rivals that of more com-
plex classifiers, is often provided. The LNKnet graphical interface, shown in Figure
3.11, makes it possible to change the number of bins or values for each input feature.
This can be the same for all input features or it can be specified for each feature. Other
parameters, described below, can be edited by hand in the shell script produced by
LNKnet.

This classifier is designed for use with only categorical features and the categories must
be indicated by input features that take on integers ranging from zero to nvalues-1,
where nvalues is the number of different values for the input feature. Categorical fea-
tures take on values that are not ordered in a meaningful way. An example would be an
input feature used to classify Internet web servers that was the name of the web server
host computer operating system. If there are 12 different types of operating systems,
then this input feature would take on 12 values. For use with LNKnet, the operating sys-
tem input feature values must range from 0 to 11. Note that input features must be pre-
processed to take on these integer values and they should not be further normalized
within LNKnet. For example, “simple normalization” as assigned in the LNKnet “Fea-
ture Normalization” window should not be used. This will change input feature values
to be non-integers that do not range from 0 to nvalues-1. Likewise, other forms of nor-
malization should not be used.

Same number of bins
for each input feature

FIGURE 3.11 Naive Bayes Classifier Parameters

Different number of
bins for each input

feature

Comma separated list
containing number of

bins for each input
60 LNKnet Users Guide (Revision 4, February 2004)

3.3: Nearest Neighbor Classifiers
Every implementation of naive Bayes classifiers must address three subtle issues. The
first is how to assign probabilities to bins containing values not seen in any training pat-
terns. For example, if a feature can take values from 0 to 11, but the value 3 is never
seen during training, a non-zero probability must be assigned to the value 3 seen during
testing. The Laplace correction is used in this program because it often works well [19].
A less common variant can be selected by adding the -unity_laplace flag for the
nbayes_lnk command in the shell script that LNKnet produces. The second issue is how
to assign bin probabilities for categorical features when training patterns take on values
that are outside the expected range. For example if the number of bins for a feature is set
to 12, then feature values should range from 0 to 11. Other input feature values such 12
or 21 are outside this range. This program creates an extra “unseen” bin for any feature
where this occurs. All patterns that fall outside the expected range are counted as falling
in this bin. These patterns can be ignored by adding the -ignore_unseen flag to the
nbayes_lnk command in the shell script that LNKnet produces. The third issue is how to
treat features in testing that take on values that are outside the expected range. This pro-
gram ignores such features. If there are many features, and at least one takes on an
expected value, but all others take on unexpected values, then classification is still pos-
sible and will be based on the one feature. If all features take on unexpected values, then
no class will be selected and no classification decision will be made.

3.2.5 Parzen Window
For a Parzen window classifier [7,39], kernel functions are placed over each training
pattern. Kernel functions can be Gaussians or rectangular pulse functions. Kernel func-
tions can be uniform, that is circular or square functions, or the length of each side can
be proportional to the variance of each input feature, that is elliptical or rectangular. All
kernel functions can have the same shape or there can be separate kernel function
shapes for each class. The class likelihood of an input pattern is the sum of the likeli-
hoods for each kernel function in the class normalized by the number of training pat-
terns in the class. The Parzen window classifier can map very complicated likelihood
functions with little training. The variance of all kernel functions is initially set equal to
the variance of the training data. This variance can be reduced or increased using the
variance multiplier.

3.3 Nearest Neighbor Classifiers

Nearest Neighbor classifiers work on the principle that a pattern is probably of the same
class as those patterns nearest to it. The simplest algorithm is to store all the training
patterns and to find distances to them all for each testing pattern. The computation nec-
essary for testing can be prohibitive for large databases. Most enhancements to the algo-
rithm involve reducing the number of patterns stored and used for testing. Nearest
neighbor classifiers are simple and easily understood, but do not produce continuous
outputs for later analysis and do not generalize well where training and test data differ.
LNKnet Users Guide (Revision 4, February 2004) 61

CHAPTER 3: Classifiers
3.3.1 K Nearest Neighbor (KNN)
A K-Nearest Neighbor classifier [7] can be used to obtain a rough estimate of the diffi-
culty of a new problem. It can form complex decision regions but stores all training data
and must compute distances to all training patterns during testing. A K-Nearest Neigh-
bor classifier trains by storing all training patterns presented to it. During testing, the K
stored patterns closest to the test pattern are found using a Euclidean distance measure.
A vote is taken amongst the K neighbors and the class that occurs the most is assigned
to the test pattern. In leave-one-out cross validation, the stored training patterns are
tested one at a time against a KNN model containing all but the single test pattern.

All kernel functions are alike OR
each class has its own kernel

function shape

Kernel functions are Gaussians
OR rectangular shaped pulse

functions

Before testing, scale all variances

Kernel functions are uniform or
each input feature has its own

length

FIGURE 3.12 Parzen Window Parameters

The number of nearest
neighbors used during

testing

Evaluate a trained model by testing
each pattern stored in the model instead
of using the test data file

FIGURE 3.13 K Nearest Neighbor Parameters
62 LNKnet Users Guide (Revision 4, February 2004)

3.3: Nearest Neighbor Classifiers
3.3.2 Condensed Nearest Neighbor (CKNN)
The Condensed K Nearest Neighbor classifier (CKNN) [7,28] can sometimes provide
performance that is similar to that of a K Nearest Neighbor classifier, but with fewer
stored patterns. In testing, the CKNN classifier is a nearest neighbor classifier. It assigns
the class of the nearest stored pattern to the test pattern. To train, the Condensed Nearest
Neighbor classifier examines the training patterns successively and stores any that,
when tested, are assigned the wrong class.

3.3.3 Nearest Cluster (NC_CLASS)
The Nearest Cluster classifier [7] can sometimes provide error rates similar to a KNN
classifier but with many fewer stored parameters. It is a nearest neighbor classifier
which uses the centers of clusters as its stored patterns. During training, a class is
assigned to each cluster center using a nearest neighbor search over the training data.
When determining the nearest neighbors in either training or testing, either a Euclidean
or Mahalanobis distance can be used. That is, a distance based on the squared difference
in the inputs or one based on the output of the Gaussian represented by the cluster. The
Mahalanobis distance metric is intended for use when the Estimate-Maximize clustering
algorithm, em_clus, is used for clustering.

The number of times to cycle
through the data during training

FIGURE 3.14 Condensed Nearest Neighbor Parameters

Standard clustering parameters

Standard distances or Gaussian
outputs

Minimum variance, used only for
Mahalanobis distances

FIGURE 3.15 Nearest Cluster Classifier Parameters
LNKnet Users Guide (Revision 4, February 2004) 63

CHAPTER 3: Classifiers
3.3.4 Learning Vector Quantizer (LVQ)
The learning vector quantizer (LVQ) training algorithm[21] can sometimes improve the
performance of a nearest cluster classifier by moving cluster centers. This is an imple-
mentation of four of Kohonen’s Learning Vector Quantizer algorithms. In testing, the
LVQ is a nearest cluster classifier. In training, cluster centers are assigned classes as
they are in the nearest cluster classifier using Euclidean distances. Training then moves
centers to improve classification performance on the training data. In LVQ1, the center
closest to the training pattern is moved towards or away from it, depending on whether
it is of the same class. OLVQ is an optimized version of LVQ1. Each center has its own
step size, which is modified when the center is the nearest neighbor. In LVQ2 the two
closest centers are moved if one is of the correct class and one is of some other class.
Further, the pattern must fall in a window between the two closest centers. Finally,
LVQ3 is the same as LVQ2 with one exception. When the two closest centers are both
of the correct class, they are both moved closer to the training pattern. The step size for
this “correct” movement is smaller than the normal stepsize by a factor of epsilon.

3.4 Rule Based Classifiers

Rule based classifiers partition the input space into decision regions using threshold
logic nodes or rules. They can often be easily implemented in hardware applications.

3.4.1 Binary Tree Classifier (BINTREE)
The binary decision tree classifier trains and tests very quickly and is similar to the
CART algorithm described in [3]. It can also be used to identify the input features which
are most important for classification because feature selection is part of the tree-build-
ing process. BINTREE is well suited to problems with categorical input features or with
uncorrelated continuous input features. During training, BINTREE builds trees using
tests of the form at each node to divide training patterns for classification. Pat-

Standard Clustering Parameters

LVQ Algorithm Choice

Step size for center movement

Window for whether to move two
centers of differing class. Used by

LVQ2 and LVQ3

Additional step size factor
for LVQ3 when moving two

centers of correct class

Number of times to cycle
through all data during
training

FIGURE 3.16 Learning Vector Quantizer Parameters

Brief description of the
selected training algorithm

xi C≤
64 LNKnet Users Guide (Revision 4, February 2004)

3.4: Rule Based Classifiers
terns which pass the test are assigned to one node and those which fail are assigned to
another. Tests for the two new nodes are found and training continues until there are no
nodes that have training patterns from more than one class. Before testing, the tree can
be pruned to a set number of non-terminal nodes. This reduces the size of the tree and
can improve classification error rates in testing. To prune, the non-terminal node which
least affects the error rate on all the training data is found. It is made into a terminal
node and its children are removed from the tree. Nodes are cut until the desired number
of non-terminal nodes in the tree is reached. The BINTREE parameter window is shown
in Figure 3.17. The “Split Using Linear Feature Combinations” option should not be
used except for pedagogical purposes because the power of the BINTREE classifier
comes from the simpler single-feature splits performed by default.

3.4.2 Support Vector Machine (SVM)
The support vector machine (SVM) is a modern highly flexible classifier [5]. The LNK-
net implementation classifies two or more classes using one or more linear or nonlinear
two-class support vector machine classifiers. SVM classifiers are similar to perceptrons.
They separate patterns in two classes using a hyperplane. SVM’s, however, position the
separating hyperplane to maximize the margin, where the margin is the minimum dis-
tance from the separating hyperplane to patterns in the two classes. Training involves
attempting to satisfy Karush-Kuhn-Tucker (KKT) conditions that specify the quadratic
minimization problem that defines the SVM. A linear SVM performs this minimization
in the space of the original input features while a nonlinear SVM performs this minimi-
zation in an higher-order space implicitly generated using nonlinear kernels [5].

In practice, it is often impossible to satisfy strict KKT conditions and separate all pat-
terns. An upper bound (cbound) is used to set the maximum cost incurred for violation
of the KKT conditions. This allows the output for support vectors with non-zero
Lagrange multipliers to deviate from +/- 1.0. Higher cbound values lead to more com-
plex classifiers that try to correctly classify each training pattern. Lower cbound values
lead to simpler classifiers that allow misclassifications and violations of strict KKT con-

Node tests of the form xi C≤

FIGURE 3.17 Binary Tree Parameters

Node tests of the form
βixi C≤

i
∑

Train until full tree makes no
errors on training data OR

train until terminal node
patterns are all one class or

at least N patterns are
assigned to each terminal

node

Test using full tree OR prune
tree to N non-terminal nodes

before testing
LNKnet Users Guide (Revision 4, February 2004) 65

CHAPTER 3: Classifiers
ditions. The value of cbound for a particular problem must be selected empirically
using cross-validation. Figure 3.18 shows the SVM LNKnet window. The value for
cbound is set using the upper box labeled “Lagrange Multiplier Upper Bound.”

FIGURE 3.18 Support Vector Machine Parameters

The kernel type determines whether an SVM is a simple linear discriminator or whether
it maps the inputs to a higher-order space. Kernel types are selected in the left middle of
the SVM window shown in Figure 3.18. It is possible to use linear kernels, Gaussian
kernels, polynomial kernels (xy)n, and inhomogeneous polynomial kernels (xy + 1)n.
Some kernels have free parameters these are selected on the right middle of the SVM
window. The standard deviation has to be selected for the Gaussian kernel and the order
has to be selected for the polynomial kernels. In addition, the inner terms in the polyno-
mial and inhomogeneous kernels can be divided by a scale factor before being raised to
power. This improves numerical stability if there are many input features. For example
you could divide by 256 if there were 256 input features and the data was normalized to
a mean of zero and standard deviation of one. This scale factor is entered in the bottom
right box shown in Figure 3.18. Kernel locations are normally not stored for linear SVM
classifiers because they are not required for classification. To force storage of linear
SVM kernels to plot them with the “internals” plot check the box in the bottom middle
of the SVM window.

SVM classifiers only discriminate between two classes and extensions are required for
multi-class problems. Two approaches can be selected using check boxes in the upper
left of the SVM window. The upper check box constructs M component binary classifi-
ers which separate each class from all the remaining classes. During testing, the classifi-
cation decision corresponds to the class of the component classifier with the highest
output (before the clipping nonlinearity). The lower check box constructs many more

Lagrange multiplier
upper bound
(cbound)Select how to make decisions for

multi-class problems by
combining many binary 2-class

SVM classifiers

Select type of kernel function.
Parameters set on the right.

Output
approximates
posterior prob or is
raw unprocessed
Store and plot
support vectors with
linear kernel
Gaussian kernel σ
Polynomial kernel
power

Polynomial kernel
scale factor usually
set to number of
inputs

Select numerical
tolerance to decide
when Lagrange
multipliers are
considered 0.0 and
when KKT conditions
are considered +/- 1.0
66 LNKnet Users Guide (Revision 4, February 2004)

3.4: Rule Based Classifiers
simpler binary classifiers that separate all possible combinations of classes taken two at
a time. This results in M*(M-1)/2 simple classifiers. During testing, the class with the
most votes across all binary component classifiers is selected. In the case of ties, outputs
(before the clipping nonlinearity) for each class are scanned across all pairwise classifi-
ers that include that class, and the minimum is found. These minimum values are com-
pared to find the class with the highest minimum value. The final classification decision
corresponds to that class. The second pairwise approach sometimes provides better per-
formance. Although it requires many more classifiers, they are simpler, and overall
training time is often similar across both approaches. For reference, the total number of
classifiers that will be created is printed in the upper middle of the SVM window.

Classical SVM classifiers provide zero/one outputs that indicate only whether the input
pattern belongs to class A or B. They do not provide posterior probabilities that can be
used to adjust differences in prior probabilities between training and testing, assign
costs to different types of errors, reject patterns, and form complete ROC curves. LNK-
net software approximates posterior probabilities using an approach motivated by [4]
but simplified to use only training data. The output of each component SVM (before the
clipping nonlinearity) is fed into a sigmoid function with an output ranging from 0 to
1.0 and constrained to produce an output of 0.5 when the input is at the decision region
boundary (input = 0.0). This constraint preserves the error rate for component binary
classifiers when errors have equal costs. The slope of the sigmoid is selected during
training to minimize the mean squared error between the sigmoid output and desired
outputs of zero and one for the two classes. Training patterns with unclipped outputs
near +/- 1 (mainly support vectors) are weighted much less in this minimization because
internal parameters in the classifier have been tuned to produce outputs of +/- 1 for these
patterns. For multi-class problems, posterior probabilities are computed from the com-
ponent classifiers. When M classifiers are generated for an M-class problem, posterior
probabilities are the M outputs for each class from the M component classifiers. When
M*(M-1)/2 pairwise classifiers are generated, the posterior probability for each class is
the minimum posterior probability output for that class across all pairwise classifiers. A
sigmoid is always fit to the output of every component classifier. This fit can be used or
ignored depending on the -sigmoid_fit flag. This flag should normally be used to pro-
vide an output that approximates posterior probabilities.

This implementation of SVM’s uses an efficient, fast algorithm that scales well to prob-
lems with many features and many training patterns. It uses John Platt’s Sequential Min-
imal Optimization (SMO) algorithm [34] as improved by Keerthi and Shevade [17]. The
core algorithm examines pairs of patterns (one from each class) and modifies Lagrange
multipliers using an analytic solution when patterns violate KKT conditions. Training
involves two-pass sweeps. In the first pass of a sweep, all patterns are examined one at a
time to find violations of KKT conditions. Lagrange multipliers are adapted when a vio-
lation is found. In the second pass, the subset of patterns found in the first pass that vio-
late KTT conditions are examined repetitively and their Lagrange multipliers are
adjusted until such patterns satisfy KKT conditions. Adjustments always involve pairs
of patterns that do not satisfy KKT conditions. Another examination of all patterns to
find KKT condition violations begins the next sweep. Training stops when all patterns
satisfy KKT conditions. During training, two bias values (the bias for the hyperplane)
are maintained and used by the algorithm. These high and low bias values initially dif-
fer, and then converge to be similar after convergence. After the algorithm completes, a
final independent check is made to make sure the solution satisfies all KKT conditions.
LNKnet Users Guide (Revision 4, February 2004) 67

CHAPTER 3: Classifiers
A warning is printed along with diagnostics if the solution does not satisfy KKT condi-
tions.

During training, information is printed out during each pass of every sweep when the
log file verbosity set in the “Report Files and Verbosity” window shown in Figure 2.3 is
greater than the lowest “Overall Error Rate” setting. The following is an example of a
table for a component classifier which separates classes 9 and 8 (digits “9” versus “8”)
for the ocrdigit data base. A linear kernel was used, cbound was 1.0, and there were 120
training patterns.

TABLE 3.1 Example training sweeps printout for a SVM classifier.

NSweeps Changed TChanged KernelEvals UnBounded AtUpper HiBias LoBias DeltaBias
1 58 58 3140 53 0 1.73 0.07 1.655375
1 2 60 3357 50 0 1.77 0.29 1.478128
2 64 124 9528 53 0 1.45 0.80 0.644528
2 0 124 9528 53 0 1.45 0.80 0.644528
3 62 186 16061 47 0 1.45 1.07 0.379679
3 18 204 17594 37 0 1.36 1.19 0.175545
4 42 246 20861 40 0 1.36 1.24 0.122306
4 409 655 50742 33 0 1.27 1.27 0.001997
5 0 655 50742 33 0 1.27 1.27 0.001997

The first column indicates the sweep number. As noted above, there are two passes per
sweep. The first pass examines all training patterns and the second examines only the
subset of patterns found in the first pass that violates the KKT conditions. The second
column indicates the number of patterns in a pass that violate KKT conditions. For
example, on the first pass through all 120 training patterns, 58 patterns violated the
KKT conditions. Lagrange multipliers for these patterns are all updated or “changed”.
The third column indicates the cumulative number of patterns where Lagrange multipli-
ers were adapted or the total patterns with “changed” Lagrange multipliers. For exam-
ple, on the first past, 58 adaptations occurred. A total of 655 adaptations were required
to complete training. The Fourth column shows the cumulative number of kernel evalu-
ations required during training. When the number of input features is large, most of the
computation in this algorithm involves kernel evaluations. For this problem, more than
50,000 kernel evaluations were required to complete training. The fifth column shows
the number of support vectors that have non-zero Lagrange multipliers that are below
cbound. After training is complete, there are 33 non-zero support vectors below cbound
and none at the upper bound. All support vectors (unbounded and at the upper bound)
must be stored and used for classification. Support vectors at the upper bound corre-
spond to patterns where outputs are not +/- 1.0. These patterns may or may not be mis-
classified. The final three columns show the lower bias bound, the upper bias bound,
and the difference between these bounds. See [17] for a descriptions of these bounds
and how they are computed. After training is complete, the difference between these
bias bounds should be small and less than the KKT tolerance.

Any implementation of SVMs must address numerical precision limitations and the
desired accuracy of fit to KKT conditions. LNKnet software is designed for input fea-
tures that have been normalized to have zero mean and unit variance. This is achieved in
LNKnet using simple normalization in the “Feature Normalization” window. In addi-
68 LNKnet Users Guide (Revision 4, February 2004)

3.4: Rule Based Classifiers
tion, the accuracy desired for KKT conditions can be adjusted. KKT conditions specify
that the unclipped component classifier output for non-zero support vectors below
cbound must be +/- 1. In practice, exactly producing outputs of +/- 1 may take exces-
sively long and have little effect on classification performance. The tolerance (absolute
difference between actual and desired outputs) allowed around desired outputs of +/- 1
can be set on the bottom left of the SVM window. This value defaults to 0.001. It can be
increased, for example to 0.01, to reduce convergence time. It is also possible to set a
lower limit on Lagrange multipliers in the lower left of the SVM window. Lagrange
multipliers below this limit are set to zero. This defaults to 0.001. It can be lowered
when Lagrange multiplier adjustments are small and below the threshold. Evidence of
small Lagrange multiplier adjustments below this limit is that the algorithm converges
rapidly to a bad solution that doesn’t satisfy KKT conditions without changing
Lagrange multipliers on any training patterns. A warning will be printed with recom-
mended changes if this occurs. This tolerance can also be increased if there are too
many small Lagrange multipliers.

This algorithm converges (usually rapidly) to a good solution. Good solutions are found
for a wide range of parameter values. Extensive error checking is performed to verify
the final solution and warnings and corrective suggestions are provided if KKT condi-
tions are not satisfied. This only occurs if numerical precision problems occur. Such
problems usually don’t occur if (1) The data is normalized to zero mean unit variance
using simple normalization, (2) If the Gaussian kernel standard deviation isn’t too large
compared to the number of input features, (3) The polynomial kernel divisor is roughly
equal to the number of input features, and (4) There are no severe outlier data patterns
that are far away from other patters of the same class but among patterns of some other
class. When KKT conditions can’t be satisfied, the algorithm will still converge and
warnings will be printed out stating why KKT conditions weren’t met and how serious
this is. These warnings can sometimes be ignored because when they occur, classifiers
are created and they typically work reasonably well. The extent of KKT violation is
printed out and small violations of KKT conditions don’t affect classification perfor-
mance significantly. If warnings are printed out and KKT violations are substantial, try
a different kernel (e.g. Gaussian or polynomial instead of linear), try increasing cbound,
try a different approach to building multi-class classifiers, increase the polynomial divi-
sor scale factor, or decrease the standard deviation of Gaussian kernels. In addition try
searching for obvious extreme outlier patterns that might be due to mislabeled data. For
high-order polynomial kernels and Gaussian kernels with large standard deviations,
lowering the Lagrange multiplier tolerance may help. For multi-class problems, warn-
ings are printed out for each component classifier and the total number of warnings is
printed out when training is complete. Search for the string “WARNING” in the training
log file. This software has been successfully applied to large problems with many input
features and many training patterns. Memory requirements increase roughly linearly in
the number of input features and number of training patterns.
LNKnet Users Guide (Revision 4, February 2004) 69

CHAPTER 3: Classifiers
3.4.3 Hypersphere (HYPER)

The hypersphere classifier [1,21] forms decision regions using hyperspheres and can
require far fewer hyperspheres than there are training patterns. It covers the input space
with hyperspheres using a predefined initial radius. A new sphere is added whenever a
classification error is made on a training pattern. The radii of overlapping spheres are
reduced when a new sphere is added such that no sphere covers the center of a sphere of
another class.

At the end of training, spheres can be pruned. During pruning, the spheres are sorted
either by size or by the number of times each sphere was used in a correct classification
of a training pattern. Then, the spheres are pruned until a certain number remains.

Classification is performed by first testing to see whether a test pattern falls inside a
sphere. The “rules” used by this classifier are then distance tests to determine which
sphere or spheres the pattern falls in. If a pattern falls outside all spheres, the
“unknown” class is assigned to it. An “unknown” response class can be prevented by
responding with the class label of the nearest hypersphere center. An answer of
“unknown” can also be returned if the pattern falls inside two or more spheres of differ-
ing classes. In this case, a nearest neighbor search can be performed over the centers of
the spheres the pattern falls in.

3.5 Committee Classifier

One single classifier used alone often does not provide the best performance. In many
cases, better performance is provided by a committee made up of many different classi-
fiers either of different types or trained using different samplings of the same training
data [14]. A committee classifier combines the outputs of several trained classifiers to
return a final combined classification decision. LNKnet makes it possible to evaluate
committee classifiers using a three step process. First all classifiers are trained and

After sphere creation is done,
prune spheres until N remain

Maximum radius of a new
hypersphere

Number of times to cycle
through data while adding

spheres

Sort Centers by size or
“usefulness” before pruning

FIGURE 3.19 Hypersphere Classifier Parameters

Mark spheres that do not fall in
spheres of only one class as

Unknown or use class of
nearest neighbor
70 LNKnet Users Guide (Revision 4, February 2004)

3.5: Committee Classifier
tested independently as described above. Second, a committee database is created using
the “Committee Data Base Generation...” button on the main LNKnet window. This
takes the outputs from all classifiers trained independently, concatenates them, and cre-
ates a new committee data base where these outputs can be used as inputs to another
classifier. Finally, the committee classifier or any other classifier can be used to com-
bine the outputs to make a final decision. The committee classifier combines other clas-
sifier outputs by averaging, forming the median output, or taking a majority vote. If
average or median outputs are used, it is important that all the members of the commit-
tee be of the same type. That is they should all estimate posterior probabilities or they
should estimate likelihoods. Because the nearest neighbor classifiers do not produce
continuous outputs, only the third classifier type, voting for the most chosen class, is
appropriate for them. Note that decision region and profile plots can not be produce with
committee classifiers because it is not easy to determine the output for all possible
inputs.

The input data base for a LNKnet committee classifier must be a committee data base
which contains the outputs for all the classifiers in the committee. Section 7.3 describes
how committee data bases are created. It is up to users who are testing committee classi-
fiers to make sure the same training data, features, and output classes are used with all
classifiers that are committee members. These characteristics of committee members
are not verified when the committee classifier is run.

Select the classifier type

FIGURE 3.20 Committee Classifier Parameters
LNKnet Users Guide (Revision 4, February 2004) 71

CHAPTER 3: Classifiers
72 LNKnet Users Guide (Revision 4, February 2004)

4.1: K-Means
CHAPTER 4 Clustering

Several of the LNKnet classifiers initialize hidden nodes or other parameters using
pre-trained clusters. Each cluster has a mean and a diagonal covariance matrix. The
clusters can be trained on labeled or unlabeled training data. That is, a separate set of
clusters can be trained for each class, or a single set of clusters can be trained for all of
the training data. When clustering labeled data, a different number of clusters can be
generated for each class.

4.1 K-Means

The K-Means clustering algorithm [7] positions a set of K centers in order to minimize
the total squared error distance between each training pattern and its nearest center. It is
trained using multiple passes through all training patterns. During a single training
epoch each training pattern is assigned to its nearest center. The position of that center is
then moved to the mean of the patterns assigned to it.

In this implementation, the K centers are initialized using a binary splitting algorithm
first described in [4]. The program first places a single center at the mean of all of the
training data. This center is then split in two, with the resulting centers being moved
slightly away from the original center’s position. These centers are then trained for a set
number of epochs or until the total error goes below a threshold. The algorithm then
splits the existing centers and proceeds as before. If, during training, a center ever has
no patterns assigned to it, that center is moved near the center which accounts for the
largest amount of the total error and training proceeds as before. When a non-binary
number of centers is requested, the algorithm finds centers, the power of
two above the requested number of centers, K. This set of centers is then pruned to bring
the number back down to K. Pruning eliminates first those clusters which account for
the least total variance.

4.2 Estimate-Maximize (EM_CLUS)

EM_CLUS uses the Estimate-Maximize algorithm (EM) [28] to maximize the likeli-
hood of the training patterns while training the means, variances, and mixture weights
of Gaussian mixture cluster centers. The algorithm is the same one as is used by the
Gaussian Mixture Classifier, GMIX, except that mixture weights are ignored.

This implementation uses binary splitting to generate the requested number of clusters.
When finding a non-binary number of centers, this algorithm goes to the power of two

2 2 K()log
LNKnet Users Guide (Revision 4, February 2004) 73

CHAPTER 4: Clustering
above K and then prunes, just as KMEANS does. This program can also use KMEANS
to initialize the clusters. In this case, the EM algorithm is only used at the end to adjust
clusters found by kmeans.

Find one set of clusters or an
independent set for each class

Move centers some
small random

amount after a split

When splitting a
cluster, move the
two resulting
centers apart by
this percentage of
the variance of the
cluster

The number of
centers to find for
each class. This is
a comma delimited
list.

Stop a round of training when the
centers stop moving more than this
amount per epoch, training at most

this number of epochs.

How many clusters to prune when
going from the power of 2 above K

to K before retraining the centers
again

When clustering by class, find a
different number of clusters for

each class OR the same number

The total number of
centers to find or
the number of
centers to find for
each class

FIGURE 4.1 K Means Parameters

When to stop a round of
training after a split

How many clusters to prune
when going from the power

of 2 above K to K before
retraining again

Stop a round of
K-Means training
early if the centers
stop moving

How to position
cluster centers
resulting from a split

Increase variance before
each round of training

adding clusters

Minimum variance of a
cluster during training

Use K-Means to find
K clusters, then
adjust using EM
algorithm

Specify the number
of clusters to find

FIGURE 4.2 Estimate-Maximize Likelihood Parameters

Find a set of clusters OR an
independent set for each

class
74 LNKnet Users Guide (Revision 4, February 2004)

4.3: Leader Clustering (LEAD_CLUS)
4.3 Leader Clustering (LEAD_CLUS)

Leader clustering [12] is a simple fast sequential clustering algorithm. Training patterns
are presented one at a time. The first pattern is the first cluster center. Any other pattern
that is farther away than delta from an existing cluster center is stored as a new cluster
center. Larger values of delta result in few clusters while small values of delta result in
many clusters. When clustering by class, a different delta may be set for each class.
When these clusters are used by a classification algorithm, delta is used as the cluster
variance in all directions.

4.4 Random (RAN_CLUS)

This clusterer selects K training patterns to use as the cluster centers. These centers will
be the first K patterns presented to this clusterer. To get a random set of centers, the data
must be presented in a random order by clicking the Present Patterns in Random
Order box on the main LNKnet window. After centers have been selected, cluster vari-
ances are calculated. As with kmeans, each training pattern is assigned to the cluster
center closest to it. The cluster is then assigned the variance of its patterns.

FIGURE 4.4 Random Clustering Parameters

Radii for
clusters in each
class. This is a
comma
delimited list of
floating point
numbers

Radius for all
clusters

FIGURE 4.3 Leader Clustering Parameters

Find one set of clusters or an
independent set for each class

Specify the number of
clusters to find

Turn on randomization of
training data to get random

cluster centers

This is on the Main Window
LNKnet Users Guide (Revision 4, February 2004) 75

CHAPTER 4: Clustering
76 LNKnet Users Guide (Revision 4, February 2004)

CHAPTER 5 General LNKnet
Parameters

The design of LNKnet separates those parameters which are algorithm specific from
those which are general across most classification algorithms. This chapter discusses
those general LNKnet features which are available to most classification programs.

5.1 LNKnet Main Window

The left side of the main LNKnet window, shown in Figure 5.1, is a control panel which
runs classification and clustering experiments. The right side, shown in Figure 5.2, sets
the classification algorithm and experiment name, and displays the other LNKnet
parameter windows using the many buttons whose names end in “...”.

At the top of the left side of the main window is the QUIT menu. When Quit is selected
from this menu, LNKnet quits. The experiments started by LNKnet still continue, how-
ever. These experiments are started by selecting the START New Exper. and CON-
TINUE Current Exper. buttons below the CONTROL EXPERIMENT label. Plots
are usually generated as part of an experiment when START or CONTINUE are
selected. To generate plots without repeating an experiment, you can select PLOT
ONLY below the CONTINUE button. The most recently started experiment or plot can
be stopped by selecting the STOP Exper. button to the right of the START button.
Below these control buttons is a check box labeled Only Store shell script, do not run.
As stated, when this box is checked, shell scripts and screen files are stored when
START, CONTINUE, or PLOT are selected but the scripts are not automatically run by
LNKnet. When a shell script stored this way is run, the plot files will be generated but
not displayed and text output will go to the log file but not to any shell window. This
also affects shell scripts created on other windows such as the Normalization File Gen-
eration window or the Committee Data Base Generation window.

Below the control area is a selection list for choosing the experiment action. The action
can be training a classifier on a training file, testing a trained classifier on a testing file,
doing training immediately followed by testing, or performing an N-fold cross valida-
tion experiment on the training file. The data file to use as the testing file is selected
from the list to the right of the action selection list. The user can test a classifier on train-
ing, evaluation, or test data. The files themselves are specified on the Data Base Selec-
tion window shown in Figure 5.4.
LNKnet Users Guide (Revision 4, February 2004) 77

CHAPTER 5: General LNKnet Parameters
When the experiment action is N-fold cross validation, cross validation parameters can
be set below the action list. The user chooses whether to automatically divide the data
into training and testing folds or to read those fold assignments from a file. The format
of that file is described in Section 5.7 on page 89. The patterns can be randomized
before assignment to training and testing folds. Selecting Randomize patterns before
assigning to folds and changing the random number seed lets the user perform a series
of cross validation experiments to find an average classification error rate on the data.

Finally, at the bottom of the left side of the main window, the user can request to present
training patterns to classifiers in a random order. The user can also set the random

number generation seed. Changing this seed changes the values for random initial
weights in some classifiers and the presentation order of randomized training patterns
for all classifiers.

The first button on the right side of the main window has a menu which selects the clas-
sification or clustering algorithm to use in the current experiment. The current algorithm
is displayed beside the menu button. Below the menu is a button which displays the
parameter window for the current algorithm. This window sets parameters specific to
the classification or clustering algorithm. The algorithm parameter windows are
described in Chapter 3 and Chapter 4.

Select to quit LNKnet

Write and run shell script.
If training, create new

error files and parameter
files

Write and run shell
script. If training,

initialize training using
parameter file

Write and run shell script
which only produces

selected plots

Kill the process of the shell
script most recently started

•Train only
•Test using the test file only
•Train then test using the test file
•Perform N-fold Cross validation

on the training fileAutomatically assign patterns
to N folds OR

Read fold assignments from
database.train.cv

Randomize patterns each training epoch

Randomize patterns before
automatic fold assignment

FIGURE 5.1 The LNKnet Main Window (left side)

Write shell scripts on request
but do not run them

Select actions to perform in an
experiment:

Select the data file for testing

Seed for all random number generation
78 LNKnet Users Guide (Revision 4, February 2004)

5.1: LNKnet Main Window
Below the algorithm parameters button is a text field for setting the Experiment name
prefix. The experiment name is used for naming the files generated during an experi-
ment. These include the shell script, screen file, log file, error files, plot files, and classi-
fier parameter files. The prefix set here is added to the algorithm name to create the full
experiment name. For the window in Figure 5.2 the full experiment name is X1mlp.

Next on the right side of the main window is a column of buttons which display other
LNKnet popup windows. These windows are described in this chapter and in following
chapters. The first six are typically accessed in an experiment in the order they appear
on this window from top to bottom. The next three buttons display windows for per-
forming further processing after an experiment has finished running. The last two but-
tons are for saving and restoring screen settings in a defaults file. This file, ~/.lnknetrc,
is read when LNKnet is started. A new set of defaults can be created by selecting Save
Screens as Default Initialization. The screens can be reinitialized to the settings in the
current defaults file by selecting Reinitialize screens from defaults.

Algorithm Menu
Current algorithm is MLP

Display parameter window for
current algorithm

Display Report Files and
Verbosities window

Display Normalization window

Prefix used for files is
<name><algorithm>.
It is now X1mlp

Display Feature Selection
window

Display Adjust A Priori Class
Probabilities window

FIGURE 5.2 The LNKnet Main window (right side)

Write current screen settings
in $HOME/.lnknetrc

Restore screen settings,
using those in
$HOME/.lnknetrc

Display the Plot Selection
window (see Chapter 6)

Display Data Base Selection
window

Display Generate C File from Parameter
File window (see Section 7.2)

Display Generate Committee Data
base window (see Section 7.3)

Display Preview and Print
window (see Section 7.1)

When there are serious errors on
these windows, a red stop sign
appears beside the buttons. Display
the windows and clear the errors
before starting an experiment
LNKnet Users Guide (Revision 4, February 2004) 79

CHAPTER 5: General LNKnet Parameters
5.2 Experiment Directory Files

The Report Files and Verbosities window shown in Figure 5.3 sets the names of files
created by the classifier during an experiment. The first field is the current working
directory. This is the directory the user was in when LNKnet was started. It cannot be
changed by the user. The next field is the experiment path. This is the path to the direc-
tory where all shell scripts, experiment files, and plot files will be written. This path can
be an absolute path which starts from the root directory / or it can be a relative path
which starts from the current working directory. In this example, the experiment path is
a relative path, making the full path /u/kukolich/lnknet/Tutorial. An optional Experi-
ment notebook is kept in the current working directory. When each experiment is
started, a line is added to the notebook file with the experiment name, data base name,
normalization parameters, feature selection parameters, and parameters for the classifi-
cation algorithm. The experiment shell script writes training and testing results to the
notebook as well as results from some plots. Below the experiment path are the names
of files created by LNKnet or the classifier during an experiment. These names are auto-
matically generated based on the experiment name and classifier and cannot be edited.
The first file is the shell script created by LNKnet when START, CONTINUE or PLOT
ONLY are selected on the main window. This shell script contains requested calls to the
classifier for training or testing and calls to any requested plot programs.

When an experiment shell script is run, certain training and testing status information
and results are stored in a log file. The type of information stored is controlled by the
log file verbosity flag. The verbosity levels are described in Section 8.2.4. The log file
can be viewed or printed from the Preview and Print window which is described in
Section 7.1. When training is complete, a classifier parameter file is stored. This file
contains all the information needed by a LNKnet program to recreate the trained classi-
fier. Finally, when a classifier, in training or testing, finds the class of an input pattern,
the results can be written to an error file. The amount of information in the error file is
controlled by the error file verbosity flag. The error file verbosity levels are described
in Section 8.2.6. Because the training error files can be very long, the user can select No
Training Error Files to write test error files but not training files. The full name of the
error file depends on the data file type used for input data (train, eval, test) and the
action being performed (training, testing, or cross validation). These parameters are set
on the main screen. The specifications of these names are found in Table 8.9 on
page 125. Whenever this shell script is stored, LNKnet also creates a screen file. This
screen file saves all the parameters set on all LNKnet windows. To restore a LNKnet
experiment, set the experiment name and classifier on the main window, set the experi-
ment path to the directory of the desired screen file, and select Restore Exp. Screens.

5.3 Data Base Selection

The data base selection window shown in Figure 5.4 selects the data files to be used for
training and testing a classifier. The first field on the window is the data path, the direc-
tory where all the data base files, normalization files, and feature selection files for an
experiment are stored. This can be an absolute path starting from the root directory or a
relative path starting from the current working directory on the Reports window shown
in Figure 5.3. All the data base description files in the data base directory are included in
80 LNKnet Users Guide (Revision 4, February 2004)

5.3: Data Base Selection
the Data Base List scroll list. These description files all have the suffix .defaults in
their names. A new data base which does not yet have a description file will not be
listed in the Data Base list. Use the description file generation window to create the
missing description file. A data base can be selected from the scroll list or its name can
be typed (without the .defaults suffix) in the data file prefix field below the scroll list.
When a data base is selected, information about the data base is read from the descrip-
tion file. If LNKnet cannot find the description file, an error appears at the bottom of the
screen and a stop sign will appear beside the Data Base... button on the main window.
The description file can be created using the Description File Generation window
shown in Figure 5.5. When a data base is selected, LNKnet also finds the data files
included in the data base. The file name extensions for training, evaluation, and test
files are specified at the bottom of the data base window. The actual file names are got-
ten by appending the extension to the data base name. If LNKnet finds these files it
counts the total number of patterns and the number of patterns assigned to each class
in the file. To use fewer patterns than are present in a file, change the number of patterns
field. To reset the field, cause LNKnet to reread the file by reselecting the data base or
by putting the cursor on the file name extension and hitting return.

The description file generation window shown in Figure 5.5 allows the user to create or
modify a description file for a LNKnet data base. The user specifies the number of
input features, number of output classes, and labels for the input features and classes.
Selecting Generate writes the description file and adds it to the data base list on the data
base selection window. The user can select Cancel to leave the description file genera-
tion window without creating a description file. It is important to get this right. An error
in the data base description file can cause serious problems when an experiment is run.

FIGURE 5.3 Report Files and Verbosities Window

Directory where experiment
and plot files will be stored

File for storing
parameters of
trained classifier

Prefix of files to store pattern
by pattern classification

results

Log file storing screen
outputs of classifier while

running shell script

Setting to control the amount
of data written to log file

Screen file
produced by
LNKnet containing
settings for all
parameters on all
windows

Shell script produced
by LNKnet

Current working directory

Setting to control
the amount of data
stored in the error
files

Experiment Notebook

Restore parameters on all
windows using current screen

file
Produce test error
files but not training
error files
LNKnet Users Guide (Revision 4, February 2004) 81

CHAPTER 5: General LNKnet Parameters
Extensions added to the
data base name for training,

evaluation and test files
Files are vowel.train,

vowel.eval, and
vowel.test

FIGURE 5.4 Data Base Selection window

List of all data bases in the
data directory

Current data base

Information read from the
data base description file

vowel.defaults

Number of patterns and
number of patterns per

class for the training
data file vowel.test

Directory with data files,
normalization files, and

feature selection files

Button which displays
the description file

generation window

FIGURE 5.5 Description File Generation window

Current Data Base

Select to write
description file

vowel.defaults

Select to
quit this
window

These fields must be set
for the data base to be

used by any LNKnet
program

If there is an error in the
labels, a warning will

appear
82 LNKnet Users Guide (Revision 4, February 2004)

5.4: Normalization
5.4 Normalization

When a data file is read by a classifier, it is possible to perform preprocessing for nor-
malization. The preprocessing methods available in LNKnet either scale or rotate the
input space. The normalization parameters for a data base are calculated using only
training data.

Simple normalization rescales each input feature independently to have a mean of 0
and a variance of 1. This compensates for the differences in the means and variances of
the input dimensions. This should always be used for MLP and SVM classifiers.

Principal components analysis (PCA) rotates the input space to make the direction of
greatest variance the first dimension. The remaining orthogonal dimensions correspond
to directions of decreasing variance in the original input space. PCA can be used to
reduce the number of input dimensions by first performing PCA and then selecting only
the top N most important PCA features.

Linear discriminant analysis (LDA) assumes that classes and class means can be
modeled using Gaussian distributions. It rotates the input space to make the first dimen-
sion the direction along which the classes can be most easily discriminated. The remain-
ing dimensions are ordered by decreasing ability to be used to discriminate the classes.
The number of features after LDA normalization is the minimum of D and M-1 where D
is the original number of input features and M is the number of classes in the data base.

The normalization method used in a LNKnet experiment is selected on the normaliza-
tion window shown in Figure 5.6. Selecting a normalization method sets the normal-
ization file name. This file is stored in the data base directory which is set on the data
base window. If this file does not exist an error will appear at the bottom of the window
and beside the “Feature Normalization...” button on the main window. The normaliza-
tion file can be created on the Normalization File Generation window shown in Figure
5.7.

FIGURE 5.6 Normalization Algorithm Selection

Select normalization
method

Select to Generate
a normalization file

Normalization file in data
directory

If LNKnet cannot find the
normalization file, check
the data directory, data

base name, and
normalization file type
LNKnet Users Guide (Revision 4, February 2004) 83

CHAPTER 5: General LNKnet Parameters
5.4.1 Generating Normalization Files
The normalization file generation window writes and runs shell scripts that calculate
and plot normalization parameters. The normalization method and the parameter file to
be written are listed at the top of the window. When the user selects Run on this window
a shell script calls a normalization program which calculates normalization parameters
based on the training data file and stores them to a parameter file in the data base direc-
tory. The data directory is specified on the data base window. If Only store shell script,
do not run is selected on the main window, the shell script will be written but not run.
When the shell script is run some status information is printed to a log file in the experi-
ment directory and to the text window from which LNKnet was originally started.
Because this is not an experiment, no information is printed to the experiment notebook
file. Selecting Cancel stops the normalization shell script and removes the Normaliza-
tion File Generation window. If the Generate Plot box is checked, a plot is generated
and displayed after the normalization file has been created. This plot can also be gener-
ated without recalculating the normalization parameters by selecting the Plot Only but-
ton. The plot shows the relative importance of the features created when the input space
is rotated using either the PCA or LDA normalization algorithms. X and Y limits of the
plot can be chosen by the user or the plot program can choose them using the autoscale
flag. The X dimension of this plot is the number of normalized input features. The Y
value for each feature is the percentage of the total of the rotation matrix eigenvalues
accounted for by that feature. An example of a normalization plot is found in
Figure 2.40 on page 46.

FIGURE 5.7 Normalization File Generation window
Normalization method

and file name from
normalization window.

The file will be stored in
the data directory

Log file created when
shell script is run

Generate a plot for PCA
or LDA

Plot file name stored in
experiment directory

Write and run
normalization shell
script

Write and run shell
script to just create plot
file

Stop shell script and
exit generation window

Shell script created
when Run or Plot Only

are selected

Label for plot

Controls for the X and Y
plot axes
84 LNKnet Users Guide (Revision 4, February 2004)

5.5: Feature Selection
5.5 Feature Selection

Sometimes you do not want to use all of the input features available in a data base.
LNKnet algorithms can select a subset of them. This subset can be the first N features,
a hand picked set, or a set of features read from a file. When using PCA or LDA as the
normalization algorithm, the first N features are usually chosen, which occurs after nor-
malization has been applied to the input data. When hand picking a set of features, the
original features are numbered from 0 to ninputs-1. The selected features are given in a
comma delimited list with integers, commas, and no spaces. The labels which match the
selected input features are listed in the middle of the window. If there is a problem with
the input features or labels, an error or warning message appears. Feature list files are
stored in the data directory which is set on the data base selection window shown in
Figure 5.4 on page 82. LNKnet opens the specified file and reads a feature list from it.
The user may choose the number of features to use from this list or the best set in the
file can be used. If LNKnet cannot open the feature list file, an error message appears at
the bottom of the window and a stop sign appears on the main window. Feature list files
can be created using the Feature List Generation window shown in Figure 5.9.

The feature list file generation window writes and runs shell scripts that create and plot
feature lists. When Run is selected on this window a shell script is written to the exper-
iment directory and run. If Only store shell script, do not run is selected on the main
window, the shell script is not run. When the shell script is run, status information from
the feature search is printed to a log file and to the window LNKnet was originally
started in. The shell script creates a feature list file. The features in this file are plotted if
Generate Plot is checked in the lower half of the window. This plot can also be gener-
ated without repeating the feature search by selecting the Plot Only button. Selecting
Cancel stops the feature selection shell script and removes the generation window. The
shell script, log file, and plot file names are automatically generated based on the feature
list file name which is set on the feature selection window.

Use all Input Features

Use First N Input Features

Hand Select Features

Select the First N or Best
set of features from the

Feature Search

Use features in the order of
the feature list file

FIGURE 5.8 Feature Selection Parameters

If LNKnet cannot find the list
file, check the data directory,

data base name, normalization
method, search direction, and

list file name

Choose Feature Selection
Method
LNKnet Users Guide (Revision 4, February 2004) 85

CHAPTER 5: General LNKnet Parameters
To run a feature search, the program generates a series of feature lists and for each list
performs a cross validation test on a classifier. The classification algorithm used in the
tests can be a nearest neighbor algorithm with leave-one-out cross validation or any
LNKnet classification algorithm with N-fold cross validation. The classifier used in the
second case is the one selected on the main LNKnet window. If the classification algo-
rithm uses a clustering algorithm for initialization, the clustering algorithm for feature
searches is Kmeans, not the algorithm selected on the classifier’s parameter window.

There are three directions for the selection of features for inclusion in the feature lists
tested by the classifier. The search can go forward, backward, or forward and back. In a
forward search, each feature is tried singly and the feature which gets the best classifica-
tion rate is selected as the first feature. The remaining features are tested in combination
with the first feature and the best of them is added as the second feature. Features are
added this way until none are left to add.

Complete the search OR stop
early when there are N features

FIGURE 5.9 Feature Search Parameters

Write and run shell script for
feature search and plots

Write and run shell script for
plots

Stop shell script and exit
window

Log file written when
shell script is run

Shell script created in
experiment directory

Controls for X and Y axes scales

Feature list plot file in
experiment directoryGenerate a plot of the final

feature list

Direction for adding or
eliminating features for

creating trial feature lists

Number of folds for
cross validation testing
with current
classification algorithm

Current LNKnet classification
algorithm

Select algorithm for testing
feature lists

Feature list plot label

Stop early when N
features have been
selected or remain
86 LNKnet Users Guide (Revision 4, February 2004)

5.6: A Priori Probabilities
In a backward search, the program starts with all of the features selected and tries leav-
ing each one out. The feature which the classifier did best without is selected as the last
feature. The program goes on taking features away until none are left. The idea of a
backward search is that there may be some set of features which do well when they are
together but which do poorly individually. This set of features would not be found by a
forward search.

A forward and backward search combines the two search methods above. The program
starts searching forward with no features selected. When it has added two features, it
searches for one to take away. It continues then, adding two and taking away one, until it
has added all of the available features. This forward and backward search can find some
interdependencies in the input features which are not found using the other two
searches.

It is possible to stop a feature search early, when there are N features on the list. In the
case of a forward search this is when N have been selected. For a backward search this
is when there are N features left.

The feature selection plot shows the error rate for sets of features found during a feature
search. The X and Y limits of the plot can be chosen by the user or the plot program can
choose them using the autoscale flag. The X dimension is the feature added to the fea-
ture list to generate the classification error rate given in the Y direction. An example of
a feature selection plot is in Figure 2.37 on page 43.

5.6 A Priori Probabilities

Normally the frequency of occurrence of different classes is equal in training, evalua-
tion, and test data and no special actions are necessary to train and test classifiers. In
some classification problems, however, the class prior probabilities in the training data
do not match the probabilities in the test data. For instance, in a heart monitoring system
there may be as many training examples of normal as there are of abnormal heart beats
even though during testing there are ten times as many normal as abnormal patterns.
This imbalance in class probabilities can be compensated for by sampling during
training or by scaling class outputs during testing. Those LNKnet classifiers which
have continuous outputs support both of these kinds of class probability adjustment. The
nearest neighbor style classifiers only support priors adjustment during training.

There is a set of data bases which illustrates use of priors adjustment. They are
uniform_1_1, uniform_2_1, and uniform_10_1. In all of these, there are two classes
which have uniform Gaussian distributions. The centers of these classes are one stan-
dard deviation apart. In uniform_1_1, there are 500 patterns from each class. In
uniform_2_1 there are 666 patterns from one class and 333 from the other, giving a ratio
of 2 to 1 in their class probabilities. In uniform_10_1 there are 1000 patterns from one
class and 100 from the other, giving a ratio of 10 to 1 in the class probabilities. Below is
a table giving overall error rates on testing data for various training and test situations
generated using these data bases and the classifier gauss with separate diagonal vari-
ances for each class.
LNKnet Users Guide (Revision 4, February 2004) 87

CHAPTER 5: General LNKnet Parameters
Table 5.1 shows that the testing error rates can be greatly reduced by priors adjustment
when testing and training priors differ substantially. With two evenly sampled Gaussian
classes, an error rate of 16.7% is expected with decision boundaries equidistant from the
means of the classes as shown in the first row of Table 5.1 in the column labeled “1:1”.
When there are considerably fewer patterns from one class, the overall error rate can be

TABLE 5.1 Percent Error Rates with two sets of data from the same Two Class Problem

Training
Test Error Rate with given Ratio of
Class A to Class B during Testing

Training File Ratio
of Class A to
Class B

Priors Adjustment to
Training data 1:1 10:1

1:1 No Adjustment 16.7 15.05

Sample during Training to
give 10:1

6.5

Scale Outputs to Simulate
10:1

6.55

10:1 No Adjustment 28.7 6.5

Sample to give 1:1 16.9

Scale to Simulate 1:1 16.6

Select whether to scale outputs
to simulate modified class

priors

Scale outputs for equal class
priors

 The number of patterns to show
to the classifier per epoch of

training

FIGURE 5.10 Priors Adjustment Parameters

Select whether to sample to
adjust priors during training

Sample all classes equally
during training

Sample so that training priors are
those listed below. (values do not

need to sum to 1)

Scale outputs for class priors
listed below (values do not need

to sum to 1)
88 LNKnet Users Guide (Revision 4, February 2004)

5.7: Cross Validation
improved to 6.5% by moving the boundary closer to the undersampled class’s center.
This greatly reduces the error rate for the more common class and increases the error
rate for the undersampled class. When evenly sampled data is used for training and 10 to
1 unevenly sampled data is used for testing, the error rate is near 15%, as shown in the
10:1 column, unless some adjustment is made. Either method of priors adjustment can
be used to bring the overall error rate down to 6.5% on the unevenly sampled data as
shown in the second and third row of Table 5.1 under the column labeled “10:1”. Con-
versely, when 10 to 1 unevenly sampled data is used in training and evenly sampled
classes are used for testing the error rate is above 28%, as shown in the fourth row of
Table 5.1 under the column labeled “1:1”. Priors adjustment by sampling the training
data uniformly or scaling the outputs brings the class error rates back to roughly 16.7%
on evenly sampled data as shown in the bottom two rows of Table 5.1.

5.7 Cross Validation

Sometimes there is not enough data available to split it into three partitions, one for
training, one for evaluation, and one for testing. In such a case, N-fold cross validation
can be used to estimate the classification error rate on new data. The idea of cross vali-
dation is to split the data into several folds and test each fold against a classifier trained
on the data in the other folds. Cross validation is primarily used where there are few pat-
terns (< 1000) and with a small number of folds (between 4 and 10).

FIGURE 5.11 Cross Validation Parameters (on Main Window)

The most significant task in cross validation is the assignment of patterns to their train-
ing and testing folds. This can be performed automatically or by hand. The algorithm
which does the automatic fold assignments attempts to preserve class prior probabili-
ties while keeping the size of test folds constant. If Randomize Patterns Before
Assignment is selected, the fold assignments depend on the random number seed. The
user can test a classifier several times by rerunning an experiment with different seeds.

If the training data is collected from different places or at different times, it can be
important that the data from different collection conditions is split up evenly during
cross validation. In such a situation, the training data can be split into folds by hand.
Because the specifications for these divisions are complicated, they are stored in a cross
validation file. Patterns are divided into partitions called splits and then the splits are
assigned to cross validation folds for training and for testing. The name of the cross val-
idation file is set by appending the cross validation file extension, .cv, to the training
data file name, which is set on the data base window shown in Figure 5.4.

Automatically assign data to
cross validation folds OR

read assignments of patterns
to folds from cross validation

file, vowel.train.cv Randomize patterns before
automatically assigning them
to folds

Do cross validation

Number of automatic cross
validation folds
LNKnet Users Guide (Revision 4, February 2004) 89

CHAPTER 5: General LNKnet Parameters
In the example below, there is a speaker independent speech recognizer which is being
trained on twenty-one patterns taken from four speakers. To complicate matters, speaker
1 and speaker 3 sound very similar, so speaker 3 should not give training data for
speaker 1’s test and vice versa. Also, there is some data for three of the speakers which I
don’t want to include in the tests. To make the testing folds easier to understand, I have
added an empty split to the middle of the fourth speaker’s data.

Figure 5.12 shows the speakers for each data pattern. Figure 5.13 is a list which is used
to split the data up by speaker while identifying the patterns which will not be tested.
Finally, Figures 5.14 and 5.15 are bit vectors for the train and test folds which identify
the splits to use for each. Figure 5.16 shows the cross validation file 4SPEAK.train.cv
which specifies the fold assignments for this cross validation experiment. There are
backslashes at the end of the first three lines to indicate that there are more flags on the
following line. The backslashes are immediately followed by a carriage return. When
using the backslashes, you must be careful to remember to put spaces after the comma
delimited lists. The backslash character and carriage return do not count as spaces.

FIGURE 5.12 Pattern numbers and speaker for each pattern for 4SPEAK.train

0 1 |2 |3 4 |5 |6 |7 8 |9 10 11 |12 |13 14 |15 16 17 |18 19 20
Sp1 Sp1|Sp1 |Sp1 Sp1|Sp2|Sp2|Sp2 Sp2|Sp3 Sp3 Sp3|Sp3|Sp3 Sp3|Sp4 Sp4 Sp4|Sp4 Sp4 Sp4

FIGURE 5.13 Splits: (first and last pattern in each split, -1:-1 is an empty split)

0:1,2:2,3:4,5:5,6:6,7:8,9:11,12:12,13:14,15:17,-1:-1,18:20

FIGURE 5.14 Testing folds: (do not test on middle split for each speaker)

101000000000,000101000000,000000101000,000000000101

FIGURE 5.15 Training folds: (do not train on Sp1 for Sp3 test)

000111000111,111000111111,000111000111,111111111000

FIGURE 5.16 Cross Validation File: (4SPEAK.train.cv)

cross_valid -nfolds 4 -nsplits 12 \
-cv_splits 0:1,2:2,3:4,5:5,6:6,6:8,9:11,12:12,13:14,15:17,-1:-1,18:20 \
-cv_train_mask 000111000111,111000111111,000111000111,111111111000 \
-cv_test_mask 101000000000,000101000000,000000101000,000000000101
90 LNKnet Users Guide (Revision 4, February 2004)

CHAPTER 6 Plots

Some of the most visible and useful features of LNKnet are the many types of plots pro-
duced. All of the classifiers and clusterers can produce decision region plots that can be
overlaid with a scatter plot of the data and an internals plot of classifier parameters.
Those classifiers which have continuous outputs can produce a profile plot and a histo-
gram plot of the data. Error files from these classifiers can be used to produce posterior
probability plots, receiver operating characteristics (ROC) curve or detection plots, and
rejection plots. Incrementally trained classifiers, those which go over the training data
multiple times, can use the cost plot or percent error plot. Many classifiers have a struc-
ture plot which shows connections between classifier nodes. Figure 6.1 shows the LNK-
net window used to select these plots. Once a plot file has been generated, it can be
redisplayed or printed from the Preview and Print window described in Section 7.1.
There are also plots for showing the results from a normalization run or from a feature
search. These plots are generated on the Normalization File Generation window and the
Feature List File Generation window respectively. The normalization plot and feature
list plot are explained in Chapter 5.

6.1 Decision Region Plots

The decision region plot parameters window, shown in Figure 6.2, is displayed by
selecting the top most Parameters... button on the plotting controls window. It sets
parameters for three 2-dimensional plots. When these plots are displayed, all three plots
are combined in one plot window. An example of these plots is in the tutorial in Figure
2.15.

The decision region plot shows what class would be returned for each point in the plot-
ted area, given the current classifier model. If the current algorithm is a clusterer, bor-
ders are displayed which show the area assigned to each cluster. When color is used,
decision regions for different classes are in different colors. When color is not used,
only decision region boundaries are plotted.

Decision regions are created by sampling the plotted area uniformly and filling in each
square cell in the plotting area with the color of the class at the cell’s center. A quick
rough plot can be made using a coarse grid with 50 intervals per dimension. More
refined decision region plots can be obtained after a longer time if more points (100 to
500) are used per dimension. This approach to forming decision regions was selected
because it can produce accurate plots and can be used with any type of classifier.

A color coded scatter plot can be overlaid on a decision region plot. Each pattern is rep-
resented by a white bordered square. If color is not used, various plot symbols are used
LNKnet Users Guide (Revision 4, February 2004) 91

CHAPTER 6: Plots
to identify the classes of the patterns. Increasing the Level of Detail to 2 changes the
plot symbols to capital letters for each class. If color is used, and there are two input fea-
tures, squares with the same color as the background region are classified correctly and
those with differing colors are classified incorrectly. If there are more than two input
features, it may be necessary to limit the number of patterns displayed in the scatter plot
to get this same result. By NOT selecting Show All Data and setting the distance limit,
it is possible to plot only those patterns that fall close to the decision region plane. When
highlight misclassified data points is selected, these misclassified points are shown as
grey and correct patterns are shown colored. In a black and white plot, misclassified
points are shown normally and correct patterns are shown as tiny dots.

Finally, an internals plot can be overlaid on the scatter plot and decision region plot.
The form of the internals plot depends on the algorithm. There are three basic types.
Three classifiers use lines to show the internals. The multi-layer perceptron shows the
planes defined by the first hidden layer. The binary tree classifier shows the node tests

Select Plots based on
Incremental Training Results

Select Decision Region Plots

Generate Decision Region
and Profile plots only for the

testing data or also generate
them for the training data

When training, generate a
shell script that trains in small

sets of epochs. Plots for
training data must be

selected to see movie mode
plots.

Select to bring up windows
used to set parameters for
plots.

Select Profile Plots

Select the structure Plot for
the current classifier

FIGURE 6.1 Plot Selection Window

Select Plots based on Testing
Results
92 LNKnet Users Guide (Revision 4, February 2004)

6.2: Profile Plots
for each non-terminal node. The histogram classifier shows the edges of the histogram
bins. The second type of internals plot uses ovals, circles, or rectangles to show the size
and position of Gaussians, spheres, or hyper-rectangles used in classification or cluster-
ing. RBF, GAUSS, and HYPER, are examples of algorithms which have this type of
internals plot. The global scale factor can be used to alter the size of these figures.
Finally, the nearest neighbor algorithms which use only the positions of centers to deter-
mine the class show small squares for each stored center. KNN and LVQ are examples
of this type of algorithm. When the level of detail is raised to 3, the internals plot ele-
ments are labeled by class or by node number.

There are two other features that are related to plotting with many-dimensional data
bases. First, two plotting dimensions can be selected. The dimension numbers are
counted from zero. The plot axes limits can be specified by the user or they can be set
automatically based on the range of the scatter plot data. Second, the values for the
non-plotted dimensions can be set using a comma delimited list. The list must have
values for all dimensions, including X and Y. The X and Y settings will be ignored. For
example, if there are five input features and dimensions 0 and 4 are plotted, then the list
“0,1,-75,0.5,0” sets the second, third and fourth dimensions to 1, -75, and 0.5 when
decision regions are plotted for dimensions 0 and 4. If no settings are provided, all of the
other features are set to 0 when the decision region plot is generated. Combining these
two features, selection of the plotted features and setting values for non-plotted features,
it is possible to gain some understanding of the shapes of multi-dimensional decision
regions.

There is one final feature that relates to the plotting dimensions. The plots can be gener-
ated for data before or after normalization. In the case of simple normalization, this
will change the values on the axes. When PCA or LDA normalization is being used, this
means that the decision regions can be generated using the original input dimensions or
using the rotated dimensions generated by the normalization. When the plots are being
generated for un-normalized data, there will be no internals plot. The internals plots are
derived from classifier parameters that were trained in the normalized data space and
they cannot easily be translated back into the un-normalized space.

6.2 Profile Plots

The profile plot parameters window shown in Figure 6.3 is displayed by selecting the
second Parameters... button on the plotting controls window. It sets parameters for two
1-dimensional plots. When these plots are displayed, both plots are combined in one
plot window. An example of these plots is in the tutorial in Figure 2.16 on page 25. The
profile plot is only available for classifiers with continuous outputs.

The profile plot shows the outputs for each classifier output node for each point along a
selected dimension given the current classifier model. The dimension plotted is the
first field on the plot window. Dimension numbers are counted from zero. The curve for
each output node is color coded for the class of the node. The sum of the outputs for
each point is plotted as a black line above the colored output lines. A bar below the zero
line on the plot shows the class returned for each point sampled to create the profile
plot.
LNKnet Users Guide (Revision 4, February 2004) 93

CHAPTER 6: Plots
A color coded histogram plot is displayed in the lower half of the plot window. The
line being sampled for the profile plot is divided into a number of bins. The number of
bins is the Number of Intervals per Dimension. Each pattern is tested for its distance
from the plotted line. If Show All data Points is selected, all patterns are included in the
histogram. If Show all data is NOT set, only those patterns closer to the profile plot line
than the distance limit are plotted. Each included pattern is assigned to a bin based on
its X value. A colored square is drawn for it in that bin. If the profile plot has been
selected, the patterns are also tested using the current classifier. If the pattern is classi-
fied correctly, its square is drawn above the histogram baseline. If the pattern is misclas-
sified the square is drawn below the baseline.

FIGURE 6.2 Parameter window for the Decision Region Plot
File name prefix for the
decision region plot. The
full plot name adds the data
file suffix (e.g.
X1mlp.region.plot.eval)

Set plot scales based on
scatter plot data

Input features for decision
region plot. First feature is 0

Comma delimited list of
input values. Include the
values for the X and Y
dimensions.

Show misclassified patterns
as gray squares

Plot using un-normalized
data. Patterns are still

normalized before
classification

Axes limits when autoscale is
not used

For scatter plot, only show
patterns that are within this
distance of the plane of the
decision region plot.

If this box is not checked,
decision region plots will be
in black and white.

Number of samples for each
dimension in decision
region plot

Show all scatter plot data

Verbosity level for internals plots
and black & white scatter plots

1: Use symbols for B&W scatter
2: Label B&W scatter with letters

3: Label internals with class or
node number

Scaling factor used for some
internals plots (scales
ellipses and circles)

Label for decision region plot

Labels for selected features
94 LNKnet Users Guide (Revision 4, February 2004)

6.2: Profile Plots
When the autoscale flag is set, the horizontal or X axis limits are set according to the
range of the input data in the dimension being plotted. The two vertical or Y axes are
scaled by the range of the profile plot outputs and histogram bin heights. The user has
the option of specifying the horizontal axis limits and the profile plot vertical axis lim-
its.

As in the decision region plot, the values for the non-plotted dimensions can be set
using a comma delimited list. The list must have values for all dimensions, including the
plotted dimension X. The X setting will be ignored. For example, if there are five input
features and dimension 0 is plotted, then the list “0,1,-75,0.5,0” sets the second, third,
fourth, and fifth dimensions to 1, -75, 0.5, and 0 when a profile is plotted for dimension
0. If no settings are provided, all of the other features are set to 0 when the profile plot is
generated.

Also as in the decision region plot, the profile and histogram plots can be generated for
data before or after normalization. In the case of simple normalization, this will
change the values on the X axis. When PCA or LDA normalization is being used, this
means that the output profiles can be generated using the original input dimensions or
using the rotated dimensions generated by the normalization.

FIGURE 6.3 Parameter window for the Profile Plot

File name for profile plot

Set plot scales based on
histogram plot data

Input feature for profile plot
Comma delimited list of
input values. Include a
value for the X dimension

Plot using un-normalized data.
Patterns are still normalized

before classification

Axes limits when autoscale is
not used

Only show patterns that
are within this distance of
the line of the profile plot.

Number of samples for
each dimension in profile
plot and number of bins in
the histogram plot

Show all data in histogram

Label for profile plot
LNKnet Users Guide (Revision 4, February 2004) 95

CHAPTER 6: Plots
6.3 Structure Plots

Structure plots show the number of nodes in a classifier and the connections between
them. In combination with internals plots they can be very helpful in understanding the
parameters of a trained classifier. The following LNKnet classifiers have structure plots:
BINTREE, MLP, GAUSS, GMIX, RBF, and IRBF. For the other classifiers and cluster-
ers, the internals plot generated with the decision region plot is more informative than a
structure plot would be. The appearance of the each structure plot depends on the type
of classifier being plotted. Because of these differences, some of the flags on the Struc-
ture Plot Parameter window shown in Figure 6.4 are not available for certain plots.

All the structure plots can be automatically scaled to fit in the plot window or they can
be plotted using a default scale. Another feature available for all plots is that the node
labels can be left off, displaying just the structure of the classifier.

6.3.1 Binary Tree Structure Plot

A binary tree classifier has terminal and non-terminal nodes. On a BINTREE structure
plot, the non-terminal nodes are represented by large circles. Each non-terminal node
has a test of the form . The input dimension being tested, , is printed below the
circle for a node. The constant is printed inside the circle. If the node tests use linear
combinations of features, that is if the node has a test of the form , no test
information is printed with the node. Each non-terminal node has two children. Those
training patterns which pass the node test are assigned to the left child of the node.
Those patterns that fail are assigned to the right child. The number of training patterns
assigned to each child is printed above the line connecting the non-terminal node with
that child. The terminal nodes are represented by large squares. Each terminal node is
assigned a class. The class label is printed below the square. The percentage of patterns
assigned to the terminal node that belong to other classes is printed inside the square.

FIGURE 6.4 Structure Plot Parameters

File for storing plot

Autoscale plot

Line thickness proportional to
weight magnitudes

Do not draw connections with
weight magnitude below a

threshold

Do not print plot text, only show
node structure

For MLP plot, display the bias
node on each layer and its

weights

When displaying magnitudes,
negative weights are orange or

hollow

xi C≤ xi
C

xiβii∑ C≤
96 LNKnet Users Guide (Revision 4, February 2004)

6.3: Structure Plots
Figure 6.5 shows a decision region plot and a structure plot for a binary tree classifier
trained on the XOR problem.

6.3.2 Gaussian Structure Plot

For a Gaussian classifier, a set of input nodes is drawn as small black circles at the bot-
tom of the plot. The label for each input feature is printed below each node. A set of out-
put nodes is drawn as large white circles at the top of the plot with the class label for
each output printed above each node. The input and output nodes are shown as lines
between the nodes in each layer. The type of covariance matrices used in the classifier is
printed below the plot. Figure 6.6 shows a structure plot and decision region plot for a
Gaussian classifier trained on the XOR problem.

6.3.3 Support Vector Machine Structure and Internals Plots
The support vector machine classifier includes a structure plot that shows how binary
classifiers are combined to form a decision for multi-class problems and an internals
plot that shows the location of support vectors. Examples of structure plots for the 10-
class vowel problem are shown in Figure 6.7. The left side shows the structure plot for
the “each class versus other” mode of making multi-class decisions. It shows the ten
binary classifiers this creates (middle nodes), each connected to input features and to the
output representing the primary class for that binary classifier. The number in each clas-
sifier node representes the number of support vectors in that binary classifier. The right
side of this figure shows the structure plot for the “all two-class combinations” mode of
making multi-class decisions. In this plot there are 45 binary classifiers each connected
to the input features and the two output classes the classifier is designed to discriminate.
Numbers in the binary classifiers again represent the number of support vectors in each
binary classifier.

FIGURE 6.5 Bintree Structure Plot and Internals Plot
LNKnet Users Guide (Revision 4, February 2004) 97

CHAPTER 6: Plots
FIGURE 6.7 Support vector machine structure plots for the 10-class vowel problem using the “each
class versus others” multi-class mode on the left and the “all two-class combinations”
multi-class mode the right.

FIGURE 6.6 Gauss Structure Plot and Internals Plot
98 LNKnet Users Guide (Revision 4, February 2004)

6.3: Structure Plots
Support vector machine internals plots show the location of support vectors. An exam-
ple for the vowel problem is shown in Figure 6.8. Support vectors that are at the
Lagrange multiplier upper bound (cbound) are shown as circles and support vectors that
are below this bound are shown as circles around an “x”. Internals plots with a linear
kernal will show support vector locations only if the “Store linear support vectors”
check box is filled in in the “SVM parameters” window shown in Figure 3.18.

FIGURE 6.8 Decision regions for a support vector machine classifier for the vowel problem where the
internals shows the locations of support vectors.

6.3.4 Gaussian Mixture and Radial Basis Function Structure Plots

The Gaussian mixture, radial basis function and incremental radial basis function classi-
fiers use Gaussian functions to provide information about the positions of input patterns.
Weighted sums of the Gaussian outputs are then used to make classification decisions.
For all three classifiers, input nodes are represented as small black circles at the bottom
of the plot. The input feature labels are printed below the input nodes. Lines connect
each input to each Gaussian hidden node represented by a large white circle in the mid-
dle of the plot. The hidden nodes are connected by lines to the output nodes, represented
by large white circles at the top of the plot. The class labels are printed above the output
nodes. The connections from the hidden nodes to the output nodes are weighted. The
LNKnet Users Guide (Revision 4, February 2004) 99

CHAPTER 6: Plots
magnitude of the weights can be shown by increasing the thickness of the lines for large
weights. The maximum thickness of these lines can be set by the user. This can reveal
the importance of particular hidden nodes. Negative weights are drawn as hollow tubes
or are colored orange when weight magnitudes are shown. The plot can also only dis-
play those connections with weight magnitudes above a certain value. This can help
clarify plots for classifiers with many hidden nodes.

For the Gaussian mixture classifier, the hidden nodes can be combined into one tied
mixture shared by all the class output nodes or each class can have its own mixture of
Gaussian nodes. In the first case all the hidden nodes will be connected to all the output
nodes. In the second case the nodes assigned to each class mixture will be connected
only to the output node for that class. Figure 6.9 shows a structure plot and decision
region plot for a Gaussian mixture classifier trained on the XOR problem.

For the two radial basis function classifiers, all hidden nodes are connected to all output
nodes. The RBF classifiers can also have a constant bias hidden node. If so, it is repre-
sented as a small square beside the other hidden nodes. Figure 6.10 shows a structure
plot and decision region plot for a Radial Basis Function classifier trained on the XOR
data base.

6.3.5 Multi-Layer Perceptron Structure Plot

For the multi-layer perceptron, there can be up to 10 layers of nodes with an input layer
at the bottom of the plot, as before, and an output layer at the top. All the connections
between all the layers are weighted. The weight magnitudes can be shown and connec-
tions with very small weights can be made invisible. Negative weights can be shown as
hollow lines or they can be colored orange. Each MLP layer has a constant bias node
which can be displayed as a small black square beside the weights for that layer. Figure

FIGURE 6.9 GMIX Structure Plot and Internals Plot
100 LNKnet Users Guide (Revision 4, February 2004)

6.4: Cost Plot and Percent Error Plot
6.11 shows a structure plot and decision region plot for a Multi-Layer Perceptron classi-
fier trained for 300 epochs on the XOR problem.

6.4 Cost Plot and Percent Error Plot

Those classifiers that train incrementally using multiple passes through the data gener-
ate training error or results files. These error files can be used to plot the cost and per-

FIGURE 6.10 RBF Structure Plot and Internals Plot

FIGURE 6.11 Multi-Layer Perceptron Structure Plot and Internals Plot
LNKnet Users Guide (Revision 4, February 2004) 101

CHAPTER 6: Plots
cent error over training. Examples of these plots are in Figure 2.18 and Figure 2.19 on
page 27 in the tutorial. For a percent error plot, the classification error rates for each
successive group of N patterns is calculated and plotted. A cost plot does the same with
the cost information stored in the training error file. The default value for N is the num-
ber of patterns in each training epoch. These plots can be scaled automatically based on
the range of the data and the number of patterns represented or the user can manually set
the axes limits.

6.5 Posterior Probability Plot

A posterior probability plot shows how closely continuous classifier outputs approxi-
mate the observed posterior probabilities for patterns in a given class. There are two for-

FIGURE 6.12 Cost Plot Parameters

Patterns per point, usually
number of patterns in training
epoch

Autoscale plot

Set axis limits and step size
between tic marks

Cost function that will be
plotted. This is set based

on the classifier

FIGURE 6.13 Percent Error Plot Parameters

Patterns per point, usually
number of patterns in
training epoch

Autoscale plot

Set axis limits and step size
between tic marks
102 LNKnet Users Guide (Revision 4, February 2004)

6.6: ROC (Detection) Plot
mats for the plot. There is a scatter plot, which plots the observed posterior probabilities
in each bin against the average output value for the patterns in the bin. A line is drawn
along the diagonal (posterior=output) to indicate where perfect posterior probability
outputs should lie. The second form of the plot displays a pair of values for each bin.
The observed posterior probabilities are drawn as blue circles with lines indicating plus
and minus two standard deviations. The average bin output value is indicated with an X.
For both versions of the plot, if the observed probabilities are within two standard devi-
ation of the average bin output, indicated by the line or the X’s, then the classifier is ade-
quately modeling the posterior class probabilities.

To generate the plot, test patterns are assigned to bins according to their output values
for the given class. These bins can be uniformly placed from zero to 100 or the ends of
the bins can be specified using a list of floating point numbers. When specifying the bin
ends, remember that there is one more end than there are bins. The quality of the poste-
rior probability fit is determined using a chi squared fit. To insure that there are enough
patterns in each bin to make that number valid, a minimum number of patterns per bin
(typically 5) is enforced. Bins with too few patterns are combined with neighboring bins
until the minimums are met in all the remaining bins.

The plotted values can be printed to a table in the log file. A small table showing the chi
square value for the bins and the quality or significance of the fit can be added. For this
plot, higher significance values indicate better fits. Significance values of less than 0.05
are labeled poor. These chi and significance values are also printed to the experiment
notebook file. The axes limits of the plot can be changed to examine smaller sections of
the plot area. The default setting are for 0-100% probability on both axes.

The actual number of patterns and the number of patterns in the target class for each bin
are printed above the upper two standard deviation indicator. This label text can be left
off by selecting No Text on Plot. To use the posterior probability plot with likelihood
classifiers, it is necessary to normalize the outputs to sum to one. Figure 6.14 shows
the LNKnet parameter window for the posterior probability plot. Figure 2.20 shows an
example of a posterior probability plot.

6.6 ROC (Detection) Plot

Receiver Operating Characteristic (ROC) or detection plots can be generated using the
test error files from classifiers that produce continuous outputs. To generate the plot,
each test pattern is sorted by its output value for the target class. A threshold is moved
over the outputs with patterns below the threshold being rejected and patterns above the
threshold being labeled as belonging to the target class. The curve which is plotted
shows the percentage of the target patterns versus the percentage of non-target patterns
that are accepted for each threshold value. When the threshold is at its maximum, the
curve is at (0,0) because no patterns are accepted. When the threshold is at its minimum,
the curve is at (100,100) because all the patterns are accepted. The area under the ROC
curve is a measure of the quality of a classifier for detection problems. An area of 100%
corresponds to a perfect ROC curve. In this case, there exists some threshold such that
all the patterns in the target class produce an output above the threshold and all the non-
target patterns produce an output below the threshold. An area of 50% corresponds to an
LNKnet Users Guide (Revision 4, February 2004) 103

CHAPTER 6: Plots
ROC curve for a random classifier, equally likely to return a given output value for any
class. Because an ROC curve depends on only one output value, the ROC area does not
necessarily indicate the quality of the classifier in classification, where all outputs are
compared and the class of the maximum output is chosen.

A table of ROC plot data can be printed to the experiment log file. This table can
include interpolated values or it can include the values of all the points in the plot. The
ROC area is also printed to the log file and to the experiment notebook file. A fraction
of the patterns can be rejected, eliminating from the plot those patterns with the lowest
output values. The plot axes limits can be altered to more closely examine a certain sec-
tion of the ROC curve. Figure 6.15 shows the LNKnet parameter window for the ROC
plot. Figure 2.21 shows an example ROC plot generated during the tutorial.

6.7 Rejection Plot

A rejection plot shows the classification error rate on the remaining test patterns as pat-
terns with low maximum output values are rejected. To generate the plot, all evaluation
patterns are sorted by their highest output value across all classifier outputs. Patterns
whose highest output is below a rejection threshold are rejected and not classified. If all

FIGURE 6.14 Posterior Probability Plot Parameters

Target class

Plot type

Comma delimited list of bin
ends. Remember that there is
one more end than there are
bins

Outputs should be normalized
for Likelihood classifiers

Split range evenly into bins or
specify the ends of each bin

To ensure that Chi values are
reliable
104 LNKnet Users Guide (Revision 4, February 2004)

6.7: Rejection Plot
the patterns which cause errors have low maximum output values, the error rate on the
remaining patterns can be reduced by setting the threshold to reject those low scoring
patterns. As with the ROC plot, the rejection plot can print a table of plot values to the
log file. The outputs for each pattern can be normalized to sum to one, which is impor-
tant if a likelihood classifier is being used. The scale of the plot can be changed to focus
on a particular section of the curve. Figure 6.16 shows the parameter window for a
rejection plot. An example rejection plot can be found in Figure 2.22.

FIGURE 6.15 ROC (Detection) Plot Parameters

Limit the size of the table
of plot values by setting

the table step

Reject a fraction of the
lowest scoring patterns

Target class

FIGURE 6.16 Rejection Plot Parameters
Verbosity of table

printed to the log file

Normalizing the outputs is
important when using a

Likelihood classifier

Alter the table size by changing
the table step
LNKnet Users Guide (Revision 4, February 2004) 105

CHAPTER 6: Plots
6.8 Movie Mode

Looking at a series of plots after training as in a flip book movie illustrates changes that
occur during training. Such series are often as informative as a slow motion movie to
understand what happens during training. LNKnet has a feature which lets you do epoch
training but which periodically stores classifier parameters and generates plots every N
epochs of training. The plots which are generated are shown together in one olxplot
window at the end of training. Olxplot allows you to page forward or backward by typ-
ing ‘f’ or ‘p’, as described in Section 6.10 on page 108, showing the plots as frames of a
movie. Olxplot also lets you to create an overlay of the training plots and to save that
overlay to a plot file.

To generate a movie mode plot select Use Movie Mode for Training Plots on the Plot
Selection window shown in Figure 6.1 on page 92. Set the Epochs per Plot field. Also
select Create Plots for Training and Test Data. When START or CONTINUE is
selected on the Main window, a shell script will be written which trains a classifier in
batches of epochs and stores decision region and profile training plots in numbered files
for each batch. These plots are not displayed until all the training is complete. Because
the movie mode plots are generated as training progresses, movie mode plots cannot be
generated using the PLOT ONLY button on the Main window.

Below is an overlay of the training plots for an MLP classifier training on the Gap data
base. There are two classes containing patterns uniformly sampled from rectangles of
equal height. The rectangle for the first class is one tenth as wide as the one for the sec-
ond class. The MLP had one hidden node and trained for a total of 10 epochs on 200
patterns per epoch. The training was done in batches of one epoch and thus plots were
produced every epoch. The lines on the plot show the position of the decision region
boundary defined by the hidden node. It starts at the right and gradually moves to the
left to a position between the classes.

The movie mode feature can also be used to train for a large, unknown number of
epochs. Training is done in batches even when there are no training plots selected.
Select Movie Mode on the plot selection window but do not select Create Plots for
Training and Test Data. Set the number of epochs per plot on the plot window and the
maximum number of epochs to train on the algorithm parameter window. When you
feel that training has gone on long enough, you can select STOP on the main window.
This will terminate the shell script that was controlling the training. Provided you did
not stop the training while a parameter file was being written, the stored parameters will
reflect the training as of the end of the last batch. Because the training shell script will
have stopped, tests of the trained classifier and plots must be run using a new shell
script.
106 LNKnet Users Guide (Revision 4, February 2004)

6.9: Including Plots in Documents
6.9 Including Plots in Documents

Four approaches can be used to include LNKnet graphs in reports and to make hard-
copies of plots. First, a bit map of a plot can be obtained by producing plots in a plot
window and using standard tools that capture the screen image to produces a file from
this image. It is possible to capture screen images on almost all computers, but this
approach does not lead to the highest resolution plots. A second approach is to translate
plot files to another format. Plot files can be translated to FrameMaker .mif files (Maker
Interchange Format) using the filter provided named plot2mif. The mif versions of a
.plot file can then be imported into a FrameMaker document. The plot shown in Figure

FIGURE 6.17 Internals Plots and Scatter Plot for MLP training on Gap.train,1 epoch per batch, 10
epochs total
LNKnet Users Guide (Revision 4, February 2004) 107

CHAPTER 6: Plots
6.17 was imported using a MIF file. Alternatively, the plot2ps tool can be used to con-
vert a .plot file to a PostScript file which can be imported into other document prepara-
tion programs or printed on a postscript printer. Postscript files can also be converted to
many other graphics formats using standard plotting utilities. MIF and PostScript files
can be created on the Preview and Print window described in Section 7.1.

A final approach to including plots in reports is to edit the shell script written by LNK-
net, adding the -mac and other flags beginning with -mac to all plotting commands. This
produces new files containing x,y coordinates of all points in plots suitable for import-
ing into a spreadsheet on a Macintosh or IBM PC. These points can be used by pro-
grams such as Delta Graph or Excel to create carefully formatted and annotated plots.

6.10 Manipulating Plot Windows

LNKnet plots are created in separate windows using a program named olxplot. Olxplot
uses several menu buttons to manipulate the plot. There are also keyboard short cuts
which control the window, as shown in Table 6.1.

When a list of several plots is given to olxplot, as happens in movie mode, the user can
use the next and previous commands to examine the plots in the list. Enabling overlay
mode allows the user to examine multiple plots simultaneously. Use next or previous to
display the first plot in the overlay, turn overlay mode on and select next or previous
until all the desired plots are shown. The print and save commands can be used to gener-
ate a plot file or hardcopy of the displayed overlay plot.

TABLE 6.1 Olxplot Commands

Menu Item
Keyboard
Command Function

File->Print->(printer name) h Print current plot to default printer

File->Print->Printer... P Change default printer name

File->Save s Save current plot

File->Quit q Quit olxplot

Clear c Clear plot window

Next n Show the next plot or add it to an
overlay plot

Prev p Show previous plot or add it to an
overlay plot

Overlay->Enable o Toggle the overlay mode

Overlay->Disable

Help ? Display the Help window
108 LNKnet Users Guide (Revision 4, February 2004)

7.1: Preview and Print Window
CHAPTER 7 Other LNKnet Programs

This chapter describes additional features and tools that are available with the LNKnet
package. Some of these tools (the Preview and Print window, C code generation from a
parameter file, and committee data base creation) are available from the LNKnet graph-
ical user interface. The others (batch file creation from LNKnet shell scripts, multi-layer
perceptron initialization using binary tree parameters, data file creation with normalized
patterns, and data exploration with xgobi) must be run from a shell or in a shell script.

7.1 Preview and Print Window

Experiment log files and plot files can be viewed and printed from the Preview and Print
File window shown in Figure 7.1. The available functions are at the top of the window.
The user can display the current log file or experiment plot files, or print them to a Post-
Script printer. The user can also translate plot files to PostScript or Maker Interchange
Format (MIF) using the plot2ps and plot2mif programs. The files to be acted on are
selected using the check boxes on the left side of the window. The file names are listed
beside the check boxes. To the right of the names is a table listing which log and plot
files actually exist, as well as which plots have already been translated to PostScript or
MIF format. Use the Update file status button to update this table after an experiment
is run. An optional PostScript printer name is specified at the bottom of the window.
When this field is filled, the command lpr -P<name> is used to print log or plot
files.

7.2 Code Generation Using a LNKnet Parameter File

Many LNKnet users need to include a trained classifier as part of a larger system.
Although the LNKnet classifier programs have subroutines that perform classification
given a set of classifier parameters, a short stand-alone C subroutine would be much
easier to integrate into most systems. LNKnet has a filter program for each classification
algorithm that generates C subroutines for pattern classification. Each filter program
takes as an argument an algorithm parameter file. The program prints a subroutine, clas-
sify(), to the UNIX standard output stream. This subroutine can be called from a C pro-
gram to classify patterns. The outputs generated by classify() for an input pattern will be
the same as those that the algorithm testing program would generate on the same pat-
tern. The difference is that the testing program reads classifier parameters from a file
which can be used to continue training. The parameters in the subroutine classify() can-
not be changed.
LNKnet Users Guide (Revision 4, February 2004) 109

CHAPTER 7: Other LNKnet Programs
Classify() takes a raw input pattern and a pointer to an output vector. It normalizes the
inputs and performs any feature selection that was used with LNKnet to train the classi-
fier. For this, the classify routine uses the function normalize() which is included in the
generated C file. The routine then calculates classifier outputs using the classifier
parameters taken from the algorithm parameter file. These outputs are copied into the
output vector and the index of the output with the largest output value is returned as the
class of the input pattern.

FIGURE 7.1 Preview and Print Window

Select an action
to take on the files

below

Select files to
view, print, or

translate

Select an
alternate printer.

The print
command used

here is
lpr -Pbw1
110 LNKnet Users Guide (Revision 4, February 2004)

7.3: Committee Data Base Generation
To create a C subroutine file, first train a classifier as described in the tutorial. Bring up
the C File generation window, shown in Figure 7.2, by selecting C Code Generation...
on the main LNKnet window. The subroutine name suffix field sets an extension for the
classify routine name. For the window in Figure 7.2 the subroutine would be
classify_XORgauss(). To have no subroutine suffix, make the field blank. Select Gen-
erate C Code File to write and run a shell script that creates the C subroutine file. An
example parameter file for a Gaussian classifier trained on the XOR problem, the C sub-
routine classify_XORgauss() produced from it, and a short program that uses the sub-
routine to generate a decision region plot are included in Appendix C.6 on page 159.

7.3 Committee Data Base Generation

Because not all classifiers are the same, classification results can differ across classifi-
ers. One way to improve overall classification error rates is to use several classifiers and
combine the results. The LNKnet package has a program, committee, which takes a list
of classification error files and combines them to create an input data file which can be
used for this type of processing. The LNKnet graphical user interface has a window,
shown in Figure 7.3, that helps the user use this program.

Because committee uses error files as its inputs, the first step in generating a committee
data base is generating these error files. Train a set of classifiers and enter the experi-
ment name for each classifier in the experiment list on the committee data base genera-
tion window. For each classifier, generate a testing error file for each data file (training,
evaluation, and test). The error file verbosity on the Reports window must be set to
Results+Outputs. Note that the training error file is generated by doing a test on the
training data. It is not the error file generated while training the classifier. On the com-
mittee data base generation window there is a set of check boxes that specify which
error files to generate committee data bases for. Beside each choice is a list which shows
the current status of those error files. The lists should be all ones for any file to be gen-
erated. A zero (0) indicates a missing file. A star (*) indicates that the file was generated
using the wrong error file verbosity. A one (1) indicates the file exists and was created
with an error file verbosity that was high enough. If the lists seem to be incorrect, try
clicking on them to bring them up to date. On the window in Figure 7.3, the test files are
ready, the evaluation files were generated with the wrong verbosity and must be redone,

FIGURE 7.2 C code window
LNKnet Users Guide (Revision 4, February 2004) 111

CHAPTER 7: Other LNKnet Programs
and no training files have been created yet. Selecting Generate Committee Data Files
writes and runs a shell script that generates a committee data file for each of the
requested file types. If any files are missing or the wrong size, the shell script is not run
and an error appears. A description file for the data base is also created. The number of
classes in the data base is taken from the number of output classes field near the bottom
of the committee data base generation window. The class labels are copied from the cur-
rent data base selected on the data base selection window. The number of input features
in the data base is the number of classes times the number of classifiers in the commit-
tee. The input labels are generated from the experiment names and output numbers. The
input labels are more fully described in Section 8.4 on page 127. The data files and data
base description file are stored in the experiment directory.

7.4 Batch File Creation from LNKnet Shell Scripts

The LNKnet system has many classification and plotting programs. To provide flexibil-
ity to the users of these programs, they have many command line arguments which must
be set each time the programs are called. The LNKnet graphical user interface was writ-
ten to simplify the creation of shell scripts which call these classification and plotting
programs. These shell scripts can be run by LNKnet, as was done in the tutorial. The
shell scripts can also be run from a shell window or be called from another script. This
allows the user to include LNKnet classifiers in larger experiments.

To run a LNKnet experiment from the shell, first set up the experiment in the LNKnet
graphical user interface. On the main window, select Only store shell script, do not
run. Then select START, as you would normally. LNKnet will write a shell script for
the experiment. This script can then be edited and started from a shell window or called

FIGURE 7.3 Committee Data Base Window

There are no training error
files,

N1gauss.err.test_on_train,
N2gauss.err.test_on_train or

N4gauss.err.test_on_train

The evaluation error files,
N1gauss.err.eval,

N2gauss.err.eval, and
N4gauss.err.eval, were

generated with the wrong
error file verbosity (-verror 1)

The testing error files,
N1gauss.err.test,

N2gauss.err.test, and
N3gauss.err.test are ready

for the creation of
gnoise_var_comm.test

Specify the
classifiers to
include using
the
experiment
names
112 LNKnet Users Guide (Revision 4, February 2004)

7.5: File Generation with Normalized Data
from another script, just like any other C-shell script. Note that this script is different
from normal LNKnet shell scripts because outputs are stored in the log file but are not
printed to the shell window and plot files are created but the plots are not displayed on
your workstation screen.

An example of using a script in a batch mode would be an experiment which tests dif-
ferent weight step sizes for a Multi-Layer Perceptron. This can be done interactively
from the LNKnet interface, but it might be faster to make a single script. The user could
then edit the script to make the step size parameter a variable and put the classifier train-
ing and testing commands in a loop. The new script would cycle through a list of step
size values, training and testing a classifier for each value.

7.5 File Generation with Normalized Data

In many applications, normalization and feature selection are performed as an external
preprocessing step. This has the advantage of allowing many functions to be applied to
the data before it is written to a file and given to the analysis software. A disadvantage
of this method is that each normalization and feature selection method creates a new
copy of the data base which can use prohibitive amounts of memory. In LNKnet we
have chosen to precalculate and store certain normalization parameters which are then
applied on the fly as training or test data is read into a classifier. This slightly increases
calculation times but decreases the amount of file storage required to run an experiment.
Unfortunately this restricts the preprocessing that can be performed as part of that
experiment.

LNKnet has a program, norm_apply, which takes a normalization parameter file, feature
selection specification, and a data file. The program applies the normalization and fea-
ture selection to each data pattern and then writes the modified pattern to a new data
file. The UNIX manual page for norm_apply describes all the flags used by the pro-
gram.

7.6 Multi-Layer Perceptron Initialization from Binary
Tree Parameters

The multi-layer perceptron is a flexible algorithm suitable for solving classification
problems, detection problems, and input-output mapping problems. In testing, the MLP
classifier can produce outputs for an input pattern quickly and those outputs can be use-
ful in determining a confidence measure for the network’s response. Unfortunately, the
MLP classifier trains slowly. One way to avoid this problem is to initialize the MLP
using parameters from another algorithm. The program bintree2mlp initializes the first
layer weights of a Multi-Layer Perceptron using the non-terminal node tests of a Binary
Tree classifier. On some problems, this method greatly reduces the training time for the
MLP classifier.

Take as an example the LNKnet disjoint data base. In this two class data base, the data
in class 1 is found in two squares surrounded by the data in class 0. While most classifi-
ers can correctly classify most of the data, the class 0 patterns which lie between the two
LNKnet Users Guide (Revision 4, February 2004) 113

CHAPTER 7: Other LNKnet Programs
class 1 squares are often misclassified. A binary tree classifier with 6 non-terminal
nodes can achieve an error rate of 1.2% on the disjoint testing data. The structure and
decision region plots for this classifier are shown in Figure 7.4. A multi-layer percep-

tron classifier with 6 hidden nodes requires 1000 epochs of training to achieve a similar
error rate of 1.6%. This training time can be cut to 10 epochs by initializing the multi-
layer perceptron using the binary tree parameters. The structure plot and decision region
plot for this classifier are shown in Figure 7.5.

FIGURE 7.4 Binary Tree Structure plot and Internals Plot

FIGURE 7.5 Initialized MLP Structure Plot and Internals Plot
114 LNKnet Users Guide (Revision 4, February 2004)

7.7: Data Exploration with Xgobi
To perform this experiment, first select the LNKnet disjoint data base on the data base
selection window. The LNKnet data base directory is $LNKHOME/data/class. Next,
change the experiment name prefix to disjoint and select the binary tree classifier. On
the BINTREE parameter window, select Maximum Number of Nodes during Testing
and set the number to 6. Train and test the binary tree classifier.

Next select the multi-layer perceptron classifier. On the MLP parameter window set the
number of epochs to 1000 and the node structure to 2,6,2. Train and test the multi-layer
perceptron classifier by selecting START. It may be interesting to display training plots
using movie mode. A plot every 50 or 100 epochs should be sufficient.

Now, initialize a multi-layer perceptron classifier using the binary tree classifier. First,
run the following command in your shell window:

bintree2mlp -bin_fparam disjointbintree.param \
-prune_tree -max_nodes 6 \
-mlp_fparam disjointmlp.param -nodes 2,6,2

The parameter file disjointmlp.param now holds a multi-layer perceptron with first layer
weights that match the binary tree decision node lines. The other weights in the network
are set to random values and need to be trained. On the MLP parameter window, set the
number of epochs to 10. Display the MLP weight parameter window and select Use
Step size list for weights in each layer. Set the Step size list to 0,.1. This freezes the
first layer weights to the initialized values while allowing the other weights to be
trained. Display the MLP node parameter window and select Specify sigmoid steep-
ness for each layer. Set the Sigmoid Steepness List to 50,1. This makes the sigmoid
functions for the hidden layer act like the non-terminal node tests used in the binary tree
classifier. Now train the initialized multi-layer perceptron by selecting CONTINUE on
the main window. The pre-initialized MLP classifier achieves the same error rate as the
randomly initialized MLP classifier using 1/100 the epochs of training.

7.7 Data Exploration with Xgobi

Xgobi is a public domain plotting package which permits exploration of multi-dimen-
sional data bases. It displays one, two, and three dimensional scatter plots of ASCII data
files of a format similar to that used by LNKnet. The source code and documentation for
xgobi can be found in the LNKnet software release under $LNKHOME/src/xgobi. The
software can also be obtained using an anonymous ftp to lib.stat.cmu.edu. Compressed
tar files of the current xgobi release are found in general/XGobi at that site.

LNK2gobi creates several Xgobi label files to facilitate exploration of LNKnet classifi-
cation data files. To use LNK2gobi, first create a LNKnet data file and data base
description file, as described in Section 8.1. The data base description files can be cre-
ated using the LNKnet graphical user interface, as described in Section 5.3. Then run
LNK2gobi to generate xgobi label files. Finally, run xgobi on the data file. For example,
use these commands to run xgobi on the normalized vowel data used in the tutorial:

> cd ~/Tutorial

> LNK2gobi -fdata vowel.train -fdesc vowel.defaults
LNKnet Users Guide (Revision 4, February 2004) 115

CHAPTER 7: Other LNKnet Programs
> xgobi vowel.train

The data file and the data base description file are unaltered by LNK2gobi. The follow-
ing files are created:

TABLE 7.1 Files created by LNK2gobi

vowel.train.col Labels for each input feature

vowel.train.colors Colors for each pattern based on the class

vowel.train.row Class labels for each pattern

vowel.train.glyphs Plotting shapes for each pattern based on the class
116 LNKnet Users Guide (Revision 4, February 2004)

CHAPTER 8 Input and Output File
Formats

The LNKnet system uses many files to store classification data, normalization and fea-
ture selection parameters, experiment commands and results, classification algorithm
parameters, plots, generated C subroutines and committee data bases. This chapter
describes the default names and the formats of the files created and used by LNKnet
programs.

8.1 Input Data File Formats

Before running an experiment it is necessary to create a data base of classification pat-
terns. A LNKnet data base has a data base description file and one or more data files. A
data base usually also has normalization files and feature selection files. When cross
validation experiments are run there can also be a cross validation file, although this is
usually not necessary. See Section 5.7 for a discussion of cross validation files.

FIGURE 8.1 File format for train, eval, and test data files

0 0.1 0
1 1.1 0
1 0 1.1
0 1 1.1

Integer Class Index C
0 ≤ C ≤ Μ−1
M=Number of classes Input Features

First Pattern

Last Pattern
LNKnet Users Guide (Revision 4, February 2004) 117

CHAPTER 8: Input and Output File Formats
8.1.1 Train/Eval/Test Data Files
A LNKnet data base usually has three data files. There is a training file, an evaluation
file, and a testing file. The training file is for training the classifier. The evaluation file is
usually used for evaluating the classifier each time it is trained to select the classifier
size and tune classifier regularization parameters such as K for a K nearest neighbor
classifier and network structure for a multi-layer perceptron classifier. The test file is
saved for generating the final generalization error rate that should be reported using data
never used during training.

The format of these three files is identical and is shown in Figure 8.1. The files are
ASCII. There is one pattern per line. On each line, the first number is an integer for the
class. The class numbers go from zero to the number of classes minus one. The remain-
ing numbers are floating point values of input features of the pattern. The numbers on
each line must be separated by at least one space or tab. Every line, including the last,
should have a carriage return at its end.

A data base is selected on the LNKnet data base window which is described in
Section 5.3. The names of the data files are generated by adding extensions to the data
base name. The default extensions and the resulting file names for the pbvowel data
base are given in Table 8.1. Figure 8.1 shows five patterns taken from the pbvowel

training data file.

FIGURE 8.2 Five Patterns taken from pbvowel.train

0 228. 460. 3300. 3950. 3

1 205. 600. 2550. 4000. 3

3 220. 820. 2180. 2850. 2

6 228. 460. 900. 2830. 2

0 150. 300. 2240. 3200. 1

8.1.2 Description Files
When a data base is selected in LNKnet, the program displays the number of inputs, the
number of classes, the labels for the input features, and the labels for the classes. This
information is obtained from the description file for each data base. These files have the
suffix “.defaults”. The recommended approach to generating description files is to use
the Generate Description File popup window which is described in Section 5.3.

TABLE 8.1 Data Files for pbvowel data base

File Type Suffix File Name

Training .train pbvowel.train

Evaluation .eval pbvowel.eval

Testing .test pbvowel.test
118 LNKnet Users Guide (Revision 4, February 2004)

8.1: Input Data File Formats
FIGURE 8.3 File format for a description file

A description file has the same general format as the .lnknetrc file. There is a dummy
command name followed by a list of flags and their values. The flags in the description
file must match those in the example below. The flag -ninputs is followed by the num-
ber of input features. The flag -noutputs is followed by the number of classes. The flag
-labels is followed by a comma delimited list containing the names of all classes begin-
ning with class zero. The flag -input_labels is followed by a similar comma delimited
list of labels for the input features starting from feature zero. The delimiter for the label
lists can be comma(,), colon(:), or dash(-). A label list ends at the first space encoun-
tered. None of these characters can be used in class labels or input feature labels.
Table 8.2 gives examples of acceptable and unacceptable labels. A data base description

file can also have a flag for the type of data base. The data base type flags are -class for
static pattern classification data bases, -map for input/output mapping data bases, and
-seq for sequence classification data bases. Only static pattern classification data bases
can be used with the programs described in this User’s Guide. Description files are read
using the command line argument parsing routines used by all LNKnet programs. Like a
UNIX command, the description file flag list must either be one line long or every line
but the last must end with a backslash (\) immediately followed by a carriage return.
When using backslashes, it is important to remember to put spaces at the end of each
comma delimited list. The backslash and carriage return are not interpreted as spaces

For LNKnet to find the description of a particular data base, the name must be
<data_base>.defaults. For example, the description file for pbvowel is
pbvowel.defaults.

TABLE 8.2 Acceptable and Unacceptable labels for string lists

Acceptable Unacceptable
Reason for
Unacceptability

10/jan/94 10:jan:94 colons (:)

1cepstra 1 cepstra space

delta_cepstra delta-cepstra dash (-)

July_4_95 July 4, 1995 spaces and commas

describe -class \
-ninputs 2 -input_labels X0,X1 \
-noutputs 2 -labels EVEN,ODD

Dummy command
name for parser

Number of input
features

Data Base Type.
One of -class,
-map, or -seq

Optional input
feature labels

Number of
output classes

Optional class
labels

Backslash to show
“command” continues
on next line
LNKnet Users Guide (Revision 4, February 2004) 119

CHAPTER 8: Input and Output File Formats
FIGURE 8.4 The description file for pbvowel, pbvowel.defaults

describe -class -ninputs 5 -noutputs 10 \
-labels heed,hid,head,had,hud,hod,hawed,hood,whod,heard \
-input_labels pitch,1formant,2formant,3formant,MFC

8.1.3 Normalization Files
Normalization files contain normalization parameters calculated based on training data.
These parameters are applied to training and test patterns during classification experi-
ments and for plot generation. A copy of the normalization parameter file is stored in
each classification and clustering parameter file to insure that the same normalization is
used throughout an experiment. The parameters stored in the file include the number of
inputs and outputs for the data base, the number of patterns in the training file, the type
of normalization, and those parameters necessary to perform the normalization. Nor-
malization parameter files can be created from the normalization file generation win-
dow as described in Section 5.4. Normalization file names start with the data base name
followed by .norm. There is an extension for the type of normalization, as shown in
Table 8.3.

8.1.4 Feature List Files
A feature list file contains an ordered list of input feature numbers. The order is based
on a feature search of the type described in Section 5.5. The file contains the number of
input features, the number of features in the best feature list found during the search, the
list of features, and the classification error rates of the feature sets on the list. Feature list
file names start with the data base name followed by an extension for the search direc-
tion, a character for the normalization file type, and .param. Table 8.4 shows some fea-
ture list file names for the pbvowel data base.

TABLE 8.3 Normalization File Names for vowel data base

Normalization Type File name extension
file name
(pbvowel data base)

simple .simple pbvowel.norm.simple

principal components analysis .pca pbvowel.norm.pca

linear discriminant analysis .lda pbvowel.norm.lda

TABLE 8.4 Feature List file names for pbvowel data base

Search
Direction

Direction
Extension

Normalization
Type

Normalization
Character File Name

forward .for none .N pbvowel.for.N.param

forward .for simple .S pbvowel.for.S.param
120 LNKnet Users Guide (Revision 4, February 2004)

8.2: Files Generated by LNKnet
8.2 Files Generated by LNKnet

LNKnet programs generate several types of files during an experiment. There are shell
scripts, screen files, a notebook file, log files, parameter files, error files, and plot files.
Shell scripts and screen files are produced by LNKnet itself. A notebook file is created
by LNKnet and added to by the shell scripts. Log files, parameter files and error files are
generated by the classifiers. Plot files are generated by the plot programs associated
with the classifiers.

The files generated during a classification experiment are shown in Figure 8.5 using
shaded ellipses. Data base files in this figure are shown using unshaded rounded edged
rectangles, and LNKnet programs are shown as rectangles. LNKnet creates a screen file
which stores the settings for all LNKnet windows at the time of the experiment for pos-
sible restoration and continuation of the experiment. LNKnet writes a shell script which
includes calls to all of the programs needed in an experiment. Finally, LNKnet appends
an entry to the notebook file briefly describing the experiment. In a normal experiment,
a classifier model is created, trained, and stored. Pattern by pattern classification results
may be stored in an error file. A summary of the training is printed to the terminal win-
dow in which the LNKnet program was started. The summary is also printed to a log
file and a one line training entry may be added to the notebook file. After training, the
stored classifier is tested on a new data file. The pattern by pattern results are stored in
an error file and a summary is written to the terminal window and appended to the log
file. A one line test entry is added to the notebook file. Finally, decision region and pro-
file plots are generated based on the classifier parameter file and the test data file. Struc-
ture plots are generated based on the classifier parameter file. Percent error and cost
plots can be generated based on the training error file. Posterior probability, ROC, and
rejection plots can be generated based on the test error file. The posterior probability
and ROC plots each add one line to the notebook file.

The file names are generated by LNKnet using a few simple rules. The file names for an
experiment all start with the same experiment name. The name is the experiment name
prefix followed by the classifier name. If the experiment name prefix is Test3, and the
classifier is a Multi-Layer Perceptron classifier, the experiment name is Test3mlp. Each
file type has its own default extension as described below and shown in Figure 8.5. The
notebook file is not part of a particular experiment. It is usually called LNKnet.note but
the name can be changed by the user. It is stored in the directory in which LNKnet was
started.

backward .back PCA .P pbvowel.back.P.param

forward and

back

for_bk LDA .D pbvowel.for_bk.D.param

TABLE 8.4 Feature List file names for pbvowel data base

Search
Direction

Direction
Extension

Normalization
Type

Normalization
Character File Name
LNKnet Users Guide (Revision 4, February 2004) 121

CHAPTER 8: Input and Output File Formats
8.2.1 Shell scripts
When START, CONTINUE or PLOT ONLY is selected on the main LNKnet screen, a
shell script is written and an entry is added to the notebook file. The shell script contains
calls to all of the programs requested by the user. In general, the classifier will be
trained, training plots will be generated, the classifier will be tested and testing plots
will be generated. If movie mode was selected on the plot window, there will be a loop
for the training. In the loop, the classifier is trained for a few epochs, then any training
plots are generated, but not displayed. When the total number of requested epochs of
training have been completed, all of the training plots are displayed together in one olx-
plot window. Testing the classifier and generating testing plots proceed as before.

The file name extension for shell scripts is .run. Thus the full file name for the example
experiment is Test3mlp.run. An example shell script is found in Section C.1.1.

Testing ResultsTraining ResultsParameter File
Test3mlp.err.train Test3mlp.err.testTest3mlp.param

Log File
Test3mlp.log

Decision Region Plot File
Test3mlp.region.plot.test

Percent Error Plot File
Test3mlp.perr.plot

LNKnet

Testing Data

Profile Plot

TestTrain

Shell Script

Training Data

FIGURE 8.5 Files used and created in a LNKnet experiment

XOR.test

Test3mlp.run

XOR.train

mlp mlp

mlp_plot_bound
Percent Error Plot

plot_perr

Screen File
Test3mlp.screen

Normalization Data
XOR.norm.pca

Description File
XOR.defaults

Decision Region Plot
mlp_plot_bound

Structure Plot
plot_mlp

Cost Plot
plot_cost

Profile Plot File
Test3mlp.region.plot.test

Cost Plot File
Test3mlp.cost.plot

Structure Plot File
Test3mlp.struct.plot

Posterior Probability Plot File
Test3mlp.prob.plot

ROC (Detection) Plot File
Test3mlp.detect.plot

Rejection Plot File
Test3mlp.reject.plot

Notebook File
LNKnet.note

Posterior Probability Plot
plot_prob

ROC (Detection) Plot
plot_detect

Rejection Plot
plot_reject
122 LNKnet Users Guide (Revision 4, February 2004)

8.2: Files Generated by LNKnet
8.2.2 Screen files
Whenever LNKnet writes a shell script, it also saves the settings of all screens in a
screen file. The entries of a screen file look like calls to the LNKnet classifiers and plot-
ting programs. There are settings for all LNKnet classification, clustering, plotting, and
general parameters.

The file name extension for screen files is .screen. Thus the full screen file name for the
example experiment is Test3mlp.screen.

8.2.3 Notebook File
Each experiment adds one or more lines to the LNKnet notebook file. Each line starts
with the name of the shell script file. The first line describes the experiment. If this is the
first time the experiment has been run, the data base, normalization, feature selection,
and priors adjustment are described. Parameters to the classification algorithm are also
included. If the current experiment is being rerun, only the changes to the experiment
parameters are recorded. In this case, after the shell script name is a list of the flags that
have been added or changed. Flags that have been removed are also listed in square
brackets. To create this file, LNKnet compares the current experiment screen file with a
copy stored when the previous experiment was written. This backup copy is stored in
LNKnet.note.screen. If this is a classification algorithm which uses several passes
through the data to train, the next entry in the experiment notebook gives the number of
training epochs, the classification error rate and cost for the last epoch of training, and
the number of seconds the training took. The next line gives the data file used in testing
the classifier, the average classification error rate and cost on that data, and the number
of required seconds to test the data. This information is also printed out for cross valida-
tion experiments, along with the number of automatic cross validation folds. If a poste-
rior probability plot was requested, there is a line with the target class, the chi value,
degrees of freedom, and significance of the fit of the binned output values to the actual
posterior class probabilities in the bins. For an ROC plot, a line is included with the tar-
get class and the area under the ROC curve. The notebook file generated during the
LNKnet tutorial is found in Section C.5.

8.2.4 Log Files
When a classifier or clusterer is run, it prints certain information to the screen and also
stores that information in a log file. The contents of that log file depends on the Report
Verbosity, as shown in Table 8.5. The log file verbosity is set on the LNKnet Report
Files and Verbosities window. In a shell script, this parameter is -verbosity.

TABLE 8.5 Log file verbosity levels and Contents

Log file contents Verbosity Level Notes

=========<classifier> Begin All Levels

Settings for all command line variables Verbosity 3 or over

Average error or cost for each epoch of
training

Verbosity 3 or over Incrementally Trained
classifiers only

Confusion Matrix Verbosity 2 or over
LNKnet Users Guide (Revision 4, February 2004) 123

CHAPTER 8: Input and Output File Formats
The file name extension for log files is .log. Thus the full log file name for the example
experiment is Test3mlp.log. Section C.1.2 gives an example log file from the LNKnet
tutorial.

8.2.5 Algorithm Parameter Files
After a classifier has been trained, it is saved in a parameter file. The first items in the
parameter file are all program flags and their settings and the date and time that training
was started. Following this is information on any normalization performed on the train-
ing data before it was presented to the classifier. Any data presented to this classifier for
testing will use these same normalization parameters. Finally, the classifier parameters
are stored. If this parameter file was generated during N-fold cross validation, it will
have several sets of classifier parameters.

The file name extension for parameter files is .param. Thus the full parameter file name
for the example experiment is Test3mlp.param. A parameter file for the Gaussian classi-
fier is found in Section C.6.1.

FIGURE 8.6 Format of an error file

8.2.6 Error Files
When a classifier is tested, the classification results for each pattern can be stored in an
error file. An annotated example of an error file is shown in Figure 8.6. Whether to cre-
ate an error file and how much information to store in it is controlled by the Error File
Verbosity on the LNKnet Report Files and Verbosities window. In a shell script, this
parameter is the -verror flag. If Error File Verbosity is set to None (-verror 0), no error

Error Summary Verbosity 1 or over

Overall Error Rate All Levels

Summary for entry into Notebook All Levels

========<classifier> End All Levels

TABLE 8.5 Log file verbosity levels and Contents

Log file contents Verbosity Level Notes

0 0 1 1 0.287 0.463 0.535 0.1 0.1
1 1 1 0 0.056 0.241 0.765 1.1 0.1
2 0 0 0 0.029 0.827 0.171 1.1 1.1
3 1 1 0 0.147 0.380 0.612 0.1 1.1

Pattern
Number

True Class Class Selected
by Classifier

Whether this was an
Incorrect Classification

Cost of Outputs Classifier Outputs Input Pattern
124 LNKnet Users Guide (Revision 4, February 2004)

8.2: Files Generated by LNKnet
file is written. If Error File Verbosity is set to Classification Results (-verror 1), for each
pattern which is tested, the entries shown in Table 8.6 are written to the error file. Each

tested pattern generates a line in this file. If the Error File Verbosity is Results+Outputs
(-verror 2), after the results entries, the classifier outputs are written to the file, as shown

in Table 8.7. Finally, if the Error File Verbosity is Results+Outputs+Inputs (-verror 3),
the normalized input pattern is written to the file after the outputs as shown in Table 8.8.

The file name extension for error files is .err. The data base file extension is also used to
tell which data base file these are the results for. Thus, if the example multi-layer per-
ceptron classifier stores pattern by pattern classification results during training, they go
into Test3mlp.err.train. Table 8.9 shows the default extensions for data file types and the
resulting default error file names. The .test_on_train extension cannot be changed from
the LNKnet graphical user interface.

8.2.7 Plot Files
When a plot is generated, it is stored in a file which is formatted as described on the
plot(5) UNIX manual page. The format has been extended to allow the use of colors in
plots. The file name extension depends on the plot type. Because scatter and histogram
plots can be generated for any data base file, the decision region and profile plots names
also include a data base file extension. These file name extensions are the same as those
used for error files and are given in Table 8.9. The file names for normalization and fea-

TABLE 8.6 Fields in a Results Error File (-verror 1)

Pattern Number Correct Class Classifier’s
Class

Classification
Error

Cost

TABLE 8.7 Fields in a Results+Outputs Error File (-verror 2)

Five Results Fields Classifier Outputs for this pattern (nclasses fields)

TABLE 8.8 Fields in a Results+Outputs+Inputs Error File (-verror 3)

Five Results Fields Nclasses Outputs Fields Normalized Inputs (ninputs fields)

TABLE 8.9 Error File Names for Experiment Test3mlp

File Type
File Type
Extension Error File Name

Train on train .train Test3mlp.err.train

Test on train .test_on_train Test3mlp.err.test_on_train

Test on eval .eval Test3mlp.err.eval

Test on test .test Test3mlp.err.test

Cross valid on train .cv Test3mlp.err.cv
LNKnet Users Guide (Revision 4, February 2004) 125

CHAPTER 8: Input and Output File Formats
ture selection plots depend on the name of the parameter file on which the plot is based.
For normalization plots, add .plot to the parameter file name. For feature selection plots,
replace the extension .param with .plot. Table 8.10 shows the extensions and plot names
for the example classification experiment. The decision region and profile plot names
are for plots using the evaluation data file.

These files can be displayed using olxplot under OpenWindows or xplot under MIT X.
One way to print plot files is to first convert them to PostScript using plot2ps. Plots can
be added to FrameMaker documents if they are first translated into Maker Interchange
Format using plot2mif. Both of these programs are available on the Print window
described in Section 7.1.

8.3 C Code Files

Each LNKnet classifier has a filter program which generates a C classification subrou-
tine based on a classifier parameter file. The actual contents of such a file depend on the
classification algorithm being implemented. In general, the file contains the original
parameter file name, a description of the normalization and feature selection parame-
ters, a description of those classifier parameters that affect the classification subroutine,
necessary #include statements, declarations of the classify() and normalize() subrou-
tines created in the file, and finally the classify() and normalize() routines themselves.
The routines declare most classifier parameters in the form of structures or arrays. The
routine classify() takes two float arrays as input, the raw input pattern and an array for
the resulting classifier outputs. The routine returns an integer representing the class of
the input pattern. The classification routine calls the normalize() routine for normaliza-
tion and feature selection. The classification routine itself then uses the classifier param-
eter structures or arrays for its calculation of the classifier outputs given the now
normalized inputs. Finally, the normalization routine takes a float array for the input
vector. The input vector is normalized and copied back into the array. The integer num-
ber of inputs after normalization and feature selection is then returned. C code files and
how to generate them from LNKnet are described in Section 7.2. The file name exten-
sion for C code files is .c. Thus the full C code file name for the example experiment is
Test3mlp.c. An example of a C code file for a Gaussian classifier is found in
Section C.6.3.

TABLE 8.10 Plot file names for Experiment Test3mlp and Evaluation data file

Plot Type File name Extension Plot File name

Decision region .region.plot<file type> Test3mlp.region.plot.eval

Profile .profile.plot<file type> Test3mlp.profile.plot.eval

Structure .struct.plot Test3mlp.struct.plot

Cost .cost.plot Test3mlp.cost.plot

Percent error .perr.plot Test3mlp.perr.plot

Posterior probability .prob.plot Test3mlp.prob.plot

ROC (detection) .detect.plot Test3mlp.detect.plot

Rejection .reject.plot Test3mlp.reject.plot
126 LNKnet Users Guide (Revision 4, February 2004)

8.4: Committee Data Base Files
8.4 Committee Data Base Files

Committee data bases are generated from the class and outputs fields of testing error
files, as described in Section 7.3. The format of a committee data base file is the same as
for any other classification data file. The first field of each line holds the integer class of
a data pattern. The next fields on the line are the floating point class outputs
for each of the classifiers in the committee for the original input pattern. Each line
ends with a newline character. The input fields for the committee data base are illus-
trated in the description file shown in Figure 8.7. This is the description file for the com-
mittee data base being generated in Figure 7.3 on page 112. The class labels for the
committee data base are the same as the class labels of the original classification data
base. The input labels are generated from the experiment labels for the committee mem-
bers and the output numbers. The total number of input features here is 30 because there
are 10 classes and 3 committee members. The default name for a committee data base
starts with the original data base name followed by _comm.

FIGURE 8.7 Description file for gnoise_var committee data base (gnoise_var_comm.defaults)
describe -labels 0,1,2,3,4,5,6,7,8,9 \

-input_labels N1gauss0,N1gauss1,N1gauss2,N1gauss3,N1gauss4,N1gaus

s5,N1gauss6,N1gauss7,N1gauss8,N1gauss9,N2gauss0,N2gauss1,N2gauss2

,N2gauss3,N2gauss4,N2gauss5,N2gauss6,N2gauss7,N2gauss8,N2gauss9,N

4gauss0,N4gauss1,N4gauss2,N4gauss3,N4gauss4,N4gauss5,N4gauss6,N4g

auss7,N4gauss8,N4gauss9 \

-class -ninputs 30 -noutputs 10

N M× M
N

LNKnet Users Guide (Revision 4, February 2004) 127

CHAPTER 8: Input and Output File Formats
128 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX A Common Questions and
Problems

1. UNIX and Shell Scripts

1.1. Problem: The command “lnknet” cannot be found when I type it at the command line.
Solution: Add the LNKnet bin directory to your environment variable PATH. (Contact
your system administrator for help)

1.2. Problem: The LNKnet manual pages cannot be found.
Solution: Add the LNKnet man directory to your environment variable MANPATH. (Con-
tact your system administrator for help).

1.3. Problem: A LNKnet experiment starts but doesn’t finish.
Solution: There was an error in the one of the programs called by the shell script. The shell
script stops whenever a program returns a non-zero value. Look in the log file to find the
error message. Check the flags of the program that generated the error to determine how to
fix the error.

1.4. Problem: How do I create shell scripts to run background batch jobs?
Solution: Create a shell script with the suffix .run with LNKnet, edit the shell script if nec-
essary, and then run this shell script in the background as you would a user-generated shell
script. You may want to eliminate some plotting by adding the -no_graphics flag to plotting
programs and replace the string “|& nn_tee -h -a” with “>>” to send output to the log file
without sending it to the screen. These modifications are automatically made if you check
the Only Store Shell Scripts, do not Run box on the main LNKnet window.

2. Files and User I/O

2.1. Problem: LNKnet won’t start: Error message is “bad flag”.
Solution: The current copy of LNKnet uses a different set of flags than those in your cur-
rent .lnknetrc file. Delete your .lnknetrc file or change its name to start LNKnet without the
default settings.
LNKnet Users Guide (Revision 4, February 2004) 129

APPENDIX A: Common Questions and Problems
2.2. Problem: There are no files in the data base scroll list on the data base window or the
desired data base is not on the list.
Solution: There are several possibilities here:

1.The path to the data base directory is wrong. Change the data base directory path.
2.There are no data base description files for the data bases in this directory. Enter the data base

names in the data file prefix field and generate description files for the data bases on the Descrip-
tion File Generation window.

3.The description files use the wrong suffix. Data base description files must be named <data-
base>.defaults. Only file names which include the string “.defaults” are displayed in the data base
scrolling list.

2.3. Problem: On the data base window, under patterns per class it says “Not classification
data”
Solution: Check that the data base selected is a static pattern classification data base, not an
input/output mapping or sequence classification data base.

2.4. Problem: When I select a data base I get a warning on my shell window, “Noutputs from
defaults file doesn’t match data file”
Solution: There are two possible problems here:

1.The training, testing, or evaluation file being read is not a LNKnet classification data file.
2.There is a pattern in the data file with a class label which is out of range. The class numbers at the

start of every LNKnet pattern are numbered from 0 to Noutputs-1.
2.5. Problem: There are red stop signs beside some of the buttons on the main window.

Solution: There are important errors on these windows. Unless these errors are cleared, an
experiment started now will not run correctly. Select the buttons and clear the errors before
starting the experiment.

2.6. Problem: File names and parameters entered in LNKnet windows are not updated during
an experiment.
Solution: A carriage return or a tab must be entered after typing anything in a LNKnet win-
dow before the new entry is read in. Play it safe and hit carriage return after typing anything.

2.7. Problem: The number of patterns in a data base file is not set when the data base is
selected.
Solution: If the data base directory is correct, check the data file extension.

2.8. Problem: There is an error on the normalization window, “Normalization file does not
exist.”
Solution: If the normalization file DOES exist, check the data base directory, data base
selection, and the normalization selection. Otherwise, create the normalization file on the
normalization file generation window.

2.9. Problem: There is an error on the feature selection window, bad feature list or not enough
labels.
Solution: There are two possibilities here:

1.Check the feature selection parameters.
130 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX A: Common Questions and Problems
2.Check that the number of input features on the data base window is the same as the number of
inputs. Change the input feature list on the description file generation window.

2.10. Problem: There is an “File does not exist” error on one of the windows after the missing
file has been created.
Solution: Click the mouse on the error Stop sign to erase the message.

2.11. Problem: Options are grayed out on a parameter window and cannot be selected.
Solution: Options that are inconsistent with previous selections are grayed out and cannot
be selected. For example, the perceptron convergence procedure cost function of the multi-
layer perceptron classifier is only available if there are no hidden layers. When it is selected,
the field for specifying network topology is grayed out. Select a parameter value that is con-
sistent with the desired option.

2.12. Problem: A comma delimited list is not read correctly.
Solution: There are two possibilities here:

1.Do not leave spaces between the commas. If this is a list of strings, there are three delimiter char-
acters that can be used: comma (,), colon (:), and dash (-). Check that these characters are not
included inside any of your desired list strings. For example first_formant is a valid label because
an underscore is used to indicate the space between the words, but first-formant is not valid
because a dash is used within the label.

2.Always put a space after a comma delimited list. Because dash is used to mark flags and is also a
list delimiter, forgetting the space after a list can cause LNKnet to add the name of the next flag
to the list. That flag will not be set, since it has already been parsed as being a part of a list. This
is most often a problem when flags are put on multiple lines in a file with backslashes (\) at the
ends of lines. When the file is read, the first character of the second line is placed directly after
the last character of the first line. No extra spaces are inserted.

2.13. Problem: Per-epoch error information is not printed out when training an MLP classifier.
Solution: Set the log file verbosity flag on the Report Files and Verbosities window to print
out Summary+Confusion+Flags+Epochs.

3. Misc.

3.1. Problem: It is annoying when I keep the same experiment name to keep having to move
my mouse after starting another experiment and clicking on the button that says it’s ok to
overwrite the old experiment
Solution: Experts move the small window that queries you about overwriting to be located
over the button used to start a new experiment. You can then dismiss the second small veri-
fication window with a second mouse click in the same location.

3.2. Problem: It is difficult to select features using a comma separted list of feature numbers
because I keep forgetting which numbers correspond to which feature names.
Solution: Most of us get around this by keeping a listing of the feature names along with
their numbers. This list is provided at the bottom of the feature selection window if you
select all features. Once you guess at the feature numbers and hit carriage return, the feature
LNKnet Users Guide (Revision 4, February 2004) 131

APPENDIX A: Common Questions and Problems
names are displayed at the bottom of the feature-selection window. Also remember that fea-
ture numbers start at zero and not at one.

3.3. Problem: When I have many input features, the feature selection window extends way off
the screen and I can’t see the whole window at once.
Solution: Either use smaller feature names, or drag the window to left or right using the
mouse. You can also resize this window, after performing feature selection.

4. Known Limitations

4.1. Problem: I think I found a problem or want a new feature.
Solution: Send questions, requests, and bug reports to Linda Kukolich
(kukolich@sst.ll.mit.edu) or Richard Lippmann (rpl@sst.ll.mit.edu).

4.2. Problem: LNKnet windows come up all black or with black writing on black buttons.
Solution: LNKnet was developed on a color Sparc station. It has not been debugged on
black and white terminals and may not work on them. The problem may be solved in newer
versions of OpenWindows.

4.3. Problem: When specifying a large number of cross validation folds in a file, the following
error occurs: “Number of labels has exceeded 255. The list has been truncated.”
Solution: The maximum number of entries in the -cv_splits, -cv_train_mask, and
-cv_test_mask arguments of a cross validation file is 255. Because a split is defined by pairs
of entries, the maximum number of splits is 127. The maximum number of cross validation
folds is 255. This may be changed in a future version of LNKnet.

5. MLP Training

5.1. Problem: MLP training is slow
Solution: There are several things that can be tried to speed up MLP training:

1.Make sure that random presentation order is selected on the main window.
2.Make sure that the weights are being updated after every trial.
3. Increase the step size.

5.2. Problem: MLP cost is not decreasing.
Solution: Decrease step size.

6. Plots

6.1. Problem: Decision region plots are not in color.
Solution: Check that color plots are selected on the Decision Region Plot window.
132 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX A: Common Questions and Problems
6.2. Problem: Decision region plots are too jagged and blocky.
Solution: Increase the number of points per dimension on the Decision Region Plot win-
dow.

6.3. Problem: Scatter plot or Histogram plot does not show patterns.
Solution: Turn on autoscale, adjust the setting for Xmin, Xmax, Ymin, and Ymax, turn on
show all patterns, or increase the distance limit for pattern display.

6.4. Problem: I have problems looking at plots while running MIT X.
Solution: Change the name of the binary file xplot to olxplot, after saving olxplot. Xplot is
designed to run under MIT X. Olxplot is designed to run under SUN OpenLook.

6.5. Problem: The screen rapidly gets cluttered with plots.
Solution: Turn plots off and eliminate existing plots rapidly by typing ‘q’ when the mouse
is over a plot window.

6.6. Problem: How do I make hard copies of plots?
Solution: See Section 7.1 on page 109 or Section 6.9 on page 107.

6.7. Problem: Plots do not run and generate the error:
ld.so: Undefined symbol: _XtQString

Solution: The program which displays plots, olxplot, was written using the OpenLook
Intrinsics library, olit. Olit uses X11R4, as does the rest of the OpenWindows environment.
If your environment variable $LD_LIBRARY_PATH includes the X11R5 libraries, olxplot
will not run because of incompatibilities between X11R4 and X11R5. Remove the X11R5
libraries from the LD_LIBRARY_PATH environment variable in your terminal window
shell before starting LNKnet. The following commands can be used to display and correct
the LD_LIBRARY_PATH variable:

> echo $LD_LIBRARY_PATH

/usr/local/X11R5/lib:/src/openwin3.o/lib:/usr/local/lib:/usr/
local/lib/X11:/usr/lib

> setenv LD_LIBRARY_PATH /src/openwin3.0/lib:/usr/local/lib:/
usr/local/lib/X11:/usr/lib

6.8. Problem: Plots generate a warning:
Warning: XtRemoveInput: Input handler not found

Solution: This is a known bug in olxplot. It has no effect on the plots and can be ignored.
LNKnet Users Guide (Revision 4, February 2004) 133

APPENDIX A: Common Questions and Problems
134 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX B Installing LNKnet

B.1 What you need

• 120 Mbytes disc space (90 Mbytes without the source)
• Sun Solaris 2.5, 2.6 or later with OpenWindows
• RedHat or other versions of Linux
• Microsoft windows with a current version of the Cygwin environment

B.2 Read Tar Tape or Download from Web Site

Make a directory to install LNKnet and change to it. This is usually in your home direc-
tory

> mkdir lnknet

> cd lnknet

Load the tape in the appropriate device and read it using

> tar xvf /dev/rst0

or download, unzip and untar the gzipped LNKnet tar file from the LNKnet web site
that is currently hhttp://www.ll.mit.edu/IST/lnknet/index.html. Under RedHat linux the
command to perform these actions would be

> tar zxvf lnknet.linux.tgz

Alist of all the files will be displayed as they are read.

Files in the lnknet directory:

Makefile changes/ lib/

RCS/ data/ loading_instructions

README demo/ src/

bin/ man/

At an absolute minimum, you need the bin/ and man/ directories. In order to do the tuto-
rial, you will also need the data/ directory. If space is tight, the other directories may be
deleted. This would save 34 Mbytes of space.
LNKnet Users Guide (Revision 4, February 2004) 135

APPENDIX B: Installing LNKnet
Add lnknet/man to the MANPATH environment variable.

Add lnknet/bin to the PATH environment variable. See the README and INSTALL
files for other information.

B.3 LNKnet updates

If this is an update, the old copy of LNKnet can be overwritten with this one. The files
in the directory “changes” document new features, bug fixes, and changes that will be
necessary to get old shell scripts to run in the new version. In addition, delete any .lnkn-
etrc files in users’ home directories.

B.4 Recompiling LNKnet

LNKnet users have ported LNKnet to other platforms or have modified LNKnet pro-
grams by enhancing them or by entering small bug fixes themselves. This requires that
the affected programs be recompiled. To recompile LNKnet programs you must first
define an environment variable, LNKHOME, as the path to the directory in which
LNKnet was installed. For example, on my system I define LNKnet home using this
command:

>setenv LNKHOME /home/kukolich/lnknet

LNKHOME is used by the Makefiles to determine the paths to the LNKnet source,
include, library, and binary directories. To recompile the graphical user interface it is
also necessary that you have the OpenWindows XVIEW 3.0 library. The plotting pro-
grams require the OpenLook Intrinsics library, olit.

The LNKnet binaries can be recompiled in part or as a whole by changing the directory
in which the make command is issued. Table B.1 shows the directories and the type of
binaries created.

TABLE B.1: LNKnet directories, and results

directory result of make

$LNKHOME all binaries

$LNKHOME/src all binaries

$LNKHOME/src/lib library nnlib.a†

$LNKHOME/src/algorithm all classifiers
and clusterers

$LNKHOME/src/algorithm/mlp multi-layer
perceptron
program, mlp†

$LNKHOME/src/plot plot programs†

$LNKHOME/src/gclass LNKnet GUI†
136 LNKnet Users Guide (Revision 4, February 2004)

B.4: Recompiling LNKnet
If there are any problems with compilation, call or e-mail Linda Kukolich
(KUKOLICH@LL.MIT.EDU) for help.

†The command make creates the binary. The com-
mand make copy creates the binary and copies it into
the bin directory, $LNKHOME/bin.
LNKnet Users Guide (Revision 4, February 2004) 137

APPENDIX B: Installing LNKnet
138 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX C Tutorial Scripts and
Outputs

The experiments shown here were performed as part of the LNKnet tutorial in Chapter 2
and as examples in Chapter 6.

C.1 MLP

This experiment was run in two parts. During the first part, the MLP classifier was
trained for 20 epochs on 338 samples from the vowel data base. When evaluated, the
resulting classifier obtained an error rate of 30%. The training was then continued for
another 20 epochs which brought the evaluation error rate down to 20%. The shell script
shows the calls for the first half of the training. It differs from the script for the second
half only in that the calls to MLP use the -create flag. The log file shown below has the
results from both halves of the experiment. Because this classifier looks at the same
training patterns multiple times, there are classification results for the training as well as
for the evaluation portions of the experiment.

C.1.1 MLP Shell Script
#!/bin/csh -ef
./X1mlp.run
set loc=`pwd`

#train
(time mlp\
 -train -create -pathexp $loc -ferror X1mlp.err.train -fparam X1mlp.param\
 -pathdata /u/kukolich/Tutorial -finput vowel.train\
 -fdescribe vowel.defaults -npatterns 338 -ninputs 2 -normalize\
 -fnorm vowel.norm.simple -cross_valid 0 -fcross_valid vowel.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 338 -debug 0 -verbose 3\
 -verror 2 \
-nodes 2,25,10 -alpha 0.6 -etta 0.2 -etta_change_type 0 -epsilon 0.1\
 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance 0.01 -hfunction 0\
 -ofunction 0 -sigmoid_param 1 -cost_func 0 -cost_param 1 -epochs 20\
 -batch 1,1,0 -init_mag 0.1 \
)|& nn_tee -h X1mlp.log
echo -n “X1mlp.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “LAST TRAIN EPOCH” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#test
(time mlp\
 -create -pathexp $loc -ferror X1mlp.err.eval -fparam X1mlp.param\
 -pathdata /u/kukolich/Tutorial -finput vowel.eval\
 -fdescribe vowel.defaults -npatterns 166 -ninputs 2 -normalize\
 -fnorm vowel.norm.simple -cross_valid 0 -fcross_valid vowel.train.cv\

Train MLP model (first 20 epochs)
The second 20 epochs are the
same except that the create flag is
not set

Put training result in the experiment
notebook

Evaluate MLP model
LNKnet Users Guide (Revision 4, February 2004) 139

APPENDIX C: Tutorial Scripts and Outputs
 -random_cv -random -seed 0 -priors_npatterns 338 -debug 0 -verbose 3\
 -verror 2 \
-nodes 2,25,10 -alpha 0.6 -etta 0.2 -etta_change_type 0 -epsilon 0.1\
 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance 0.01 -hfunction 0\
 -ofunction 0 -sigmoid_param 1 -cost_func 0 -cost_param 1 -epochs 20\
 -batch 1,1,0 -init_mag 0.1 \
)|& nn_tee -h -a X1mlp.log
echo -n “X1mlp.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “TEST” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#decision region plot
mlp_plot_bound\
 -autoscale -pathexp $loc -fparam X1mlp.param\
 -fregion X1mlp.region.plot.eval -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac -xmin -3 -xmax 3 -ymin -3 -ymax 3\
 -xstep 1 -ystep 1 -pymin 0 -pymax 1.5 -pystep 0.25 -ninputs 2\
 -noutputs 10 -tregion “Norm:Simple Net:2,25,10 Step:0.2” -first_dim 0\
 -second_dim 1 -npatterns 166 -npoints 100 -region -scatter -internals\
 -internals_scale 1 -internals_level 1 -color -all -distance 0.5\
 -fdata /u/kukolich/Tutorial/vowel.eval\
 -fdesc /u/kukolich/Tutorial/vowel.defaults

#profile plot
mlp_plot_bound\
 -autoscale -pathexp $loc -fparam X1mlp.param -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac -fprofile X1mlp.profile.plot.eval -xmin -3\
 -xmax 3 -ymin -3 -ymax 3 -xstep 1 -ystep 1 -pymin 0 -pymax 1.5\
 -pystep 0.25 -ninputs 2 -noutputs 10\
 -tprofile “Norm:Simple Net:2,25,10 Step:0.2” -first_dim 0 -second_dim 1\
 -npatterns 166 -npoints 50 -internals_scale 1 -internals_level 1 -profile\
 -histogram -color -all -distance 0.5\
 -fdata /u/kukolich/Tutorial/vowel.eval\
 -fdesc /u/kukolich/Tutorial/vowel.defaults

#cost plot
plot_cost -pathexp $loc -ferror X1mlp.err.train -fplot X1mlp.cost.plot -
autoscale\
 -xmin 0 -xmax 10000 -ymin 0 -ymax 5 -xstep 1000 -ystep 1 -trials 338\
 -title “Norm:Simple Net:2,25,10 Step:0.2” -cost_func 0 -fmaclines cost.mac\
 -class

#percent error plot
plot_perr -pathexp $loc -ferror X1mlp.err.train -fplot X1mlp.perr.plot -
autoscale\
 -xmin 0 -xmax 10000 -ymin 0 -ymax 100 -xstep 1000 -ystep 10 -trials 338\
 -title “Norm:Simple Net:2,25,10 Step:0.2” -fmaclines perr.mac -class

#structure plot
plot_mlp -fparam X1mlp.param -fplot X1mlp.struct.plot\
 -fdescribe /u/kukolich/Tutorial/vowel.defaults -autoscale \
 -threshold 0.000000 -show_weight_magnitude -max_line_width 10 -show_bias

#prob plot
plot_prob -bin_plot -target 2 -nbins 5 -min_bin_count 5 -chi_square -pathexp
$loc\
 -ferror X1mlp.err.eval -fplot X1mlp.prob.plot -no_graphics -noutputs 10\
 -npatterns 166 -xmin 0 -xmax 100 -ymin 0 -ymax 100 -xstep 10 -ystep 10\
 -verbose 1 -title “Norm:Simple Net:2,25,10 Step:0.2” -fmaclines prob.mac \
 |& nn_tee -h -a X1mlp.log
olxplot -geometry 500x480 -title prob_plot X1mlp.prob.plot&
echo -n “X1mlp.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “CHI” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

Put testing result in the experiment
notebook

Decision region plots

Profile plots

Cost plot

Percent error plot

Structure plot

Posterior probability plot

Put chi square results in the
experiment notebook
140 LNKnet Users Guide (Revision 4, February 2004)

C.1: MLP
#detect plot
plot_detect -target 2 -pathexp $loc -ferror X1mlp.err.eval -fplot
X1mlp.detect.plot\
 -noutputs 10 -reject 0 -xmin 0 -xmax 100 -ymin 0 -ymax 100 -xstep 10\
 -ystep 10 -title “Norm:Simple Net:2,25,10 Step:0.2” -table_begin 0\
 -table_end 100 -table_step 2 -verbose 2 -fmaclines detect.mac\
 -no_graphics \
 |& nn_tee -h -a X1mlp.log
olxplot -geometry 500x480 -title detect_plot X1mlp.detect.plot&
echo -n “X1mlp.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “ROC AREA” X1mlp.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#reject plot
plot_reject -pathexp $loc -ferror X1mlp.err.eval -fplot X1mlp.reject.plot -nout-
puts 10\
 -npatterns 0 -xmin 0 -xmax 100 -ymin 0 -ymax 100 -xstep 10 -ystep 10\
 -title “Norm:Simple Net:2,25,10 Step:0.2” -table_begin 0 -table_end 100\
 -table_step 10 -verbose 1 -fmaclines reject.mac -no_graphics \
 |& nn_tee -h -a X1mlp.log
olxplot -geometry 500x480 -title reject_plot X1mlp.reject.plot&
echo “current directory:” >> X1mlp.log
echo $loc >> X1mlp.log

C.1.2 MLP Log File (Initial training Plus Continuation)

== mlp BEGIN
mlp
-train -create -pathexp /u/kukolich/Tutorial\
 -ferror X1mlp.err.train -fparam X1mlp.param\
 -pathdata /u/kukolich/Tutorial -finput vowel.train\
 -fdescribe vowel.defaults -npatterns 338 -ninputs 2 -normalize\
 -fnorm vowel.norm.simple -cross_valid 0 -fcross_valid vowel.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 338 -debug 0 -verbose 3\
 -verror 2 -nodes 2,25,10 -alpha 0.6 -etta 0.2 -etta_list 0.2,0.2\
 -etta_change_type 0 -epsilon 0.1 -kappa 0.01 -etta_nepochs 0 -decay 0\
 -tolerance 0.01 -hfunction 0 -ofunction 0 -sigmoid_param 1\
 -sig_param_list 1,1 -cost_func 0 -cost_param 1 -epochs 20 -batch 1,1,0\
 -init_mag 0.1
Wed Apr 5 11:10:24 1995

Reading /u/kukolich/Tutorial/vowel.train

 EPOCH %error RMS Err(338 patterns/epoch)
 1 92.0 0.3051
 2 81.4 0.2977
 3 63.6 0.2781
 4 58.0 0.2628
 5 51.2 0.2565
 6 46.7 0.2508
 7 47.0 0.2479
 8 42.9 0.2436
 9 43.5 0.2396
 10 43.2 0.2388
 11 43.5 0.2359
 12 39.3 0.2335
 13 39.3 0.2306
 14 42.0 0.2305
 15 37.3 0.2248
 16 36.4 0.225
 17 34.6 0.2231
 18 36.1 0.2216
 19 32.8 0.2187

ROC (Detection) plot

Put ROC area in the experiment
notebook

Rejection plot

Initial training of MLP

Percent error and average cost per
epoch
LNKnet Users Guide (Revision 4, February 2004) 141

APPENDIX C: Tutorial Scripts and Outputs
 20 33.7 0.2175
 LAST TRAIN EPOCH: 20 33.73 % Err 0.217 RMS Err 18.01 secs

Finished -- model saved in “/u/kukolich/Tutorial/X1mlp.param”

Classification Confusion Matrix - X1mlp.err.train

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 308 157 12 151 6 3 49 10 2 2 700
 1 148 236 15 24 6 4 288 9 8 2 740
 2 11 6 588 19 99 1 5 60 8 3 800
 3 119 14 37 502 5 2 15 22 3 1 720
 4 5 8 152 4 397 2 4 34 41 13 660
 5 51 93 8 19 12 101 17 19 72 68 460
 6 33 56 5 7 6 614 9 10 740
 7 21 5 288 102 80 2 10 162 7 23 700
 8 2 7 15 8 28 6 11 3 552 28 660
 9 14 11 24 11 104 50 5 66 188 107 580
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 712 593 1144 847 743 171 1018 394 891 247 6760

Error Report - X1mlp.err.train

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 700 392 56.00 (1.9) 0.264 head
 1 740 504 68.11 (1.7) 0.272 hid
 2 800 212 26.50 (1.6) 0.214 hod
 3 720 218 30.28 (1.7) 0.217 had
 4 660 263 39.85 (1.9) 0.237 hawed
 5 460 359 78.04 (1.9) 0.292 heard
 6 740 126 17.03 (1.4) 0.190 heed
 7 700 538 76.86 (1.6) 0.289 hud
 8 660 108 16.36 (1.4) 0.180 whod
 9 580 473 81.55 (1.6) 0.293 hood
 -------- -------- ------- -------------

Overall 6760 3193 47.23 (0.6) 0.245

== mlp END
17.9u 0.2s 0:23 78% 0+440k 5+111io 50pf+0w

== mlp BEGIN
mlp
-create -pathexp /u/kukolich/Tutorial -ferror X1mlp.err.eval\
 -fparam X1mlp.param -pathdata /u/kukolich/Tutorial\
 -finput vowel.eval -fdescribe vowel.defaults -npatterns 166 -ninputs 2\
 -normalize -fnorm vowel.norm.simple -cross_valid 0\
 -fcross_valid vowel.train.cv -random_cv -random -seed 0\
 -priors_npatterns 338 -debug 0 -verbose 3 -verror 2 -nodes 2,25,10\
 -alpha 0.6 -etta 0.2 -etta_list 0.2,0.2 -etta_change_type 0 -epsilon 0.1\
 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance 0.01 -hfunction 0\
 -ofunction 0 -sigmoid_param 1 -sig_param_list 1,1 -cost_func 0\
 -cost_param 1 -epochs 20 -batch 1,1,0 -init_mag 0.1
Wed Apr 5 11:10:45 1995

Confusion matrix for first 20 epochs

Error summary for first 20 epochs

Evaluate model based on initial
training
142 LNKnet Users Guide (Revision 4, February 2004)

C.1: MLP
Reading /u/kukolich/Tutorial/vowel.eval

Classification Confusion Matrix - X1mlp.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 14 3 17
 1 5 1 12 18
 2 19 1 20
 3 5 11 1 1 18
 4 2 14 16
 5 1 9 1 11
 6 18 18
 7 6 3 2 7 18
 8 15 1 16
 9 6 1 3 4 14
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 25 1 27 18 16 16 30 9 19 5 166

Error Report - X1mlp.err.eval

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 17 3 17.65 (9.2) 0.173 head
 1 18 17 94.44 (5.4) 0.304 hid
 2 20 1 5.00 (4.9) 0.127 hod
 3 18 7 38.89 (11.5) 0.197 had
 4 16 2 12.50 (8.3) 0.182 hawed
 5 11 2 18.18 (11.6) 0.249 heard
 6 18 0 0.00 (0.0) 0.051 heed
 7 18 11 61.11 (11.5) 0.268 hud
 8 16 1 6.25 (6.1) 0.121 whod
 9 14 10 71.43 (12.1) 0.289 hood
 -------- -------- ------- -------------

Overall 166 54 32.53 (3.6) 0.207

 TEST: vowel.eval 32.53 % Err 0.207 RMS Err 0.54 secs
== mlp END
0.5u 0.0s 0:00 91% 0+376k 1+3io 1pf+0w

 --

 target class = 2
 total number of patterns = 166
 --
 BIN # # PATTERNS PREDICTED % ACTUAL % RANGE
 ----------- ----------- ----------- ----------- -----------
 0 131 1.84 0.76 -0.76 - 2.28
 1 11 28.08 9.09 -8.24 - 26.43
 2 6 52.66 33.33 -5.16 - 71.82
 3 7 69.71 71.43 37.28 - 105.58
 4 11 87.98 100.00 100.00 - 100.00

Chi Square Fit:

Evaluation confusion matrix

Evaluation error summary

Posterior probability plot table
LNKnet Users Guide (Revision 4, February 2004) 143

APPENDIX C: Tutorial Scripts and Outputs
Chi = 2.446746
Degrees of Freedom = 2
Significance = 0.294236
 TARGET 2 CHI 2.446746 DOF 2 SIGNIFICANCE 0.294236
Created file /u/kukolich/Tutorial/X1mlp.prob.plot
ROC-x ROC-y
--
target class = 2 reject = 0.00%
number of patterns from target class = 20
--
PATTERNS # CORRECT % CORRECT # FALSE % FALSE_ALARM THRESHOLD
 ---------- ---------- ---------- ---------- ---------- ----------
 0 0 0.000 0 0.000 1.000
 20 16 82.500 4 2.000 0.564
 25 18 92.500 7 4.000 0.350
 35 19 97.500 16 6.000 0.199
 166 20 100.000 146 12.000 0.000
 TARGET 2 ROC AREA = 98.732872
Created file X1mlp.detect.plot

 --
 # PATTERNS # REJECTIONS % REJECTED # ERRORS % ERROR THRESHOLD
 ---------- ---------- ---------- ---------- ---------- ----------
 166 0 0.000000 54 32.530121 0.000
 149 16 10.000000 49 32.798210 0.264
 132 33 20.000000 43 32.380184 0.347
 116 49 30.000000 29 24.957266 0.416
 99 66 40.000000 19 19.076767 0.513
 83 83 50.000000 11 13.253012 0.604
 66 99 60.000000 6 9.633648 0.684
 49 116 70.000000 1 2.008163 0.757
 33 132 80.000000 1 3.012477 0.862
 16 149 90.000000 0 0.000000 0.926
Created file /u/kukolich/Tutorial/X1mlp.reject.plot
current directory:
/u/kukolich/Tutorial

== mlp BEGIN
mlp
-train -pathexp /u/kukolich/Tutorial -ferror X1mlp.err.train\
 -fparam X1mlp.param -pathdata /u/kukolich/Tutorial\
 -finput vowel.train -fdescribe vowel.defaults -npatterns 338 -ninputs 2\
 -normalize -fnorm vowel.norm.simple -cross_valid 0\
 -fcross_valid vowel.train.cv -random_cv -random -seed 0\
 -priors_npatterns 338 -debug 0 -verbose 3 -verror 2 -nodes 2,25,10\
 -alpha 0.6 -etta 0.2 -etta_list 0.2,0.2 -etta_change_type 0 -epsilon 0.1\
 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance 0.01 -hfunction 0\
 -ofunction 0 -sigmoid_param 1 -sig_param_list 1,1 -cost_func 0\
 -cost_param 1 -epochs 20 -batch 1,1,0 -init_mag 0.1
Wed Apr 5 15:35:39 1995

Reading /u/kukolich/Tutorial/vowel.train

 EPOCH %error RMS Err(338 patterns/epoch)
 1 34.6 0.2161
 2 35.2 0.214
 3 31.4 0.2129
 4 32.0 0.2105
 5 30.5 0.2081
 6 29.0 0.2074
 7 29.6 0.2047
 8 27.8 0.2044
 9 28.4 0.2022
 10 29.9 0.2044
 11 27.2 0.2013
 12 28.7 0.2009

ROC (detection) plot table

Rejection plot table

Continue training model stored in
X1mlp.param for 20 more epochs

Percent error and cost for continued
training
144 LNKnet Users Guide (Revision 4, February 2004)

C.1: MLP
 13 27.2 0.1973
 14 25.4 0.1964
 15 26.3 0.1959
 16 28.7 0.1973
 17 24.6 0.1935
 18 24.3 0.1932
 19 25.1 0.1933
 20 25.4 0.1935
 LAST TRAIN EPOCH: 20 25.44 % Err 0.194 RMS Err 17.80 secs

Finished -- model saved in “/u/kukolich/Tutorial/X1mlp.param”

Classification Confusion Matrix - X1mlp.err.train

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 416 156 113 15 700
 1 119 478 17 126 740
 2 660 85 55 800
 3 123 571 26 720
 4 128 471 12 20 29 660
 5 43 39 20 268 24 66 460
 6 12 54 674 740
 7 121 54 51 437 37 700
 8 22 18 568 52 660
 9 56 85 82 71 286 580
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 713 727 909 758 685 403 800 612 683 470 6760

Error Report - X1mlp.err.train

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 700 284 40.57 (1.9) 0.236 head
 1 740 262 35.41 (1.8) 0.220 hid
 2 800 140 17.50 (1.3) 0.177 hod
 3 720 149 20.69 (1.5) 0.171 had
 4 660 189 28.64 (1.8) 0.203 hawed
 5 460 192 41.74 (2.3) 0.236 heard
 6 740 66 8.92 (1.0) 0.142 heed
 7 700 263 37.57 (1.8) 0.229 hud
 8 660 92 13.94 (1.3) 0.145 whod
 9 580 294 50.69 (2.1) 0.256 hood
 -------- -------- ------- -------------

Overall 6760 1931 28.57 (0.5) 0.202

== mlp END
17.7u 0.1s 0:23 77% 0+440k 4+112io 49pf+0w

== mlp BEGIN
mlp
-create -pathexp /u/kukolich/Tutorial -ferror X1mlp.err.eval\
 -fparam X1mlp.param -pathdata /u/kukolich/Tutorial\
 -finput vowel.eval -fdescribe vowel.defaults -npatterns 166 -ninputs 2\
 -normalize -fnorm vowel.norm.simple -cross_valid 0\

Confusion matrix for new epochs

Error summary for new epochs

Re-evaluate model after new
training
LNKnet Users Guide (Revision 4, February 2004) 145

APPENDIX C: Tutorial Scripts and Outputs
 -fcross_valid vowel.train.cv -random_cv -random -seed 0\
 -priors_npatterns 338 -debug 0 -verbose 3 -verror 2 -nodes 2,25,10\
 -alpha 0.6 -etta 0.2 -etta_list 0.2,0.2 -etta_change_type 0 -epsilon 0.1\
 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance 0.01 -hfunction 0\
 -ofunction 0 -sigmoid_param 1 -sig_param_list 1,1 -cost_func 0\
 -cost_param 1 -epochs 20 -batch 1,1,0 -init_mag 0.1
Wed Apr 5 15:36:02 1995

Reading /u/kukolich/Tutorial/vowel.eval

Classification Confusion Matrix - X1mlp.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 13 3 1 17
 1 12 6 18
 2 18 2 20
 3 15 1 2 18
 4 2 13 1 16
 5 1 6 1 3 11
 6 18 18
 7 3 15 18
 8 13 3 16
 9 2 1 1 10 14
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 14 12 20 18 16 10 24 21 14 17 166

Error Report - X1mlp.err.eval

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 17 4 23.53 (10.3) 0.213 head
 1 18 6 33.33 (11.1) 0.227 hid
 2 20 2 10.00 (6.7) 0.152 hod
 3 18 3 16.67 (8.8) 0.172 had
 4 16 3 18.75 (9.8) 0.145 hawed
 5 11 5 45.45 (15.0) 0.231 heard
 6 18 0 0.00 (0.0) 0.038 heed
 7 18 3 16.67 (8.8) 0.187 hud
 8 16 3 18.75 (9.8) 0.171 whod
 9 14 4 28.57 (12.1) 0.224 hood
 -------- -------- ------- -------------

Overall 166 33 19.88 (3.1) 0.181

 TEST: vowel.eval 19.88 % Err 0.181 RMS Err 0.48 secs
== mlp END
0.4u 0.0s 0:00 92% 0+376k 0+3io 0pf+0w

 --

 target class = 2
 total number of patterns = 166
 --
 BIN # # PATTERNS PREDICTED % ACTUAL % RANGE
 ----------- ----------- ----------- ----------- -----------

Confusion matrix for re-evaluation

Error summary for re-evaluation

Posterior probability plot table for
new model
146 LNKnet Users Guide (Revision 4, February 2004)

C.2: KNN
 0 142 1.36 1.41 -0.57 - 3.39
 1 5 30.01 20.00 -15.78 - 55.78
 2 9 63.01 77.78 50.06 - 105.49
 3 10 88.56 100.00 100.00 - 100.00

Chi Square Fit:
Chi = 0.211159
Degrees of Freedom = 2
Significance = 0.899803
 TARGET 2 CHI 0.211159 DOF 2 SIGNIFICANCE 0.899803
Created file /u/kukolich/Tutorial/X1mlp.prob.plot
ROC-x ROC-y
--
target class = 2 reject = 0.00%
number of patterns from target class = 20
--
PATTERNS # CORRECT % CORRECT # FALSE % FALSE_ALARM THRESHOLD
 ---------- ---------- ---------- ---------- ---------- ----------
 0 0 0.000 0 0.000 1.000
 25 18 92.500 7 2.000 0.191
 33 19 97.500 14 6.000 0.081
 166 20 100.000 146 10.000 0.000
 TARGET 2 ROC AREA = 99.006859
Created file X1mlp.detect.plot

 --
 # PATTERNS # REJECTIONS % REJECTED # ERRORS % ERROR THRESHOLD
 ---------- ---------- ---------- ---------- ---------- ----------
 166 0 0.000000 33 19.879519 0.000
 149 16 10.000000 25 17.000448 0.426
 132 33 20.000000 21 16.112619 0.520
 116 49 30.000000 17 14.630121 0.583
 99 66 40.000000 15 15.660607 0.642
 83 83 50.000000 9 10.843373 0.693
 66 99 60.000000 5 7.530529 0.746
 49 116 70.000000 3 6.024490 0.813
 33 132 80.000000 0 0.000000 0.903
 16 149 90.000000 0 0.000000 0.949
Created file /u/kukolich/Tutorial/X1mlp.reject.plot
current directory:
/u/kukolich/Tutorial

C.2 KNN

This experiment was on the same training and evaluation data as the MLP experiment
above. The KNN classifier obtained an 18% error rate on the evaluation data. Because
this is a single pass classifier, there are no classification results from the training.
Because this classifier does not produce continuous outputs, there are no tables from the
posterior probability plot, ROC plot, or rejection plot.

C.2.1 KNN Shell Script
#!/bin/csh -ef
./X1knn.run
set loc=`pwd`

#train
(time knn\
 -train -create -pathexp $loc -ferror X1knn.err.train -fparam X1knn.param\
 -pathdata /u/kukolich/Tutorial -finput vowel.train\

ROC (detection) plot table for new
model

Rejection plot table for new model

Train KNN
LNKnet Users Guide (Revision 4, February 2004) 147

APPENDIX C: Tutorial Scripts and Outputs
 -fdescribe vowel.defaults -npatterns 338 -ninputs 2 -normalize\
 -fnorm vowel.norm.simple -cross_valid 0 -fcross_valid vowel.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 338 -debug 0 -verbose 3\
 -verror 2 \
-k 3 \
)|& nn_tee -h X1knn.log

#test
(time knn\
 -create -pathexp $loc -ferror X1knn.err.eval -fparam X1knn.param\
 -pathdata /u/kukolich/Tutorial -finput vowel.eval\
 -fdescribe vowel.defaults -npatterns 166 -ninputs 2 -normalize\
 -fnorm vowel.norm.simple -cross_valid 0 -fcross_valid vowel.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 338 -debug 0 -verbose 3\
 -verror 2 \
-k 3 \
)|& nn_tee -h -a X1knn.log
echo -n “X1knn.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “TEST” X1knn.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#decision region plot
knn_plot_bound\
 -autoscale -pathexp $loc -fparam X1knn.param\
 -fregion X1knn.region.plot.eval -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac -xmin -3 -xmax 3 -ymin -3 -ymax 3\
 -xstep 1 -ystep 1 -pymin 0 -pymax 1.5 -pystep 0.25 -ninputs 2\
 -noutputs 10 -tregion “Norm:Simple K:3” -first_dim 0 -second_dim 1\
 -npatterns 166 -npoints 100 -region -scatter -internals\
 -internals_scale 1 -internals_level 1 -color -all -distance 0.5\
 -fdata /u/kukolich/Tutorial/vowel.eval\
 -fdesc /u/kukolich/Tutorial/vowel.defaults \
 -k 3
echo “current directory:” >> X1knn.log
echo $loc >> X1knn.log

C.2.2 KNN Log File

== knn BEGIN
knn
-train -create -pathexp /u/kukolich/Tutorial\
 -ferror X1knn.err.train -fparam X1knn.param\
 -pathdata /u/kukolich/Tutorial -finput vowel.train\
 -fdescribe vowel.defaults -npatterns 338 -ninputs 2 -normalize\
 -fnorm vowel.norm.simple -cross_valid 0 -fcross_valid vowel.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 338 -debug 0 -verbose 3\
 -verror 2 -k 3
Wed Apr 5 14:15:56 1995

Reading /u/kukolich/Tutorial/vowel.train

Finished -- knn model saved in “/u/kukolich/Tutorial/X1knn.param”
== knn END
0.2u 0.0s 0:07 4% 0+352k 5+2io 48pf+0w

== knn BEGIN
knn
-create -pathexp /u/kukolich/Tutorial -ferror X1knn.err.eval\
 -fparam X1knn.param -pathdata /u/kukolich/Tutorial\
 -finput vowel.eval -fdescribe vowel.defaults -npatterns 166 -ninputs 2\
 -normalize -fnorm vowel.norm.simple -cross_valid 0\
 -fcross_valid vowel.train.cv -random_cv -random -seed 0\
 -priors_npatterns 338 -debug 0 -verbose 3 -verror 2 -k 3

Evaluate KNN model

Decision region plots

Train KNN model

Evaluate KNN model
148 LNKnet Users Guide (Revision 4, February 2004)

C.3: GAUSS (Hand Picking Features)
Wed Apr 5 14:15:57 1995

Reading /u/kukolich/Tutorial/vowel.eval

Classification Confusion Matrix - X1knn.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 15 1 1 17
 1 15 3 18
 2 17 1 2 20
 3 1 15 1 1 18
 4 1 14 1 16
 5 1 8 2 11
 6 18 18
 7 2 15 1 18
 8 12 4 16
 9 4 1 2 7 14
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 17 16 18 18 15 13 21 19 14 15 166

Error Report - X1knn.err.eval

Class Patterns # Errors % Errors StdDev RMS Err Label
 0 17 2 11.76 (7.8) 0.149 head
 1 18 3 16.67 (8.8) 0.136 hid
 2 20 3 15.00 (8.0) 0.145 hod
 3 18 3 16.67 (8.8) 0.169 had
 4 16 2 12.50 (8.3) 0.149 hawed
 5 11 3 27.27 (13.4) 0.234 heard
 6 18 0 0.00 (0.0) 0.000 heed
 7 18 3 16.67 (8.8) 0.153 hud
 8 16 4 25.00 (10.8) 0.154 whod
 9 14 7 50.00 (13.4) 0.270 hood
 -------- -------- ------- -------------

Overall 166 30 18.07 (3.0) 0.163

 TEST: vowel.eval 18.07 % Err 0.163 RMS Err 0.42 secs
== knn END
0.3u 0.0s 0:01 35% 0+392k 1+3io 1pf+0w
current directory:
/u/kukolich/Tutorial

C.3 GAUSS (Hand Picking Features)

This experiment was performed during the feature selection section of the tutorial. In
this particular experiment a set of three features was typed in for use. The features are
selected from a data base with eight features. The set of features was chosen by a for-
ward feature search.

Confusion matrix

Error summary
LNKnet Users Guide (Revision 4, February 2004) 149

APPENDIX C: Tutorial Scripts and Outputs
C.3.1 Gauss Shell Script
#!/bin/csh -ef
./last3gauss.run
set loc=`pwd`

#train
(time gauss\
 -train -create -pathexp $loc -ferror last3gauss.err.train\
 -fparam last3gauss.param -pathdata /u/kukolich/Tutorial\
 -finput gnoise_var.train -fdescribe gnoise_var.defaults -npatterns 200\
 -ninputs 3 -features 7,5,6 -normalize -fnorm gnoise_var.norm.simple\
 -cross_valid 0 -fcross_valid gnoise_var.train.cv -random_cv -random\
 -seed 0 -priors_npatterns 200 -debug 0 -verbose 3 -verror 2 \
-minvar 1e-05 -max_ratio 1e+06 \
)|& nn_tee -h last3gauss.log

#test
(time gauss\
 -create -pathexp $loc -ferror last3gauss.err.eval -fparam last3gauss.param\
 -pathdata /u/kukolich/Tutorial -finput gnoise_var.eval\
 -fdescribe gnoise_var.defaults -npatterns 100 -ninputs 3 -features 7,5,6\
 -normalize -fnorm gnoise_var.norm.simple -cross_valid 0\
 -fcross_valid gnoise_var.train.cv -random_cv -random -seed 0\
 -priors_npatterns 200 -debug 0 -verbose 3 -verror 2 \
-minvar 1e-05 -max_ratio 1e+06 \
)|& nn_tee -h -a last3gauss.log
echo -n “last3gauss.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “TEST” last3gauss.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note

#decision region plot
gauss_plot_bound\
 -autoscale -pathexp $loc -fparam last3gauss.param\
 -fregion last3gauss.region.plot.eval -mac_wireframe_output -1\
 -fmacdots boundary_dots.mac -fmacscatter scatter.mac\
 -fmaclines profile_lines.mac -fmachisto profile_histo.mac\
 -fmacwireframe boundary_wire.mac -xmin -3 -xmax 3 -ymin -3 -ymax 3\
 -xstep 1 -ystep 1 -pymin 0 -pymax 1.5 -pystep 0.25 -ninputs 8\
 -noutputs 10 -tregion “Norm:Simple Diagonal Grand” -first_dim 0\
 -second_dim 1 -npatterns 100 -npoints 100 -region -scatter -internals\
 -internals_scale 1 -internals_level 1 -color -all -distance 0.5\
 -fdata /u/kukolich/Tutorial/gnoise_var.eval\
 -fdesc /u/kukolich/Tutorial/gnoise_var.defaults
echo “current directory:” >> last3gauss.log
echo $loc >> last3gauss.log

C.3.2 Gauss Log File

== gauss BEGIN
gauss
-train -create -pathexp /u/kukolich/Tutorial\
 -ferror last3gauss.err.train -fparam last3gauss.param\
 -pathdata /u/kukolich/Tutorial -finput gnoise_var.train\
 -fdescribe gnoise_var.defaults -npatterns 200 -ninputs 3 -features 7,5,6\
 -normalize -fnorm gnoise_var.norm.simple -cross_valid 0\
 -fcross_valid gnoise_var.train.cv -random_cv -random -seed 0\
 -priors_npatterns 200 -debug 0 -verbose 3 -verror 2 -minvar 1e-05\
 -max_ratio 1e+06
Wed Apr 5 17:04:10 1995

Reading /u/kukolich/Tutorial/gnoise_var.train

Finished -- gauss model saved in “/u/kukolich/Tutorial/last3gauss.param”
== gauss END
0.3u 0.0s 0:07 4% 0+368k 6+1io 51pf+0w

Train Gaussian classifier

Hand-picked feature list is 7,5,6

Evaluate classifier

Decision region plot

Train Gaussian classifier
150 LNKnet Users Guide (Revision 4, February 2004)

C.3: GAUSS (Hand Picking Features)
== gauss BEGIN
gauss
-create -pathexp /u/kukolich/Tutorial\
 -ferror last3gauss.err.eval -fparam last3gauss.param\
 -pathdata /u/kukolich/Tutorial -finput gnoise_var.eval\
 -fdescribe gnoise_var.defaults -npatterns 100 -ninputs 3 -features 7,5,6\
 -normalize -fnorm gnoise_var.norm.simple -cross_valid 0\
 -fcross_valid gnoise_var.train.cv -random_cv -random -seed 0\
 -priors_npatterns 200 -debug 0 -verbose 3 -verror 2 -minvar 1e-05\
 -max_ratio 1e+06
Wed Apr 5 17:04:15 1995

Reading /u/kukolich/Tutorial/gnoise_var.eval

Classification Confusion Matrix - last3gauss.err.eval

Desired Computed Class
 Class 0 1 2 3 4 5 6 7 8 9 Total
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 0 10 10
 1 1 9 10
 2 9 1 10
 3 10 10
 4 10 10
 5 10 10
 6 10 10
 7 10 10
 8 9 1 10
 9 10 10
 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -----
 Total 11 9 9 11 10 10 10 10 9 11 100

Error Report - last3gauss.err.eval

Class Patterns # Errors % Errors StdDev Avg LogL Label
 0 10 0 0.00 (0.0) -0.466 0
 1 10 1 10.00 (9.5) -0.610 1
 2 10 1 10.00 (9.5) -0.542 2
 3 10 0 0.00 (0.0) -0.259 3
 4 10 0 0.00 (0.0) -0.548 4
 5 10 0 0.00 (0.0) -0.363 5
 6 10 0 0.00 (0.0) -0.074 6
 7 10 0 0.00 (0.0) -0.449 7
 8 10 1 10.00 (9.5) -0.663 8
 9 10 0 0.00 (0.0) -0.810 9
 -------- -------- ------- -------------

Overall 100 3 3.00 (1.7) -0.478

 TEST: gnoise_var.eval 3.00 % Err -0.478 Avg LogL 0.31 secs
== gauss END
0.2u 0.0s 0:02 12% 0+404k 1+2io 1pf+0w
current directory:
/u/kukolich/Tutorial

Evaluate classifier

Confusion matrix

Error summary
LNKnet Users Guide (Revision 4, February 2004) 151

APPENDIX C: Tutorial Scripts and Outputs
C.4 RBF with KMEANS (Cross Validation)

In this experiment, a series of radial basis function classifiers were trained on data taken
from different kinds of iris flowers. The basis functions used in each classifier were gen-
erated in a separate call to LNKnet’s K-means algorithm. Because there is not much
data for the iris problem, the experiment used cross validation to get a good estimate of
the classification error rate. Cross validation is explained in Section 5.7 on page 89.

C.4.1 RBF Cross Validation Shell Script
#!/bin/csh -ef
./cvrbf.run
set loc=`pwd`

#cross validation
(time kmeans\
 -create -pathexp $loc -ferror cvrbf.err.cv -fparam cvkmeans.param\
 -pathdata /u/kukolich/Tutorial -finput iris.train\
 -fdescribe iris.defaults -npatterns 150 -ninputs 4 -normalize\
 -fnorm iris.norm.simple -cross_valid 5 -fcross_valid iris.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 150 -debug 0 -verbose 3\
 -verror 2 \
-cluster_by_class -ncenters 2 -split_percentage 1 -add_random_offset\
 -max_iteration 10 -stop_percentage 1 -reduce_step 1 \
)|& nn_tee -h cvrbf.log
(time rbf\
 -create -pathexp $loc -ferror cvrbf.err.cv -fparam cvrbf.param\
 -pathdata /u/kukolich/Tutorial -finput iris.train\
 -fdescribe iris.defaults -npatterns 150 -ninputs 4 -normalize\
 -fnorm iris.norm.simple -cross_valid 5 -fcross_valid iris.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 150 -debug 0 -verbose 3\
 -verror 2 \
-fclparam cvkmeans.param -hspread 1 -exhspread 1 -max_ratio 1e+06\
 -minvar 1e-06 -fast_nhidden 0 \
)|& nn_tee -h -a cvrbf.log
echo -n “cvrbf.run “ >> /u/kukolich/Tutorial/LNKnet.note
grep “CV” cvrbf.log | tail -1 >> /u/kukolich/Tutorial/LNKnet.note
echo “current directory:” >> cvrbf.log
echo $loc >> cvrbf.log

C.4.2 RBF Cross Validation Log File

== kmeans BEGIN
kmeans
-create -pathexp /u/kukolich/Tutorial -ferror cvrbf.err.cv\
 -fparam cvkmeans.param -pathdata /u/kukolich/Tutorial\
 -finput iris.train -fdescribe iris.defaults -npatterns 150 -ninputs 4\
 -normalize -fnorm iris.norm.simple -cross_valid 5\
 -fcross_valid iris.train.cv -random_cv -random -seed 0\
 -priors_npatterns 150 -debug 0 -verbose 3 -verror 2 -cluster_by_class\
 -ncenters 2 -ncenters_list 2,2,2 -split_percentage 1 -add_random_offset\
 -max_iteration 10 -stop_percentage 1 -reduce_step 1
Thu Apr 13 14:04:11 1995

Reading /u/kukolich/Tutorial/iris.train
>>>>>> FOLD 0 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.068 2
 3 0.469 2

Cluster using Kmeans

Do RBF 5 fold cross validation

Put cross validation results in the
notebook file

Kmeans clustering

Finding clusters for fold 0

Finding clusters for class 0 fold 0
152 LNKnet Users Guide (Revision 4, February 2004)

C.4: RBF with KMEANS (Cross Validation)
 4 0.469 2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.006 2
 3 0.520 2
 4 0.511 2
 5 0.511 2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.441 2
 3 0.789 2
 4 0.785 2
>>>>>> FOLD 1 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.031 2
 3 0.499 2
 4 0.499 2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 0.971 2
 3 0.470 2
 4 0.466 2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.195 2
 3 0.696 2
 4 0.692 2
>>>>>> FOLD 2 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 0.894 2
 3 0.432 2
 4 0.432 2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.090 2
 3 0.546 2
 4 0.545 2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.431 2
 3 0.795 2
 4 0.795 2
>>>>>> FOLD 3 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 0.891 2
 3 0.390 2
 4 0.384 2
 5 0.363 2
 6 0.356 2
 7 0.356 2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.053 2

Finding clusters for class 1 fold 0

Finding clusters for class 2 fold 0

Finding clusters for fold 1

Finding clusters for class 0 fold 1

Finding clusters for class 1 fold 1

Finding clusters for class 2 fold 1

Finding clusters for fold 2

Finding clusters for fold 3
LNKnet Users Guide (Revision 4, February 2004) 153

APPENDIX C: Tutorial Scripts and Outputs
 3 0.510 2
 4 0.510 2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.250 2
 3 0.725 2
 4 0.724 2
>>>>>> FOLD 4 <<<<<<
training centers for class 0
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 0.778 2
 3 0.358 2
 4 0.358 2
training centers for class 1
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 0.942 2
 3 0.510 2
 4 0.510 2
training centers for class 2
 EPOCH ave.sq.err ncenters (40 patterns/epoch)
 1 0.000 1
 2 1.291 2
 3 0.730 2
 4 0.725 2

Finished -- model saved in “/u/kukolich/Tutorial/cvkmeans.param”
== kmeans END
0.2u 0.0s 0:02 11% 0+368k 3+1io 47pf+0w

== rbf BEGIN
rbf
-create -pathexp /u/kukolich/Tutorial -ferror cvrbf.err.cv\
 -fparam cvrbf.param -pathdata /u/kukolich/Tutorial\
 -finput iris.train -fdescribe iris.defaults -npatterns 150 -ninputs 4\
 -normalize -fnorm iris.norm.simple -cross_valid 5\
 -fcross_valid iris.train.cv -random_cv -random -seed 0\
 -priors_npatterns 150 -debug 0 -verbose 3 -verror 2\
 -fclparam cvkmeans.param -hspread 1 -exhspread 1 -max_ratio 1e+06\
 -minvar 1e-06 -fast_nhidden 0
Thu Apr 13 14:04:15 1995

Reading cluster parameters from “/u/kukolich/Tutorial/cvkmeans.param”

Building rbf model

Reading /u/kukolich/Tutorial/iris.train
>>>>>> FOLD 0 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv

Desired Computed Class
 Class 0 1 2 Total
 ----- ---- ---- ---- -----
 0 10 10
 1 10 10
 2 10 10
 ----- ---- ---- ---- -----
 Total 10 10 10 30

Finding clusters for fold 4

Running RBF cross validation
experiment

Confusion matrix for fold 0
154 LNKnet Users Guide (Revision 4, February 2004)

C.4: RBF with KMEANS (Cross Validation)

Error Report - cvrbf.err.cv

Class Patterns # Errors % Errors StdDev RMS Err
 Label
 0 10 0 0.00 (0.0) 0.000 Setosa
 1 10 0 0.00 (0.0) 0.010 Versicolour
 2 10 0 0.00 (0.0) 0.098 Virginica
 -------- -------- ------- -------------

Overall 30 0 0.00 (0.0) 0.057

>>>>>> FOLD 1 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv

Desired Computed Class
 Class 0 1 2 Total
 ----- ---- ---- ---- -----
 0 10 10
 1 9 1 10
 2 10 10
 ----- ---- ---- ---- -----
 Total 10 9 11 30

Error Report - cvrbf.err.cv

Class Patterns # Errors % Errors StdDev RMS Err
 Label
 0 10 0 0.00 (0.0) 39.669 Setosa
 1 10 1 10.00 (9.5) 39.669 Versicolour
 2 10 0 0.00 (0.0) 39.669 Virginica
 -------- -------- ------- -------------

Overall 30 1 3.33 (3.3) 39.669

>>>>>> FOLD 2 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv

Desired Computed Class
 Class 0 1 2 Total

Error summary for fold 0

Results for fold 1

Results for fold 2
LNKnet Users Guide (Revision 4, February 2004) 155

APPENDIX C: Tutorial Scripts and Outputs
 ----- ---- ---- ---- -----
 0 10 10
 1 10 10
 2 10 10
 ----- ---- ---- ---- -----
 Total 10 10 10 30

Error Report - cvrbf.err.cv

Class Patterns # Errors % Errors StdDev RMS Err
 Label
 0 10 0 0.00 (0.0) 39.669 Setosa
 1 10 0 0.00 (0.0) 39.669 Versicolour
 2 10 0 0.00 (0.0) 39.669 Virginica
 -------- -------- ------- -------------

Overall 30 0 0.00 (0.0) 39.669

>>>>>> FOLD 3 <<<<<<

Inverting rbf matrix

Classification Confusion Matrix - cvrbf.err.cv

Desired Computed Class
 Class 0 1 2 Total
 ----- ---- ---- ---- -----
 0 10 10
 1 8 2 10
 2 2 8 10
 ----- ---- ---- ---- -----
 Total 10 10 10 30

Error Report - cvrbf.err.cv

Class Patterns # Errors % Errors StdDev RMS Err
 Label
 0 10 0 0.00 (0.0) 0.577 Setosa
 1 10 2 20.00 (12.6) 0.577 Versicolour
 2 10 2 20.00 (12.6) 0.577 Virginica
 -------- -------- ------- -------------

Overall 30 4 13.33 (6.2) 0.577

>>>>>> FOLD 4 <<<<<<

Inverting rbf matrix

Results for fold 3
156 LNKnet Users Guide (Revision 4, February 2004)

C.4: RBF with KMEANS (Cross Validation)
Classification Confusion Matrix - cvrbf.err.cv

Desired Computed Class
 Class 0 1 2 Total
 ----- ---- ---- ---- -----
 0 10 10
 1 9 1 10
 2 10 10
 ----- ---- ---- ---- -----
 Total 10 9 11 30

Error Report - cvrbf.err.cv

Class Patterns # Errors % Errors StdDev RMS Err
 Label
 0 10 0 0.00 (0.0) 0.577 Setosa
 1 10 1 10.00 (9.5) 0.577 Versicolour
 2 10 0 0.00 (0.0) 0.577 Virginica
 -------- -------- ------- -------------

Overall 30 1 3.33 (3.3) 0.577

Finished -- rbf model saved in “/u/kukolich/Tutorial/cvrbf.param”
>>>>>> OVERALL <<<<<<

Classification Confusion Matrix - cvrbf.err.cv

Desired Computed Class
 Class 0 1 2 Total
 ----- ---- ---- ---- -----
 0 50 50
 1 46 4 50
 2 2 48 50
 ----- ---- ---- ---- -----
 Total 50 48 52 150

Error Report - cvrbf.err.cv

Class Patterns # Errors % Errors StdDev RMS Err
 Label
 0 50 0 0.00 (0.0) 25.092 Setosa
 1 50 4 8.00 (3.8) 25.092 Versicolour
 2 50 2 4.00 (2.8) 25.092 Virginica
 -------- -------- ------- -------------

Overall 150 6 4.00 (1.6) 25.092

Results for fold 4

Overall confusion matrix

Overall error summary
LNKnet Users Guide (Revision 4, February 2004) 157

APPENDIX C: Tutorial Scripts and Outputs
 CV 5: iris.train 4.00 % Err 25.1 RMS Err 0.41 secs
== rbf END
0.3u 0.0s 0:04 8% 0+396k 2+3io 48pf+0w
current directory:
/u/kukolich/Tutorial

C.5 Experiment Notebook File

The experiment notebook holds a short description of each experiment run during a
LNKnet session. A notebook entry includes a short list of experiment parameters, train-
ing results, testing results, and information from the posterior probability plot and the
ROC (detection) plot. Each line starts with the experiment shell script name, which
allows the user to find lines pertinent to a particular experiment using the UNIX grep
and awk programs.

X1mlp.run vowel simple mlp -nodes 2,25,10 -alpha 0.6 -etta 0.2 -etta_change_type
0 -epsilon 0.1 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance 0.01 -hfunction
0 -ofunction 0 -sigmoid_param 1 -cost_func 0 -cost_param 1 -epochs 20 -batch
1,1,0 -init_mag 0.1
X1mlp.run LAST TRAIN EPOCH: 20 33.73 % Err 0.217 RMS Err 18.01 secs
X1mlp.run TEST: vowel.eval 32.53 % Err 0.207 RMS Err 0.54 secs
X1mlp.run TARGET 2 CHI 2.446746 DOF 2 SIGNIFICANCE 0.294236
X1mlp.run TARGET 2 ROC AREA = 98.732872

X1knn.run vowel simple knn -k 3
X1knn.run TEST: vowel.eval 18.07 % Err 0.163 RMS Err 0.42 secs

X1mlp.run vowel simple -continue mlp -nodes 2,25,10 -alpha 0.6 -etta 0.2 -
etta_change_type 0 -epsilon 0.1 -kappa 0.01 -etta_nepochs 0 -decay 0 -tolerance
0.01 -hfunction 0 -ofunction 0 -sigmoid_param 1 -cost_func 0 -cost_param 1 -
epochs 20 -batch 1,1,0 -init_mag 0.1
X1mlp.run LAST TRAIN EPOCH: 20 25.44 % Err 0.194 RMS Err 17.80 secs
X1mlp.run TEST: vowel.eval 19.88 % Err 0.181 RMS Err 0.48 secs
X1mlp.run TARGET 2 CHI 0.211159 DOF 2 SIGNIFICANCE 0.899803
X1mlp.run TARGET 2 ROC AREA = 99.006859

allgauss.run gnoise_var simple gauss -minvar 1e-05 -max_ratio 1e+06
allgauss.run TEST: gnoise_var.eval 1.00 % Err -1.87 Avg LogL 0.38 secs

N1gauss.run gnoise_var simple -ninputs 1 gauss -minvar 1e-05 -max_ratio 1e+06
N1gauss.run TEST: gnoise_var.eval 78.00 % Err -1.41 Avg LogL 0.36 secs

N2gauss.run gnoise_var simple -ninputs 2 gauss -minvar 1e-05 -max_ratio 1e+06
N2gauss.run TEST: gnoise_var.eval 62.00 % Err -1.71 Avg LogL 0.36 secs

N4gauss.run gnoise_var simple -ninputs 4 gauss -minvar 1e-05 -max_ratio 1e+06
N4gauss.run TEST: gnoise_var.eval 48.00 % Err -2.22 Avg LogL 0.35 secs

last3gauss.run gnoise_var simple -features 7,5,6 -ninputs 3 gauss -minvar 1e-05 -
max_ratio 1e+06
last3gauss.run TEST: gnoise_var.eval 3.00 % Err -0.478 Avg LogL 0.31 secs

pcagauss.run gnoise_var pca -ninputs 2 gauss -minvar 1e-05 -max_ratio 1e+06
pcagauss.run TEST: gnoise_var.eval 25.00 % Err -2.67 Avg LogL 0.36 secs

ldagauss.run gnoise_var lda -ninputs 2 gauss -minvar 1e-05 -max_ratio 1e+06
ldagauss.run TEST: gnoise_var.eval 0.00 % Err -1.71 Avg LogL 0.33 secs

First 20 epochs of MLP training

KNN experiment

Second 20 epochs of MLP training

Feature selection and normalization
experiments
158 LNKnet Users Guide (Revision 4, February 2004)

C.6: C Code Generation From a Parameter File
cvrbf.run iris simple -cross_valid 5 kmeans -cluster_by_class -ncenters 2 -
split_percentage 1 -add_random_offset -max_iteration 10 -stop_percentage 1 -
reduce_step 1 rbf -fclparam cvkmeans.param -hspread 1 -exhspread 1 -max_ratio
1e+06 -minvar 1e-06 -fast_nhidden 0
cvrbf.run CV 5: iris.train 4.00 % Err 25.1 RMS Err 0.41 secs

cvrbf.run {kmeans -ncenters 4 } {rbf -fast_train -fast_nhidden 2 }
cvrbf.run CV 5: iris.train 4.67 % Err 17.7 RMS Err 0.51 secs

cvrbf.run {rbf [-fast_train] }
cvrbf.run CV 5: iris.train 4.67 % Err 25.1 RMS Err 0.51 secs

C.6 C Code Generation From a Parameter File

In this example a Gaussian classifier was trained on the XOR data base shown on
page 188. The Gaussian classifier has a full covariance matrix for each class, as
described in Section 6.3.2 on page 97. The input data was normalized using simple nor-
malization. The decision regions produced by this Gaussian classifier are shown in
Figure 7.5 on page 114. A C subroutine file was generated from the parameter file as
described in Section 7.2. The shell script that produced the routine is shown in Figure
C.6.2. The subroutine file is shown in Figure C.6.3. Finally, a small program was writ-
ten that uses the generated classification subroutine to draw the decision region plot in
Section C.6.4.

C.6.1 Gauss Parameter File
This parameter file was created by the program gauss which was called in the shell
script XORgauss.run.

FIGURE C.1 Gauss Parameter file (XORgauss.param)
gauss
-train -create -pathexp /u/kukolich/Tutorial\
 -ferror XORgauss.err.train -fparam XORgauss.param\
 -pathdata /u/kukolich/lnknet/data/class -finput XOR.train\
 -fdescribe XOR.defaults -npatterns 16 -ninputs 2 -normalize\
 -fnorm XOR.norm.simple -cross_valid 0 -fcross_valid XOR.train.cv\
 -random_cv -random -seed 0 -priors_npatterns 16 -debug 0 -verbose 3\
 -verror 2 -full -per_class -minvar 1e-05 -max_ratio 1e+06
Fri Apr 7 09:49:19 1995

normalization data
<BEGIN_PARAM>
normalization 1
ninputs 2
nclasses 2
total_trials 16
max_features 2
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
means 2
0 0.5
1 0.5
END_VECTOR}
{BEGIN_VECTOR
sdevs 2
0 0.504975

Cross validation experiment

Repeat of cvrbf with more kmeans
clusters and fast training

Second repeat with fast training off

Settings for all GAUSS command
line arguments

Normalization parameters from
XOR.norm.simple
LNKnet Users Guide (Revision 4, February 2004) 159

APPENDIX C: Tutorial Scripts and Outputs
1 0.504975
END_VECTOR}
<END_PARAM>
gauss model
<BEGIN_PARAM>
ninputs 2
noutputs 2
total_trials 16
full_covar 1
per_class 1
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
features 1
0 0
END_VECTOR}
{BEGIN_VECTOR
class_trials 2
0 8
1 8
END_VECTOR}
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
mean 2
0 -1.49012e-08
1 -7.45058e-09
END_VECTOR}
<END_PARAM>
<BEGIN_PARAM>
{BEGIN_VECTOR
mean 2
0 0
1 -7.45058e-09
END_VECTOR}
<END_PARAM>
<BEGIN_PARAM>
log_det -1.41082
{BEGIN_MATRIX
inv_covar 2 2
0 0 25.7526
0 1 -25.2477
1 0 -25.2477
1 1 25.7526
END_MATRIX}
<END_PARAM>
<BEGIN_PARAM>
log_det -1.41082
{BEGIN_MATRIX
inv_covar 2 2
0 0 25.7524
0 1 25.2475
1 0 25.2475
1 1 25.7524
END_MATRIX}
<END_PARAM>

C.6.2 C code generation shell script
This shell script, XORgauss.c.run, was created from LNKnet’s C Code generation win-
dow. The program gauss2c will produce two subroutines, classify_XORgauss() and
normalize_XORgauss(), shown in Section C.6.3.

Gauss parameters

Gauss constants

No feature selection

Npatterns seen per class over all
training

Means for first class

Means for second class

Determinant and inverse
covariance matrix for first class

Determinant and inverse
covariance matrix for second class
160 LNKnet Users Guide (Revision 4, February 2004)

C.6: C Code Generation From a Parameter File
FIGURE C.2 GAUSS2C script (XORgauss.c.run)
#!/bin/csh -ef
./XORgauss.c.run
gauss2c -model_file XORgauss.param -suffix XORgauss >! XORgauss.c

C.6.3 Sample gauss2c Output

The filter gauss2c to produces two C subroutines, by default named classify() and
normalize(). The routine classify() takes a vector of raw inputs and a pointer to a vector
of outputs. It calls normalize() and then calculates the outputs of the Gaussian classifier
for the normalized inputs. The outputs are copied into the output vector sent by the
calling routine. The number of the highest output is returned as the class of the input
vector. The routine normalize() takes a raw input pattern and performs normalization
and feature selection. The normalized inputs are stored in the vector that held the
original pattern. Normalize() returns the number of input features used by the classifier.
gauss2c has a flag, -suffix, which adds a suffix to the subroutine names produced. This
allows easy inclusion of multiple classification routines in one user program. For
example, in Figure C.2 the suffix flag was set to XORgauss. The classify and normalize
subroutine names are thus classify_XORgauss() and normalize_XORgauss().

For the parameter file in Figure C.1, simple normalization is used. There are two input
features and two classes. Each class has its own covariance matrix and that is a full
covariance matrix.

An example of the use of these routines in a program has been added after the routine
normalize_XORgauss(), in Figure C.4. This example generates a list of patterns and
their output classes for a decision region plot.

FIGURE C.3 Output of gauss2c (XORgauss.c)
/* XORgauss.param */
/* Per Class, Full */
/* norm: SIMPLE */
/* 2 (all) features */

#include <math.h>

 /* macro definitions */
#ifndef SQR(x)
#define SQR(x) ((x) * (x))
#endif

#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif

#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif

#ifndef LOG_2PI
#define LOG_2PI 0.798179868358
#endif

Comments describing Gaussians
and normalization

Macros for functions and constants
LNKnet Users Guide (Revision 4, February 2004) 161

APPENDIX C: Tutorial Scripts and Outputs
 /* function declarations */
extern int classify_XORgauss(/* float *,float * */);
extern int normalize_XORgauss(/* float * */);

#define NRAW_XORgauss 2
#define NINPUTS_XORgauss 2
#define NCLASSES_XORgauss 2

int classify_XORgauss (inputs, outputs)
 float *inputs,*outputs;
{
 int n, best;
 int j,k;
 float y[NCLASSES_XORgauss],p;
 static float means[NCLASSES_XORgauss][NINPUTS_XORgauss] = {

{ -1.490120e-08, -7.450580e-09, },
{ 0.000000e+00, -7.450580e-09, },

};
 static float inv_var[NCLASSES_XORgauss][NINPUTS_XORgauss][NINPUTS_XORgauss] = {

/* class 0 */{
 { 2.575260e+01, -2.524770e+01, },
 { -2.524770e+01, 2.575260e+01, },

},
/* class 1 */{
 { 2.575240e+01, 2.524750e+01, },
 { 2.524750e+01, 2.575240e+01, },

},
};
 static float log_determinant[NCLASSES_XORgauss] = {
 -1.410820e+00, -1.410820e+00, };

static float log_class_priors[NCLASSES_XORgauss] = {
 -3.010300e-01, -3.010300e-01, };

 float x[NRAW_XORgauss];
 int i;

 /* load inputs */
 for(i = 0; i < NRAW_XORgauss; i++)
 x[i] = inputs[i];

 /* normalize loaded data */
 normalize_XORgauss(x);
/* calculate outputs for each class */
 for(n = 0; n < NCLASSES_XORgauss; n++){
 y[n] = 0;
 for(j = 0; j < NINPUTS_XORgauss; j++){
 p = 0.;
 for(k = 0; k < NINPUTS_XORgauss; k++){
 p += (x[k]-means[n][k])*inv_var[n][j][k];
 }
 y[n] += (x[j] - means[n][j])*p;
 }
 y[n] *= 0.5 * M_LOG10E;
 y[n] += log_determinant[n] * 0.5 + NINPUTS_XORgauss*0.5*LOG_2PI;
 y[n] = -y[n];
 y[n] += log_class_priors[n];
 }

 /* copy outputs and make linear */
 for(n = 0; n < NCLASSES_XORgauss; n++)
 outputs[n] = exp(M_LN10 * (double)y[n]);

 /* find highest output */
 for(best = n = 0; n < NCLASSES_XORgauss; n++)

classify_XORgauss

Means for Gaussians

Inverse covariance matrices for
each class

Log determinants of covariance
matrices

Log a priori class probabilities

Copy inputs into input array, x, then
do normalization and feature
selection

Calculate outputs for each class

Copy outputs into user supplied
array, making them linear

Find highest output and return its
class
162 LNKnet Users Guide (Revision 4, February 2004)

C.6: C Code Generation From a Parameter File
 if(y[best] < y[n]) best = n;
 return(best);
}

int normalize_XORgauss(inputs)
 float *inputs;
{
 int n;
 float new_inputs[NRAW_XORgauss];

static float means[NINPUTS_XORgauss] = {
 5.000000e-01, 5.000000e-01, };

static float sdevs[NINPUTS_XORgauss] = {
 5.049750e-01, 5.049750e-01, };

 for(n = 0; n < NINPUTS_XORgauss; n++){
 new_inputs[n] = (inputs[n]- means[n]) / sdevs[n];
 }

 for(n = 0; n < NINPUTS_XORgauss; n++){
 inputs[n] = new_inputs[n];
 }
 return((int) NINPUTS_XORgauss);
}
#undef NRAW_XORgauss
#undef NINPUTS_XORgauss
#undef NCLASSES_XORgauss

FIGURE C.4 Main driver program that uses LNKnet classifier code.

/* program for generating decision regions */
main()
{
 float x,y, xstep, ystep;
 float inputs[2], outputs[2];
 int class;

float xlow = -1, xhigh = 2, ylow = -1, yhigh = 2;

 /* sample a 50 by 50 grid of patterns between (-1,-1) and (2,2) */
 xstep = (xhigh - xlow)/50.;

ystep = (yhigh - ylow)/50.;
 for(x = xlow; x < xhigh; x += xstep){
 inputs[0] = x;
 for(y = ylow; y < yhigh; y += ystep){
 inputs[1] = y;
 /* find the class for the current pattern */
 class = classify_XORgauss(inputs, outputs);
 /* print out the results */
 printf(“%f %f %d\n”, x, y, class);
 }
 }
}

normalize_XORgauss

Means and variances for simple
normalization

Normalize inputs and copy result to
new_inputs

Do features selection on
new_inputs, copying selected
features back into inputs. Return
the number of normalized selected
features

Main routine for generating
decision region patterns and
classes.
LNKnet Users Guide (Revision 4, February 2004) 163

APPENDIX C: Tutorial Scripts and Outputs
C.6.4 XOR Decision Region and Scatter Plot
The decision region plot in Figure C.5 was produced using the program in Figure C.3
and Figure C.4. The outputs of the program were fed to a plotting package. Small
squares represent points in the input space where class A is chosen by the classifier in
Figure C.1. Small triangles represent points where class B is chosen. The large filled
squares are the patterns from class A in the training file XOR.train. The large filled tri-
angles are the patterns from class B.

FIGURE C.5 XOR.train Scatter Plot and Decision Region Plot generated by XORgauss.c

0 1

0

1

XORgauss.c results and XOR scatter plot

X0
-1.1 2.1

X1

-1.1

2.1 Class Labels
A
B

164 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D Data Bases Included in
LNKnet

FIGURE D.1 angle

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 200 100 100

LEGEND

0

1

Norm:Simple Diagonal Grand

-0.5 0 0.5

-1

0

1

lnknet/data/class/angle.train

-1
X0 (0 vs 1)

1
-2

X1

2

LNKnet Users Guide (Revision 4, February 2004) 165

APPENDIX D: Data Bases Included in LNKnet
Angle is a generated data base with two classes. Each class is made of points uniformly
sampled from a pair of ovals which are identical except for the positions of their centers.
After the points were generated the data was rotated 60 degrees to put the classes at an
angle to the origin.

FIGURE D.2 bulls

This is bull’s-eye data. There are two classes. One contains patterns uniformly distrib-
uted in a disk of radius 1.0 and the other class contains patterns uniformly distributed in
an annulus with an inner radius of 1.0 and an outer radius of 5.0.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 500 250 250

LEGEND

0

1

Norm:Simple Diagonal Grand

-4 -2 0 2 4

-4

-2

0

2

4

lnknet/data/class/bulls.train

-6
X0 (0 vs 1)

6
-6

X1

6

166 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.3 cross

Class zero contains patterns from a 2-D Gaussian distribution with positively correlated
features. Class one contains patterns from a similar 2-D Gaussian distribution with neg-
atively correlated features. These distributions overlap and form a cross as shown.The
data base was intended for use in testing the Gaussian classifier with full covariance
matrices.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 200 100 100

LEGEND

0

1

Norm:Simple Diagonal Grand

-0.5 0 0.5

-0.5

0

0.5

lnknet/data/class/cross.train

-1
X0 (0 vs 1)

1
-1

X1

1

LNKnet Users Guide (Revision 4, February 2004) 167

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.4 daisy

This data base has 12 classes. The points in each class are in Gaussian clusters which
radiate out from the origin. There are one, two, or three Gaussians per class. This data
base was generated to test the Gaussian Mixture Classifier.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 12 1200 1200 1200

LEGEND

A

B

C

D

E

F

G

H

I

J

K

L

Norm:Simple Diagonal Grand

-10 0 10

-10

0

10

lnknet/data/class/daisy.train

-20
X0 (0 vs 1)

20
-20

X1

20
168 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.5 digit1

The classes in this speech data base are the first seven monosyllabic digits from the TI
digit data base. A version of the TI data base was sampled at 12kHz and processed to
extract 15 mel cepstra from 10 msec frames. Eleven of the low cepstral values were
used from two frames of each word. One frame was taken where the energy was highest
and the other frame is from 30 msec before the highest energy frame. This data base was
generated by Richard Lippmann of MIT Lincoln Laboratory [28].

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
22 7 70 56 56

LEGEND

0

1

2

3

4

5

6

Norm:Simple Diagonal Grand

0 2 4

-5

0

5

lnknet/data/class/digit1.train

-2
X0 (c0 vs c1)

6
-10

X1

10
LNKnet Users Guide (Revision 4, February 2004) 169

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.6 disjoint

Class 0 contains patterns uniformly sampled from a 6 by 3 unit rectangle. There are two
square regions where there are no patterns from class 0. The first square lies between
(0,0) and (1,1). The second square lies between (2,0) to (3,1). Class 1 contains patterns
uniformly sampled within these squares.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 500 250 250

LEGEND

0

1

Norm:Simple Diagonal Grand

0 2 4

0

1

lnknet/data/class/disjoint.train

-2
X0 (0 vs 1)

6
-1

X1

2

170 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.7 disjoint_tail

Class A contains patterns with a bimodal distribution. Most of the patterns are found in
a uniform distribution covering the range (-0.5,0.5). An additional 10% of the class A
patterns are found in a second uniform distribution covering the range (99.5,100.5). The
class B patterns have a Gaussian distribution with a mean at 2 and standard deviation of
1.0

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
1 2 400 200 200

LEGEND

A

B

Total

Norm:Simple Diagonal Grand

0 50

100

200

lnknet/data/class/disjoint_tail.train

-50
X0 (0)

100
-0

Y

300
LNKnet Users Guide (Revision 4, February 2004) 171

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.8 Disk

This data base has two uniformly sampled ellipses which have been rotated to put them
at a 45 degree angle to the input features.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 200 100 100

LEGEND

0

1

Norm:Simple Diagonal Grand

-0.5 0 0.5

-0.5

0

0.5

lnknet/data/class/Disk.train

-1
X0 (0 vs 1)

1
-1

X1

1

172 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.9 DiskOut

This data base has two uniformly sampled ellipses which have been rotated to put them
at a 45 degree angle to the input features. Class 1 has an additional set of patterns sepa-
rated from the main ellipse by 10 units.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 210 105 105

LEGEND

0

1

Norm:Simple Diagonal Grand

0 2 4 6

-6

-4

-2

0

lnknet/data/class/DiskOut.train

-2
X0 (0 vs 1)

8
-8

X1

2

LNKnet Users Guide (Revision 4, February 2004) 173

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.10 Gap

The data for each class is uniformly sampled from a rectangle with height 1. The width
of the rectangle for class 0 is 1, the width for class 1 is 10. Each class has the same num-
ber of patterns. This data base was generated while testing the Perceptron Convergence
Procedure cost function of the MLP classifier.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 200 100 100

LEGEND

0

1

Norm:Simple Diagonal Grand

5 10

0.2

0.4

0.6

0.8

lnknet/data/class/Gap.train

0
X0 (0 vs 1)

15
0

X1

1

174 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.11 gmix

The patterns for each class are taken from Gaussian mixture distributions. Each Gauss-
ian mixture distribution has three clusters, as shown, with one half of the patterns in the
central cluster and one quarter of the patterns in each of the other two clusters. This data
base was generated to test the Gaussian mixture classifier using diagonal covariance
matrices.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 4000 2000 2000

LEGEND

0

1

Norm:Simple Diagonal Grand

-5 0 5

-1

0

1

2

lnknet/data/class/gmix.train

-10
X0 (0 vs 1)

10
-2

X1

3

LNKnet Users Guide (Revision 4, February 2004) 175

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.12 gmix_close

The patterns for each class are taken from Gaussian mixture distributions. Each Gauss-
ian mixture distribution has three clusters as shown with one half of the patterns in the
central cluster and one quarter of the patterns in each of the other two clusters. This data
base is very similar to the gmix data base. The class distributions are considerably closer
together, however and overlap.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 4000 2000 2000

LEGEND

0

1

Norm:Simple Diagonal Grand

-2 0 2

-1

0

1

2

lnknet/data/class/gmix_close.train

-4
X0 (0 vs 1)

4
-2

X1

3

176 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.13 gnoise

Each pattern was generated by adding Gaussian noise to the center of each class in all
eight input dimensions. The standard deviation of the noise is 0.5. The class means are
found along the line where is the value of the dth fea-
ture and j is the class.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
8 10 200 100 100

LEGEND

0

1

2

3

4

5

6

7

8

9

Norm:Simple Diagonal Grand

0 2 4 6 8

0

2

4

6

8

lnknet/data/class/gnoise.train

-2
X0 (0 vs 1)

10
-2

X1

10

xd j 0 d 7≤ ≤() 0 j 9≤ ≤(), ,= xd
LNKnet Users Guide (Revision 4, February 2004) 177

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.14 gnoise_var

This is a modified version of gnoise where the variance is smaller for the higher input
features. Each pattern was generated by adding Gaussian noise to the center of each
class in all eight input dimensions. The standard deviation decreases as the dimensions
increase. The standard deviation is where d is the number of the
dimension . The class means are found along the line , ,

. The plot shows the first, noisiest, dimension plotted against the last, most
clean, dimension.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
8 10 200 100 100

LEGEND

0

1

2

3

4

5

6

7

8

9

Norm:Simple Diagonal Grand

0 5 10

0

2

4

6

8

lnknet/data/class/gnoise_var.train

-5
X0 (0 vs 7)

15
-2

X7

10

σd 8 d–()0.25=
0 d 7≤ ≤() xd j= 0 d 7≤ ≤()

0 j 9≤ ≤()
178 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.15 HalfDisk

The patterns in this data base were all uniformly sampled from an ellipse which is ten
times longer in the first direction than in the second. All the sampled patterns with

 were assigned to class 0. All other patterns were assigned to class 1.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 200 100 100

LEGEND

0

1

Norm:Simple Diagonal Grand

-0.5 0 0.5

-0.05

0

0.05

lnknet/data/class/HalfDisk.train

-1
X0 (0 vs 1)

1
-0.1

X1

0.1

X1 0>
LNKnet Users Guide (Revision 4, February 2004) 179

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.16 high_tail

The first class was generated using a single Gaussian distribution with a mean of 5 and a
variance of 1. The second class was generated by sampling two overlapping uniform
distributions of differing length. The probability of a pattern in the second class being in
the first segment is 0.9. The first segment covers the range (-0.5, 0.5). The second seg-
ment covers the range (-50,50).

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
1 2 400 200 200

LEGEND

A

B

Total

Norm:Simple Diagonal Grand

-40 -20 0 20 40

50

100

lnknet/data/class/high_tail.train

-60
X0 (0)

60
-0

Y

150
180 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.17 iris

This is R.A. Fisher’s iris data [8]. The data set contains three classes with 50 patterns for
each class. Each class is a type of iris plant. The inputs are the sepal length and width in
centimeters and the petal length and width in centimeters.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
4 3 150

LEGEND

Setosa

Versicolour

Virginica

Norm:Simple Diagonal Grand

5 6 7

3

4

lnknet/data/class/iris.train

4
X0 (sepal_length vs sepal_width)

8
2

X1

5

LNKnet Users Guide (Revision 4, February 2004) 181

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.18 ocrdigit

This is the little 1200 data base which was collected at AT&T Bell Laboratories by Isa-
belle Guyon[35] among her collaborators. Twelve people wrote the 10 digits several
times each. The data was mapped to a 64 by 64 grid and then smoothed and fit into a 8
by 8 grid. This smoothed data was provided by John Hampshire.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
64 10 600 600
182 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.19 pbvowel

This is most of the original Peterson and Barney[32] vowel data which was collected in
the 1950’s. The original data was collected from 67 speakers, each of whom said the 10
words given in the legend. The inputs are the pitch and first three formant frequencies of
the vowel in each word and whether the speaker was a man, woman, or child.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
5 10 896 298 300

LEGEND

heed

hid

head

had

hud

hod

hawed

hood

whod

heard

Norm:Simple Diagonal Grand

500 1000

1000

2000

3000

lnknet/data/class/pbvowel.train

0
X1 (1formant vs 2formant)

1500
0

X2

4000
LNKnet Users Guide (Revision 4, February 2004) 183

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.20 uniform_1_1

The three data bases, uniform_1_1, uniform_2_1, and uniform_10_1, were all generated
by sampling the same pair of Gaussian distributions. The means of the Gaussians are
one standard deviation apart along the line x=y. The differences among the three data
bases are in the number of patterns sampled for each class. There ar 500 patterns in each
class in uniform_1_1. Uniform_2_1 has 666 patterns from class 0 and 333 patterns from
class 1, giving a 2 to 1 ratio in the a priori probabilities of the classes. Uniform_10_1
has 1000 patterns from class 0 and 100 from class 1, giving a 10 to 1 ratio in the class
probabilities. These data bases were generated to test the a priori probability adjustment
features of the LNKnet classifiers.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 1000 1000

LEGEND

0

1

Norm:Simple Diagonal Grand

-2 0 2

-4

-2

0

2

lnknet/data/class/uniform_1_1.train

-4
X0 (0 vs 1)

4
-6

X1

4

184 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.21 uniform_2_1

Data taken from two identical Gaussian distributions with means one standard deviation
apart. There are twice as many patterns from class 0 as from class 1.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 999 999

LEGEND

0

1

Norm:Simple Diagonal Grand

-4 -2 0 2

-2

0

2

lnknet/data/class/uniform_2_1.train

-6
X0 (0 vs 1)

4
-4

X1

4

LNKnet Users Guide (Revision 4, February 2004) 185

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.22 uniform_10_1

Data taken from two identical Gaussian distributions with means one standard deviation
apart. There are 10 times as many patterns from class 0 as from class 1.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 1100 1100

LEGEND

0

1

Norm:Simple Diagonal Grand

-2 0 2

-2

0

2

lnknet/data/class/uniform_10_1.train

-4
X0 (0 vs 1)

4
-4

X1

4

186 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.23 vowel

This data is a normalized version of some of the Peterson and Barney[32] vowel data.
The inputs are the first and second formant frequencies of the vowel in the 10 words
given in the legend. The frequency data is normalized to be between 0 and 1.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 10 338 166 167

LEGEND

head

hid

hod

had

hawed

heard

heed

hud

whod

hood

Norm:Simple Diagonal Grand

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

lnknet/data/class/vowel.train

0
X0 (1formant vs 2formant)

1
0

X1

1

LNKnet Users Guide (Revision 4, February 2004) 187

APPENDIX D: Data Bases Included in LNKnet
FIGURE D.24 XOR

This data base has hand generated patterns from the XOR problem. It is intended for
testing algorithms by hand to verify the outputs of calculations.

Ninputs Noutputs Npatterns train Npatterns eval Npatterns test
2 2 16 16

LEGEND

A

B

Norm:Simple Diagonal Grand

0 0.5 1

0

0.5

1

lnknet/data/class/XOR.train

-0.5
X0 (0 vs 1)

1.5
-0.5

X1

1.5
188 LNKnet Users Guide (Revision 4, February 2004)

APPENDIX E Using OpenWindows

SUN has an excellent tutorial describing the use of the OpenLook window manager.
The tutorial can be found in $OPENWINHOME/bin/helpopen. SUN also publishes an
OpenWindows User Guide which provides information on the use of OpenLook style
applications. If these sources of information are unavailable, this appendix covers those
parts of OpenWindows that affect the use of LNKnet. This appendix assumes that you
can already start a window manager. For more information on how to do this, contact
your system administrator.

E.1 The Mouse

Most graphical window interfaces are built around a mouse. OpenWindows assumes
that the mouse has three buttons. The settings of these buttons can be changed, but the
default settings are as follows: The left button is the Select Button; The middle button is
the Adjust Button; The right button is the Menu Button. In LNKnet, the select button is
used for setting check boxes, selecting items from a scrolling list, and “pushing” but-
tons. The menu button is used for making selections from a pull down menu. The adjust
button is not used. A SUN mouse is shown in Figure E.1. A SUN mouse comes with a
metal mouse pad. The mouse must be on that pad to work.

The mouse controls a pointer, also shown in Figure E.1. When the mouse is moved on
its pad, the pointer moves on the screen. To select a button on a LNKnet window, you
must first use the mouse to move the pointer over the button. It may also be necessary to
“click” the mouse on the bar at the top of the window to bring the LNKnet window to
the attention of the window manager. To do this, move the pointer to the bar at the top of
the window. Press and release the select button on the mouse.

FIGURE E.1 A SUN three button mouse and pointer

sun

Select Adjust

Menu

Mouse Pointer
LNKnet Users Guide (Revision 4, February 2004) 189

APPENDIX E: Using OpenWindows
E.1.1 Menus
In OpenWindows, a menu is indicated by a small triangle on a button or a small box. To
select something from a menu you must first move the mouse pointer to the triangle.
Press and hold the menu button on the mouse. The menu attached to the triangle should
now appear. Still holding down the mouse menu button, drag the pointer down the menu
to the item you want to select, then let go. It is possible that the item you want also has a
triangle next to it, indicating that there is another menu that must be selected from. If so,
do not let go of the menu button. Drag the mouse pointer in the direction the triangle
points to bring up the second menu and proceed as before.

E.1.2 Scrolling Lists
On the LNKnet file window, there is a scrolling list with the names of the standard data
bases available in LNKnet. To make a selection from this list you must first move scroll
the list up or down to show the item you want. Beside the list is a scroll bar. This bar has
a anchors at the top and bottom and an “elevator” in the middle. The list scrolls up when
the select button is pressed over the elevator. The list scrolls down when the select but-
ton is pressed under the elevator. The square in the middle lets you move the mouse
while holding the select button to scroll the list up or down. Once the item you want is
showing, select it with the select button on the mouse. Figure E.3 shows the scrolling
list on the LNKnet file window. The gnoise_var data base has been selected.

E.1.3 Buttons, Setters, and Check Boxes
Several other graphical controls are used by clicking on them with the select mouse but-
ton. LNKnet uses buttons, setting objects, and check boxes. The buttons do a variety of
things. Some of them have menus attached to them. The others run experiments, bring

FIGURE E.2 Making a Menu Selection

Triangle indicating a menu

Triangle indicating a second menu

FIGURE E.3 Scrolling LIst

Top Anchor
(select to scroll to the top)

Elevator
(Top scrolls up,

middle scrolls up or down,
bottom scrolls down)

Bottom Anchor
(select to scroll to the bottom)
190 LNKnet Users Guide (Revision 4, February 2004)

E.2: The Keyboard
up windows, or perform some function inside LNKnet. The setting objects set some
LNKnet or algorithm variable to some setting from a short list. The check boxes are
graphical binary flags. They turn on or off LNKnet features. Figure E.4 shows a set of
LNKnet selection objects.

E.2 The Keyboard

At least half the fields on most LNKnet windows are text fields. They are set by first
selecting them with the mouse and then typing on the keyboard. When a text field is
selected, a cursor, a small triangle, will appear on the line. Some text fields are associ-
ated with numbers. These numbers can be set by typing or by selecting the up and down
arrows beside the text field. When you are finished typing a new setting for a text field,
you must hit carriage return or tab. The change you have made will not take affect if you
do not. Figure E.5 shows some text fields from the LNKnet file window.

E.3 Windows

LNKnet is built around many windows. There is a main window and many popup win-
dows. When olwm is your window manager, these windows come up automatically.
With some other window managers, each window must be placed when it is displayed.
In olwm, the main difference between the main window and the popup windows is that
the popup windows are displayed with a push pin in the upper left corner of the window.
If you select the push pin, the popup window will disappear. It can be redisplayed by
reselecting the button which brought up the window before. If you select the small

FIGURE E.4 LNKnet Objects that are Set using the Select Mouse Button

Check box requests that
data be randomized before

doing automatic cross
validation fold assignment

Setting object chooses type
of pattern assignment for

cross validation folds

Button writes screen
settings to ~/.lnknetrc

Button brings up
C Code
Generation
window

FIGURE E.5 LNKnet Text Fields

Select the up or down arrows to
change the number input
features to use from the list file

Click the mouse over the field
underline then type to change the
feature list file name
LNKnet Users Guide (Revision 4, February 2004) 191

APPENDIX E: Using OpenWindows
square in the upper left of the main window, LNKnet will be iconified. That is, the
LNKnet main window and all of its popup windows will disappear and a square icon
will appear somewhere on your screen. Double clicking on the LNKnet icon will redis-
play the main LNKnet window and its popups. Figure E.6 shows the bar at the top of the
LNKnet main window and two popup windows as well as the LNKnet icon.

FIGURE E.6 LNKnet windows and icon

Select Push-pin to close
popup window

Select small square to
close LNKnet main

window and any open
LNKnet popups

Double click on LNKnet icon
to open LNKnet window and

LNKnet popups
192 LNKnet Users Guide (Revision 4, February 2004)

BIBLIOGRAPHY

1. Bruce G. Batchelor, ed. Pattern Recognition: Ideas in Practice. Plenum Press: New York, (1978).

2. Christopher M. Bishop, Neural Networks for Pattern Classification. Oxford: Clarendon Press,
(1995).

3. Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone, Classification and Re-
gression Trees. Belmont, California: Wadsworth, Inc., (1984).

4. Linde, Y., A. Buzo, and R.M. Gray, “An Algorithm for Vector Quantizer Design,” IEEE Transac-
tions on Communications, COM-28, 84-95, 1980.

5. N. Christiani and J. Shawe-Tayor, An Introduction to Support Vector Machines. Cambridge Uni-
versity Press (2000).

6. Eric I. Chang and Richard P. Lippmann, “Using Genetic Algorithms to Select and Create Features
for Pattern Classification,” MIT Lincoln Laboratory, Technical Report 892, 1991.

7. R.O. Duda, P.E. Hart, and David Stork, Pattern Classification (Second Edition). New York: Wiley
(2000).

8. R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of Eugenics,
7, 179-188, 1936.

9. K. Fukunaga, Introduction to Statistical Pattern Recognition (Second Edition). New York, NY:
Academic Press (1990).

10. John B. Hampshire and B. V. K. Vijaya Kumar. “Why Error Measures are Sub-Optimal for Train-
ing Neural Network Pattern Classifiers,” in IEEE Proceedings of the 1992 International Joint Confer-
ence on Neural Networks. IEEE, 1992.

11. John B. Hampshire and Alexander H. Waibel, “A Novel Objective Function for Improved Pho-
neme Recognition Using Time-Delay Neural Networks,” in IEEE Transactions on Neural Networks,
216-228, 1990.

12. J. A. Hartigan, Clustering Algorithms. New York: John Wiley and Sons (1975).

13. J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation. Addison-
Wesley (1991).

14. Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning,
LNKnet Users Guide (Revision 4, February 2004) 193

BIBLIOGRAPHY
New York, Springer (2001).

15. William Y. Huang and Richard P. Lippmann, “Comparisons Between Conventional and Neural
Net Classifiers,” in Proceedings of the 1st International Conference on Neural Networks, IV-485,
1987.

16. Don R. Hush and Bill G. Horne, “Progress in Supervised Neural Networks,” IEEE Signal Process-
ing Magazine, 10(1), 8-39, 1993.

17. Keerthi, S.S. and S.K. Shevade, “Improvements to Platt’s SMO algorithm for SVM classifier de-
sign,” Neural Computation Vol. 13, 2001, 637-649, http://guppy.mpe.nus.edu.sg/~mpessk/svm/
smo_mod_nc.ps.gz.

18. Ruby Kennedy, Yuchun Lee, Benjamin Van Roy, C. Reed, and Richard Lippmann, Solving Data
Mining Problems through Pattern Recognition. Prentice Hall (1997).

19. R. Kohavi, B. Becker, and D. Somerfield, Improving Simple Bayes, in Proceedings European
Conference on Machine Learning, 1997.

20. L. Kukolich, R. P. Lippmann, “Getting Started With LNKnet: A Quick Introduction”, MIT Lincoln
Laboratory, 1994.

21. Yuchun Lee, Classifiers: Adaptive Modules in Pattern Recognition Systems. Cambridge, MA:
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
(1989).

22. Yuchun Lee and Richard P. Lippmann, “Practical Characteristics of Neural Network and Conven-
tional Pattern Classifiers on Artificial and Speech Problems,” in Advances in Neural Information Pro-
cessing Systems 2, D.S. Touretzky, (Eds.), Morgan Kaufman: San Mateo, CA, 1990.

23. Richard P. Lippmann, “Pattern Classification Using Neural Networks,” in IEEE Communications
Magazine, 47-54, 1989.

24. Richard P. Lippmann, “A Critical Overview of Neural Network Pattern Classifiers,” in Neural
Networks for Signal Processing, Proceedings of the 1991 IEEE Workshop, B.H. Juang, S.Y. Kung, and
C.A. Kamm, (Eds.), IEEE: Piscataway, N.J., 1991.

25. Richard P. Lippmann, “An Introduction to Computing with Neural Nets,” in Neural Networks:
Theoretical Foundations and Analysis, C. Lau, (Eds.), IEEE Press: 1992.

26. R. P. Lippmann, “Neural Networks, Bayesian a posteriori Probabilities and Pattern Classifica-
tion,” in From Statistics to Neural Networks. Theory and Pattern Recognition Applications, V.
Cherkassky, J.H. Friedman, and H. Wechsler, Editors, Springer-Verlag, 1993.

27. R. P. Lippmann, L. Kukolich, and E. Singer, “LNKnet: Neural Network, Machine Learning, and
Statistical Software for Pattern Classification”, Lincoln Laboratory Journal, Vol. 6, No. 2, pp 249-268,
1993.
194 LNKnet Users Guide (Revision 4, February 2004)

BIBLIOGRAPHY
28. Kenney Ng and Richard P. Lippmann, “A Comparative Study of the Practical Characteristics of
Neural Network and Conventional Pattern Classifiers,” MIT Lincoln Laboratory, Technical Report
894, 1991.

29. Kenney Ng and Richard P. Lippmann, “A Comparative Study of the Practical Characteristics of
Neural Network and Conventional Pattern Classifiers,” in Neural Information Processing Systems 3,
R. Lippmann, J. Moody, and D. Touretzky, (Eds.), Morgan Kaufmann: San Mateo, California, 970-
976, 1990.

30. Nils J. Nilsson, Learning Machines. McGraw Hill, N.Y. (1965).

31. T. W. Parsons, Voice and Speech Processing. New York: McGraw-Hill (1986).

32. Gorden E. Peterson and Harold L. Barney, “Control Methods Used in a Study of Vowels,” in The
Journal of the Acoustical Society of America, 175-84, 1952.

33. Platt, J., “Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized
Likelihood Methods,” in Advances in Large Margin Classifiers, A. Smola, et al., Editors. 2000, MIT
Press, http://www.research.microsoft.com/users/jplatt/SVMprob.ps.gz.

34. Platt, J., “Fast Training of Support Vector Machines Using Sequential Minimal Optimization,” in
Advances in Kernel Methods - Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, Ed-
itors. 1998, MIT Press, http://www.research.microsoft.com/~jplatt/smo.html.

35. Guyon, I. Poujand, et al., “Comparing Different Neural Network Architectures for Classifying
Handwritten Digits,” in Proceedings International Joint Conference on Neural Networks, Washington
DC, II.127-II.132, 1989.

36. Mike D. Richard and Richard P. Lippmann, “Neural Network Classifiers Estimate Bayesian a Pos-
teriori Probabilities,” Neural Computation, 3, 461-483, 1992.

37. Elliot Singer and Richard P. Lippmann, “Improved Hidden Markov Model Speech Recognition
Using Radial Basis Function Networks,” in Neural Information Processing Systems 4, J. Moody, S.
Hanson, and R. Lippmann, (Eds.), Morgan Kaufmann: San Mateo, California, 1992.

38. Elliot Singer and Richard P. Lippmann. A Speech Recognizer Using Radial Basis Function Neural
Networks in an HMM Framework. in Proceedings International Conference on Acoustics Speech and
Signal Processing. San Francisco: IEEE, 1992.

39. Donald Specht Probabilistic Neural Networks in Neural Networks, Volume 3 pp 109-118, Perga-
mon Press, 1990.

40. Sholom M. Weiss and Casimir A. Kulikowski, Computer Systems that Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. San Mateo,
California: Morgan Kaufmann (1991).
LNKnet Users Guide (Revision 4, February 2004) 195

BIBLIOGRAPHY
196 LNKnet Users Guide (Revision 4, February 2004)

SUBJECT INDEX

A
a priori probabilities window 87
adaptive stepsize back propagation 53
algorithm selection 31
algorithms 3, 51–75
angle data base 165

B
back propagation 51
backward feature search 86
bad flags 129
batch files 112
binary splitting clustering 73
binary tree classifier (BINTREE) 64

initializing MLP 113
internals plot 97
structure plot 96

BINTREE 64
bugs 129
bullseye data base 166

C
c code file 126

generation 109, 159
check features by hand 43, 85
CKNN 63
class labels 13, 81, 119
class probabilities 82, 87
classification figure of merit 53
classifiers 51–73
clearing screen 37
clustering 48, 73–75

by class 49
color plots 132
comma delimited list 119, 131
committee

classifier 70
data base 111, 127

condensed nearest neighbor classifier (CKNN) 63
confusion matrix 23, 143
continue experiment 34, 77, 141
cost function

cross-entropy 53
maximum likelihood 53
squared error 53, 56
top two difference 53

cost plot 19, 27, 102
covariance matrix 40, 57, 58
create clusters first 48
cross data base 167
LNKnet Users Guide (Revision 4, February 2004) 197

Subject Index
cross validation 42, 47, 86, 89, 152
file 90

cross-entropy 53

D
daisy data base 168
data base 13

description 118
list 13, 81, 130
selection window 14, 80

data bases
angle 165
bulls 166
cross 167
daisy 168
digit 169
disjoint 113, 170
disjoint_tail 171
Disk 172
DiskOut 173
Gap 107, 174
gmix 175
gmix_close 176
gnoise 177
gnoise_var 39, 178
HalfDisk 179
high_tail 180
iris 47, 181
ocrdigit 182
pbvowel 183
uniform_1_1 87, 184
uniform_10_1 87, 186
uniform_2_1 87, 185
vowel 13, 187
XOR 159, 164, 188

data file 118
decision region plot 17, 24, 40, 91, 132
defaults file. See description file
defaults for LNKnet start 19
DeltaGraph 108
description file 118
detection plot 29, 103

window 21
digit data base 169
disjoint data base 113, 170
disjoint_tail data base 171
Disk data base 172
DiskOut data base 173
distance limit 92, 94, 133

E
EM_CLUS 73
environment variable

LD_LIBRARY_PATH 133
LNKHOME 136
MANPATH 129, 136
PATH 129, 136

error file 80, 125
format 125
verbosity 13

error summary 24, 143
198 LNKnet Users Guide (Revision 4, February 2004)

Subject Index
estimate-maximize clustering (EM_CLUS) 73
evaluation data 4, 118
Excel 108
exit LNKnet 77
experiment flow 4
experiment notebook 123, 158

F
feature labels 119
feature list file 120
feature selection 5, 39, 149

plot 87
window 85

file does not exist 131
files

.lnknetrc 19
c subroutine 126
clustering parameters 48
committee data base 127
data 118
data base description 118
error 125
experiment notebook 123, 158
feature list 120
log 123, 141
MIF 107, 109
normalization 120, 159
output 125
parameter 124, 159
plot 107, 109, 126
PostScript 107, 109
screen 123
shell script 122, 139

First N features 41
folds, cross validation 47, 89
format

cross validation file 90
data base description file 118
error file 125
input data file 118

forward and back feature search 86
forward feature search 86
FrameMaker 109

G
Gap data base 107, 174
gauss2c 160, 161
Gaussian (GAUSS) 159
Gaussian classifier (GAUSS) 40, 57, 149

internals plot 98
structure plot 97

Gaussian mixture classifier (GMIX) 57
internals plot 100
structure plot 99

GMIX 57
gmix data base 175
gmix_close data base 176
gnoise data base 177
gnoise_var data base 39, 178
gradient descent 51, 56
LNKnet Users Guide (Revision 4, February 2004) 199

Subject Index
H
HalfDisk data base 179
high_tail data base 180
histogram classifier (HISTOGRAM) 59
histogram plot 25, 94, 133
hypershpere classifier (HYPER) 70

I
incremental radial basis function classifier (IRBF) 55

structure plot 99
input labels 81, 119
inputs in error file 125
installing LNKnet 135
internals plot 24, 40, 92

bintree 97
gauss 98
gmix 100
knn 33
mlp 24, 101
rbf 101

intervals per plot dimension 91, 94
IRBF 55
iris data base 47, 181

K
K nearest neighbor classifier (KNN) 30, 62, 147
kernel functions 61
K-means clustering (KMEANS) 48, 73, 152
KNN 62

L
LD_LIBRARY_PATH 133
LDA 83
leader clustering (LEAD_CLUS) 75
learning vector quantizer (LVQ) 64
leave-one-out cross validation 62, 86
likelihood classifiers 56
linear classifier, gauss 57
linear discriminant analysis (LDA) 44, 83
LNK2gobi 115
LNKHOME 136
LNKnet defaults file (.lnknetrc) 19, 79
log file 21, 80, 123, 141

verbosity 80
lpr 109
LVQ 64

M
main window 77
maker interchange format 109
MANPATH 129, 136
manual pages 129
maximum likelihood 53
MIF 107, 109
missing file 131
MLP 51
movie mode 106
multi-layer perceptron classifier (MLP) 11, 51, 139

cost window 54
initialization by bintree 113
internals plot 101
main window 51
200 LNKnet Users Guide (Revision 4, February 2004)

Subject Index
node window 54
output sigmoid 53
parameters 12
slow training 132
structure plot 100
weight window 52

N
naive Bayes classifier 3, 7, 60
NC_CLASS 63
nearest cluster classifier (NC_CLASS) 63
nearest neighbor classifiers 61
neural network classifiers 51
N-fold cross validation 47, 86
norm_apply 113
normalization 5, 14, 44, 83

file 120
file generation 84
LDA 83
PCA 83
plot 46, 84
simple 83
turn off for plot 46

normalization file 159
normalized files 113
notebook file 123, 158
number of patterns 130

O
ocrdigit data base 182
olxplot 106, 108, 126, 133
OpenLook 189
outputs 87

in error file 125

P
parameter file 109, 124, 159
parzen window classifier (PARZEN) 61
PATH 129, 136
pbvowel data base 183
PCA 83
percent error plot 19, 27, 102
perceptron convergence procedure 53
plot 91

BINTREE structure 96
cost 102
decision region 91
detection 103
feature selection 87
GAUSS structure 97
GMIX structure 99
histogram 94
internals 92
IRBF structure 99
MLP structure 100
normalization 84
percent error 102
posterior probability 102
profile 93
RBF structure 99
rejection 104
LNKnet Users Guide (Revision 4, February 2004) 201

Subject Index
ROC 103
scatter 91
structure 96

plot file 107, 126
plot only 41, 77
plot selection 15, 92
plot un-normalized data 46, 93
plot2mif 107
plot2ps 108
plotting dimensions 40, 93
posterior class probabilities 51
posterior probability plot 28, 102

window 20
PostScript 107, 108, 109
preview 109
principal components analysis (PCA) 44, 83
printing 107, 109
prior class probabilities 87
priors window 87
profile plot 25, 93

window 18

Q
quadratic classifier, gauss 57
quit LNKnet 77

R
radial basis function classifier (RBF) 48, 54, 152

internals plot 101
structure plot 99

random clustering (RAN_CLUS) 75
RBF 54
receiver operating characteristic (ROC) plot 103
recompiling LNKnet 136
regularization parameters 4
rejection plot 30, 104

window 20
report files and verbosities window 13, 80
restore experiment screens 47
ROC plot 29, 103

window 21
rule based classifiers 64

S
sampling to adjust priors 87
save defaults 19, 79
scaling outputs to adjust priors 87
scatter plot 24, 40, 91, 133
screen file 80, 123
search, for features 86
select algorithm 78
shell script 21, 80, 122, 139
show all data 92
simple normalization 83
spreadsheet 108
squared error 53, 56
start experiment 21, 77
stop experiment 77
stop sign 79, 82, 83, 85
stop training early 106
structure plot 26, 96

bintree 96
gaussian 97
202 LNKnet Users Guide (Revision 4, February 2004)

Subject Index
gmix 99
irbf 99
mlp 100
rbf 99
window 18

support vector machine 3, 7, 65
SVM 7, 65

T
test data 4, 118
tied gaussian mixtures 58
top two difference 53
training data 4, 118

U
uniform_1_1 data base 87, 184
uniform_10_1 data base 87, 186
uniform_2_1 data base 87, 185

V
variance 56, 57, 58

grand 40
verbosity

error file (verror) 80, 125
log file 80

vowel data base 13, 187

W
warning 79, 82, 83, 85

X
xgobi 115
XOR data base 159, 164, 188
xplot 106, 126, 133
LNKnet Users Guide (Revision 4, February 2004) 203

Subject Index
204 LNKnet Users Guide (Revision 4, February 2004)

	LNKnet User’s Guide
	Acknowledgments
	Public Domain Distribution Requirements

	CHAPTER 1 Introducing LNKnet
	1.1 Overview
	1.2 Algorithms
	1.3 Running a Pattern Classification Experiment
	1.4 Data Normalization and Feature Selection
	1.5 Embedding LNKnet Classifiers in User Applications
	1.6 What To Read Next
	1.7 New LNKnet Features

	CHAPTER 2 A LNKnet tutorial
	2.1 UNIX Setup
	2.2 Starting LNKnet
	2.3 Selecting a Classification Algorithm
	2.4 Experiment Setup
	2.5 Plot Setup
	2.6 Saving Defaults
	2.7 Starting an Experiment
	2.8 MLP Results
	2.9 Classification with Other Algorithms
	2.10 K Nearest Neighbor
	2.11 Continuing Training
	2.12 Cleaning up Windows and Files
	2.13 Feature Selection
	2.14 Feature Reduction using Normalization
	2.15 Cross Validation
	2.16 Exiting LNKnet

	CHAPTER 3 Classifiers
	3.1 Neural Network Classifiers
	3.2 Likelihood Classifiers
	3.3 Nearest Neighbor Classifiers
	3.4 Rule Based Classifiers
	3.5 Committee Classifier

	CHAPTER 4 Clustering
	4.1 K-Means
	4.2 Estimate-Maximize (EM_CLUS)
	4.3 Leader Clustering (LEAD_CLUS)
	4.4 Random (RAN_CLUS)

	CHAPTER 5 General LNKnet Parameters
	5.1 LNKnet Main Window
	5.2 Experiment Directory Files
	5.3 Data Base Selection
	5.4 Normalization
	5.5 Feature Selection
	5.6 A Priori Probabilities
	5.7 Cross Validation

	CHAPTER 6 Plots
	6.1 Decision Region Plots
	6.2 Profile Plots
	6.3 Structure Plots
	6.4 Cost Plot and Percent Error Plot
	6.5 Posterior Probability Plot
	6.6 ROC (Detection) Plot
	6.7 Rejection Plot
	6.8 Movie Mode
	6.9 Including Plots in Documents
	6.10 Manipulating Plot Windows

	CHAPTER 7 Other LNKnet Programs
	7.1 Preview and Print Window
	7.2 Code Generation Using a LNKnet Parameter File
	7.3 Committee Data Base Generation
	7.4 Batch File Creation from LNKnet Shell Scripts
	7.5 File Generation with Normalized Data
	7.6 Multi-Layer Perceptron Initialization from Binary Tree Parameters
	7.7 Data Exploration with Xgobi

	CHAPTER 8 Input and Output File Formats
	8.1 Input Data File Formats
	8.2 Files Generated by LNKnet
	8.3 C Code Files
	8.4 Committee Data Base Files

	APPENDIX A Common Questions and Problems
	1. UNIX and Shell Scripts
	2. Files and User I/O
	3. Misc.
	4. Known Limitations
	5. MLP Training
	6. Plots

	APPENDIX B Installing LNKnet
	B.1 What you need
	B.2 Read Tar Tape or Download from Web Site
	B.3 LNKnet updates
	B.4 Recompiling LNKnet

	APPENDIX C Tutorial Scripts and Outputs
	C.1 MLP
	C.2 KNN
	C.3 GAUSS (Hand Picking Features)
	C.4 RBF with KMEANS (Cross Validation)
	C.5 Experiment Notebook File
	C.6 C Code Generation From a Parameter File
	FIGURE C.1 Gauss Parameter file (XORgauss.param)
	FIGURE C.2 GAUSS2C script (XORgauss.c.run)
	FIGURE C.3 Output of gauss2c (XORgauss.c)
	FIGURE C.4 Main driver program that uses LNKnet classifier code.
	FIGURE C.5 XOR.train Scatter Plot and Decision Region Plot generated by XORgauss.c

	APPENDIX D Data Bases Included in LNKnet
	FIGURE D.1 angle
	FIGURE D.2 bulls
	FIGURE D.3 cross
	FIGURE D.4 daisy
	FIGURE D.5 digit1
	FIGURE D.6 disjoint
	FIGURE D.7 disjoint_tail
	FIGURE D.8 Disk
	FIGURE D.9 DiskOut
	FIGURE D.10 Gap
	FIGURE D.11 gmix
	FIGURE D.12 gmix_close
	FIGURE D.13 gnoise
	FIGURE D.14 gnoise_var
	FIGURE D.15 HalfDisk
	FIGURE D.16 high_tail
	FIGURE D.17 iris
	FIGURE D.18 ocrdigit
	FIGURE D.19 pbvowel
	FIGURE D.20 uniform_1_1
	FIGURE D.21 uniform_2_1
	FIGURE D.22 uniform_10_1
	FIGURE D.23 vowel
	FIGURE D.24 XOR

	APPENDIX E Using OpenWindows
	E.1 The Mouse
	FIGURE E.1 A SUN three button mouse and pointer
	FIGURE E.2 Making a Menu Selection
	FIGURE E.3 Scrolling LIst
	FIGURE E.4 LNKnet Objects that are Set using the Select Mouse Button
	E.2 The Keyboard
	FIGURE E.5 LNKnet Text Fields
	E.3 Windows
	FIGURE E.6 LNKnet windows and icon

	BIBLIOGRAPHY

